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Abstract In humans vitamin B12 (cobalamin, Cbl) must be
converted into two coenzyme forms, methylcobalamin
(MeCbl) and adenosylcobalamin (AdoCbl), in order to main-
tain intracellular homeostasis of homocysteine and
methylmalonic acid, respectively. Previously we have shown
that in cblD patients three types of MMADHC mutations
exist: 1) null mutations N-terminal to Met116 cause isolated
methylmalonic aciduria (cblD-MMA) due to AdoCbl defi-
ciency; 2) null mutations across the C–terminus (p.Y140-
R250) cause combined methylmalonic aciduria and
homocystinuria (cblD-MMA/HC) due to AdoCbl and MeCbl
deficiency; 3) missense mutations in a conserved C-terminal
region (p.D246-L259) cause isolated homocystinuria (cblD-
HC) due to MeCbl deficiency. To better understand the do-
main boundaries related to MeCbl formation, we made select-
ed point mutations and C-terminal truncations in MMADHC
and tested rescue of MeCbl and AdoCbl synthesis in

immortalized cblD-MMA/HC patient fibroblasts. Testing 20
mutations (15 missense and five C-terminal truncations)
across p.P154-S287 revealed the presence of a region
(p.R197-D226) responsible for MeCbl synthesis, which gave
a similar cellular phenotype as cblD-HC. Further, mutation of
the polypeptide stretch between the new and patient defined
regions (p.D226-D246) and directly C-terminal to the patient
region (p.L259-R266), gave cellular phenotypes intermediate
to those of cblD-HC and cblD-MMA/HC. Finally, C-terminal
truncation of more than 20 amino acids resulted in a cblD-
MMA/HC like cellular phenotype, while truncation of be-
tween ten and 20 amino acids resulted in a cblD-HC like
cellular phenotype. These data suggest that specific regions
of MMADHC are involved in differential regulation of
AdoCbl and MeCbl synthesis and help better define the
boundaries of these regions.

Introduction

Vitamin B12 (cobalamin; Cbl) is needed in humans for two
enzymes, mitochondrial methylmalonyl-CoA mutase (MUT:
EC 5.4.99.2) which requires adenosylcobalamin and cytosolic
methionine synthase (MS: EC 2.1.1.13) which requires
methylcobalamin (MeCbl). Deficiencies in either enzyme or
the proteins required for the intracellular uptake and modifi-
cation of cobalamin to these cofactor forms, designated as
complementation groups cblA-G, cblJ and mut, result in
homocystinuria (HC) for MS, methlymalonic aciduria
(MMA) for MUT, or both (Baumgartner 2013; Froese and
Gravel 2010). Subjects with mutations in the genes MMAA
(cblA) and MMAB (cblB) have decreased production of
AdoCbl, resulting in MUT deficiency and isolated
methylmalonic aciduria (Dobson et al 2002a; Dobson et al
2002b). Mutations in MTR (cblG), the gene encoding MS
(Chen et al 1997; Leclerc et al 1996; Li et al 1996), and
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MTRR (cblE), the gene encoding MS reductase (Leclerc et al
1998), result in decreased MeCbl production causing MS
deficiency. Mutations in the genes ABCD4 (cblJ) (Coelho
et al 2012), LMBRD1 (cblF) (Rutsch et al 2009) and
MMACHC (cblC) (Lerner-Ellis et al 2006) produce com-
bined deficiency of MUT and MS, resulting in both
methylmalonic aciduria and homocystinuria. Finally, the
cblD complementation group is unique in that it can be
associated with isolated methylmalonic aciduria (cblD-
MMA), isolated homocystinuria (cblD-HC), or combined
methylmalonic aciduria and homocystinuria (cblD-MMA/
HC) (Suormala et al 2004). Clinical presentation of the three
cblD patient groups largely follows that of the other com-
plementation groups (Baumgartner 2013), with cblD-MMA/
HC and cblD-HC patients displaying neurological and hae-
matological symptoms, while cblD-MMA patients have re-
spiratory distress and hyperammonemia as well as neurolog-
ical symptoms (Coelho et al 2008; Parini et al 2013;
Suormala et al 2004).

