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Abstract Most animal-pollinated plants produce nectar as a pollinator reward. Despite

the main role that nectar plays in plant-pollinator interactions, the impact of natural var-

iation in nectar traits on realized male fitness is poorly known. Here, we assessed this

relation for a wild Petunia axillaris population using paternity-based direct selection

gradient analysis, which allowed us also to infer pollen dispersal patterns. Because male

fecundity may depend on other traits which could be associated with nectar characteristics

(i.e. volume and concentration), we also considered selection on other key reproductive

traits. The analysis revealed that P. axillaris was a strict outcrosser, but that successful

pollination occurred mainly among neighbours. Individual plants varied greatly in their

male fecundity. Nectar concentration, a key feature of nectar that determines its profit-

ability, was subjected to stabilizing selection. Selection through male function also affected

corolla area (positive directional selection), corolla tube length (negative directional

selection), and floral display size (stabilizing selection), but none of these traits were

phenotypically correlated with nectar characteristics. Because nectar concentration affects

the ability and foraging efficiency of different flower visitors to feed on nectar, stabilizing

selection may reflect either the preference of the most effective pollinators, or antagonistic

selection driven by pollinators and non-pollinating nectar consumers.
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Introduction

Natural selection is broadly accepted as a major mechanism driving evolution of repro-

ductive traits. Phenotypic selection occurs when there is a correlation between phenotypic

variation and reproductive success and/or survival (Endler 1986). Ever since Lande and

Arnold (1983) introduced the selection gradient approach for studying phenotypic selection

in natural populations, there has been an explosion of studies on the subject (reviewed in

e.g. Harder and Johnson 2009; Kingsolver et al. 2012). In plants, most studies estimating

selection gradients in wild populations have been performed on hermaphroditic species,

with a historically stronger focus on the easier-to-measure female function (Conner 2006).

However, given that hermaphrodite plants obtain, on average, half of their fitness through

the male function, accounting for male fitness becomes essential. This is particularly

important for understanding selection on floral rewards, which are probably more critical to

enhance pollen export than pollen receipt (Bell 1985; Mitchell 1993; Carlson 2007).

Specifically, most flowering plants produce nectar as the main reward to pollinators,

suggesting that nectar traits may be shaped by selection to increase pollen export. How-

ever, the consequences of variation in nectar traits on male fitness under natural pollination

have been rarely explored (e.g. Mitchell 1993; Hodges 1995).

Male reproductive success has often been estimated indirectly by measuring pollen

removal, recording pollinator visitation rates, or tracking pollen movements with fluo-

rescent dyes (e.g. Nilsson 1988; Campbell 1989; Cuartas-Domı́nguez and Medel 2010).

However, these measures may be less robust predictors of realized reproductive success

(Snow and Lewis 1993; Klinkhamer et al. 1994; Conner 2006) than male fitness estimates

obtained combining the use of highly variable molecular markers together with statistical

techniques of paternity assignment (e.g. Meagher 1986; Smouse and Meagher 1994;

Wright and Meagher 2004; Hodgins and Barrett 2008). Since typically seeds or seedlings

are genotyped, such genetically based paternity analyses estimate the realized siring suc-

cess of pollen donors resulting from both pre- and post-zygotic processes (e.g. Bernasconi

2003; Harder and Routley 2006; Lankinen et al. 2006; Teixeira et al. 2008). Paternity

analyses can then be applied to estimate male selection gradients, either indirectly, by

regressing estimated individual male fertilities on measured phenotypic variables (e.g.

Conner et al. 1996; van Kleunen and Ritland 2004; Kulbaba and Worley 2012), or directly,

with maximum-likelihood methods that infer the selection coefficients from adult and

offspring genotypes and phenotypes (e.g. Smouse et al. 1999; Morgan and Conner 2001;

van Kleunen and Burczyk 2008). Direct estimation of selection gradients provides higher

statistical power than indirect estimation, which suffers from inflated error variance arising

from the fact that male fertilities (the response variable) are not directly measured but

estimated (Smouse et al. 1999; Morgan and Conner 2001). The spatially explicit mating

model (Oddou-Muratorio et al. 2005; Austerlitz et al. 2012) allows estimating male

selection gradients directly. The strength of this method consists in computing jointly

direct selection gradients for the male function, together with the selfing rate, the pollen

immigration rate (thus controlling for the effect of pollen flow from unsampled individ-

uals) and a pollen dispersal function for outcrossing events (dispersal kernel) representing
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the dependency of pollen flow upon the distance from the source plant (Oddou-Muratorio

et al. 2005; Gérard et al. 2006; Fénart et al. 2007; Austerlitz et al. 2012).

