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Abstract The paper proposes the microscopic travel demand model continuous target-

based activity planning (C-TAP) that generates multi-week schedules by means of a

continuous planning approach with an open planning horizon. C-TAP introduces behav-

ioral targets to describe people’s motivation to perform activities, and it uses a planning

heuristic to make on-the-fly decisions about upcoming activities. The planning heuristic

bases its decisions on three aspects: a discomfort index derived from deviations from

agents’ past performance with regard to their behavioral targets; the effectiveness of the

immediate execution; and activity execution options available in the near future. The paper

reports the results of a test scenario based on an existing 6-week continuous travel diary

and validates C-TAP by comparing simulation results with observed behavioral patterns

along several dimensions (weekday similarities, weekday execution probabilities of

activities, transition probabilities between activities, duration distributions of activities,

frequency distributions of activities, execution interval distributions of activities and

weekly travel probability distributions). The results show that C-TAP has the capability to

reproduce observed behavior and the flexibility to introduces new behavioral patterns.
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Introduction

Microscopic travel demand simulation software uses a direct representation of virtual people

(usually referred to as agents) to generate demand in the form of activity plans (see e.g.

Axhausen 1990b; Smith et al. 1995; Bowman 1998; Arentze et al. 2000; Miller and Roorda

2003; Bhat et al. 2004; Schnittger and Zumkeller 2004; Balmer 2007). For instance, Balmer’s

(2007) model uses agents who choose between different daily schedules. Activities from these

schedules are executed, and the simulation results are returned to the planning process, allowing

the agents to improve their schedules based on improved estimates of their generalized costs.

This replanning step is repeated until the simulation reaches a stochastic user equilibrium with

consistent travel demand and travel cost (Nagel and Flötteröd 2009). Simulating agents indi-

vidually leads to high computational complexity, which often results in computational per-

formance and memory issues. Microscopic models typically introduce restrictive constraints to

counter such issues. For instance, Balmer limited the maximum simulation horizon of standard

size scenarios to a single day, making it difficult to investigate effects occurring over a period of

days or weeks. Another limitation of Balmer’s model is that agents must commit to a specific

day plan, making it challenging to simulate unexpected events realistically (Charypar et al.

2009; Dobler et al. 2012). Including such flexible behavior requires a different simulation

approach that is capable of modeling demand continuously, i.e. agents should be able to make

decisions about upcoming activities on-the-fly and with an open planning horizon (see also the

empirical insights from the work of Doherty 2005).

We propose the microscopic travel demand simulation continuous target-based activity

planning (C-TAP) that utilizes behavioral targets to guide agents through their decision space.

These targets are closely related to observed behavior, e.g. the execution frequency or time

spent on a given activity, and can take account of exogenous effects like social and cultural

norms. Our agents continuously track their performance and compare it to their behavioral

targets using observation windows of different durations. Deviations from the desired

behavior cause discomfort, which is conveyed to a planning heuristic that makes decisions

about which future activities the agents should execute. This enables agents to react sponta-

neously to unexpected events. At the same time, it also reduces memory consumption because

agents do not need to keep track of complete schedules.

The final goal of this work is to provide a travel demand simulation featuring cus-

tomizable components to model people’s behavior and their environment. The resulting

model should allow for simulation periods of several weeks and hundred thousands of

agents within a reasonable computing time. Consequently, the challenge is to find a bal-

ance between behavioral realism and computational demand. In this paper we will focus on

the introduction of the model and its configuration in order to reproduce observed behavior.

We will first discuss the model and its behavioral targets. We will then introduce the

planning heuristic with its key features and describe how it utilizes the target-based model

to determine which future activities to execute. This will be followed by a section on model

calibration and validation. We will conclude the paper with an outlook on future research.

Related work

Arentze and Timmermans (2006) introduced need-based theory and its associated model

for activity generation (Arentze and Timmermans 2009) that assumes that the utility of

activities is a function of needs. Whereas Arentze and Timmermans postulated that needs

motivate people to execute activities, we assume that people form a conception of their
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desired performance as they reported in the data collected by the Swiss Federal Statistical

Office (BFS) (2006) as well as in other travel diaries (e.g. Axhausen et al. 2002;

Schönfelder 2006; Axhausen et al. 2007). Peoples’ conception of performance is trans-

formed into targets. Consequently, targets are directly observable in the available data, and

it is therefore possible to overcome the hidden source problem of the need-based model.