The type and location of patient mutations across the
MMADHC protein, responsible for cblD, correspond to
disease phenotype (Coelho et al 2008). Truncation mutations
towards the N-terminus of the protein on at least one of the
two mutant alleles result in cblD-MMA, truncation or mis-
sense mutations towards the C-terminus result in cblD-
MMA/HC, and missense mutations in a narrow region near
the C-terminus (p.D246-L259) result in cblD-HC (Stucki
et al 2012). The MMA only phenotype of N-terminal null
mutations has been explained by reinitiation of translation at
Met62 and Met116 (Stucki et al 2012). Thus, truncation
mutations before Met116 ablate full-length protein produc-
tion but allow the formation of a shortened protein, contain-
ing 180 amino acids, which appears to be sufficient for
MeCbl synthesis. Additional studies (Stucki et al 2012) have
shown that replacement of the endogenous mitochondrial
leader sequence (MLS) with a more efficient one (from
ALDH2) increases the proportion of cellular AdoCbl syn-
thesis compared to MeCbl, suggesting that the relatively
weak endogenous MLS of MMADHC helps balance the
production of the two cofactors. Interestingly, addition of
this strong mitochondrial leader to a construct starting at
Met116 resulted in almost no AdoCbl production, suggest-
ing that amino acids N-terminal to Met116 are required for
AdoCbl synthesis.

Despite this detailed information on the N-terminus of
MMADHC and its relation to AdoCbl production, very few
insights into the importance of the C-terminus or require-
ments for MeCbl generation have been found. Our work
aims to better understand these functions. Using site directed
mutagenesis (SDM) to introduce 15 missense mutations
between p.154–280, along with five C-terminal mutations be-
tween p.261–287, we examined the effects these mutations

had on AdoCbl and especially MeCbl synthesis in an im-
mortalized cblD-HC/MMA cell line. Our results suggest
distinct C-terminal protein regions control MMADHC
targeted MeCbl synthesis, while other regions play impor-
tant roles in the synthesis of both cofactors.

Materials and methods

Cloning

Untagged full-length wild-type MMADHC cloned into the
pTracer-CMV2 expression vector (pTracer-MMADHC-wt)
has been previously described (Stucki et al 2012). All mis-
sense and truncation mutants were prepared on this pTracer-
MMADHC-wt construct using the Quikchange site-directed
mutagenesis kit (Stratagene), following manufacturer’s proto-
cols. Sequences of forward and reverse primers (Microsynth)
used to generate the mutations are given in Supplementary
Table 1. All mutant constructs were confirmed by Sanger
sequencing. Plasmid DNA for transfections were prepared
using the QIAfilter Plasmid Maxi Kit (Qiagen) and DNA
concentration determined by spectrophotemtry (Nanodrop
2000; Thermo Scientific).

Cell culture and expression

Transformed fibroblasts of the cblD-MMA/HC patient D007
(Coelho et al 2008), grown in routine Dulbecco’s Modified
Eagle’s Medium (DMEM; Gibco) supplemented with 10 %
foetal calf serum (FCS; Gibco) and antibiotics (PAA), were
used for transfections throughout the study. Expression of
pTracer, MMADHC-wt and mutant constructs were per-
formed as earlier described for the study of MMADHC con-
structs (Coelho et al 2008; Stucki et al 2012).

Cobalamin coenzyme synthesis assay

Synthesis of cobalamin coenzymes was estimated using a meth-
od modified (Fowler and Jakobs 1998; Suormala et al 2004)
from the original (Mahoney and Rosenberg 1971). For a more
complete description of the procedure see Supplementary
methods.