In this study, we estimated direct selection gradients for the male function in a wild

population of the white-flowered Petunia axillaris (Lam.) Britton, Sterns and Poggenb.

Petunia (Solanaceae) is a long-standing research model (Sink 1984; Gerats and Vanden-

bussche 2005). However, despite being extensively studied, most research on reproductive

biology in this taxon has been carried out using hybrids, and studies on natural populations

are scarce (but see Dell’Olivo et al. 2011). Of particular relevance, Brandenburg et al.

(2012) found that variation in nectar volume of P. axillaris affects female reproductive

success, measured as seed set. Nevertheless, this study considered extreme nectar variation

as it compared a near-isogenic line with low nectar production with a few wild plants, and

it did not examine selection via male function. Here we studied a natural population of P.

axillaris and specifically asked (1) whether natural variation in nectar-related traits also

affects male reproductive success under natural pollination, and (2) whether selection can

occur on nectar indirectly, through phenotypic correlations between nectar and traits

related to pollinator attraction, access to rewards, and reproductive investment that may

also be subject to phenotypic selection through male function. To address these questions,

we used a spatially explicit analysis (Oddou-Muratorio et al. 2005; Austerlitz et al. 2012)

that described pollen dispersal patterns and estimated phenotypic selection via male fitness

directly.

Materials and methods

Study species and site

Petunia axillaris axillaris (P. axillaris hereafter) is a white-flowered petunia that comprises

self-compatible and self-incompatible populations (Tsukamoto et al. 2003; Kokubun et al.

2006). Although the species is perennial, it usually behaves as an annual plant under

natural conditions (Dell’Olivo et al. 2011). Flowers produce nectar containing glucose,

fructose and sucrose (but no amino acids; Brandenburg et al. 2012), which is secreted

continuously throughout a flower lifetime (Galleto and Bernardello 1993). In the absence

of pollination, flowers last for several days (Oyama-Okubo et al. 2005). As flowers open

and become strongly fragrant at night, the species was first considered to be nocturnally

pollinated (Ando et al. 2001; Hoballah et al. 2005); however, diurnal pollination has since

been shown to be equally effective (Hoballah et al. 2007; Dell’Olivo et al. 2011). Flower

visitors observed in natural populations in Uruguay include moths belonging to the genera

Manduca, Eumorpha, Agrius and Erinnys, bees from the genera Halictus and Lasioglos-

sum, and beetles from the genera Diabrotica, Chrysodina and Dahlibruchus (Hoballah

et al. 2007).

We sampled a population growing on sandy dunes along the shore of Sauce de Port-

ezuelo, Uruguay (34�52041.800S, 55�08028.400W; Fig S1), in November 2010, during peak

flowering. The population contained 311 plants, and occupied a 70 9 80 m plot with no

other individuals within 400–500 m radius (Electronic Supplementary Material Fig S2a,b).

We recorded individual plant positions in a two-dimensional coordinate system (Electronic

Supplementary Material Fig. S3). We collected leaves for DNA extraction from all plants

in the plot, and mature unopened fruits from all plants that presented fruits in this

developmental stage at the time of the population survey. From these fruits we collected

the seeds for paternity analyses (see below). All phenotypic measurements were performed
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after fruit collection so that the sampled seeds resulted from undisturbed pollination

patterns.

Phenotypic measures

We measured phenotypic traits in 92 individuals presenting both new flowers and devel-

oping fruits (Electronic Supplementary Material Fig S2a). In addition to floral rewards

(nectar volume and concentration), we also measured for each plant its size, as well as

traits related to pollinator attraction (floral display and corolla area), access to nectar

(corolla tube length), and direct investment in male function (number and average size of

pollen grains per anther).

We measured floral traits in a total of 576 newly opened flowers, with an average (±SD)

of 6 (±3) flowers per plant. Flowers open at dusk, so we controlled for flower age by

bagging flower buds with fine mesh bags and collecting all newly and fully opened bagged

flowers every evening between 8 and 10 pm. Bagging prevented pollinator access to either

nectar or pollen, thus ensuring accurate estimates of nectar volume and concentration as

well as number of pollen grains per anther (see below).

Nectar volume per flower was measured by centrifugation (Stuurman et al. 2004). We

cut the corolla tube where the stamens detached from the tube, and placed it in a 0.5 ml

Eppendorf tube. The Eppendorf tube was pierced with three holes and centrifuged inside a

larger, 1.5 ml Eppendorf tube (3,500 rpm for 5 min). Nectar was extracted and, because of

centrifugation, it collected itself in the outer tube, where its volume could be measured

after removing the inner tube containing the empty flower. Nectar volume was measured

with a calibrated pipette. Nectar concentration was measured with a Fisher Scientific hand-

held refractometer in the range of 0–32 % Brix (±0.2 %: mg of solute/mg solution

accuracy); nectar was diluted 1:1 before being measured. We corrected each concentration

measurement for the ambient air temperature (min/max = 16/33 �C).