Nonetheless, we kept C-TAP generic in the sense that the satisfaction of needs may still be

one possible target in C-TAP. We incorporate Winston’s (1982) suggestion to use time-

dependent utilities for activities (see also Axhausen (1990a, pp 34–38) for a summary or

Gliebe and Kim (2010) for recent work in this tradition) and introduce time-dependent

effectiveness functions to describe the effectiveness of activities and locations with respect

to discomfort reduction. In Märki et al. (2011) we presented a need-based model that was

designed for continuous simulation. C-TAP drops the need-based approach and introduces

measurements (which we refer to as targets) that are directly observable in existing long-

duration diaries. We expect this shift of focus to produce a coherent model and to simplify

its utilization for modelers.

Behavioral model

Agents, representing virtual people, are the central component of C-TAP. We assume that

each agent has a motivation to execute activities. C-TAP represents this motivation

through behavioral targets, describing agents internal conditions based on personal desires,

preferences, and goals. Deviations from behavioral targets result in discomfort, which

induces agents to take action against the deviation; higher deviations result in greater

discomfort, which in turn leads to a greater urge to take action. Agents can reduce their

discomfort by executing activities at different locations, and we assume that agents prefer

activity/location pairs that provide more discomfort reduction. This is similar to the work

of Arentze and Timmermans (2009), who proposed that activity utility is a function of need

reduction. Agents interact with their environment when they execute activities. Effec-

tiveness functions describe external conditions agents face during their interaction and

specify the efficacy of activity execution at a specific location.

Targets

The core assumption of this research is that people are motivated to execute activities and

that they have a conception of their motivation in terms of the performance they want to

achieve. People specify this performance through behavioral targets and try to comply with

them across observation windows of different durations. For instance, a person might wish

to exercise for roughly two hours twice a week. This person might be satisfied with one

hour of exercise once a week and state that up to 2.5 h of exercise three times a week

would still be compatible with his of her weekly schedule. The targeted behavior could be

transformed into targets as follows:

• The percentage of time target defines the amount of the time a person would like to

spend on an activity within an observation window. In order to simplify the modeler’s

task, it is possible to specify the total execution duration, which is then internally

converted to the percentage of time target. For the above example, the modeler would

specify a target value of 2 h of exercise, a bandwidth of
0:5
�1

h (the upper and lower

bounds of the target value) and an observation window of 1 week (see Fig. 1a).
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• The frequency target defines the number of activity executions a person would like to

accomplish within an observation window. For the above example, the modeler would

specify a target value of two executions with a bandwidth of
þ1

�1
executions and an

observation window of 1 week.

Playing tennis, swimming and hiking are all forms of exercise. At the same time,

playing tennis is also a chance to socialize or even a means of maintaining business

relationships (see e.g. Arentze and Timmermans 2009, for a discussion of multipurpose

activities). C-TAP allows for activities to serve multiple targets, and it is possible to assign

a target to several activities. This facilitates the configuration of interacting effects, as

outlined above.

C-TAP supports static and dynamic targets. We use static targets to model constant

behavioral patterns and dynamic targets to model variable behavioral patterns (we refer to

them as behavioral rhythms). Behavioral rhythms are conditions in which activity exe-

cutions vary across observation windows (e.g. leisure activities might be more common

during weekends than weekdays).

Agents monitor their performance during the simulation and compare state values to

their target values (see Fig. 1b). State values are exponentially discounted over the

observation window of targets. This simulates a forgetting process in which agents give

more weight to recent behavior and gradually discount their past performance.

