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Abstract The *1,000 km3 Carpenter Ridge Tuff (CRT),

erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-

up in the western USA, is among the largest known strongly

zoned ash-flow tuffs. It consists primarily of densely welded

crystal-poor rhyolite with a pronounced, highly evolved

chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly

ponded intracaldera CRT is capped by a more crystal-rich,

less silicic facies. In the outflow ignimbrite, this upper zone

is defined mainly by densely welded crystal-rich juvenile

clasts of trachydacite composition, with higher Fe–Ti oxide

temperatures, and is characterized by extremely high Ba (to

7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic

clasts (51–53 wt% SiO2) with Ba contents to

4,000–5,000 ppm and positive Eu anomalies are also pres-

ent. Much of the major and trace-element variations in the

CRT juvenile clasts can be reproduced via in situ differen-

tiation by interstitial melt extraction from a crystal-rich,

upper-crustal mush zone, with the trachydacite, crystal-rich

clasts representing the remobilized crystal cumulate left

behind by the melt extraction process. Late recharge events,

represented by the rare mafic clasts and high-Al amphiboles

in some samples, mixed in with parts of the crystal cumulate

and generated additional scatter in the whole-rock data.

Recharge was important in thermally remobilizing the silicic

crystal cumulate by partially melting the near-solidus pha-

ses, as supported by: (1) ubiquitous wormy/sieve textures

and reverse zoning patterns in feldspars and biotites, (2)

absence of quartz in this very silicic unit stored at depths of

[4–5 km, and (3) heterogeneous melt compositions in the

trachydacite fiamme and mafic clasts, particularly in Ba,

indicating local enrichment of this element due mostly to

sanidine and biotite melting. The injection of hot, juvenile

magma into the upper-crustal cumulate also imparted the

observed thermal gradient to the deposits and the mixing

overprint that partly masks the in situ differentiation process.

The CRT provides a particularly clear perspective on pro-

cesses of in situ crystal-liquid separation into a lower crystal-

rich zone and an upper eruptible cap, which appears common

in incrementally built upper-crustal magma reservoirs of

high-flux magmatic provinces.

Keywords Zoned ignimbrite � Magmatic differentiation �
Supervolcanoes � Magmatism in the W USA � Gradients in

magma chambers

Introduction

Large-volume volcanic eruptions of silicic magma provide

unique views of upper-crustal magma reservoirs; the rapid
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evacuation of hundreds to thousands of cubic kilometers of

magma allows for a snapshot of the state of the reservoir

prior to eruption. Although some ignimbrites are compo-

sitionally homogeneous in bulk-rock composition (e.g.,

Dunbar et al. 1989; Lindsay et al. 2001; Bachmann et al.

2002; Folkes et al. 2011; Ellis and Wolff 2012), many

show significant mineralogical and chemical variations

from early to late-erupted material (e.g., Lipman 1967;

Hildreth 1979, 1981; Worner and Schmincke 1984b). Two

main end-member models have emerged to explain the

origin of these compositional gradients in such ignimbrites:

(1) mixing of two distinct magmas (many papers, but see in

particular Dorais et al. 1991; Eichelberger et al. 2000) and

(2) crystal–liquid separation and associated chemical

fractionation (i.e., in situ differentiation; Lipman et al.

1966; Hildreth 1981; Bacon and Druitt 1988 among many

others).

In an attempt to determine the relative contributions of

mixing and in situ differentiation in the generation of

such large-volume zoned ignimbrites, we have re-evalu-

ated the petrology and geochemistry of one of the largest

and most strongly zoned examples in the world, the

*1,000 km3 Carpenter Ridge Tuff (CRT), which erupted

*27.55 My ago from the Bachelor caldera in the

Southern Rocky Mountain volcanic field (SRMVF; Lip-

man 2007). The outflow sheet is dominated by densely

welded crystal-poor rhyolite, but the thickly ponded in-

tracaldera accumulation is capped by a comparatively

low-volume zone of crystal-rich trachydacite, the Mam-

moth Mountain Member (Lipman 2000). In the outflow

ignimbrite, the analogous upper zone is defined by a

discontinuous facies that contains crystal-rich, welded

trachydacite fiamme and mafic clasts (Lipman 1975,

2000; Whitney et al. 1988; Dorais et al. 1991) with

unusual bulk concentrations in certain trace elements

(e.g., high Ba, Sr, Zr contents, but low Rb). We focused

on characterizing the mineral and trace-element record in

early and late-erupted material (pumice/scoria clasts when

possible) in order to test a previously published hypoth-

esis that suggested magma mixing between a crystal-poor

silicic magma and a strongly alkalic recharge as the pri-

mary process leading to the observed compositional gra-

dient in the CRT (Whitney et al. 1988; Dorais et al.