To obtain standardized measurements of corolla area, we photographed the corolla of

each flower in a dark photobox which maintained a constant distance to the camera

(Electronic Supplementary Material Fig S4). Corolla area was measured from these

photographs using the ImageJ software (Abramoff et al. 2004). We measured corolla tube

length using a ruler (±0.1 cm accuracy) as the distance from the base of the gynoecium to

the point at which the corolla began flaring (Stuurman et al. 2004; Electronic Supple-

mentary Material Fig S5).

The number of pollen grains per anther was counted for indehiscent anthers which had

been stored in Eppendorf tubes in 70 % ethanol. Each tube was sonicated for 1 min and the

anther remains were removed with ethanol. The contents of each Eppendorf tube were then

transferred into a 30 ml glass counting chamber filled with 0.63 % NaCl solution. The

pollen grains were counted with an electronic particle counter (Particle Data Elzone

180XY; Micromeritics), which counted the number of particles with a diameter between 12

and 77 lm in three 1 ml subsamples, and assigned them to 128 logarithmic diameter

classes.

We estimated plant size by counting the total number of branches on each plant, and an

integrative measure of floral display size, as the sum of open flowers, wilted flowers and

flowering scars at the time of fruit collection. The sampled plants had consistent floral

display size over time, as the number of open flowers at the time of fruit collection was

positively correlated to both the number of wilted flowers (Spearman r = 0.45, N = 92,

P \ 0.001) and the number of flowering scars (Spearman r = 0.48, N = 92, P \ 0.001).
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Thus, our estimation seemed representative of the variation in floral display size among

plants at the time when pollinator visitation led to the formation of the genotyped seeds.

Finally, to assess whether siring success trades-off with an investment in the female

function, we counted the number of seeds per fruit (N = 39 fruits from different plants) by

using a seed counter (Elmor C3, Elmor Applied Electronics, Switzerland), and included

this trait as a covariate in the male selection gradient analysis (see below). Phenotypic

correlations between all the measured traits were estimated as partial Spearman’s corre-

lation coefficients using the R package ppcor (Kim and Yi 2007; R Core Team 2014).

Genotyping

Genotypes were obtained using six microsatellite loci; the primer sequences were obtained

from Bossolini et al. (2011). Genomic DNA was extracted from dried leaves using the

Qiagen DNeasy Plant Mini Kit. PCRs were conducted in a 10 ll mixture containing

approximately 5–10 ng of template DNA, 2 lM of forward and reverse primers, 0.5 lg/ll

BSA and 19 Qiagen HotStarTaq Plus Master Mix. Amplifications were performed in a

Biometra thermal cycler and involved an initial activation step of 15 min at 95 �C, fol-

lowed by n cycles comprising 30 s of denaturation at 94 �C, 90 s of annealing at T, 60 s of

extension at 72 �C, and a final extension step of 30 min at 60 �C (see Table 1 for the n and

T values for each locus). The amplified products were separated on an ABI PRISM 3100

genetic analyzer (Applied Biosystems), and sizes were assigned with the GENEMAPPER

v3.7 (Applied Biosystems) software, using Genescan-350 as the internal size standard.

Allele binning was performed with the TANDEM software (Matschiner and Salzburger

2009).

We genotyped all 311 adult plants present in the population (Table 1 provides a

description of the microsatellite loci used and their exclusion power) and assessed their

paternal contributions to seeds produced by 30 individuals (maternal plants hereafter) from

the dense part of the population (Electronic Supplementary Material Fig S2b). We focused

on these maternal plants to limit the proportion of pollen flow from unsampled individuals,

increasing the resolution of our analysis. We estimated paternity on 20 (SD ± 2) seeds

germinated from one fruit per maternal plant (604 seedlings in total); the offspring

genotypes were obtained using the same protocols for DNA extraction and PCR as for the

adult plants. By applying the PATRI software (Nielsen et al. 2001; Signorovitch and

Nielsen 2002) on the genetic data, we estimated that there were a total of 523 breeding

males. According to this estimate, the sampled individuals would represent 60 % of the

true breeding population (i.e. all the plants siring the sampled offspring).

Paternity analyses

We estimated selection gradients based on siring success with a spatially explicit mating

model (SEMM hereafter; Oddou-Muratorio et al. 2005, 2006; Austerlitz et al. 2012) which

stems from the neighbourhood model (Adams and Birkes 1991; Burczyk et al. 2002, 2006).