Fig. 1 Illustration of agent configuration and performance monitoring. a Schematic illustration of a target
configuration that defines the average time a person would like to spend on executing an activity. Target
values as well as upper and lower bounds (which define the behavioral bandwidth) can be static or dynamic.
Static targets model constant behavioral patterns and dynamic targets model variable behavioral patterns
(we refer to them as behavioral rhythms). Dynamic targets are modeled as functions in time. b Schematic
illustration of performance monitoring. The state value (dashed green line) is calculated through a
convolution of the activity execution pattern with an exponential kernel, resulting in an exponentially
weighted moving average. The observation window, in which the person tries to comply with the target,
defines the kernel length
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Effectiveness functions

People seem to have time-dependent preferences for executing activities and/or visiting

locations. Reasons for this behavior can be manifold, and they vary according to con-

straints (e.g. opening hours), norms (e.g. business hours) and contingencies (e.g. weather

conditions) as well as combinations of such effects. Effectiveness functions are a simple

but comprehensive way to describe such interdependencies and represent external condi-

tions agents face when they interact with their environment. Effectiveness functions inform

agents about the efficacy of activities and locations with respect to discomfort reduction

and are expressed as the percentage of execution effectiveness. This is similar to the work

of Winston (1982), who proposed time-dependent utilities for activities (see also Axhausen

(1990a, pp 34–38) for a summary or Gliebe and Kim (2010) for recent work in this

tradition). In C-TAP, effectiveness functions are a linear combination of different effects

(constraints, norms etc.) and modelers can define different effectiveness functions for

different locations (i.e. shops can have different opening hours). Effectiveness functions

are agents’ generic interface to the world and modelers can use them according to their

modeling focus. Some effects that can be modeled by effectiveness functions include:

• Shop opening hours for daily shopping activities Agents can use this information either

to determine whether they can execute a shopping activity without delay and for how

long, or to estimate how long it will take until the next opportunity to engage in that

activity will arise. Since effectiveness functions can be location dependent, it is also

possible to model location dependent shop opening hours. Furthermore, the effective-

ness function can also contain time dependent information about shop crowdedness.

We assume that shopping in overcrowded shops is less efficient (smaller value) and

therefore takes longer.

• Daylight intensity for sleep activities This function specifies the light intensity. Agents

can, for instance, use this information as an indication of sleep effectiveness. We

assume that people sleep at night and have already adapted to their current time zone.

• Business hours for work activities This function can be seen both as a cultural norm

(different cultures may keep different business hours) and a social norm (social groups,

e.g. professions, may have different business hours). Agents can use this information as

an indication of work effectiveness. We assume that people depend on co-workers to be

able to do their work (the degree of dependence can vary according to the profession).

• Seasonal effects for leisure activities This function is location dependent and combines

different effects like the time of year and weather conditions. For example, a ski resort

would be more effective during the winter months after a snowfall whereas a yacht club

would be more effective during the summer months, when sunny weather and a good

breeze are more likely. This function enables agents to follow seasonal rhythms by

choosing to ski at a ski resort during the winter and to sail at a yacht club during the

summer (see Märki et al. 2012, for an application of a similar example).

The decision model

Other approaches to agent-based microsimulations have exhibited various disadvantages.

Balmer (2007) re-planned the same day until he produced an optimal state. This procedure

led to high computational costs. Kuhnimhof and Gringmuth (2009) struggled with

inflexibilities when agents should have spontaneously reacted to unexpected events.
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Charypar and Nagel (2006) formulated the planning procedure as a reinforcement learning

problem and reported that this approach performed poorly for large scenarios. We have

introduced a decision heuristic to overcome the limitations described above. The proposed

heuristic uses a continuous decision procedure, enabling agents to spontaneously react to

unexpected events. Since a heuristic is intended to approximate a good solution, it is also

possible to use incomplete knowledge about the state of mind and plans of other agents.

This is helpful since complete knowledge generally leads to high computational and

memory costs, especially if simulations are executed on distributed computation envi-

ronments. One could argue that people seek optimal day plans and that applying a heuristic

makes this infeasible. However, other authors (e.g. Simon 1955; Schlich 2004) doubt that

behavior can be explained as a function of utility maximization that aims at a global

optimum. They argue that people seem to maximize their utility but with a limited view

similar to a search for a local optimum. One goal of this work is to demonstrate how far a

decision procedure that approximates a good solution with limited information can

reproduce real world behavior.

In the next section we will introduce the individual factors of the decision heuristic,

which will be followed by a section outlining the decision procedure.

