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Abstract A briefly flashed target stimulus can become “in-
visible” when immediately followed by a mask—a phenom-
enon known as backward masking, which constitutes a major
tool in the cognitive sciences. One form of backward masking
is termed metacontrast masking. It is generally assumed that
in metacontrast masking, the mask suppresses activity on
which the conscious perception of the target relies. This
assumption biases conclusions when masking is used as a
tool—for example, to study the independence between per-
ceptual detection and motor reaction. This is because other
models can account for reduced perceptual performance with-
out requiring suppression mechanisms. In this study, we used
signal detection theory to test the suppression model against
an alternative view of metacontrast masking, referred to as the
summation model. This model claims that target- and mask-
related activations fuse and that the difficulty in detecting the
target results from the difficulty to discriminate this fused
response from the response produced by the mask alone.
Our data support this alternative view. This study is not a
thorough investigation of metacontrast masking. Instead, we
wanted to point out that when a different model is used to
account for the reduced perceptual performance in
metacontrast masking, there is no need to postulate a dissoci-
ation between perceptual and motor responses to account for
the data. Metacontrast masking, as implemented in the
Fehrer–Raab situation, therefore is not a valid method to
assess perceptual–motor dissociations.

Keywords Visual awareness . Perception and action . Signal
detection theory . Confidence judgments . Reaction times

Visual backward masking has been a major tool in the exper-
imental investigation of visual consciousness during the last
decades (Ansorge, Francis, Herzog, & Oğmen, 2007; for a
review, see Breitmeyer & Ogmen, 2000). It consists in pre-
senting a mask shortly after a target stimulus. The latter is
clearly visible when presented in isolation, but its presence
may be difficult to report if it is closely followed by the mask.

One particular type of backward masking is called
metacontrast masking. In metacontrast masking, the masked
stimulus (typically a disk) and the masking stimulus (typically
an annulus that covers the disk) share a contour but do not
overlap. A standard interpretation of metacontrast masking
posits that the mask-induced activations suppress the target-
induced activations (Ansorge, Francis, et al., 2007).

On the basis of this idea, metacontrast masking has been
used extensively as an experimental tool to vary the amount of
target-related information that can be processed by the brain or
to test whether the conscious perception of the target is a
necessary prerequisite for other target-related processes (e.g.,
Lau & Passingham, 2006; Vorberg, Mattler, Heinecke,
Schmidt, & Schwarzbach, 2003). One example is the
Fehrer–Raab effect: Contrary to the target’s visibility, simple
reaction times (RTs) to a target (“respond as quicky as possible
as soon as you detect”) are unaffected by metacontrast
masking. That is, the target continues to affect RTs, even under
experimental conditions in which the mask turns the target
(close to) “invisible” (e.g., Bernstein, Amundson, &
Schurman, 1973; Fehrer & Biederman, 1962; Fehrer & Raab,
1962; Schiller & Smith, 1966; Taylor &McCloskey, 1990; for
reviews, see Neumann & Klotz, 1994; Neumann & Scharlau,
2007). This result has been interpreted as strong evidence in
favor of the independence of perceptual and motor responses
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(e.g., Neumann & Klotz, 1994; but see also Neumann &
Scharlau, 2007; Waszak, Cardoso-Leite, & Gorea, 2007;
Waszak & Gorea, 2004; for discussions about which criteria
to rely on to make such interpretations, see Cardoso-Leite &
Gorea, 2010; Reingold &Merikle, 1988; Schmidt & Vorberg,
2006). Indeed, one intuitive way to explain the Fehrer–Raab
effect is to assume that perception occurs after the motor
reaction. The neural activations produced by the target may
trigger a motor reaction before being affected by the neural
activations produced by the mask. The perceptual response,
on the other hand, may occur later in time, and thus be affected
by mask-related activations (see, e.g., Ogmen, Breitmeyer, &
Melvin, 2003; Waszak et al., 2007). This hypothesis is in line
with the idea that the feedforward mask-related signal disrupts
the target-related feedback signal from higher to lower visual
areas (cf. Di Lollo, Enns, & Rensink, 2000; Enns & Di Lollo,
2000; Lamme & Roelfsema, 2000). It is also in line with the
idea that visual signals may be processed along two parallel
and interacting channels that differ in their speeds of informa-
tion transmission and functional roles (Breitmeyer, 1984). In
this view, a fast target-related sweep of activity affects the
motor response, whereas a slow target-related sweep of activ-
ity, which is essential for perception, is suppressed by the fast
activity triggered by the mask.

In the present study, we asked participants to react as fast as
possible with a simple motor response to a target–mask stim-
ulus. The target was presented on 50 % of the trials; the mask
was presented either at the same location as the target
(masked) or at a different location (not-masked). At the end
of each trial, participants were required to report whether the
target was or was not present.