This approach estimates the effects of measured covariates on the male fecundity of

individuals, jointly with the selfing (s) and pollen immigration (m) rates, while also

accounting for the spatial position of the sampled plants. The method, which is related to

the fractional attribution of paternity (Jones et al. 2010), models paternity as relative

paternal contributions to maternal pollen clouds (see Oddou-Muratorio et al. 2005). It

differs from the classical selection gradient approach in which individual fitness is mea-

sured or estimated, as fitness is modelled with a likelihood function which is optimized in
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order to estimate population level parameters (see Electronic Supplementary Material),

allowing direct estimation of paternal selection gradients (e.g. Morgan and Conner 2001;

van Kleunen and Burczyk 2008).

The spatial component of the applied SEMM was modelled with an Exponential Power

dispersal kernel characterizing the probability of pollen dispersal between two plants as a

function of their spatial proximity (the Geometric, Weibull and 2Dt kernels resulted in

lower likelihoods; data not shown), as

pep a; b; x; yð Þ ¼ b

2pa2C 2=bð Þ exp � r

a

� �b
� �

; ð1Þ

where C is the complete gamma function and r the distance between two plants (Austerlitz

et al. 2004). This kernel is characterized by a, the scale parameter, which determines the

average dispersal distance (d), and b, the shape parameter, which describes the tail of the

curve (b \ 1 indicates that long-distance dispersal can occur; Austerlitz et al. 2004). These

dispersal parameters were estimated jointly with the immigration (m) and selfing (s) rates,

and with the regression coefficients for the phenotypic covariates. The effect of trait i was

modelled by considering both linear (bi: directional) and quadratic (ci: stabilizing or dis-

ruptive) selection gradients (see e.g. Wright and Meagher 2004). Thus, the phenotypic

selection gradient associated with trait i for male k was

lnðfiðzkiÞÞ ¼ bizki þ ciz
2
ki; ð2Þ

where fi(zki) is the multiplicative male fecundity component. If ci was not significant, a

positive (resp. negative) value for bi meant that an increased value of the trait had always a

positive (resp. negative) effect on male fecundity. If ci was significant and negative, the

trait was under stabilizing selection (male fecundity was maximal for an intermediate value

of the trait), while if ci was significant and positive, it indicated disruptive selection (male

fecundity was maximal for the lowest and highest value of the trait and minimal for an

intermediate value).

All parameters (a, b, m, s, and all bi and ci values) were estimated jointly by computing

a single likelihood function (see Electronic Supplementary Material) that combined Eqs.

(1) and (2). This likelihood function was maximised using a numerical method (allowing

for a maximum of 100,000 iterations) implemented in a MATHEMATICA (Wolfram

Research) notebook (available from FA). We assumed a genotyping error rate of 1 % for

all loci, and that genotyping errors yielded an allele of any size (as in Llaurens et al. 2008).

Phenotypic values (zki) were standardized to zero mean and unit variance, to allow

comparison of the effects of the covariates. Plants that were genotyped as putative sires,

but that had not been measured for trait i, were represented by zki = 0, which corresponds

to the population mean. As a result, the male fecundity components fi(zki) of the individuals

with missing values for trait i were equal to one, whatever the values of bi and ci. Hence,

these individuals did not contribute to the likelihood function, and estimation of bi and ci

depended only on individuals with measured values of trait i.

The significance of each parameter estimate was evaluated with Likelihood Ratio Tests

(LRTs; see Oddou-Muratorio et al. 2005 for more details). As they corresponded to a type

III analysis where the variables were removed one by one, these tests evaluated the

significance of each factor independently, even if some of these factors were partially

correlated. We also assessed the existence of overall selection on each trait with LRTs that

compared the complete model against reduced models in which both the linear and the

quadratic terms for a trait were removed simultaneously.

Evol Ecol (2014) 28:869–884 875

123



To illustrate the heterogeneity in male fecundity, we also estimated the relative indi-

vidual male fecundity of each plant using a Bayesian mating model implemented in the

software MEMM v 1.1 (MEMM hereafter; Klein et al. 2008, 2011). This approach is

similar to the SEMM described above, as it models the spatial dependency of siring success

through pollen dispersal kernels, but it considers the individual fecundities as a random

effect, and estimates them using a Bayesian approach that assumes that all fecundities are

drawn from a log normal distribution with unit mean and variance r2; this variance being

jointly estimated with the individual fecundities (see Klein et al. 2008 for more details).