Individual factors of the decision heuristic

Discomfort

Discomfort builds on targets and is a function of the difference between targeted and actual

behavior (i.e. the difference between target values and state values). Discomfort levels

identify the urgency an agent experiences to take action against the origin of the dis-

comfort. The discomfort an agent feels from an activity at time t is defined as

DðtÞ ¼
Xn

k¼1

f k
targetðtÞ � f k

stateðtÞ
� �2

� wk
1 if f k

stateðtÞ� f k
targetðtÞ

wk
2 otherwise

�
ð1Þ

wk
1 ¼

1

f k
targetðtÞ � f k

lower�boundðtÞ
� �2

ð2Þ

wk
2 ¼

1

f k
targetðtÞ � f k

upper�boundðtÞ
� �2

ð3Þ

the sum of the squared difference of the target value ftarget
k (t) and the state value fstate

k (t) of

all targets k (e.g. frequency and percentage of time) of the activity, normalized by the

squared difference of the state value and the lower bound w1
k if fstate

k (t) B ftarget
k (t), and

otherwise by the squared difference of the state value and the upper bound w2
k. The weight

factors w1
k and w2

k normalize D(t) and ensure that it equals to 1 at the lower and the upper

bound.

Discomfort reduction

The reduction in discomfort that an agent experiences as a consequence of executing an

activity at a specific location is defined as
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DRðtes; teeÞ ¼ DðtesÞ � DðteeÞ ð4Þ

which is the difference between the discomfort D(tes) at the start of execution tes and the

expected discomfort D(tee) at the end of execution tee. The purpose of this difference is to

introduce a preference for activity/location pairs that yield higher levels of discomfort reduction.

Execution effectiveness

The execution effectiveness an agent experiences for executing an activity at a given

location is defined as

EEðtes; teeÞ ¼
R tee

tes
feffectðtÞdt

tee � tes

ð5Þ

whereby the integral of an effectiveness function feffect(t) (see ‘‘Effectiveness functions’’

section) between the start of execution tes and the end of execution tee is normalized by the

activity duration tee - tes. The purpose of this index is to introduce a preference for

executing activity/location pairs during efficient time windows (whereby efficiency is

defined by whatever the effectiveness function represents, e.g. a combination of several

effects like social and cultural norms), and it helps to prevent agents from executing

activities during time windows when the agent cannot or can only partially execute the

activity (e.g. because the shop closes).

Look-ahead index

Atkinson (1994) and Ioannou et al. (2001) highlighted the importance of information about

future execution options for scheduling problems with time-window constraints. Effec-

tiveness functions provide information about future execution options. For instance, shop

opening hours inform agents about whether they can execute a shopping activity at a given

time and for how long, or how long they must wait until the next opportunity to shop will

arise. Agents can use such information to plan ahead, for instance by postponing activities

with more execution options/higher prospective effectiveness in favor of more pressing

activities for immediate execution (e.g. do daily shopping duties because shops are going

to close soon, therefore postpone some other activities).

The aim of the look-ahead index is to provide agents with an awareness of potentially

decreasing activity execution options. A simple approach for the example of the shop

opening hours would be to measure the percentage of total time available for a potential

execution of shopping in the near future (e.g. within the next 4 days). This approach has the

disadvantage that it does not distinguish between execution options that will open soon and

those that will open later. Applying higher weights to execution options that open sooner

alleviates this problem. We do this through a convolution of the effectiveness function with

an exponential kernel (see Fig. 2), similar to the convolution of state values (see Fig. 1b).

The look-ahead value an agent receives for executing an activity at time t is defined as

LAðtÞ ¼ 1þ w1 � 1�
Rh

0

ðfeffectðt þ xÞ � kernelðxÞÞdx

� �
if feffectðtÞ[ 0

1 otherwise

8
<

: ð6Þ

where w1 is a weight factor, h is the look-ahead horizon of the kernel, and feffect(t) the

effectiveness function. Intuitively, one could understand LA(t) as an index describing the

urgency to execute an activity when prospective execution options decrease. Therefore, we
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designed it in such a way that it yields a value in the range of [1..w1] (1 for low urgency

and a value approaching w1 for decreasing execution options).