This paradigm allowed us to use signal detection theory
(SDT) to test two alternative masking models: a suppression
and a summation model (described below in the “Models and
predictions” section). Briefly, suppression models posit that
the target-related activity is suppressed by the mask.
Concerning the Fehrer–Raab effect, this model favors the
interpretation of an independence between perceptual and
motor responses. The summation model, on the other hand,
posits that the target- and mask-related activations are fused. It
explains the reduction of perceptual sensitivity by an in-
creased difficulty to discriminate the fused response from the
mask-related response, relative to the baseline not-masked
condition. Under the summation model, the Fehrer–Raab
effect does not imply a dissociation between perceptual and
motor responses. These two models make different predic-
tions about the perceptual and motor performances in the
masked condition, given the participant’s performance in the
not-masked condition. Please note that the goal of this study
was to test these two classes of metacontrast-masking models,
and hence the validity of the conclusion based on the Fehrer–
Raab effect. Our goal was not to present a new model for all
forms of backward masking; indeed, the range of parameters

tested in this study was very narrow and was specifically
selected to study the Fehrer–Raab effect, as observed in a
previously tested setting (Waszak et al., 2007). To anticipate,
the results of this study support the summation model, and
hence put in question the conclusion of a perceptual–motor
dissociation based on the Fehrer–Raab effect.

Method

Observers

Eight observers, with normal or corrected-to-normal vision
and naïve as to the purpose of the experiment, participated in
this study.

Stimuli

Stimuli were displayed on a 1,024 × 768 pixel, 77-Hz color
CRT monitor at a viewing distance of 100 cm. The back-
ground luminance of the screen was set at 45 cd/m2. The
experiment was programmed and executed using the Psycho-
physics Toolbox under MATLAB (PTB-2; Brainard, 1997;
Pelli, 1997).

During the whole trial, a fixation cross was presented in the
center of the screen. The visual stimuli were the target S1 and
the mask S2 (Fig. 1). In present trials (i.e., in half of the trials),
S1 (which was presented for 13 ms) was followed by S2 with a
stimulus onset asynchrony (SOA) of 52 ms. S2 was presented
for 39 ms. In absent trials, only S2 was presented. S1 was a
close-to-threshold Gaussian luminance increment with σ =
0.269º. The luminance of S1 was set to either 10 % or 14 %,
in the low- or the high-contrast condition, respectively. We
decided to use two contrast values instead of only one in order
to have an internal replication; the results that are observed
when S1 has low contrast should not differ qualitatively from
the condition in which it has a high contrast. S1 was presented
3.7º below fixation. S2 was a highly visible (90 cd/m

2), sharp-
edged annulus with inner and outer diameters of 0.615º and
1.153º, respectively. In the masked condition, S2 was present-
ed centered on the position of S1 (Fig. 1c). In the not-masked
condition, S2 was presented with the same eccentricity as in
the masked condition, but deflected from the vertical meridian
by an angle of 22.5º randomly to the left (not shown) or the
right (Fig. 1b).

Tasks and procedures

Figure 1a illustrates the sequence of events in one trial. Ob-
servers initiated a new trial with a buttonpress. Each trial
started with the onset of a blank screen with only the fixation
cross. After a random interval (300–1,000 ms), a stimulus
sequence was presented. Observers were required to give
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two responses. First, they pressed a key on the keyboard (the
space bar) as quickly as possible when they detected any
luminance change (i.e., the onset of S1 or S2). The RT was
defined as the latency between this keypress and the possible
onset of S1 (even if it was not presented). Second, after the first
response, observers indicated—without time pressure—their
confidence level about the presence or absence of S1 by
pressing the right (“present”) or left (“absent”) arrow of the
keyboard one to five times (the numbers 1 to 5 appeared in the
center of the screen, with 1 meaning very uncertain and 5
absolutely certain). Observers validated their responses by
pressing the downward arrow key.

Stimuli were presented in blocks of 300 trials with S1
present or absent, randomly interleaved. Four block types
resulted from the combination of the two S1 contrast values
(i.e., 10 % or 14 %) and the two S2 positions (i.e., masked or
not-masked condition); each of these block types was present-
ed five times to the participants (for a total of 20 blocks). The
order of blocks was randomized across observers. Trials were
rejected if RTs were shorter than 100 ms or beyond two
interquartiles from the condition median (masked, not-
masked × low, high contrast, calculated separately for
signal-present and signal-absent trials); on average, 1,230
trials were analyzed per condition and per participant.

