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Abstract The lymphatic system plays an important role

in the physiological control of the tissue fluid balance and

in the initiation of immune responses. Recent studies have

shown that lymphangiogenesis, the growth of new lym-

phatic vessels and/or the expansion of existing lymphatic

vessels, is a characteristic feature of acute inflammatory

reactions and of chronic inflammatory diseases. In these

conditions, lymphatic vessel expansion occurs at the tissue

level but also within the draining lymph nodes. Surpris-

ingly, activation of lymphatic vessel function by delivery

of vascular endothelial growth factor-C exerts anti-

inflammatory effects in several models of cutaneous and

joint inflammation. These effects are likely mediated by

enhanced drainage of extravasated fluid and inflammatory

cells, but also by lymphatic vessel-mediated modulation of

immune responses. Although some of the underlying

mechanisms are just beginning to be identified, lymphatic

vessels have emerged as important targets for the devel-

opment of new therapeutic strategies to treat inflammatory

conditions. In this context, it is of great interest that some

of the currently used anti-inflammatory drugs also potently

activate lymphatic vessels.
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Introduction

The lymphatic system is closely connected to inflammatory

processes and immune functions. One of its major func-

tions is the transport of immune cells and soluble antigens

from the periphery to the lymph nodes, which are the

primary sites for activation of immune responses. Corre-

spondingly, lymphatic vessels can be found in most organs

and their network is particularly dense in the skin and near

mucosal surfaces, the main entry sites for foreign material

and pathogens into the body [1, 2]. It is thus surprising that

lymphatic vessels have been thought for decades to merely

represent a passive drainage system without any active role

in disease processes. However, recent findings indicate that

lymphatic vessels are dynamic structures that sensibly react

to inflammatory stimuli and that are activated, both at the

level of the peripheral inflamed tissue and within the

draining lymph nodes. In this review, we highlight the

capacity of lymphatic vessels to regulate inflammation

resolution and to modulate immune responses and toler-

ance, with a focus on therapeutic approaches to target

lymphatic vessels for the treatment of inflammatory

conditions.

Molecular markers of lymphatic endothelium and their

modulation in inflammation

The dramatic progress in our understanding of the active

role of lymphatic vessels in development, physiology and

disease is due to the identification of lymphatic endothelial

cell (LEC)-specific markers [3], in particular vascular

endothelial growth factor receptor (VEGFR)-3, Prox1,

LYVE-1 and podoplanin. These LEC markers allow for the

specific staining of LECs in tissue sections, their specific
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isolation in vitro and ex vivo and, subsequently, the char-

acterization of differentially expressed genes and proteins

in LECs versus blood vascular endothelial cells (BECs)

[4–7].

VEGFR-3 is a receptor tyrosine kinase for the lymph-

angiogenic growth factors VEGF-C and -D and is crucial

for growth, survival and migration of LECs [8, 9]. During

embryonic development, VEGFR-3 is expressed on both

blood vessels and on lymphatic vessels (LVs), whereas it is

mostly expressed by LECs in healthy adult tissue [10].

Some VEGFR-3 expression has been found on blood

capillaries in the spleen, kidney, and glands of the endo-

crine system [11]. Prox1 is required for the development of

the lymphatic system [12] and plays a major role as master

transcription factor responsible for LEC differentiation—

ectopic Prox1 expression partially reprograms cultured

BECs to a LEC-like phenotype [7, 13]. LYVE-1, a

homolog of the CD44 glycoprotein, is a hyaluronan

receptor of yet unclarified function that is predominantly

expressed by LECs in adult tissues [14, 15]. LYVE-1

expression is high in lymphatic capillaries but very low in

collecting LVs [16]. LYVE-1 is only rarely seen on blood

vessels, such as sinusoidal endothelial [14, 17]. Podoplanin

is a membrane glycoprotein that is expressed by LECs but

not BECs [18] and that plays a major role in normal

lymphatic development [19]. While its expression is high

on LECs of lymphatic capillaries, some LECs in lymphatic

pre-collectors show low podoplanin expression [20].