1991). We present an alternative model based on detailed

examination of phenocrysts and re-evaluation of the major

and trace-element chemistry. This model ties the different

erupted compositions to a coherent differentiation scheme

and is consistent with a process of in situ fractional

crystallization governing the compositional variation

within this large-volume silicic ash-flow tuff, although

mixing with hotter recharge also played a role shortly

before eruption.

Geologic setting

The earliest expression of magmatism in the San Juan

locus of the SRMVF was growth of large andesitic

stratovolcanoes (e.g., Steven and Lipman 1976; Lipman

et al. 1978) that dominated volcanic activity from *33.5

to 29.5 Ma. Around 30 Ma, more silicic magmas began to

erupt, developing into large, caldera-forming events (oli-

gocene ignimbrite flare-up episode; Steven and Lipman

1976; Lipman 2000, 2007). Multi-cyclic caldera clusters

first developed in the SE and SW parts of the San Juan

volcanic field, before focusing in the central caldera

cluster, where the largest ignimbrites (including the CRT)

erupted. The magmatic province is characterized by a

high-K calc-alkaline trend and was likely a consequence

of low-angle subduction under North America (Lipman

2007).

The 27.55-Ma CRT (Lipman and McIntosh 2008) is

the second largest ash-flow sheet erupted from the cen-

tral caldera cluster of the SRMVF. It formed the

25 9 30 km Bachelor caldera, which is nested inside the

much larger La Garita caldera, the collapse structure of

the preceding eruption (Fish Canyon Tuff) about 0.5 my

earlier. The chemically and thermally zoned CRT con-

trasts with the two previous eruptions in the same area

(both monotonous intermediates: the Masonic Park Tuff

and the Fish Canyon Tuff) and is the first of four zoned

ash-flow sheets from the central cluster (together with

Wason Park, Rat Creek and Nelson Mountain Tuffs; see

Lipman 2000, 2007 for additional information on these

ignimbrites).

Sampling and analytical methods

In total, 16 samples were studied (Appendix 1 of ESM),

including whole-rock XRF analyses of eight samples

(Appendix 2 of ESM). Numerous additional whole-rock

analyses, plotted in Figs. 1 and 2, were compiled by

Lipman (2006) from previous studies. While relatively

few, the new whole-rock analyses from this study repre-

sent key samples from (1) the exposed base of the CRT

(crystal-poor rhyolite, CRT08-1), (2) a bulk-tuff sample

(equivalent to the mixed sample of Dorais et al. 1991,

CRT08-6), (3) crystal-rich fiamme from the outflow facies

and the intracaldera Mammoth Mountain Member that

show partial mingling with a more mafic recharge

(CRT08-7 and CRT08-8, as well as CRT09-5), and (4)

three more mafic scoria clasts (99L-10A, 99L-10B, and

99L-11). Analytical methods are summarized in Appendix

3 of ESM, and electron microprobe data are listed in

Appendix 2 of ESM.
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Whole-rock and glass compositions

Whole-rock compositions of the CRT vary strongly from

the early erupted, rhyolitic, crystal-poor material (*5–10

vol % crystals, 72–76 wt% SiO2) to late-erupted,

trachydacite, crystal-rich fiamme (15–40 vol % crystals;

\55–69 wt% SiO2; Whitney 1988; Dorais et al. 1991;

Lipman 2006; Figs. 1, 2). Rare, more mafic clasts (52–55

wt% SiO2) are also present in some locations. Trace ele-

ments vary even more strikingly; from rhyolite to
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Fig. 1 Major and trace-element

whole-rock chemistry of the

CRT (data from compiled

database, Lipman 2006; and this

study). Rocks with[7 wt% K2O

not plotted; these typically have

high LOI (Loss On Ignition),

and problems of alkali exchange

have long been recognized in

parts of the CRT, especially

ponded intracaldera tuff

(Lipman 2000). Some samples

were not analyzed for trace

elements. Hence, major oxide

plots have more data points than

trace-element plots
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Fig. 2 Ba versus SiO2 plots for

CRT samples. a Whole-rock
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types of samples (Lipman 2006;

and this study). b Ranges of Ba

and SiO2 concentrations for the

major crystal phases in the

CRT, which are thought to have

generated the mixing trends in a
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trachydacite, Rb decreases nearly twofold (from *180 to

100 ppm), Zr increases threefold (200–600 ppm), Sr five-

fold (100–500 ppm), and Ba nearly 20-fold

(300–7,500 ppm; Fig. 2). Trachydacite fiamme and mafic

clasts have lower REE concentrations and positive Eu

anomalies that are complementary to the negative Eu

anomalies observed in the rhyolite (Dorais et al. 1991;

Fig. 3).