Execution time quota

The execution time quota an agent receives for executing an activity at a location is defined

as

ETQðtts; tes; teeÞ ¼
tee � tes

tee � tts
ð7Þ

which is the ratio between the activity duration tee - tes and the duration between the start

of travel tts (defined by the end of the last activity at the previous location) and the end of

execution tee. Accordingly, a higher share spent for traveling results in a smaller factor. In

the current model, travel times are randomly drawn from a dynamic distribution, yielding

higher expected travel times for increasing demand and travel distance. This parameter

introduces an aversion to traveling and a preference for activity execution. Consequently, it

produces a preference for accessible locations (locations that can be reached fast) and

fosters activity chaining (see ‘‘Simulation results’’ section and Fig. 7).

The decision procedure

An agent decides upon his or her next action by applying a three-step decision procedure to

all his or her promising activity/location pairs. This decision procedure combines different

planning aspects into a heuristic function. These aspects include a comparison of the past

performance with the targeted performance, an evaluation of the immediate execution

options, an estimate of the prospective activity execution opportunities, a consideration of

the travel time, and a random term modeling individual perception. The heuristic function

HF is defined as

HFðtts; tes; teeÞ ¼ DRðtes; teeÞ � EEðtes; teeÞ � LAðteeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
step 1: activity duration

�ETQðtts; tes; teeÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
step 2: gain per time invested

�ð1þ �Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
step 3: random fluctuation ½optional�

ð8Þ

which is the multiplication of the discomfort reduction DR, the execution effectiveness EE,

Fig. 2 Illustration of the look-ahead index for shop opening hours on short and long weekends, comparing
different look-ahead windows (2 and 7 days). The higher the value the closer the end of the given shop
opening hours window. The value is higher before weekends, indicating fewer shopping options in the near
future. The look-ahead index with a kernel of 7 days can differentiate between short and long weekends
(value is higher before a long weekend). Choosing the right kernel length is therefore important, so we
propose a duration of approximately two to three times the average interval between the execution of two
activities of the same type (e.g. 3 � 2 days = 6 days for daily shopping)
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the look-ahead index LA, the execution time quota ETQ, and a scaled random term ð1þ �Þ
(see ‘‘Individual factors of the decision heuristic’’ section for an explanation of the factors).

In a first step, an agent decides upon the duration of the activity by searching for the time of

the end of execution tee, which maximizes the product of DR � EE � LA. This results in a

preference for activity/location pairs which provide discomfort reduction, which are

commonly executed (e.g. based on cultural or social norms), and which have a certain

inflexibility with regard to being postponed to a later point in time. In a second step the

agent multiplies the maximized value by ETQ, introducing a preference for accessible

locations. So far, this decision procedure is consistent for all agents in the sense that agents

having the same state and facing the same situation will make the same decision. Clearly,

this does not match the heterogeneity of observed behavior (see e.g. Schönfelder 2006;

Chikaraishi et al. 2010). A typical workaround to improve heterogeneity is to introduce an

unexplained preference, modeled as a random variable altering the perception of alterna-

tives (see e.g. McFadden and Train 2000; Horni et al. 2012, for other studies modeling

heterogeneity in a population by random variables). Agents can incorporate a scaled

random term into the decision-making procedure as an optional third step. This step

activates agents’ individual perceptions and the decision procedure becomes nondeter-

ministic. Here we have kept the decision-making procedure fully deterministic by disabling

the third step. In a final step, the agent decides to implement the activity/location pair

yielding the highest value of the heuristic.

Model validation

We validated C-TAP against an existing six-week continuous travel diary (Schönfelder

2006; Axhausen et al. 2007) carried out in the Canton of Thurgau, Switzerland in 2003.

The survey comprises an activity record of 230 people from different social backgrounds

and professions (e.g. employees, self-employed, retirees, homemakers, and students) living

in 99 households. The validation demonstrates that C-TAP can be configured to reproduce

observed behavior. It could then serve as a starting point to make forecasts based on

changes in agents’ environment (modeled by effectiveness functions) or to make forecasts

based on changes in agents’ behavioral targets (see also ‘‘Discussion and conclusions’’

section).