Although these markers allow the distinction of LECs

from BECs in most tissues, some non-endothelial expres-

sion has been observed. For instance, VEGFR-3 has been

found to be expressed by corneal DCs [21] and epithelium

[22], and Prox1 is expressed in liver, pancreas [23] and the

brain [24, 25]. Moreover, strong LYVE-1 expression has

been observed on a subset of macrophages in various tis-

sues, which makes it essential to distinguish them from

LVs on tissue sections [26–28]. Podoplanin is also

expressed in the choroid plexus of the brain [29, 30],

alveolar type I epithelial cells in the lung [29, 31], ciliary

epithelia of the intestine [29], stromal cells of lymphoid

organs such as the spleen [32] and LNs [33], possibly

leukocyte subsets including macrophages [34, 35] and

Th17 cells [36], nerve fibers and bile duct associated

mesenchymal cells in the liver [37]. Therefore, it is rec-

ommended to use combinations of two different lymphatic

markers or a combination of a lymphatic marker with a

pan-endothelial marker such as CD31 [38] for the unam-

biguous detection of lymphatic vessels.

Despite their usefulness for the identification of lym-

phatic vessels in normal tissues, the expression of these

lymphatic markers can be strongly modulated during

tumorigenesis [39] and inflammation, and these changes

are likely stimulus- and species-specific. In general, the

expression of most LEC markers appears to be down-reg-

ulated on lymphatic vessels during inflammation, whereas

upregulation of LEC markers by inflammatory stimuli has

been observed in BECs, at least under culture conditions

[40]. Importantly, LYVE-1 was found to be down-regu-

lated on LECs during chronic airway inflammation in vivo

[41] and also on cultured LECs upon inflammatory stimuli

[42]. Lower mRNA levels of VEGFR-3, LYVE-1 and

Prox1 and reduced podoplanin protein expression were

found on cutaneous LECs during contact hypersensitivity-

induced inflammation in mice but not by complete Fre-

und‘s adjuvant-induced inflammation [43]. Our own stud-

ies in acute skin inflammation models recently also

revealed inflammation-mediated down-regulation of

VEGFR-3 on LECs [44] whereas up-regulation of VEGFR-

3 and Prox-1 on LECs was found in a peritonitis model,

possibly mediated by nuclear factor-kappaB activation

[45]. Together, these studies highlight the stimulus-

dependent response of LECs with regard to marker

expression, and they indicate that at least two different

LEC markers should be used to investigate the response of

lymphatic vessels in inflammation.

Lymphatic vessels expansion in inflammation

Expansion of the lymphatic vascular network has been

observed in several inflammatory conditions, both in

experimental mouse models and in human inflammatory

diseases (reviewed in [46]). This expansion includes dila-

tion of pre-existing vessels (lymphatic hyperplasia) as well

as induction of lymphatic sprouting (lymphangiogenesis)

and the growth of new lymphatic vessels, resulting in an

increased lymphatic vascular density. Our laboratory

identified enlargement of lymphatic vessels in the skin of

patients suffering from psoriasis, a chronic inflammatory

skin disease, as well as in a mouse model of psoriasis [47].

In this model, transgenic mice with skin-specific overex-

pression of VEGF-A develop a chronic, psoriasis-like skin

inflammation after treatment with the contact sensitizer

oxazolone, associated with angiogenesis and with lym-

phatic vessel expansion (Fig. 1 a, b). Similarly, lymphatic

expansion has been observed in clinical samples and mouse

models of arthritis [48–50], atopic dermatitis [51] and

inflammatory bowel disease [52, 53].

It is currently a matter of debate whether the inflam-

mation (or growth factor)-induced lymphatic vessel

expansion might be reversible or not. After adenoviral

delivery of VEGF-A to mouse ears, expanded and func-

tionally impaired lymphatic vessels persisted for many

months whereas angiogenic blood vessels regressed [54],

and chronic airway inflammation-induced lymphatic

hyperplasia persisted for an extended period of time even
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after inflammatory resolution [41]. In contrast, inflamma-

tion-induced lymphatic expansion regressed after several

months in an experimental skin inflammation model [55]

and in suture-induced inflammation in the mouse cornea

where lymphatic vessels expanded faster, however, upon

re-challenge [56]. Clearly, further research is warranted to

investigate the dynamics of lymphatic networks expansion

in different types of inflammation.