Glass compositions, obtained by EMPA from crystal-

poor rhyolite (Carpenter Ridge locality), crystal-rich fi-

amme samples (Brown Lake locality), and mafic clasts,

also vary significantly in major and trace elements. Glass in

crystal-rich fiamme varies from 69 to 74 wt% SiO2 and

from\200 to 3,500 ppm Ba (Fig. 4, Appendix 2 of ESM),

while mafic clasts range from 54 to 65 wt% SiO2 and

*2,600–5,800 ppm Ba. Rhyolitic glass compositions are

less variable in major elements (*77–78 wt% SiO2,

0.03–0.08 wt% MgO) and have low Ba contents (most

analyses below detection limit: *200 ppm).

Mineral assemblage

The crystal-poor rhyolite and crystal-rich trachydacite

clasts have the same mineral assemblage, consisting of

plagioclase, sanidine, biotite, Fe–Ti oxides, and zircon.

Some crystal-rich fiamme contain amphibole and pyrox-

ene. The mafic clasts have a similar assemblage, including

abundant amphibole, but lack sanidine (zircon not recog-

nized). Quartz is absent in all samples (as previously noted

by Whitney et al. 1988), although the rhyolite is strongly

quartz normative (up to 20 %). Crystals in the trachydacite

fiamme and mafic clasts are typically large (to several

mm), and many of the feldspars and biotite crystals have

anhedral outlines and wormy sieve-textured internal cavi-

ties (Figs. 5, 6, 7). Groundmass microlites have not been

found in any of these samples.

Plagioclase is the dominant phase in all juvenile clasts

(*30–50 % of the mineral assemblage, Whitney et al.

1988). It is typically complexly zoned and euhedral in the

crystal-poor rhyolite, but commonly anhedral and sieve-

textured in the trachydacite fiamme and mafic clasts

(Figs. 5, 6). In both the trachydacite and rhyolitic end-

members, plagioclase rims have low An contents (An30–20),

while interiors are highly variable (An30-70, Fig. 8). Some

plagioclase crystals in the mafic clasts appear relatively

euhedral, with calcic cores (up to An85) and more sodic

rims (*An50), while others are more homogeneous, with

sodic compositions (as low as An38) and patchy zoning, or

strong sieved textures with compositions *An46–56

(Fig. 8). The broad compositional overlap between pla-

gioclase crystals from both trachydacite and rhyolite indi-

cates that they crystallized from a similarly evolved melt.

Some plagioclases with low An (*20–30 mol %) in both

trachydacite and rhyolite show a trend of increasing Ba,

opposite to the mafic trend that leads to the An30–70 cores

(Fig. 8c).

Sanidine forms both euhedral and highly embayed

anhedral crystals (Figs. 5, 6, 7, 8, 9), particularly in the

trachydacite clasts (this study; Whitney et al. 1988; Dorais

et al. 1991). The crystals are commonly strongly zoned,

particularly in Ba, more markedly in the trachydacite fi-

amme than in the rhyolite (\1–9 wt%, Fig. 9; Whitney

et al. 1988; Appendix 2 of ESM). Sanidine crystals can be

separated into two main groups: (1) large typically euhe-

dral crystals ([1.5 mm) with low Ba (\*2.5 wt% BaO)

and reverse zoning (i.e., high-Ba rims; Fig. 9a, b and (c1))
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and (2) smaller crystals (typically \1 mm, both euhedral

and embayed) that have moderate to high Ba (*1.5 to *9

wt% BaO) and are both normally and reversely zoned

(Fig. 9(c3)).

Ferromagnesian phases are dominantly biotite and

amphibole (±rare pyroxene, not analyzed in this study: see

Dorais et al. 1991). Biotite makes up to a few percent of the

modal assemblage in both the fiamme and clasts. Crystals

can be both euhedral and strongly anhedral/wormy (Fig. 7).

Like sanidine, biotite crystals are notably zoned in Ba

(Whitney et al. 1988; Dorais et al. 1991; Appendix 2 of

ESM, Fig. 7). BaO contents vary from below the detection

limit (mostly in cores) to above 4 wt%. (to 4.8–5 wt% in

clasts). Most amphibole phenocrysts in the CRT have Na,

K, Ti, and Al concentrations that are higher than the main

amphibole population of the Fish Canyon Tuff (Figs. 8 and

10, Appendix 2 of ESM; Dorais et al. 1991; Bachmann and

Dungan 2002), although a few data points from Riciputi

(1991) suggest that low-Al amphiboles are also sparsely

present in the intracaldera trachydacite CRT (Mammoth

Mountain Member, Fig. 10). Amphiboles in clasts are

similar to those in the trachydacite fiamme, with Al2O3

content about 11–12 wt% (Figs. 7 and 10).