Results

Phenotypic variation and correlations

Nectar characteristics, as well as the other measured traits, varied extensively among the 92

phenotyped plants, and among flowers within plants (Electronic Supplementary Material

Table S1). In particular, plant size (2–309 branches) and floral display size (8–2,063

flowers) varied the most, owing to a few very large individuals. Variation in floral traits

(N = 576 flowers) among plants exceeded variation within plants, as evidenced by the

significant repeatability for all floral trait measurements (Electronic Supplementary

Material Table S2). Phenotypic correlation analysis revealed that larger plants produced

more flowers (partial Spearman r = 0.85, P � 0.01; Table 2). Given this strong corre-

lation, we avoided collinearity by including floral display size but not plant size as a

covariate in the selection gradient analyses (see below). Floral display size did not cor-

relate significantly with either measure of floral size (corolla area and corolla tube length;

Table 2, Electronic Supplementary Material Fig. S4, S5), and so it was not apparently

involved in a trade-off, although plant resource status was not controlled for. Most

importantly, we could not detect any correlation between nectar traits and other floral traits

(Table 2).

Mating patterns and selection analyses

The parameters estimated for the exponential power kernel indicated that mean pollination

distance was limited (d = 12.40 m), and that the probability of pollination decreased more

slowly with distance than expected from an exponential decline (b = 0.32). Thus, most

pollen dispersed locally, but long-distance dispersal within the study population also

occurred at a non-negligible rate. Pollen immigration into the sampled population was low

(m = 0.19). The selfing rate was estimated at zero, in agreement with previous evidence

that all southernmost populations of P. axillaris in Uruguay are completely self-incom-

patible (Kokubun et al. 2006).

Individual male fecundities, as estimated with MEMM (Klein et al. 2011), were highly

heterogeneous among adult plants, with most individuals having low fecundities and only a

few individuals being very fecund (Fig. 1). Differences in male fecundities could be sig-

nificantly explained by phenotypic differences among individuals (Table 3, Electronic

Supplementary Material Fig. S6). Of the two measured nectar traits, nectar volume showed

no significant selection (P = 0.61), whereas stabilizing selection was evident for nectar

concentration (b = 2.23, P \ 0.01 and c = -0.76, P = 0.02) with maximum male

fecundity reached for a nectar concentration of 44.6 % Brix. Stabilizing selection was also

found for floral display size (b = 2.20, P \ 0.01 and c = -0.22, P = 0.01), reaching a
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maximum at about 1,600 flowers. Corolla area and corolla tube length were both subjected

to directional selection, with male fecundity increasing with corolla area (b = 1.14,

P \ 0.01) and decreasing with corolla tube length (b = -0.75, P = 0.03). Interestingly,

male fecundity also exhibited a quadratic relation to the number of seeds per fruit

(b = 1.76, P \ 0.01 and c = -0.80, P = 0.03), with a peak at 800 seeds per fruit.

Discussion

Despite the incontestable role that nectar traits play in zoophilous pollination, few studies

have analysed the effects of nectar variation on male fitness (e.g. Mitchell 1993; Hodges

1995; Johnson et al. 2004; Kulbaba and Worley 2012), and hardly ever by estimating

realized male reproductive success in an ecologically relevant, natural context. We ana-

lyzed here the effect of natural variation in nectar traits on male fecundity in a wild P.

axillaris population by applying a paternity-based direct selection gradient analysis, and

found that nectar concentration is under stabilizing selection through male function. We

also considered the effects of other key reproductive traits on male fitness, and showed that

the effect of nectar occurred independently of the effect of any other studied floral trait.

More generally, variation in floral traits accounted for at least a portion of the spatial

variation in male fitness we reported here.

Gene flow and mating patterns in Petunia axillaris

The spatially explicit analysis of paternity applied to trace pollen movements within the

study population detected around 20 % of pollen immigration, showing that the sampling

effort and the power of the molecular markers allowed the detection of most successful

pollination events. We also inferred a selfing rate of zero. The absence of selfing, despite

phenological opportunities for self-pollination (GG and AI; personal observation), suggests

the existence of a genetic mechanism of self-incompatibility, as described for other P.

Table 2 Pairwise partial correlation coefficients for reproductive traits measured in Petunia axillaris

Floral
display
size

Corolla
area

Corolla
tube
length

Nectar
volume

Nectar
concentration

Pollen
grains/
anther

Pollen
size

Seeds/
fruit

Plant size 0.846 -0.107 0.233 -0.225 -0.024 0.114 0.007 -0.028

Floral display
size

\0.001 -0.089 0.149 0.072 -0.108 -0.085 0.054

Corolla area 0.343 0.277 -0.075 0.072 -0.093 0.067

Corolla tube
length

0.264 -0.135 -0.009 0.118 0.044

Nectar volume 0.143 0.012 0.139 0.096

Nectar
concentration

-0.008 0.059 -0.025

Pollen grains/
anther

0.009 0.046

Pollen size -0.005

Significant correlations, after sequential Bonferroni correction applied to account for multiple pairwise
comparisons (Holm 1979), are indicated in bold