Lymph node lymphangiogenesis

In 2005, studies from our laboratory revealed that solid

tumors can induce lymphangiogenesis within their draining

lymph nodes (‘‘lymph node lymphangiogenesis’’), even

before they actually metastasize to these lymph nodes [57].

Shortly thereafter, it became clear that lymph node (LN)

lymphangiogenesis also occurs in those lymph nodes that

Fig. 1 Microscopic images of LYVE-1? lymphatic vessels (green)

and Meca32-positive blood vessels (red) in healthy mouse ear skin

a and in chronically inflamed ear skin of the K14-VEGF-A mouse

psoriasis model b. Note the tissue swelling and the enlargement and

of lymphatic vessels in inflammation. c Lymphatic vasculature

stained for LYVE-1 (green) and Prox-1 (red) in the auricular lymph

node of a healthy mouse. d Expansion of the lymphatic vascular

network in the auricular lymph node at day 7 after induction of ear

skin inflammation. Nuclei are stained in blue. Bars = 100 lm. (Color

figure online)
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drain inflammatory sites, in particular inflamed skin [58,

59] (Fig. 1 C, D). This lymphatic expansion may be

mediated by VEGF family members and other lymphan-

giogenic factors released by cells within the LN, such as B

cells [58] or macrophages [60], as well as by factors

released at the site of inflammation and subsequently

drained to the LN [59]. The relative contribution of locally

produced versus peripherally produced mediators towards

the expansion of lymphatic vessels within LNs appears to

depend on the experimental model. It is of interest that

interferon-gamma producing T lymphocytes have been

found to inhibit LN lymphangiogenesis [61] and that

inflammatory LN lymphangiogenesis was reversible in a

skin inflammation model [55].

Mediators of inflammatory lymphatic vessel expansion

VEGF-C represents the best characterized inducer of

inflammatory lymphangiogenesis, acting via binding to

VEGFR-3 and neuropilin-2 [9] and—after proteolytic

cleavage—to VEGFR-2 that is also expressed by lymphatic

endothelial cells [62]. Whereas the effects of the lymph-

angiogenic factor VEGF-D in inflammation are at present

less well studied, VEGF-A has emerged as a major

activator of inflammatory lymphatic vessel expansion

within the peripheral inflamed tissue as well as within the

draining lymph nodes [47, 54, 58, 59, 62, 63]. These effects

are likely mediated both directly, via activation of VEGFR-

2 on LECs, and indirectly via recruitment of inflammatory

cells and activation of VEGF-C production by blood ves-

sels. Macrophages appear to represent the major source of

VEGFs in inflammation [60], but other inflammatory and

resident cells likely contribute as well [58]. The major

stimuli of VEGF production in inflammation are inflam-

matory mediators and hypoxic tissue conditions [64].

Several other growth factors have been implicated in the

mediation of lymphangiogenesis, including angiopoietins 1

and 2 [65, 66], fibroblast growth factors [67, 68], hepato-

cyte growth factor [69], platelet-derived growth factors

[70], and insulin-like growth factors [71]. Their relative

contribution to inflammatory lymphatic vessel expansion

remains at present unclear (Fig. 2).

There is increasing evidence that macrophages play a

major role in lymphangiogenesis in general, and in par-

ticular in inflammatory lymphangiogenesis, via secretion of

lymphangiogenic factors [60, 72, 73]. Thus, a large number

of mediators that recruit macrophages/myeloid-derived

cells to inflamed tissues have been implicated in the indi-

rect promotion of lymphatic vessel expansion including IL-

Fig. 2 Schematic overview of the lymphangiogenic process during

inflammation. Lymphangiogenic factors produced in the inflamed

stroma directly act on local lymphatic vessels and induce sprouting

and vessel dilation 1. Inflammatory factors may directly stimulate

lymphatic vessel expansion 2. Inflammatory factors also act on local

blood vessels and mediate the recruitment of macrophages which

express lymphangiogenic growth factors such as VEGF-C 3. Inflam-

matory factors may directly induce transcription of lymphangiogenic

factors in immune cells and other stromal cells in the inflamed tissue

4. Lymph node lymphangiogenesis is induced by factors drained from

the site of inflammation and also by factors produced locally by

lymph node resident cells 5
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1b [74, 75], IL-4 [51], and CSF-1 [76]. In addition,