Both magnetite and ilmenite are minor, albeit ubiqui-

tous, phases. Magnetite has a wide compositional range

(XUsp of 0.2– [0.5), with Ti contents in the trachydacite

fiamme typically higher than those in the rhyolite (Whitney

et al. 1988). In contrast, ilmenite compositions are less

variable in both rhyolitic and trachydacite clasts (XIlm from

0.86 to 0.91; Whitney et al. 1988).

Pre-eruptive reservoir conditions

Fe–Ti oxide thermometry in CRT samples shows a wide

range of pre-eruptive temperatures (Ilm–Mag equilibrium

Fig. 5 Textures of crystal-rich

trachydacite fiammes (a, b,

CRT08-7 and c, d, CRT09-2c,

photomicrographs). a Large

anhedral and sieve-textured

plagioclase megacryst

(aggregation of multiple

crystals), suggesting thermal

resorption. b Large zoned

plagioclase crystal with a partly

embayed outline. c Large

crystals of plagioclase,

amphibole, and Fe–Ti oxide, in

polarized light. d Same image,

transmitted light. On pictures

c and d plagioclase crystals are

typically anhedral and locally

sieve-textured, while the large

amphibole crystals (bottom of

image) show no obvious signs

of disequilibrium. e Backscatter

electron image of anhedral and

embayed biotite with internal

cavities, sample CRT08-7.

f Backscatter electron image of

sanidine showing dark low Ba

anhedral core overgrown by

higher-Ba rim that is also

anhedral, sample CRT08-11
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pairs from Whitney et al. 1988, no new data from this

study). In the rhyolite, the temperatures vary from *750 to

810 �C, while in the trachydacite fiamme, the range is

*850–1,000 �C (Whitney et al. 1988). Pressure of crys-

tallization was estimated at 100–200 MPa for the rhyolitic

samples on the basis of experimental phase equilibria

(particularly, absence of quartz in this quartz-normative

magma; Whitney et al. 1988; Gualda et al. 2012). Newly

determined amphibole compositions from the trachydacite

fiamme and mafic clasts (Appendix 2 of ESM) yield tem-

peratures of 930 to 990 ± 25 �C (formulation of Ridolfi

et al. 2010), higher than from most coexisting Fe–Ti oxi-

des. Similarly, amphibole barometry (Ridolfi et al. 2010)

yields pressures from 280 to 370 ± 100 MPa for both

clasts and fiamme, indicating 10–14 km depth (assuming

an average density of 2,800 kg/m3 for the crust), suggest-

ing that most hornblende crystals grew at higher tempera-

ture and/or slightly greater depths than the rest of the

mineral assemblage.

Discussion

Origin of the trachydacite fiamme and mafic clasts

Dorais et al. (1991) suggested that the trachydacite fiamme

were derived from alkaline magma that mixed with a melt-

rich rhyolite on the basis of: (1) the high Na ? K, Ba, and

Zr content of the bulk material, (2) the high Ba content in

sanidine and biotite, and (3) the high alkali and Ti contents

in amphibole. As evidence for mixing, they cited: (1)

‘‘plastically deformed’’ fiamme, (2) disaggregation of fi-

amme and crystal exchange, and (3) a thermal gradient

based on higher temperatures deduced for the trachydacite

magma (Whitney et al. 1988; Dorais et al. 1991). While the

evidence cited above is consistent with mixing between

two magmas of contrasting thermal, physical, and geo-

chemical properties, some of the observed textures could

have formed by decompression-induced growth during

magma ascent prior to eruption, as shown by recent

Fig. 6 Plagioclase textures and An content from mafic clasts,

showing variability among crystals within single thin sections. In

section 99L-10B, adjacent plagioclase crystals show a highly anhe-

dral, sieve texture at relatively uniform composition, b near-euhedral

calcic core, truncated by uniform sodic overgrowth (fractures and the

rectilinear hole in the core likely due to polishing), and c absence of

significant compositional zoning or sieve resorption. d Anhedral

calcic core surrounded by oscillatory zoned rim area, section 99L-

10A
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experiments (e.g., Hammer 2006; Crabtree and Lange

2011). However, the large size of most CRT crystals

(Figs. 5, 6) and the absence of microlites are inconsistent

with growth as the dominant process generating these

complex textures (although it may have produced some of

the final crystal outlines). In light of the observations listed

above, we agree with Dorais et al. (1991) that temperature-

induced dissolution was the main mechanism leading to the

anhedral and embayed shapes of the crystals (when not

overgrown by a new rim).