Evol Ecol (2014) 28:869–884 877

123



axillaris populations (Tsukamoto et al. 2003). The estimated mean pollen dispersal dis-

tance was 12 m, indicating that successful pollination mainly occurred among neigh-

bouring plants. It should be noted, however, that as mother plants were sampled in the

dense part of the patch, the pollen dispersal patterns we observed result probably to some

extent from our sampling design. Nevertheless, rare long-distance pollination events also

occurred, as shown by the incidence of pollen immigration and the fat-tailed exponential

power kernel. P. axillaris grows in unstable environments forming ephemeral patches. In

this context, even if most pollination occurs within a patch, long-distance dispersal may be

crucial to counter genetic erosion and favour local population persistence, as it provides

genetic connections among patches.

Selection on nectar traits

Male fecundity varied extensively (Fig. 1). Uneven contributions to paternity are fre-

quently observed in plants (Elle and Meagher 2000; Wright and Meagher 2004; Hodgins

and Barrett 2008; Klein et al. 2008; Iwaizumi et al. 2013) and result in fewer-than-expected

effective fathers (i.e. those effectively contributing to gene pool). As shown by the SEMM

analysis, this heterogeneity in reproductive success was significantly explained by phe-

notypic differences among individuals in nectar concentration, and other traits like floral

display, corolla area and tube length, which did not covary with nectar concentration.

Interestingly, we did not find an effect of nectar volume on male fecundity.

The SEMM analysis revealed, in particular, a stabilizing selection gradient for nectar

concentration. Nectar is probably the main plant reward for pollinators, and its concen-

tration determines both the energetic return per volume unit, and, through its effects on

viscosity, the energy and time costs to extract a given nectar volume (Heyneman 1983;

Harder 1986). Since nectar-feeding animals from different taxonomic groups prefer dif-

ferent nectar concentrations associated with different behavioural and physiological
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Fig. 1 Relative individual male fecundities ordered by increasing values (N = 311 plants). Male fecundity
values were standardized with respect to the highest value estimated
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capabilities (Kevan and Baker 1983; Kim et al. 2011), nectar concentration is expected to

be under selection driven by the feeding preferences of the most effective pollinators. P.

axillaris is pollinated both by nocturnal and diurnal pollinators (Hoballah et al. 2007; see

also ‘‘Materials and methods’’). In the study population, the mean concentration was

around 35 %, close to the optimal nectar concentration reported for hawkmoths and some

bees (around 30–40 %; Kim et al. 2011). However, according to our analysis, male

fecundity was highest for a nectar concentration around 44 %, suggesting that other

pollinators consuming more concentrated nectar could also successfully pollinate P. ax-

illaris. In addition, optimum nectar concentration could reflect a balance between polli-

nator-mediated selection and the optimum value to escape damage by antagonists that are

also attracted to nectar (Maloof and Inouye 2000; Galen and Butchart 2003; Adler and

Bronstein 2004). None of the flowers examined was damaged, indicating an absence or a

very low incidence of nectar robbery; however, we cannot discard an antagonistic effect of

nectar thieves, which do not damage flowers (Inouye 1980).

Surprisingly, we did not find any evidence that nectar volume is under selection through

male fitness, as it has been reported in other studies (e.g. Mitchell 1993; Hodges 1995). In

P. axillaris, nectar is concealed at the base of the corolla tube. Given the absence of

significant correlations among nectar traits and floral display or corolla morphology, there

seems to be no external cue reflecting either nectar quantity or quality. Thus, we assume

that pollinators likely have to probe flowers to assess nectar properties; the amount of

pollen removed or deposited on stigmas may be a function of the time pollinators spend

Table 3 Linear (b) and quadratic (c) coefficients of the male selection gradient analysis estimated by
applying a spatially explicit mating model of paternity (SEMM)

Covariatea Estimated gradientsa Significance testing
(reduced model lacking
either b or c)b

Significance testing
(reduced model
lacking both
b and c)c

Linear
gradient (b)

Quadratic
gradient (c)d

P (b = 0) P (c = 0) P

Corolla area 1.142 -0.415 0.002 0.137 0.002

Corolla tube length -0.75 -0.013 0.032 0.94 0.045

Nectar volume 0.246 -0.132 0.269 0.649 0.614

Nectar concentration 2.23 -0.764 <0.001 0.018 <0.001

Number of pollen
grains/anther

-0.044 0.223 0.815 0.067 0.185

Pollen size -0.299 0.308 0.166 0.146 0.133

Floral display size 2.197 -0.217 <0.001 0.014 <0.001

Seeds/fruit 1.757 -0.798 <0.001 0.033 <0.001

Significant values (P \ 0.05) are highlighted in bold
a Phenotypic data were standardized to a zero mean and unit variance
b The significances of the b and c coefficients were evaluated independently by Likelihood Ratio tests,
comparing the complete model (with all parameters included) with a reduced model in which each
parameter was removed in turn
c The effect of each covariate was tested globally by performing Likelihood Ratio tests that compared the
complete model with a reduced model in which both the b and c terms were removed simultaneously
d Values were estimated following Eq. (2), and thus represent unadjusted quadratic regression coefficients
as described in Stinchcombe et al. (2008)
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feeding on nectar. Indeed, in a recent laboratory experiment, Manduca sexta hawkmoths