Statistics

All values come from at least three independent experiments,
with statistical significance determined using an unpaired two-
tailed Student’s T-test with a cut-off of P<0.05, unless other-
wise indicated. Statistics were performed using GraphPad
Prism v6 software.
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Results

Rationale for mutation selection

Three patient mutations on MMADHC – p.D246G,
p.Y249C and p.L259P - are known to cause the cblD-
HC phenotype and thus interfere with proper MeCbl for-
mation. To better understand the boundaries of the region
responsible for MeCbl production, we used SDM to sub-
stitute residues across the middle and C-terminus of the
MMADHC protein and tested them for synthesis of
MeCbl and AdoCbl. In all, we mutated 15 residues, each
to alanine, ranging from p.P154 to p.D286, choosing to
substitute those amino acids after Met116 that were
strongly conserved and represented distinct regions of
conservation across the polypeptide (Fig. 1). Of the 15
residues mutated, all but four (p.E167, p.F204, p.R266,
p.S278) were completely conserved down to C. elegans
(Fig. 1). In addition, we generated five truncation muta-
tions between p.C261 and p.S287 (Fig. 1) in order to test
the importance of the C-terminus for the function of the
protein.

Generation of MeCbl and AdoCbl is dependent
on the construct expressed

Figure 2 shows representative graphs of the separation of
labelled–cobalamins by HPLC after transfection with vector
only (A), MMADHC-wild-type (B) and MMADHC-L259P
(C), a cblD-HC patient mutation. When immortalized
cblD-MMA/HC patient fibroblasts were transfected with
pTracer vector only, the majority of cobalamins detected
were in the OHCbl form, with very minor peaks for
CNCbl, AdoCbl and MeCbl (Fig. 2a). These cells were
therefore able to convert CNCbl to OHCbl, most likely
through the action of MMACHC (Kim et al 2008), but
unable to process Cbl further, biochemically consistent
with the cblD-MMA/HC phenotype. After expression of
the MMADHC-wild-type vector, there was a marked
increase in MeCbl formation, but a less prominent
AdoCbl peak (Fig. 2b), suggesting that the rescue of
MeCbl and AdoCbl is uneven, consistent with previous-
ly published results (Coelho et al 2008; Stucki et al
2012). Following over-expression of MMADHC-L259P,
there was only a slight increase in MeCbl, but a large
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Fig. 1 Multiple sequence alignment ofMMADHC across evolution with
mutations identified. Residues that are identical in all species listed are
shown in black; residues with conservative substitutions are shown in
grey. Met62 and Met116 (blue), cblD-HC patient mutations (yellow),
amino acids used for missense mutations (red boxes) and those for C-
terminal truncations (green lines) are shown. Sequences are shown for
human (Homo sapiens: NP_056517), chicken (Gallus gallus:

NP_001008477), zebrafish (Danio rerio: NP_991157), gecko (Gekko
japonicus: Q6DV04), finch (Geospiza fortis: XP_005415776), trout (On-
corhynchus mykiss : ACO07932) , f rog (Xenopus laevis :
NP_001089489), cow (Bos Taurus: NP_001029713) and C. elegans
(Caenorhabditis elegans NP_499801). This alignment was generated by
Tcoffee (tcoffee.org) and visualized using GeneDoc (Nicholas et al 1997)
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increase in AdoCbl, compared to vector only control
(Fig. 2c). This is consistent with a cellular cblD-HC
phenotype, and together with the MMADHC-wild-type
result , is compatible with the hypothesis that
MMADHC targeted Cbl processing to either MeCbl
or AdoCbl is delicately balanced, and an increase in
the production of one cofactor form results in a con-
comitant decrease in the other. There was no signifi-
cant difference in the total radioactive counts for any
of these controls, suggesting that cellular cobalamin
uptake was not affected by the presence or absence
of MMADHC protein.

Effects on AdoCbl and Mecbl synthesis by MMADHC SDM
missense mutations

Testing our constructs with the generated missense mu-
tations gave a spectrum of results, including no correc-
tion of either AdoCbl or MeCbl, correction of both to
wild-type levels, or correction of AdoCbl but not
MeCbl as in cblD-HC (Fig. 3a; Table 1). Comparison
of the results of AdoCbl and MeCbl production for each
mutation with each of our controls (Table 1) allowed
grouping of the mutations into categories, highlighting
their similarity and the nature of the expected cellular
phenotype if these mutations manifested in patients
(Fig. 3a). Where a particular mutation led to no signif-
icant difference (Table 1, ns) in levels of AdoCbl and
MeCbl compared with vector-only, wild-type or cblD-
HC, that mutation was placed in the same category as
that control. Where one or both of AdoCbl and MeCbl
differed from all three controls, separate categories were
created (see Supplementary results). Only one mutation,