Data analysis

Signal detection theory (SDT; Green & Swets, 1966) de-
scribes a situation in which an observer has to detect a stim-
ulus that can either be physically present (“signal trials”) or
absent (“noise trials”). To perform this task participants have

to rely on some internal/neural activity that is a function of the
physical stimulus. This internal activity will have a certain
probability distribution when the stimulus is physically absent
(the internal noise distribution) and it may have a different
distribution when the stimulus is physically present (the inter-
nal signal distribution). The difference in the shape (i.e., mean
and standard deviation, SD) of the distributions of internal
responses elicited in signal trials relative to their distributions
in noise trials characterizes detection sensitivity (da), which is
defined as the distance between the means of the internal
signal and noise distributions in units of “normalized” stan-
dard deviation:

da ¼ μS − μN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
S þ σ2

N

2

r ¼ 2

σ2
S þ σ2

N

� �1=2

μS − μNð Þ ð1Þ

where μS,σS and μN,σN are the mean and SD of, respectively,
the internal signal and noise distributions (Macmillan &
Creelman, 2005, p. 62). The higher the da, the better the
perceptual system is able to differentiate signal trials from
noise trials.

The decision or response criterion (c) is the value that the
internal response has to exceed in order for the participant to
report the stimulus to be present. The lower the criterion, the
smaller the internal responses need to be for participants to
report “stimulus present.” In the case of confidence judgments
it can be assumed that participants set a series of decision
criteria that subdivide the continuum of internal responses in
different levels of confidence.

Fig. 1 Stimulus design. (a) Temporal structure of one trial. (b–c) Spatial layouts: S2 was centered on S1 (masked condition) or displaced randomly to the
left or right (not-masked condition)
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The mean and SD of the signal and noise distributions (i.e.,
μS,σS and μN,σN in Eq. 1) are unknown parameters. However,
since sensitivity is a relativemeasure, the mean and the SD of
the noise distribution can have arbitrary values (by conven-
tion, μN = 0, σN = 1); the noise distribution serving as a
reference. Given these assumptions, it is straightforward to
find the criterion value corresponding for example to the rate
of false alarms (i.e., signal is reported present on a noise trial).
In this case, c can be defined as the z score (or inverse of the
cumulative normal distribution) of 1 minus the false alarm rate
p(FA)—that is, c = Φ–1[1 – p(FA)]. The same logic is used to
locate the criteria underlying the confidence ratings. Once the
mean and SD of the noise distribution have been set and the
multiple criteria computed on the basis of the response rates
on noise trials, it is possible to fit the mean and SD deviation of
the signal distribution that best fits the rates of responses
within each confidence level on signal trials. By confronting
the rates of responses at each confidence level in the signal
present and signal absent trials it is possible to infer the (1)
difference in mean (i.e., μS – μN) and (2)the ratio of the SD
(i.e., σS/σN) of the distributions of internal responses in signal
present trials relative to an arbitrary defined distribution of
internal responses in signal absent trials (Green & Swets,
1966; Macmillan & Creelman, 2005).

The derivation of the signal distribution from participant’s
confidence judgments has three advantages. First, in contrast
to simple yes/no responses computing sensitivity from confi-
dence judgments yields correct perceptual sensitivity esti-
mates even if signal and noise distributions have different
SDs. Second, the model test presented below requires the
evaluation of the SD of the signal distribution. Confidence
judgments provide an efficient measure for this. Finally, the
use of confidence judgments allows the assessment of multi-
ple internal response levels on a continuous scale that can be
used to estimate quantitatively the relationship between the
internal perceptual response and the observed behavioral re-
sponse times (see also Cardoso-Leite & Gorea, 2009).

Models and predictions

Sensitivity is a relativemeasure. Conceptually it characterizes
a system’s capacity to discriminate two situations (e.g., signal
and noise trials); formally it is the normalized distance be-
tween a signal distribution and a noise distribution of internal
responses (see Eq. 1). Although the fact that sensitivity is a
relative measure might not be important in some situations
(e.g., detecting luminance increments of different amplitudes),
not acknowledging it can lead to wrong conclusions in other
situations. In the present study wewill attempt to show that the
detection of metacontrast masked visual stimuli (at least with-
in the limited range of parameters tested in this study) may be
part of the latter. We test different predictions of the sensitivity
measures in the masked condition relative to the not-masked

condition depending on what are assumed to be the noise and
signal distributions that underlie the participants’ perceptual
responses.