(one of P. axillaris main pollinators) spent less time per flower on P. axillaris plants

containing an introgressed low-nectar volume locus than on wild plants, resulting in lower

seed set in the low-nectar volume plants than in normally secreting wild plants (Bran-

denburg et al. 2012). In contrast, nectar volume variation in the study population did not

affect male fecundity to any significant extent. This may be a consequence of the fact that

extremes in nectar secretion could have already been curtailed by selection, as too low

nectar production would limit pollen removal whereas too high nectar production would

increase self and geitonogamous pollination (e.g. Hodges 1995), and thus reduce the

fraction of exported pollen (i.e. pollen discount). Still, nectar volume appears to be rela-

tively variable compared to most other characters (Table S1); maintaining such variability

could be adaptive as unreliable rewards among plants may promote outcrossing (Paccini

and Nepi 2007). These two hypothesis are not-mutually exclusive and either one would

predict a mostly flat selection gradient.

Selection on other phenotypic traits and functional trade-offs

Independently of nectar effects, we found significant selection gradients for corolla area

and floral display, indicating, as in other studies (e.g. Morgan and Conner 2001; Austerlitz

et al. 2012), that increased allocation to attractive structures enhances the male function.

The corolla limb area was under positive directional phenotypic selection, consistent with

behavioural experiments with introgressed petunias differing just in corolla area, which

found that hawkmoth pollinators prefer large over small corollas (Venail et al. 2010). On

the other hand, floral display size was under stabilizing selection. However, the maximum

value in the parabolic curve exceeded largely the observed population mean, suggesting a

tendency for selection for larger floral displays, consistent with a general preference of

pollinators (Ohashi and Yahara 2001), and probably reflecting resource limitations, com-

monly observed in many naturally growing plants. The reduced male fecundity of plants

with extreme floral display sizes may reflect either a trade-off between flower production

and allocation to attractive traits not considered here, pollen discounting effects (as gei-

tonogamy usually increases with floral display size; Harder and Barrett 1995; Karron and

Mitchell 2012), or the fact that pollinator visits usually increase in a decelerating manner

with increasing floral display size (Ohashi and Yahara 1998).

Only corolla tube length experienced negative directional selection. Such selection is

consistent with a behavioural experiment with the pollinator M. sexta performed in lab-

oratory, in which the hawkmoths displayed an innate preference for shorter corolla tubes

(Venail et al. 2010). These hawkmoths have proboscides that largely exceed corolla depths

of P. axillaris, so they do not face a morphological impediment to access nectar. However,

in the laboratory, the hawkmoths chose mainly short-tubed flowers, and they made their

choice before extending their proboscis, so they seemed capable of screening tube lengths

before probing the flowers (Venail et al. 2010). Therefore, the higher pollen export in

short-tubed plants in the study population could probably reflect higher visitation rates by

hawkmoths.

Interestingly, the SEMM analysis detected a quadratic relationship between male

fecundity and seeds per fruit. This pattern reflected a trade-off between male and female

functions, which became evident only in plants that invested heavily into female function.

Trade-offs between the two sexual functions have been already found (e.g. Mazer et al.

1999), but to our knowledge, this is the first study finding such trade-offs by estimating

directly the effect that allocation to female function has on male fecundity.
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Selection gradients and evolutionary directions

Evolutionary change requires heritability of phenotypic variation and also that the traits

under selection are not constrained by genetic correlations with other traits under selection.

In Petunia, QTL mapping has begun to unveil the genetic architecture of quantitative floral

traits (Stuurman et al. 2004; Galliot et al. 2006; Venail et al. 2010). In particular, loci

controlling corolla size and tube length are not tightly linked (Venail et al. 2010); thus, it is

unlikely that a genetic correlation between these two traits could explain the divergent

selection we detected for these two traits. On the other hand, QTL mapping using P.

integrifolia and P. parodii as the pure parental petunias detected a genetic correlation

between corolla size and nectar volume (Stuurman et al. 2004). Therefore, in P. axillaris,

indirect selection on nectar volume may occur via positive selection on corolla area.