Fig. 2 HPLC separation of cobalamin derivatives in extracts. The cobal-
amin coenzyme synthesis assay was used to estimate the ability of
transfected cells to synthesise adenosylcobalamin (AdoCbl) and
methylcobalamin (MeCbl). This separation technique was modified from
the original method (see Supplementary methods) to separate AdoCbl
from an unknown radioactive compound eluting at 23–26 min (extra).
Panels a-c show a representative distribution of radioactivity in cells
transfected with an empty pTracer vector (a), pTracer constructs contain-
ingMMADHC-wild-type (b), andMMADHC-L259P, a cblD-HC patient
mutation (c). The retention times of hydroxocobalamin (OHCbl), CNCbl,
AdoCbl and MeCbl were estimated by detecting unlabelled compounds
added to the cell pellet before extraction (each 20 μg/pellet) at 254 nm.
cpm: counts per minute

Fig. 3 AdoCbl (light grey) and MeCbl (dark grey) synthesis in (a)
missense and (b) C-terminal truncating mutations. a Mutations are
grouped according to their phenotype from left to right in “controls”
“combined cblD-MMA/HC”, “mild cblD-MMA/HC”, “wild-type” (wt),
“partial cblD-HC”, “mild cblD-HC” and “isolated cblD-HC”. b Statistics
performed for each mutation against empty vector are shown.
* P<0.05; **P<0.005; ***P<0.0001. For both A and B. Transfections
with empty vector, MMADHC-wild-type and MMADHC-L259P were
used as controls in each experiment. Each mutant construct was
transfected in at least three independent experiments. The distribution
of both Cbl derivatives is expressed as % total cobalamins. Columns
represent mean values of AdoCbl and MeCbl synthesis, error bars repre-
sent mean +/− SD
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p.M186A, failed to increase either AdoCbl or MeCbl
compared to empty vector control and was therefore
placed in the combined “cblD-MMA/HC” category.
Two mutations, p.C212A and p.F280A, gave results
consistent with addition of wild-type vector, suggesting
that even though these mutations were introduced at
strictly conserved residues (Fig. 1), their substitution
did not affect protein function. Resequencing of both
constructs confirmed their correct mutation (data not
shown). Three mutations, falling within 30 amino acids of each
other - p.R197A, p.F204A and p.D226A - producedAdoCbl and
MeCbl levels consistent with the “cblD-HC” cellular phenotype.
The other nine mutations gave cellular phenotypes intermediate
to these previously identified categories. p.W189A and
p.W270A each showed slightly increased AdoCbl levels, while
p.W189A also had slightly increasedMeCbl levels, compared to
empty vector, but they remained low compared to wild-type
enzyme. These were therefore categorized as “mild cblD-

MMA/HC”. The next group (p.P154A, p.E167A,
p.K263A) showed increases in AdoCbl similar to wild-
type, but reduced MeCbl production. To reflect this
pattern, they were categorized as “partial cblD-HC”.
Finally, the group defined as “mild cblD-HC”
(p.F165A, p.Y237A, p.R266A and p.S278A) showed
similar MeCbl but elevated AdoCbl levels compared to
the “partial cblD-HC” group. Indeed, their AdoCbl
levels were not-significantly different from those gener-
ated by the cblD-HC mutations; however, their MeCbl
levels were much higher, suggesting they might cause a
very “mild cblD-HC” like phenotype, if any.

Effects on AdoCbl and MeCbl synthesis by MMADHC
C-terminal truncations

To test the importance of the C-terminus to the overall
function of the protein, we constructed five C-terminal

Table 1 Statistical analysis of each transiently expressed mutation
against corresponding controls. Statistics were performed using an un-
paired t-test (two-tailed), where all mutations were separately tested
against each control (empty vector, wild-type and the cblD-HC mutation
p.L259P) for adenosylcobalamin (AdoCbl) and methylcobalamin
(MeCbl), respectively. Categorization of mutations was determined by

these comparisons (see Supplementary results). For clarity, truncation
mutations are represented as “X” instead of “*”. ns: not significant.
* P<0.05; **P<0.005; ***P<0.0001, where dark background represents
higher than the control, light background represents lower than the
control. GraphPad Prism 6 software was used for analysis. All mutations
were tested in at least three independent experiments

empty vector wildtype cblD-HC (L259P) empty vector wildtype cblD-HC (L259P)