Figure 2a shows the probability density functions of the
internal responses that are assumed when no signal is present

Fig. 2 Signal detection analysis of the effect of metacontrast masking
used to make predictions in the present study. (a) Distribution of the
“internal responses” (possibly, neural firing rates) in the absence of any
stimulation (N0), with the presentation of the target only (S1), or with the
presentation of the mask only (S2). The x-axis in this figure represents the
magnitude of internal responses, implying that increasing a stimulus’s
intensity should lead to a rightward shift of its internal distribution. (b)
Model of the not-masked condition. Participants attempt to discriminate
the target-related activity (unaffected by the mask) from the activity
observed in the absence of any stimulation (N0). Panels c and c' represent
two alternative models of the masked condition: (c) In the suppression
model, the activity related to S1 is inhibited/suppressed into S1

–. The S1
–

distribution is shifted toward the noise, and possibly flattened, relative to
the unaffected S1 distribution. (c') Under the summation model, the N0

distribution is irrelevant. The response to S1 is added to the response to S2
to form S1

+. When asked to detect the presence of the S1, participants
attempt to discriminate S1

+ from S2
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(N0), when the target S1 is presented alone (S1), or when the
mask (S2) is presented alone (S2).

1 Figure 2b illustrates the
decision variables that are relevant in the not-masked condi-
tion, in which it is assumed that participants detect S1’s pres-
ence by discriminating the internal responses caused by S1
from those that are observed in the absence of any stimula-
tion—that is, the decision process operates on the internal
distributions S1 and N0; S2, the mask-related distribution of
internal responses, is supposed to be irrelevant for the percep-
tual task in this condition. Figure 2c and c' represent two
distinct accounts of the decision variables in the masked con-
dition. These two accounts of metacontrast masking (see be-
low) differ regarding the processes that underlie masking, the
means and SDs of the signal and noise distributions, and the
independence of motor reactions and perceptual judgments.
Again, the values of the means and SDs of the distributions
depicted in Fig. 2 are not directly accessible; what is accessible,
however, are relative measures—that is, (1) the difference in
means (i.e., μS – μN) and (2) the ratio of the SDs (i.e., σS/σN).
The predictions of the two masking accounts that are
presented below differ in terms of these relative measures
(see Fig. 3).

Suppression model (Fig. 2c) Suppression models state that the
mask (S2) reduces the target’s visibility (S1) by suppressing
the activations produced by the target (S1 → S1

–). This sup-
pression could be achieved by decreasing the average target-
related activity level (a shift of the signal distribution toward
the noise distribution) and possibly increasing the spread of
the signal distribution. Indeed, if the suppression effect on the
target is a noisy process (i.e., the strength of suppression varies
across trials), then the resulting S1

– would have a larger
variance than S1. More formally, the variance ratio under the
not-masked condition is given by σS1/σN0, whereas the vari-
ance ratio under the suppression model is given by (σS1 +
σSuppr)/σN0, where σSuppr denotes the variance (larger than or
equal to zero) introduced by the suppression mechanism. It is
then clear that (σS1 + σSuppr)/σN0 must be larger than or equal
to σS1/σN0. The predictions of the suppression model are
illustrated in Fig. 3. Relative to the not-masked condition,
the mean of the signal distribution is predicted to decrease
(Fig. 3a), and its standard deviation (SD) to increase (Fig. 3b).
According to this model, when participants attempt to report
the presence of S1, they discriminate S1

– from N0; as in the
not-masked case, the internal response to the mask (S2) is not
relevant for the perceptual decision.

Summation model (Fig. 2c') The summation account posits
that the internal response evoked by the target (S1) is added—

possibly with some leakage—to the response produced by the
mask (S2). According to this view, participants’ detection task
in the masked condition consists in discriminating the response
produced jointly by the target and the mask (S1 + S2 → S1

+)
from that produced by the mask alone (S2). Under this model,
the “reference” noise distribution is not N0 (as in the not-
masked case, and under the suppression model in the masked
condition), but S2. Under the assumption that the summation of
S1 and S2 is not perfect (e.g., because of leakage), this model
predicts a decrease of the distance between the signal and noise
means relative to the not-masked condition (and no difference,
if the summation is perfect).

The predictions of the signal SD under the summation
model are based on the observation that under masking-free
conditions, both the mean and the SD of the distribution of
internal responses increase with increasing signal strength (the
change in the mean being about four times larger than the
change in the SD; cf. Nachmias & Steinmann, 1963; for a
review, see Green & Swets, 1966, chap. 4, p. 95). It
follows that the SDs of the S1

+ and S2 distributions will
be quite similar, because the contribution to the SD of
S1

+ of the low-intensity S1 is much smaller than that of
the high-intensity S2. As can be seen in Fig. 2c', σS and
σN will be much larger in the masked than in the not-
masked condition.