inflammatory mediators were found to directly stimulate

the production of VEGF-C by resident cells such as

synoviocytes [77]. Some inflammatory factors likely

stimulate LECs directly. However, due to the pleiotropic

nature of these mediators, these effects are difficult to

investigate in vivo. Consequently, direct effects of

inflammatory factors on lymphangiogenesis have mostly

been described in vitro, using proliferation, migration, or

tube formation assays with cultured LECs. Such assays

cannot reproduce the whole complexity and cellular

interactions during inflammatory lymphangiogenesis

in vivo, and it is therefore not surprising that results

obtained in vitro do not always coincide with observations

made in vivo. One example is IL-1b, which has been found

to stimulate lymphangiogenesis in vivo but to inhibit LEC

tube formation in vitro [74, 78]. A detailed list of inflam-

matory cytokines and chemokines and their known activi-

ties on lymphatic endothelial cells in vitro and

lymphangiogenesis in vivo is provided in Table 1.

Lymphatic drainage function in inflammation

It has been a topic of great dispute whether and how the

lymphatic drainage function is affected in acute and

chronic inflammatory conditions. Recently developed

in vivo imaging techniques and newly developed dyes and

tracers have helped to investigate this issue. There is strong

evidence that inflammation-draining lymphatic vessels are

hyperpermeable and drain less well, as found in a mouse

psoriasis model with transgenic VEGF-A overexpression in

the skin [47] and after acute or chronic UVB irradiation of

the skin [79]. Whereas LPS (lipopolysaccharide)-induced

peritonitis was associated with impaired lymphatic drain-

age in the diaphragm [73], acute skin inflammation induced

by LPS was associated with increased lymphatic flow [60].

In the K/BxN mouse model of arthritis, which is dependent

on a T cell mediated immune response against an auto-

antigen, an initial increase in lymphatic flow during the

acute phase was followed by an increase in lymphangio-

genesis but a decrease in lymphatic flow during the chronic

phase [80]. Similarly, in the TNF-a transgenic model, in

which arthritis develops independently of a specific

immune response, lymphatic drainage from the inflamed

paws was reported to be reduced in the chronic disease

phase of the disease [81]. However, the same group

reported increased drainage from popliteal lymph nodes in

the same model [82]. Thus, there is a need for the stan-

dardization and quantification of methods applied for

measuring lymph flow in vivo.

VEGF-A appears to be a mediator of the lymphatic

dysfunction in inflammation. VEGF-A expression is

consistently increased in inflammatory dieseases, and

adenoviral delivery of VEGF-A to the skin resulted in

enlarged, functionally abnormal LVs with delayed lym-

phatic clearance [54]. K14-VEGF-A transgenic mice,

which over-express VEGF-A in the skin, develop a psori-

asis-like inflammation with enlarged and leaky LVs [47,

83]. In UVB-irradiation studies, VEGF-A overexpression

resulted in increased skin inflammation and lymphatic

dysfunction, whereas blockade of VEGF-A signaling pre-

vented UVB-induced LV enlargement and hyperperme-

ability, edema formation and inflammation [79, 84]. Our

own recent studies indicate that lymphatic vessel drainage

function might be less affected during acute skin inflam-

mation but becomes severly impaired under chronic

inflammatory conditions [44]. Overall, the increased blood

vascular permeability in chronically inflamed tissues, often

mediated by VEGF-A, appears to be associated with

decreased lymphatic fluid drainage, often also mediated by

VEGF-A, promoting edema formation and reduced drain-

age of inflammatory mediators from the infamed site.