P154A *** ns * *** *** **
F165A *** *** ns *** *** **
E167A *** ns * *** ** ***
M186A ns *** ** ns *** ns

W189A *** * *** *** *** *
R197A *** *** ns ns *** ns

F204A *** ** ns *** *** ns

C212A *** ns * *** ns ***
D226A *** *** ns ns *** ns

Y237A *** *** ns *** *** **
K263A *** ns * *** *** ***
R266A *** *** ns *** *** ***
W270A *** ns * ns *** ns

S278A *** ** ns *** ** ***
F280A *** ns * *** ns ***

C261X ns *** ** ns *** ns

H273X ns *** ** ns *** ns

V276X *** ns ** ns *** ns

T281X * *** ** ns *** ns

S287X *** * * *** *** **

AdoCbl MeCbl

Missense Mutations

C-terminal Truncations
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truncation mutations, including p.C261*, p.H273*,
p.V276*, p.T281* and S287*, shortening the 296 amino
acid full-length protein by between nine and 36 amino
acids (Fig. 1). We found that for every truncation except
p.S287*, there was no significant increase in MeCbl pro-
duction compared to vector only (Fig. 3b). Alternatively,
while AdoCbl production was not rescued in p.C261*
and p.H273*, it was slightly, but significantly, in-
creased in p.V276* and p.T281* and increased almost
four-fold for p.S287* compared to empty vector
(Fig. 3b). These results suggest that C-terminal trunca-
tions up to p.H273 result in completely non-functional
protein, while truncations between p.V276 and p.S287
result in a protein that is partially able to rescue
AdoCbl but not MeCbl synthesis. Truncations from
p.S287, incorporating all but the last nine amino acids,
result in a protein that can partially rescue both
AdoCbl and MeCbl synthesis and therefore is minimal-
ly functional for both coenzyme synthesis pathways.

Discussion

Importance of N- and C-terminal regions to AdoCbl
and MeCbl production

Since the identification of the gene responsible for the
cblD defect, MMADHC, much knowledge about its pro-
tein’s function has come from mutation analysis. The
gene identification paper (Coelho et al 2008) described
an initial genotype-phenotype relationship which has
held up well with the identification of an additional
12 patients and six mutations (Parini et al 2013;
Stucki et al 2012). Thus far, all truncating mutations
described N-terminal to p.N77 have resulted in cblD-
MMA (Fig. 4a solid light blue) while all truncating
mutations after p.Y140 resulted in cblD-MMA/HC. Fur-
ther work has shown that deletion of the N-terminal 115
amino acids leads to significantly decreased AdoCbl
production (Fig. 4a all light blue) with almost no de-
crease in MeCbl formation, reinforcing the importance
of the N-terminus for AdoCbl production and the cblD-
MMA phenotype, while demonstrating its low impor-
tance for MeCbl synthesis (Stucki et al 2012). We
therefore focused our attention on the C-terminus, ex-
amining the effects of missense and truncating muta-
tions across this part of the protein on the synthesis of
AdoCbl and MeCbl.

We found that truncations of greater than 23 amino
acids resulted in no significant increase in formation of
either coenzyme compared with empty vector, indicating
lack of function of the generated protein. Truncations of
less than 20 amino acids resulted in AdoCbl production,

but truncation of only 15 amino acids still resulted in
no MeCbl production. This suggests that the C-terminal
residues are very important for conversion of cobalamin
into the MeCbl form, but less so for AdoCbl. This data
is complementary to the N-terminal truncations pro-
duced by Stucki et al (2012). It also demonstrates that
the C-terminus is far less tolerant to truncation than the
N-terminus. More than 60 N-terminal amino acids can
be cleaved without loss of function to either pathway,
but deletion of just 23 residues from the C-terminus is
detrimental to production of both cofactors. This is also
reflected in the much stronger conservation of the pro-
tein’s C-terminus across all species examined (Fig. 1).
Taken together these data are consistent with an impor-
tant role for the targeting of Cbl towards the mitochon-
dria by the N-terminus of MMADHC and distribution
towards the cytosol governed by the C-terminus.