Model configuration

We distinguished between 11 activity types (home, work, work-related, education,

socialize, daily shopping, long-term shopping, leisure active, leisure excursion, private

business, short vacation) and implemented a model using 22 dynamic targets per agent (11

percentage of time and 11 frequency targets, we refer to dynamic targets as behavioral

rhythms; see Fig. 1). These rhythms were automatically extracted from the survey through

a convolution of the activity patterns with an exponential kernel of one week, resulting in

an exponentially weighted moving average of six weeks (see Fig. 3). Weekly rhythms were

then compiled by extracting the combined mean values of all exponentially weighted

moving averages for the target value and the combined minimal and maximal values for

the bandwidth (the upper and lower bounds of the target value). One could interpret such a

rhythm as a behavioral path that an agent could take during the simulated weeks. Agents

tend to stay in the middle of the path, but have the freedom to move toward the edges (the

upper and lower bounds) resulting in increasing discomfort.
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Simulation results

We generate ten duplicates of each agent and initialize agents at random. Using additional

agents introduces variability and copying existing agents preserves the sociodemographic

distribution in the simulation. We simulated six consecutive weeks and validated the

simulation results by comparing different statistics extracted from the survey and the

simulation (see Fig. 4). These comparisons illustrate the behavior reproduction capability

of C-TAP.

Figure 5 illustrates the average similarity of weekdays (e.g. Mondays compared to

Tuesdays for the same person/agent) in the survey (first table) and in the simulation

(second table). Similarities were measured by Joh’s (2004) multidimensional similarity-

measurement function. Joh defined similarity as the effort necessary to realign a day’s

activity sequence and activity timing into the sequence and timing of another day. Days are

more similar the less effort is needed for this realignment. The first table shows that the

same workdays (e.g. Thursday/Thursday) had the highest similarity (darkest color). This is

followed by the similarity between workdays (e.g. Friday/Tuesday) and weekend days

(Sunday/Saturday). Workdays compared to weekend days (e.g. Sunday/Thursday) showed

the least similarity (lightest color). The simulation reproduced this similarity pattern with

Fig. 3 Illustration of the extraction procedure of the weekly rhythm for the percentage of time target of
home. The rhythm for the frequency target of home was extracted in the same manner and repeated for all
remaining activities

Fig. 4 Illustration of the
validation procedure. A model is
configured based on the reported
schedules of the people, and it is
then used to simulate six
consecutive weeks. Statistics are
extracted from both observed and
simulated schedules and then
compared to give an
understanding of C-TAP’s
capability of reproducing
behavior
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the exception of Mondays. This deviation may be explained by the activity short vaca-

tion. In the survey, people usually returned from a short vacation on Monday morning,

resulting in dissimilarity in comparison to ordinary Mondays (leading to a lighter color

for the survey). Due to the shorter execution duration of short vacation in the simulation

(see Fig. 8a), agents returned earlier and spent Sunday night at home. This resulted in a

Monday which was similar to ordinary Mondays (leading to a darker color for the

simulation).

Figure 6 compares the probabilities of the execution of activities at weekdays. A darker

color indicates a higher probability. People and agents executed the activities education,

work, and work-related on workdays and in some cases on Saturdays. People and agents

stayed at home on every day of the week with a tendency to stay away from home on

weekends. Leisure active was executed on every day of the week, but, like leisure

excursion and socialize, tended to occur more often on weekends. People and agents

Fig. 5 Illustration of day similarities based on Joh’s (2004) multidimensional similarity-measurement
function with respect to activity sequence alignment and activity timing. a Survey, b simulation

Fig. 6 Illustration of the probabilities of the execution of activities at weekdays. A darker color indicates a
higher probability for an activity to be executed on a given day. a Survey, b simulation
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performed daily shopping and long-term shopping on workdays and Saturdays. A generally

slightly darker color of leisure active and leisure excursion in the simulation table indicates

that these activities were less frequent in the survey (see also Fig. 8b). The simulation is

apparently capable of reproducing the major execution patterns of the survey.

Figure 7 compares transition probabilities between activities. This defines the proba-

bility of an activity being executed right after another activity (e.g. home after work). A

darker color indicates higher probability. People and agents were likely to go home after

work, and there was a tendency to execute work after going home. Even though going home

often succeeded other activities, it is possible to observe activity chaining in the survey and

the simulation. Socialize neither had a clear predecessors in the survey nor the simulation.

People re-executed activities (e.g. leisure excursion, private business and work-related).