More formally, the variance ratio in the masked condition
under the summation model is given by (σS1 + σS2)/σS2—
because in this model, the target- and mask-related responses
are fused and compared to the mask-related activity. Whether
this ratio is larger or smaller than the variance ratio under the
not-masked condition [i.e., σS1/σN0] depends on the values of
both σS1 and σS2. If σS1 is larger than 1 and σS2 grows to
infinity, then this ratio will be less than the not-masked ratio.
More concretely, if we assume only that σS2 is larger than σS1,
then the variance ratio in the masked condition under the
summation model is guaranteed to be smaller than the vari-
ance ratio in the not-masked condition—as long as σS1 is
larger than 2 (as can be seen by plugging in this value for
σS1 and σS2 in the expression above). If σS1 is smaller than 2, it
is necessary to make further assumptions about a lower-bound
value for σS2: If σS1 = 1, σS2 has to be infinitely large; if σS1 =
1.25, σS2 has to be larger than 5; and if σS1 = 1.5, σS2 has to be
larger than 3. The average variance ratio observed in the not-
masked condition is between 1.75 and 2, implying that σS2
needs not to be larger than 3 for the summation model to
predict a reduced variance ratio relative to the not-masked
case. Finally, it should be noted that if the values of σS2 are
smaller than these lower bounds, the summation model
would predict an increased variance ratio, and therefore
be indistinguishable from the suppression model. If,
however, a reduced variance ratio were to be observed,
then only the summation model (with adequate param-
eter values) would be plausible. The predictions of the

1 Letters in italics refer to the physical stimuli, and plain capitals refer to
the corresponding internal random (decision) variables.
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summation model, assuming that σS2 is sufficiently
large, are illustrated in Fig. 3.

In short, whereas the suppression and summation models
may both account for a reduction of the inferred distance
between the means of the signal and noise distributions (see
Fig. 3a), they do differ on their predictions regarding the
change of its standard deviation when comparing not-
masked to masked conditions: The suppression account pre-
dicts an increase (or no change) of the variance ratio, but a
decrease of this ratio could be accounted for only by the
summation account (see Fig. 3b).

Results

This section is subdivided into two parts. First we will analyze
the data with respect to the Fehrer–Raab effect, which states
that RTs—contrary to the perceptual responses—are not af-
fected by masking. In a second part, we will investigate the
perceptual response patterns in order to test the suppression
and summation models presented in the Model and Predic-
tions section above.

Fehrer–Raab effect

RTs and perceptual sensitivity (da) were first analyzed as a
function of masking condition (masked, not masked) and S1
contrast (10 %, 14 %; see Fig. 4). For speeded responses (see
Fig. 1a), a two-way repeated measures analysis of variance
(rmANOVA) on median RTs on signal-present trials only
yielded a significant main effect of contrast [F(1, 7) =
32.699, p = 7.22 × 10–4]—that is, RTs decreased with
increasing contrast. Masking had no significant effect on

RTs [F(1, 7) = 4.0385, p = .0844]2 and did not interact
with S1 contrast [F(1, 7) = 0.2987]. On the other hand,
a two-way rmANOVA on da yielded significant main effects
for both masking condition [F(1, 7) = 15.91, p = .005] and S1
contrast [F(1, 7) = 34.46, p < .001], without an interaction
[F(1, 7) = 1.03, p = .344]. Hence, these results replicate the
phenomenon known as the Fehrer–Raab effect, according to
which masking reduces the visibility of a target without alter-
ing RTs (Fehrer & Raab, 1962).

To investigate whether the RT in S1-present trials depends
on observers correctly reporting the stimulus presence (hit) or
not (miss), we computed—for each participant individually—
the difference in median RTs between, on the one hand,
perceptual hit and miss trials and, on the other hand, correct
rejection (CR) trials (i.e., trials in which S1 was both physi-
cally absent and correctly reported to be so). A rmANOVA
with Masking Condition (masked, not masked), S1 Contrast
(10 %, 14 %), and Perceptual Response (hit, miss) as factors
yielded a significant main effect of S1 contrast [F(1, 7) =

2 It is legitimate to question the statistical power of our analysis to show
that masking does not affect RTs, especially given the small number of
participants in this study. Statistical power depends on both sample size
and effect size: For any nonzero effect size, it is always possible to find a
sample size that will reveal statistically significant results. In order to
estimate an expected effect size of masking on RTs under the hypothesis
that masking affects both perception and motor responses, we used the
following reasoning: The contrast manipulation yielded a sensitivity
change of 0.69, whereas the masking manipulation yielded a sensitivity
change of 0.94. Contrast changed RTs by 13.1 ms. If masking had
equivalent effects on sensitivity and RTs, we would expect a masking
effect on RTs of 17.85 ms [viz. 13.1 * (0.94/0.69) = 17.85 ms]. Note that
17.85 ms is much larger than the observed effect of contrast on RTs
(13.1 ms). Note also that we had enough statistical power to detect this
contrast effect of 13.1 ms. It follows that we should also have had enough
power to detect an effect of masking on RTs, had there been such an
effect.