Identification of a further cblD-HC causing region

Generation of missense mutations across the C-terminal
half of the protein identified a spectrum of phenotypes
related to the production of AdoCbl or MeCbl. While
we found large differences in MeCbl and AdoCbl levels
for different mutations, one or both cofactor(s) were
elevated above vector only levels (Fig. 3a, Table 1) in
all but one case, suggesting that a partially functioning
protein for each mutant was produced. Only one of the
residues we mutated was found in the 1000 Genomes
genetic variation database; p.M186, at a frequency of <
0.001; while no protein changing polymorphisms within
the entire investigated region were found above an
allele frequency of 0.006, suggesting an importance of
this region to protein function.

From these mutations we identified a second region
of the protein, in addition to that delineated by patient
mutations, where mutation resulted in a cellular pheno-
type consistent with cblD-HC (Fig. 4a – solid dark
blue). This region included three mutations (p.R197A,
p.F204A and p.D226A) which gave the cblD-HC phe-
notype, with one mutation (p.C212A) in between,
anomalously, giving wild-type. Although p.C212 is
strongly conserved (Fig. 1), and p.C212A was predicted
by mutational effect prediction sites (SIFT: http://www.
sift.jcvi.org; PolyPhen2: http://www.genetics.bwh.
harvard.edu/pph2) to be “probably damaging” (SIFT: 0.
00–0.01, Polyphen2: 0.975–0.998), it seems that this residue
is tolerant to substitution. Together, our SDM delineated
region (p.R197-D226) and the patient mutation region (p.
D246-p.L259) represent important protein sites which
appear to be necessary for the production of MeCbl but not
AdoCbl. Therefore, it is possible that they correspond to
important protein-protein interaction domains specific to
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cytosolic MeCbl targeting proteins. We also noted cellular
phenotypes similar to that of cblD-HC from mutations in the
amino acid stretch between these cblD-HC regions and just C-
terminal to the patient bound region (Fig. 4a – dark blue cross-
hatch). However, mutations in these areas produced higherMeCbl
levels than seen in the cblD-HC regions, suggesting a lesser ability
to knock-outMeCbl formation, perhaps due to non-direct involve-
ment with cytosolic targeting proteins.

Some of the missense mutations we generated resulted in
severe impairment in intracellular cobalamin metabolism. For
example, p.M186A showed no elevation of MeCbl or
AdoCbl, while p.W189A gave only slightly increased MeCbl
and AdoCbl above background levels (Fig. 3a). It is striking
that these residues lie very close to the only known patient
missensemutation that causes combined deficiency, p.T182N,
suggesting this area is critical for both cobalamin cofactor
pathways. Alternatively, the severity of these mutations could
be due to misfolding.

Mapping secondary structure onto the mutation analysis
reveals possible α-helices and β-sheets important
for functional interactions

It is interesting to speculate how these results might relate to
the structure of MMADHC. In the absence of a protein crystal

structure, or even an appropriate homology model, we are
presently limited to mapping these mutations onto its predict-
ed secondary structure (Fig. 4b). Nevertheless some intriguing
comparisons can be drawn. For example, the C-terminus of
the protein is predicted to end in a α-helix (aa 287–294),
which is preceded by a β-sheet (aa 274–280). Deletion of
the final α-helix, which we achieved by the S287* construct,
results in decreased MeCbl production, but normal AdoCbl,
while truncation of both the α-helix and β-sheet, by H273*,
results in no MeCbl or AdoCbl formation. This suggests that
the final α-helix is important for MeCbl but not AdoCbl
formation. Another interesting area of secondary structure
governs the cblD-HC regions. The patient defined region is
spanned by an α-helix (aa 245–250) and a β-sheet (aa 254–
258). Our mutations (p.K263A and p.R266A) in the β-sheet
immediately C-terminal to this region (aa 262–267) resulted in
a non-exclusive cblD-HC phenotype. Likewise, anα-helix (aa
191–217) and a β-sheet (aa 221–224) span the region of our
SDM mutations which resulted in the cblD-HC phenotype,
but mutations in the disordered or loop regions both N-
(p.W189A) or C- (p.Y237A) terminal to these regions of
secondary structure gave mixed phenotypes. These data sug-
gest that the two α-helices and β-sheets spanning amino acids
191–258 constitute an area specific for the MeCbl synthesis
pathway, with the loop/disordered regions between and on