However, as QTL studies involved interspecific crosses, they may not necessarily describe

genetic correlations and heritability in natural populations (Conner 2002). Given the high

potential for phenotypic selection detected here, estimation of heritability and genetic

correlations in wild P. axillaris populations is warranted.

In conclusion, our results show that natural variation in nectar concentration, as well as

in other key reproductive traits, affects male fitness in P. axillaris. An important limitation

of our study is the absence of data on flower visitors and on their behaviour, which limits

interpretation of the possible mechanisms that may generate the observed patterns. In

addition, some of our estimated selection gradient coefficients were larger than those

usually obtained applying classical approaches (e.g. Harder and Johnson 2009). This

discrepancy likely stems from the fact that fitness was not measured as in classical

selection gradient studies, but was modelled through a mating model; indeed, van Kleunen

and Burczyk (2008) obtained male selection gradients estimates of similar magnitude as

ours using a comparable approach. Furthermore, although correlation among traits is

controlled for in the multiple regression approaches we applied, we cannot exclude that

additional correlated traits not included in our study may also be relevant for male fitness

(Conner and Hartl 2004). Introgression lines that differ only in specific traits are thus one

of the most promising tools (Bradshaw and Schemske 2003; Brandenburg et al. 2012),

particularly in combination with exposure to natural pollinators, observation of flower

visitors and parentage-based fitness assessment.
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Dell’Olivo A, Hoballah ME, Gübitz T, Kuhlemeier C (2011) Isolation barriers between Petunia axillaris and
Petunia integrifolia (Solanaceae). Evolution 65:1979–1991

Elle E, Meagher TR (2000) Sex allocation and reproductive success in the andromonoecious perennial
Solanum carolinense (Solanaceae). II. Paternity and functional gender. Am Nat 156:622–636

Endler J (1986) Natural selection in the wild. Princeton University Press, New Jersey
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population

genetics data analysis. Evol Bioinform Online 1:47–50
Fénart S, Austerlitz F, Cuguen J, Arnaud J-F (2007) Long distance pollen-mediated gene flow at a landscape

level: the weed beet as a case study. Mol Ecol 16:3801–3813
Galen C, Butchart B (2003) Ants in your plants: effects of nectar-thieves on pollen fertility and seed siring

capacity in the alpine wildflower, Polemonium viscosum. Oikos 101:521–528
Galleto L, Bernardello L (1993) Nectar secretion pattern and removal effects in three species of Solanaceae.

Can J Bot 71:1394–1398
Galliot C, Stuurman J, Kuhlemeier C (2006) The genetic dissection of floral pollination syndromes. Curr

Opin Plant Biol 9:78–82
Gérard PR, Klein EK, Austerlitz F, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Assortative mating

and differential male mating success in an ash hybrid zone population. BMC Evol Biol 6:96
Gerats T, Vandenbussche M (2005) A model system for comparative research: Petunia. Trends Plant Sci

10:251–256
Goudet J (1995) FSTAT (vers. 1.2): A computer program to calculate F-statistics. J Hered 86:485–486
Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple

alleles. Biometrics 48:361–372

882 Evol Ecol (2014) 28:869–884

123



Harder LD (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble
bees. Oecologia 69:309–315

Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature
373:512–515

Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for
floral adaptation. New Phytol 183:530–545

Harder LD, Routley MB (2006) Pollen and ovule fates and reproductive performance by flowering plants.
In: Harder LD, Barrett SCH (eds) The ecology and evolution of flowers. Oxford University Press,
Oxford, pp 61–80

Heyneman AJ (1983) Optimal sugar concentrations of floral nectars. Dependence on sugar intake efficiency
and foraging costs. Oecologia 60:198–213

Hoballah ME, Stuurman J, Turlings TC, Guerin PM, Connetable S, Kuhlemeier C (2005) The composition
and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception
and nocturnal activity of the pollinator Manduca sexta. Planta 222:141–150

Hoballah ME, Gubitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell’Olivo A, Arnold M, Kuhlemeier
C (2007) Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–790

Hodges SA (1995) The influence of nectar production on hawkmoth behaviour, self pollination, and seed
production in Mirabilis multiflora (Nyctaginaceae). Am J Bot 82:197–204

Hodgins KA, Barrett SCH (2008) Natural selection on floral traits through male and female function in wild
populations of the heterostylous daffodil Narcissus triandrus. Evolution 62:1751–1763

Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253
Iwaizumi MG, Takahashi M, Isoda K, Austerlitz F (2013) Consecutive multiple-year analysis of paternal

and maternal gene flow and contributions of the gametic heterogeneities to overall genetic composition
of Pinus densiflora dispersed seeds. Am J Bot 100:1896–1904
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