Fig. 3 Predictions made by the summation and suppression models of
the relationship between (a) the difference in means between the noise
and signal distributions (Δμ) and (b) the signal-over-noise standard
deviations ratio (σS/σN) in the masked condition, as a function of the

equivalent statistic measured in the not-masked condition. Although both
models predict a reduction in Δμ, the suppression model predicts an
increase in σS/σN, where the summation model predicts a decrease
of this ratio
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36.66, p = .001]. Masking condition did not have a significant
effect [F(1, 7) = 1.38, p = .278], nor did it interact with
contrast [F(1, 7) < 1]. These findings are in agreement with
the previous analysis onmedian RTs (see Fig. 4).We observed
a significant interaction between masking condition and per-
ceptual response [F(1, 7) = 7.64, p = .028; the interaction
between perceptual response and contrast, F(1, 7) = 1.63, p =
.243, as well as the triple interaction, F(1, 7) = 2.36, p = .168,
were not significant]. These results indicate that the relation-
ship between RT and perceptual response depends on the
masking condition. Most interestingly, we found a significant
main effect of perceptual response [F(1, 7) = 259.74,
p < .001]. Clearly, perceptual and motor responses are
not independent.

Finally, on bothmiss and CR trials, observers indicated that
S1 was not present, but S1 was in fact physically present in the
former and absent in the latter case. To test whether RTs were
affected by these “unseen” stimuli, we performed one-tailed t
tests on the median RT differences (between miss and CR
trials), with the null hypothesis being that differences were
equal to 0. RTs were faster on miss than on CR trials, in both
the masked condition (10 % contrast: t = –3.634, p = .008;
14 % contrast: t = –5.1564, p = .001) and the not-masked
condition (10 % contrast: t = –2.7575, p = .028; 14% contrast:
t = –4.3849, p = .003; the Bonferroni-corrected significance
level for multiple one-tailed t tests was .025). Hence, in both
the masked and unmasked conditions, RTs were affected by
stimuli that were reported as unseen. It should be noted that an
effect of these unseen stimuli was to be expected, not only
under the hypothesis that unconscious stimuli may trigger
motor responses, but also if participants bymistake sometimes
pressed the key that did not correspond to their perception, if
they forgot what their perception was after having made their
speeded response, or if they occasionally guessed on a
response.

Perceptual responses

Figure 5a presents the mean of the signal distribution inferred
from the confidence ratings in the masked condition as a
function of the mean of the signal distribution associated with
the not-masked condition. Because all data points are below
the identity line, it can be concluded that masking reduces the
distance between the mean of the signal distribution (S1

– or
S1

+) and the mean of the reference noise distribution (N0 or
S2). In other words, the difference in means is larger between
S1 and N0 (not-masked condition) than between S1

– and N0

(masked condition: suppression model) or between S1
+ and

S2 (masked condition: summation model).
This conclusion is confirmed by paired t tests for both the

low- and high-contrast stimuli [respectively, t(7) = 5.122,
p < .002; t(7) = 7.323, p < .001]. Note that this result is
expected by both accounts of metacontrast masking (see
Fig. 3a).

Figure 5b shows the standard deviation of the signal distri-
bution inferred from the perceptual responses in the masked
condition as a function of the standard deviation of the signal
distribution measured in the not-masked condition. Critically,
and as we detailed above, the suppression model predicts an
increase (or no change) of the standard deviation of the signal
distribution. Hence, the data points in this plot should lie
above (or along) the main diagonal. The summation model,
by contrast, predicts a decrease of the signal’s standard devi-
ation, a prediction that would translate into data points being
below the identity line. Cleary, the present data support
the summation model (see Fig. 3b), since all data points
are below the identity line [paired t tests: low contrast,
t(7) = 4.88, p < .002; high contrast, t(7) = 7.587, p <
.001]. This pattern of results presents strong evidence
against the suppression model and in favor of the sum-
mation model.

Fig. 4 The Fehrer–Raab effect. Reaction times (RTs, panel a) and
sensitivity (b) in the masked and not-masked conditions, as a function
of S1 contrast. Masking seems to have no significant impact on RTs, but it

shows a strong effect on sensitivity. Amain effect of S1 contrast is evident
in both the behavioral measures. Data points indicate the means and
SEMs of eight observers
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Discussion

The aim of the present study was to contrast two distinct
classes of models of visual metacontrast masking: suppression
and summation models. Suppression models comprise ac-
counts assuming that the response to a visual stimulus is
suppressed by the subsequently presented mask. This intuitive
view corresponds to what is, at least implicitly, assumed when
metacontrast masking is used as a tool (e.g., to produce
invisible stimuli and test whether perception and action are
independent; cf. Ansorge, Francis, et al., 2007). Summation
models, by contrast, claim that target- and mask-related brain
responses are blended. As a consequence, when asked to
detect the target, human observers discriminate this merged
activation from the activation triggered by the presentation of
the mask in isolation.