Activation of lymphatic vessel function inhibits

inflammation

It has been a matter of debate whether lymphatic vessels

contribute to inflammatory processes—via transport of

immune cells towards the lymph nodes and secretion of

inflammatory chemokines—or whether they might con-

tribute to inflammation resolution—via drainage of

inflammatory cells, mediators and fluids away from the

inflamed tissue. Our laboratory has recently found that

activation of lymphatic vessels via transgenic overexpres-

sion of VEGF-C or VEGF-D in the skin leads not only to

an expanded lymphatic network with enhanced fluid

drainage, but also to a potent inhibition of acute and

chronic skin inflammation [44, 63]. In accordance with

these findings, viral delivery of VEGF-C increased lym-

phangiogenesis and lymphatic flow, and also reduced the

severity of joint lesions in a model of chronic inflammatory

arthritis [81]. Importantly, intradermal injection of the

VEGFR-3 specific mutant VEGF-C156S inhibited UVB

irradiation-induced lymphatic impairment, edema forma-

tion and inflammation in the skin [85], indicating potential

therapeutic applications. In agreement with these thera-

peutic results, blockade of VEGFR-3 resulted in function-

ally impaired LVs with decreased drainage, enhanced

edema, increased inflammatory cell infiltration and pro-

longed inflammation in models of UVB irradiation-induced

skin inflammation, psoriasis, chronic airway inflammation,

chronic inflammatory arthritis and bacterial pathogen-

induced acute inflammation [41, 60, 63, 82, 86], as well as

in prolonged inflammation in experimental inflammatory
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Table 1 Pro-inflammatory factors involved in lymphangiogenesis and lymphatic hyperplasia

Factor Model Effect Mode of action References

TLR ligands

LPS Intraperitoneal/intradermal injection Lymphangiogenesis

(?)

Recruitment of macrophages [60, 72, 73]

TNF family

TNF-a Chronic M.pulmonis infection Lymphangiogenesis

(?)

Recruitment of inflammatory

cells, induction of VEGF-C

[115]

In vitro stimulation of primary synoviocytes Lymphangiogenic

factors (?)

Induction of VEGF-C in

synoviocytes

[77]

In vitro LEC tube formation Tube formation (-) Direct effect [78]

Interleukins

IL-1b IL-1b over-expression in trachea Lymphangiogenesis

(?)

Recruitment of macrophages [74]

Corneal lymphangiogenesis Lymphangiogenesis

(?)

Recruitment of macrophages [75]

In vitro LEC tube formation Tube formation (-) Direct effect [78]

IL-4 IL-4 driven atopic dermatitis Lymphangiogenesis

(?)

Recruitment of macrophages [51]

IL-6 In vitro stimulation of OSCC cells Lymphangiogenic

factors (?)

Induction of VEGF-C in OSCC

cells

[112]

In vitro LEC tube formation Tube formation (?) Direct effect [116]

IL-17 In vitro stimulation of NSCLC cells Lymphangiogenic

factors (?)

Induction of VEGF-C in

NSCLC cells

[117]

Corneal lymphangiogenesis Lymphangiogenesis

(?)

Induction of VEGF-C and –D

in the cornea

[118]

Colony stimulating factors

CSF-1 (M-CSF) Tumor lymphangiogenesis Lymphangiogenesis

(?)

Recruitment of macrophages [76]

CSF-2 (GM-CSF) In vitro LEC tube formation Tube formation (?) Direct effect [116]

Interferons

INF-c LPS/ConA induced skin inflammation

In vitro LEC sprouting and

tube formation

Lymphangiogenesis

(-) Sprouting (-)

Direct effect [61]

Tube formation (-) Direct effect [78]

Chemokines

CCL19 Diffuse alveolar damage Lymphangiogenesis

(?)

Recruitment of macrophages [119]

CXCL8 (IL-8) In vitro LEC tube formation Tube formation (?) Direct effect [100]

In vitro LEC tube formation, Matrigel plug

assay, cornea micropocket assay

Lymphangiogenesis,

tube formation (?)

Direct effect [101]

CXCL12 (SDF-1) In vitro LEC tube formation, matrigel plug

assay

Lymphangiogenesis,

tube formation (?)

Direct effect [120]

Other factors

Prostaglandin E2

(PGE2)

In vitro stimulation of lung adenocarcinoma

cells

Lymphangiogenic

factors (?)

Induction of VEGF-C in lung

adenocarcinoma cells

[121]

Matrigel plug assay Lymphangiogenesis

(?)

Induction of VEGF-C and -D [122]

Nitric oxide (NO) In vitro LEC tube formation, UVB induced

inflammation

Tube formation (?),

hyperplasia (?)