This also occurred in the simulation, but less distinctly. The simulation could develop new

transitions (e.g. from long-term shopping to leisure active) and new tendencies could

emerge (e.g. from daily shopping to long-term shopping). We see this as an indication that

C-TAP has the flexibility to allow for new patterns. Based on these results we conclude that

the simulation reproduced the major transition patterns of the survey.

Figure 8 compares the activity duration, frequency, and execution interval distributions.

The figures group boxplots by activity type, forming pairs of boxplots to include survey

(first) and simulation (second) results. The plots show that the target-based approach can

represent different behavioral patterns, e.g. high frequency with long execution durations

and short intervals (home), low frequency with short execution durations and long intervals

(long-term shopping), or low frequency with long execution durations and long intervals

(short vacation). Since behavioral targets build on weekly patterns (representing the

average behavior in a 6-week survey), it is not surprising that C-TAP shows a tendency to

produce less variability for durations and frequencies. The simulation reproduces most

distributions with the exception of short vacation which deviates in mean value and

observed variability. The survey does not provide many observations of this activity, and

hence it is difficult to configure C-TAP automatically. Consequently, infrequent activities

should be fine-tuned by hand using expert knowledge.

Fig. 7 Illustration of transition probabilities between activities. A darker color indicates a higher
probability for a transition between given activities. a Survey, b simulation
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Figure 9 compares the travel behavior of people and agents. A higher value indicates a

higher probability that traveling occurred at that time. Meeting these probabilities is

important for a travel demand model and is an indication of its scheduling quality. The

plot shows that the simulation reproduced major peaks, although some peaks are not as

distinct (e.g. Wednesday morning), and the peak on Thursday morning occured a bit later.

In general, C-TAP shows a good capability for reproducing workday and weekend

patterns.

Fig. 8 Comparison of activity duration, frequency and execution interval distributions. Figures group
boxplots by activity type, forming pairs of boxplots to include survey (first) and simulation (second) results.
a Distributions of activity duration. b Distributions of activity frequency. c Distributions of activity
execution interval
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Discussion and conclusions

Our first continuous model (Märki et al. 2011) used a need-based approach. It produced

good results but made modelers’ task difficult because the relationship between needs and

activities was often unclear and necessitated modelers’ interpretation. The target-based

approach presented here introduces measurements that are directly observable in existing

long-duration diaries. Consequently, these measurements can be extracted automatically

(see ‘‘Model configuration’’ section), simplifying the modeling process. In case the

available data does not provide enough samples (e.g. see short vacation in our validation),

expert knowledge can still be used to improve simulation results.

Fig. 9 Illustration of travel probability over the week. A higher value indicates a higher probability that
travel occurs at that given time
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Arentze and Timmermans (2007) pointed out that the dynamics of activity planning

range from long-term dynamics related to life trajectories to short-term activity–travel

rescheduling behavior, and several time horizons between these extremes. The decision

procedure presented here plans activities on-the-fly considering different time horizons. On

one hand, this procedure enables agents to react spontaneously to unexpected events since

they can continuously adjust their decisions based on a changing environment. On the other

hand, the kernel based approach of targets and look-ahead indices allows agents to consider

different time horizons simultaneously. For instance, it would be possible to assign targets

with kernel lengths of 1 week, 1 month, and 1 year to a work activity, ensuring that agents

adhere to their weekly, monthly, and yearly work quota. In Märki et al. (2013), we showed

how exogenous modules can induce agents to execute arbitrary activities. The same

approach could be used to stimulate agents to execute activities like e.g., attending a

funeral, even integrating activities nobody targets to execute into C-TAP.

The concept of time horizons limits agents’ view into the past and future. Consequently,

the decision procedure generates decision sequences based on limited information on

agents’ past performance and future opportunities, similar to a local optimization. Like

other authors (e.g. Simon 1955; Schlich 2004), we believe this is behaviorally more

authentic than the search for the globally best decision sequences (like e.g. Balmer 2007).

Even though the decision procedure is still a simplification of reality it reproduced

observed behavior convincingly and its computational demand enables simulation periods

of several weeks and hundred thousands of agents within a reasonable time (the current

algorithms allow a real time simulation of approximately one million agents using 16

threads on two Intel Xeon E7-8837 processors with eight-cores and 2.66 GHz each).