These two types of models make different predictions
about how the signal distribution will change when the target
stimulus is masked relative to when it is not. Both the sum-
mation and the suppression models predict that the mean of
the signal distribution will be reduced, and thereby explain
why metacontrast masking hampers the visibility of the target.
Most critically, however, these models differ in terms of their
predictions of the variances of the internal distributions on
target-present trials. Unfortunately, we do not have direct
access to these internal signals, and must rely on the distribu-
tions of participants’ confidence ratings, which provide only a
relative measure. As we outlined above, only under the sum-
mation model will metacontrast masking seemingly reduce
the variance of the signal distribution. The results of the
present study support the summation model.

Under the assumption that the mask suppresses the target-
related activity, it has been concluded that because perception
but not motor reactions are affected by masking (the “Fehrer–

Raab” effect), perception and action are independent (for a
review, see Neumann &Klotz, 1994; but see also Neumann &
Scharlau, 2007; Waszak et al., 2007; Waszak & Gorea, 2004).
By rejecting the suppression model in favor of the alternative
summation model, the present data also cast doubts as to
whether or not the perceptual and motor responses dissociate
in this type of experiment.

Numerous models have been devised to account for per-
ceptual performance across a variety of backward-masking
situations (for a review, see Breitmeyer & Ogmen, 2000), the
most popular ones being perhaps the dual-channel model
(Breitmeyer, 1984) and the recurrent-processing model
(Enns & Di Lollo, 2000). The dual-channel (or transient-
sustained) model posits that visual information is processed
along two distinct but interacting channels: a fast/transient and
a slow/sustained channel. The fast channel is involved in
localization and motion perception, whereas the slow channel
is involved in color and brightness perception. According to
this view, visual backward masking is the result of the slow
response to the target being inhibited by the fast response to
the subsequently presented mask.

The recurrent-processing model, on the other hand, posits
that perception involves a series of iterative processing loops.
Visual information is first fed forward from lower to higher
visual areas, and then fed back to early visual cortex in order
to “confirm” the visual input. In this view, the target’s visibil-
ity is hampered because the presentation of the mask disrupts/
interferes with the processing of the target when the
feedforward response to the mask meets the feedback signal
of the target in early visual areas. Before the feedforward–
feedback loop is closed, the target has already been replaced
by the mask. These are just two views on metacontrast
masking, among numerous others (e.g., the perceptual retouch
theory [Bachmann, 1984] and its updated version [Kirt &

Fig. 5 Means (a) and standard deviations (b) of the signal distribution
inferred from the confidence judgments in the masked condition, as a
function of the equivalent statistics measured in the not-masked condi-
tion. The black and white dots represent the high- and low-contrast

conditions, respectively. Each dot stands for an observer. The cross
represents the center of the data points, with the vertical and horizontal
error bars indicating SEMs
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Bachmann, 2013], to name only a few). The interested reader
should consult Breitmeyer and Ogmen (2000) for a review.
Since these models focus mainly on how perception varies
depending on different stimulus parameters (e.g., SOA or
stimulus polarity), it is not clear to us how to derive predic-
tions for RTs from them. Similarly, in the response-priming
literature (which uses an approach conceptually different from
ours), models have been proposed to account for masked
primes affecting motor responses (e.g., Schmidt, Niehaus, &
Nagel, 2006; Vorberg et al., 2003). These models focus on
explaining the “unconscious” motor responses, and not so
much on explaining how masking affects perception (e.g.,
Vorberg et al., 2003), or they refer to existing metacontrast
models such as the recurrent-processing model described
above (e.g., Schmidt et al., 2006).

Although it is tempting to consider the recurrent-
processing model and the dual-channel model to be of the
suppression type, we refrain from doing so. The present
experimental setting produced a qualitatively new set of data
that have not yet been confronted to simulations of the
existing models, which might be amended so as to account
for them. Future studies will show whether these models can
or cannot account for this pattern of results. The naïve sum-
mation view presented herein is in perfect agreement with the
present data, but it does not by itself account for the variety of
experimental results involving metacontrast masking that can
be accurately described by suppression-like models (e.g.,
masking functions with varying SOAs and target and mask
intensities). Indeed, the present model might completely fail if
we were to choose different experimental settings. However,
what this study shows is that, at least within the specifics of the
present experimental design, it is possible to model
metacontrast masking such that the dissociation observed
between perceptual and motor responses does not imply a
dissociation of the signals that feed those responses.