Direct effect [123]

In vitro LEC proliferation Proliferation (?),

hyperplasia (?)

Direct effect [124]

OSCC oral squamous cell carcinoma, NSCLC non-small-cell lung cancer
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bowel disease [87]. Overall, these studies clearly indicate

that promotion of lymphatic drainage by an expanded

functional lymphatic network might represent a new ther-

apeutic strategy to treat inflammatory diseases.

Modulation of inflammation and immune responses

by lymphatic vessels

In addition to the increased drainage function, activation of

lymphatic vessels by VEGF-C and other mediators might

also induce additional anti-inflammatory mechanisms [88].

While it is beyond the scope of this review to provide a

detailed discussion of the various effects of LECs on the

immune system, it is important to note that LECs are not

only involved in dendritic cell (DC) and lymphocyte traf-

ficking from the periphery to the lymph nodes, but also in

regulating lymphocyte egress from lymph nodes, immune

cell maturation and tolerance.

Upon inflammation, the chemokine-scavenging receptor

D6, an essential regulator of inflammatory leukocyte

interactions with LECs, is up-regulated on LECs. D6 binds

all inflammatory CC-chemokines but not homeostatic

chemokines such as CCL21, followed by internalization

and degradation, which prevents inappropriate adhesion of

inflammatory leukocytes and immature DCs to LECs [89].

D6 is also expressed by mucosal LECs where it controls

intestinal inflammation [90]. Furthermore, LECs are the

sole source of sphingosine-1-phosphate (S1P) in the LN

[88], which is essential to release activated lymphocytes

from LNs, while egress of naı̈ve lymphocytes is transiently

blocked during inflammation [91]. Importantly, during

prolonged inflammation, VEGF-A-induced LN lymphan-

giogenesis was recently found to restore lymphocyte egress

from LNs independently of their activation status [92].

LECs may also directly modulate the maturation of

immune cells. Recent studies found that LN stromal cell

populations, among them LECs, limit DC-induced prolif-

eration of T cells to control the expansion of activated T

cells within the LN [93, 94]. Moreover, LECs seem to

suppress DC maturation and function in inflamed tissue

[95]. This suppression was active only in the absence of

pathogen-derived signals and might thus provide a rela-

tively unspecific peripheral tolerance mechanism during

inflammation.

Diverse LN stromal cell types, among them LECs, can

act as antigen presenting cells. They express a character-

istic set of peripheral tissue antigens, controlled by an

unknown, autoimmune regulator (Aire)-independent

mechanism [96]. LN LECs present peripheral tissue anti-

gens on MHC-I, leading to deletion of self-reactive CD8 T

cells [96, 97]. This LEC-mediated deletion of self-reactive

T cells requires two interdependent pathways: a lack of

costimulation and provision of the inhibitory molecule PD-

L1. Lack of costimulation leads to an up-regulation of PD-

1 on CD8 T cells, further enhancing inhibition via the PD-

L1/PD-1 pathway. Confirming the importance of both

pathways, peripheral tissue antigen presentation by LECs

together with PD-L1 blockade or exogenous costimulation

lead to the development of autoimmune disease [98]. In

contrast to DCs, LECs up-regulate the inhibitory molecule

PD-L1 upon TLR3 stimulation, suggesting a tolerogenic

function of LECs even during exposure to danger signals

[97].

Lymphatic vasculature as a new therapeutic target

Much progress has been made with regard to inhibiting

tumor-associated lymphangiogenesis and metastasis by

targeting the VEGF-C/VEGF-D/VEGFR-3 axis. The cur-

rently evaluated drugs include anti-VEGFR-3 antibodies,

anti-VEGF-C or -D antibodies, as well as antibodies

against neuropilin-2, and at least one of them, a mono-

clonal antibody against VEGFR-3 (IMC-3C5, ImClone

Systems) has recently entered clinical testing [99]. In

contrast, with regard to inflammatory diseases, lymphatic

vessel function should most likely be therapeutically

enhanced, based on the findings discussed above. While the

direct intradermal injection of VEGF-C protein has shown

efficacy in preclinical skin inflammation models [63, 85],

this approach does not seem feasible for the treatment of

human diseases. Similar restrictions might apply to the

reported use of viral vectors to deliver VEGF-C [2], cell

based therapies [100] and application of interleukin-8

[101], since sufficient site-specific delivery of these agents

represents a major challenge, in addition to safety aspects.