C-TAP derives activity durations from agents’ state and external conditions. Agents

monitor their performance during the simulation and compare it to their targeted behavior

(see Fig. 1b). This allows for varying activity durations because they are based on the time

needed to adjust state values to target values (i.e. reduce discomfort). Accordingly, an

activity’s execution duration varies with the time since its last execution. Furthermore, the

execution duration also varies with its execution efficacy defined by the effectiveness

function. E.g. if an effectiveness function takes shop crowdedness into account, shopping

at an overcrowded shop takes longer than at a less crowded shop because the effectiveness

influences the increase rate of the state value.

Many activities show a certain correlation between frequency and duration. C-TAP

takes care of this by using frequency and percentage of time targets simultaneously.

However, there are activities with a focus on frequency (e.g. escorting children to/from

school) or on duration (e.g. reading a book). We model such activities by either dropping

the minor target completely or by applying large bandwidths to the minor target, resulting

in a reduced discomfort potential of the minor target in comparison to the major target.

C-TAP can account for heterogeneity in the population in several ways. First, it is

possible to assign different effectiveness functions to the same activity/location pair of

different agents. Accordingly, agents can perceive the same environment differently.

Second, it is possible to assign different targets to agents. This is a way to introduce

behavioral differences for individual agents or separate groups of agents. Third, it is also

possible to introduce heterogeneity in the decision procedure by enabling individual per-

ception (see ‘‘The decision procedure’’ section), modeled by the random term �.
Modelers could use C-TAP by first generating a synthetic population, e.g. by using the

algorithms proposed by Müller and Axhausen (2011, 2012). For each synthetic person they

could then select the three to five most similar people from the six-week continuous travel

diary used in this work (Schönfelder 2006; Axhausen et al. 2007). Similar to the presented
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configuration procedure (see Model configuration‘‘ section), modelers could then linearly

combine the behavioral profiles of the selected people into weekly dynamic targets of an

agent that represents the synthetic person. After the verification that the configured model

reproduces observed behavior, modelers can start further investigations and make forecasts

by manipulating targets and effectiveness functions to influence agents’ behavior. Manipu-

lating targets is in accordance with changing agents’ behavior directly. C-TAP provides an

interface that allows exogenous modules to manipulate agents behavior. Its application is

manifold and ranges from modeling phase transitions in life (e.g. like the transition into

marriage and parenthood) to modeling social interactions among groups of people (see Märki

et al. 2013, for such an application). Manipulating effectiveness functions is in accordance

with changing agents’ interaction environment. This could be used to test policy changes (e.g.

to investigate possibilities to break morning peaks by starting classes later) or to model

seasonal rhythms and weather conditions to see how agents react on seasonal differences (see

Märki et al. 2012, for such an application).

In our research so far we have thoroughly and accurately tested C-TAP by visually

inspecting several indices and distributions. In the future, it would be useful to have a quality

metric that would allow an automatic inspection of individual behavioral aspects. Joh’s

(2004) multidimensional similarity-measurement function gives an indication of the overall

reproduction quality, but does not examine behavioral aspects separately. In addition to other

distribution similarities (e.g. Bhattacharyya distance, Jeffrey divergence), we plan to use the

earth mover’s distance proposed by Rubner et al. (2000) to automatically test model con-

figurations for their reproduction capabilities of individual behavioral aspects.

Summary

This paper validates the microscopic travel demand simulation continuous target-based

activity planning (C-TAP) that can continuously simulate agents’ behavior. The continuous

nature of the simulation enables an investigation of traffic effects for durations of multiple

weeks. Behavioral targets are central to C-TAP and represent agents’ internal state and

describe their preferences and goals. These targets are closely related to statistical data

provided by various sources, which simplifies the application of the demand simulation for

modelers. Time-dependent effectiveness functions model various effects such as social and

cultural norms and represent external conditions agents face when they interact with their

environment. Agents keep track of their performance and compare it to behavioral targets.

Deviations cause discomfort; this is conveyed to a planning heuristic that makes on-the-fly

decisions about which upcoming activities agents should execute next. The required set of

parameters was automatically extracted from an existing six-week continuous travel diary.

The validation of the simulation by means of several groups of statistics and indices

demonstrates that C-TAP reproduces various behavioral aspects observed in the data.
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