This study is not the first to show that target and mask
interact in more complex ways than is generally assumed. In
line with the summation model, masked targets have been
shown to affect the perception of the mask (Ansorge, Becker,
& Breitmeyer, 2009; Ansorge, Breitmeyer, & Becker, 2007;
Herzog & Koch, 2001; Otto, Oğmen, & Herzog, 2006;
Scharlau & Neumann, 2003; for reviews, see Ansorge et al.,
2009; Herzog, 2007; Scharlau, 2007; Scharlau, Ansorge, &
Breitmeyer, 2006): If, for example, two parallel not-aligned
bars are masked by a set of aligned bars, the masking bars are
perceived as misaligned: Properties of the masked stimulus
can thus be inherited by the mask. More generally, by
using different target and mask configurations, these
studies have emphasized the importance of taking into
account the spatial and temporal interactions between
stimuli presented in close succession. The present study
extends our knowledge by showing that the visibility of
the target is hampered at least partly because of a

change of the internal reference against which target-related
activations are compared.

Currently, researchers are showing increasingly interest in the
notion of “criterion content” introduced by Kahneman (1968).
Criterion content refers to the idea that stimuli result in multidi-
mensional percepts. According to his notion, in order to make
decisions about these stimuli, participants can rely on different
attributes. For example, Lau and Passingham (2006) introduced
the concept of relative blindsight after observing that, for two
SOAs yielding the same detection accuracy, participants reported
different levels of confidence in their responses. However,
Jannati and Di Lollo (2012) demonstrated that this perceptual–
perceptual discrepancy (between detection and confidence)
doesn’t reflect a fundamental dissociation (for further examples,
see Cardoso-Leite, Mamassian & Gorea, 2009; Cardoso-Leite et
al., 2007). Instead, participants rely on different content criteria,
depending on the SOA. This result is in line with a pioneering
study that used multidimensional scaling to reveal the perceptual
dimensions that underlie participants’ decisions in a metacontrast
detection task (Sackur, 2013). This study showed that at least
three dimensions determine participants’ judgments: one of time,
and two of visibility. Most likely, at short SOAs participants
consider the target–mask pair as a unique stimulus, whereas at
longer SOAs the target and mask are perceived as two distinct
events.

We believe that the largely accepted dissociation between
perceptual and motor responses in metacontrast may equally
well be explained by criterion content differences across these
two response modalities. It seems plausible that participants in
our experiment built a unitary but complex percept of the
target–mask pair—see also Sackur’s (2013) results showing
that instructions have little effect on participants’ decisions
about the target’s presence—and that speeded RTs and per-
ceptual detection of the same complex perceptual event rely
on different content criteria. It would be interesting to test this
hypothesis directly by using multidimensional-scaling
methods on both types of behavioral outcomes.

The idea that target-related brain activations must be sup-
pressed under metacontrast masking is appealing because it
seems intuitive: After all, a highly visible stimulus is turned
invisible by a mask! A similarly mysterious (though different)
situation was encountered in the early days of psychophysics:
A 10-g heavy weight placed on the palm of the hand can be
perfectly detected by itself, but if the task is to discriminate
1,000 g from 1,010 g, the task is far more difficult, although
the absolute difference in weights is the same; yet, one would
not assume that the 1,000-g part of the 1,010-g weight masks
the remaining 10 g! Suppression is not a logical necessity to
account for reduced perception, and in the context of the study
of the relationship between perceptual and motor responses,
assuming the contrary may lead to wrong conclusions.

In the present study, we made a series of assumptions to
devise two categories of metacontrast-masking models and to
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test which of these two models would be supported by exper-
imental data. Qualitatively, all predictions were met for the
summation model, which could account for an apparent dis-
sociation between perceptual and motor responses, despite
there being no genuine differences between the signals on
which they relied. Quantitatively, however, we lack a compu-
tational model to determine with more certainty if these be-
havioral results imply that perceptual and motor processes do
not dissociate, or if instead other accounts remain possible.
Our models rely on multiple assumptions, and the reader may
of course question their validity and thus disregard the ful-
filled predictions—for example, because we used only a very
limited and specific set of parameters, whereas a vast literature
has gone against this view. But even in that case, one should
keep in mind that conclusions about the dissociation between
perceptual andmotor responses inmetacontrast-masking stud-
ies also depends on assumptions of what metacontrast
masking does to the visual system, and those assumptions
might not always be true.
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