It is of interest, however, that several established anti-

inflammatory drugs have been recently found to also affect

lymphangiogenesis. In particular, all-trans-retinoic acid

was identified to play a major role during embryonic

lymphatic development, and 9-cis retinoic acid was shown

to promote lymphangiogenesis and lymphatic vessel

regeneration in vivo [102, 103]. Given the clinical use of

retinoids for the treatment of inflammatory diseases such as

psoriasis and psoriatic arthritis, one might speculate that

their pro-lymphangiogenic activity might contribute to the

therapeutic effects in these diseases.

Most non-steroidal antiinflammatory drugs (NSAIDs)

inhibit COX-1 and/or COX-2 enzymes which mediate the

biosynthesis of prostaglandins including prostaglandin E2.

Recently, it was found that prostaglandin E2 promotes

lymphangiogenesis by up-regulation of VEGF-C and -D

(Table 1) and that COX inhibitors reduce tumor-induced

lymphangiogenesis [104] and secondary lymphedema

[105]. Moreover, NSAIDs inhibited VEGF-D mediated
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dilation of tumor draining collecting lymphatics [106]. At

present, however, more research is needed to investigate

how these findings might be related to anti-inflammatory

efficacy. Similarly, glucocorticoid treatment reduced lym-

phangiogenesis in a model of chronic infection with M.

pulmonis [107], in cornea inflammation [108, 109] and in

tumor xenografts [110]. However, glucocorticoids might

also have direct activating effects on lymphatic endothelial

cells (our own unpublished results), and hydrocortisone is

routinely added to cultures of LECs. Therefore, future

studies are needed to directly investigate the effects of anti-

inflammatory drugs on lymphatic vessel function, with a

particular focus on fluid drainage and immune cell

interactions.

Anakinra, a recombinant version of the endogeneous IL-

1 scavenger IL-1Ra, and tocilizumab, an IL-6R blocking

antibody, have also been found to affect lymphangiogen-

esis [111, 112]. Both drugs have been approved for the

treatment of rheumatoid arthritis but their effects on lym-

phangiogenesis in inflamed joints need to be investigated.

Importantly, the TNF-a neutralizing antibody infliximab

has been reported to increase lymphangiogenesis in treated

mice suffering from inflammatory arthritis [113]. Since

infliximab is also used for other auto-immune diseases such

as psoriasis and colitis, it will be of great interest to

investigate whether infliximab treatment has similar effects

in those conditions as well, and whether the anti-inflam-

matory activity of infliximab may be at least in part

dependent on its pro-lymphangiogenic activity.

Outlook

The active role of lymphatic vessels in inflammation is well

established today and lymphatic vessels have become the

target for the development of new therapeutic strategies to

treat inflammatory diseases. Thus, we have recently initiated

a screening program, using a three-dimensional LEC

sprouting assay as a read-out [114], to identify new activa-

tors of lymphatic vessel function. Using phenotypic screens

of small molecule chemical libraries as well as natural

extract libraries, we identified a natural extract and defined

molecular compounds that promote lymphatic vessel

drainage in vivo (unpublished data). It will be of great

interest to investigate whether these compounds might also

affect lymphatic vessels under inflammatory conditions.

However, there are currently many unanswered questions

with regard to the functional role of lymphatic vessels in

inflammation. Can we specifically promote certain functions

of lymphatic vessels such as fluid drainage or anti-inflam-

mation, without major effects on lymphangiogenesis? Can

we promote inflammatory lymphatic vessel pumping and

reduce lymphatic hyperpermeability at the same time? Is the

expansion of lymphatic vessels within inflamed tissues and

their draining lymph nodes reversible in human diseases?

What is the detailed functional role of lymph node lym-

phangiogenesis with regard to inflammation and tolerance?

What are the effects of currently used anti-inflammatory

drugs on inflammation-associated lymphangiogenesis and/

or lymphatic drainage function? Thus, future studies are

needed to better understand the molecular mediators and

pathomechanisms regulating lymphatic vessel activation in

inflammation.
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