This study (Site-Directed-Mutagenesis) 

Patient mutations  

cblD-MMA 

cblD-HC 

cblD-MMA/HC wild-type 

partial cblD-HC

mild cblD-HC  
mild cblD-MMA/HC 

18-26 173-180154-16443-4730-314-14 146-150110-123 287-294191-217 221-224 245-250
254-258

274-280262-267

Predicted secondary structure
1 100 200 250 296

β sheet

helix

Met 116

A

B

unknown

Fig. 4 Amino acid sequence and predicted secondary structure of the
MMADHC protein. a Schematic representation of MMADHC across all
296 amino acids.Mutations described in patients with cblD deficiency are
shown above the protein; mutations generated by SDM are shown below.
Light blue area: region where mutations cause cblD-MMA; striped light
blue: additional region responsible for AdoCbl synthesis; Met116:

reinitiation of translation at Methionine 116; dark blue: region where
mutations cause cblD-HC; striped dark blue: region where missense
mutations cause a milder cblD-HC phenotype. B. The predicted second-
ary structure (http://www.predictprotein.org) of MMADHC with β-
sheets (light grey boxes) and α-helices (dark grey boxes) shown
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either side of them not being directly involved. It is possible
that in 3-dimensional space, these secondary structure ele-
ments make up one contiguous area. This supports the idea
that this area is directly involved with protein-protein interac-
tions in the cytosolic only pathway.

Interaction with MMACHC and implications

Since MMADHC has not been found to bind cobalamin
(Deme et al 2012), the most likely explanation of its cobala-
min distribution function is via interaction with MMACHC, a
protein shown to bind and modify cobalamin (Hannibal et al
2009; Kim et al 2008). Indeed, three papers have now shown
interaction between these two proteins (Deme et al 2012;
Gherasim et al 2013; Plesa et al 2011). By using phage display,
Plesa et al (Plesa et al 2011) described five possible MMACHC
interacting regions (I-V) of MMADHC. Of these, region III
(p.Y220-T238) partially overlaps with our SDM region found to
cause cblD-HC, region IV (p.T245-G260) completely overlaps
with the patient defined cblD-HC region, and the 22 amino acids
which make up region V (p.V274-L293) correspond to a region
we found to be required for MeCbl but not AdoCbl formation
fromour truncation experiments. Thus theMMADHC regionswe
have identified as being key to MeCbl synthesis may correspond
to those areas responsible for interaction with MMACHC. In this
scenario, the interaction between MMACHC and MMADHC
will target cobalamin to the cytosolic pathway, with eventual
participation of methionine synthase. In support of this theory,
MMACHC has recently been shown not to localize to the mito-
chondria (Mah et al 2013) and the N-terminal 116 amino acids of
MMADHC are not required for interaction with MMACHC
(Gherasim et al 2013) suggesting a lack of involvement of
MMACHC in the AdoCbl processing pathway. Regardless of
the crucial role ofMMACHC in the early part of the Cbl synthesis
pathway, our data is consistent with lack of involvement of
MMACHC in the MMADHC directed part of the AdoCbl
pathway.

Conclusion

In conclusion, we have found a unique protein region responsible
for MeCbl but not AdoCbl synthesis, and defined the limits of C-
terminal truncations that affect protein function. Our results sug-
gest distinct protein regions are responsible forMeCbl production,
and point to potential α-helices and β-sheets as governing these
regions. Further studies, addressing protein-protein interactions
between MMADHC and MMACHC as well as others, using
the regions determined here may give further insight into the
complete process of MeCbl cofactor synthesis while the elucida-
tion of the protein structure ofMMADHCwould be invaluable to
understand how these regions and potential interactions are
governed.
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