Although the textural evidence of mixing is undeniable,

several observations contradict the inference that the fi-

amme and mafic clasts are of a strongly alkaline parentage.

First, whole-rock compositions of the fiamme plot in the

subalkaline field (highly quartz normative, with Na2-

O ? K2O\11 wt%), in keeping with all other magmas that

have erupted in the SRMVF. Second, REE patterns do not

display the steep, LREE-enriched signature that is typical

of alkaline magmas (Fig. 3), but show a clear positive Eu

anomaly. Third, the FeOtot/MgO ratios of biotite in the

CRT (0.6–1.7) are far lower than those from alkaline suites

(average of *3.5 for biotite from peraluminous magmas,

*7 for biotite in anorogenic alkalic suites) and close to the

1.76 average for biotite in calc-alkaline series (Abdel-

Rahman 1994). Finally, the trachydacite fiamme reach

bulk-rock Ba concentrations (4,000–7,500 ppm) that are

higher than the most Ba-enriched alkaline magmas (e.g.,

lamproites, Mitchell and Bergman 1991). The majority of

alkaline volcanic rocks are lower than 2,500–3,000 ppm

Ba (e.g., Pe-Piper and Piper 2002; Wiesmaier et al. 2012).

Hence, these clasts are unlikely to represent any ‘liquid’

magma composition. As already pointed out by Dorais

et al. (1991), we stress the lack of linear mixing trends in

bulk-rock variation diagrams (our Figs. 1 and 2; Fig. 6 of

Dorais et al. 1991), indicating that a simple binary mixing

model cannot fully explain the textural and compositional

variability in the CRT.

An alternative explanation for the high Na ? K, Ba, Sr,

and Zr concentrations is that the late-erupted fiamme and

mafic clasts represent deeper parts of the magma reservoir

that had accumulated feldspars, biotite and zircon (silicic

cumulate)—a model considered by Dorais et al. (1991), but

rejected on the basis of the above-mentioned high Ba

content of whole-rock and phenocrysts. However, high Ba

Fig. 7 Biotite and amphibole textures and composition from the mafic clasts (99L-11, 99L-10A). a, b Biotite crystals show reverse zoning in Ba

and rounded outlines. c, d Amphiboles appear more euhedral and have relatively high Al2O3, but low K2O contents
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in both whole rock and phenocrysts is consistent with

assimilation of a feldspar- and biotite-rich cumulate

(Fig. 2) that partially melted after a hot recharge event,

followed by partial recrystallization of some phases (sani-

dine, biotite, and plagioclase) from a trace-element-enri-

ched interstitial melt (leading to the different trends seen in

plagioclase compositions, Fig. 8c). The high Zr/Hf ratios

(*49) in the mafic clasts are also compatible with some

zircon accumulation in these samples (see Deering and

Bachmann 2010). The incorporation of around 20 % sa-

nidine and/or biotite is sufficient to raise the rock compo-

sition from *1,000–1,500 ppm to 6,000–8,000 pm

(assuming an average of 25,000–40,000 ppm Ba in biotite

and sanidine; see modeling discussion below). As trace-

element contents are much more sensitive to contamination

than major elements (Fig. 1 of Appendix 3 of ESM), the

relatively low K contents of the mafic clasts are expected

(mixing 20 % of biotite or sanidine with *7–9 wt% K2O

with 80 % of low-K magma produces the observed 2.5

wt% K2O in the bulk rock).

The high Ba concentrations in some CRT biotite (to

45,000 ppm) and sanidine (to 70,000 ppm) yield melt Ba

concentrations on the order of 3,500 ppm, using the highest

possible partition coefficient (*20; e.g., Nash and Crecraft

1985), which is similar to the highest Ba measured in the

CRT glass. Lower partition coefficients would yield even

higher Ba contents in the melt. As such concentrations are

rare in erupted rocks and unknown for high-SiO2 rhyolite,

we suggest that local enrichment of Ba around melting

sanidine and biotite is the only mechanism that can account

for the extreme concentrations. Notably, (1) Ba concen-

trations are highest in the smallest sanidine crystals (\500

um), while larger grains ([1 mm) have lower concentra-

tions in their cores (some\5,000 ppm, similar to other San

Juan units, such as the Fish Canyon Tuff, see Bachmann

et al. 2005), and (2) commonly are reversely zoned (high-

Ba rims; Fig. 7 and 9). The presence of biotite and pla-

gioclase crystals with high-Ba rims also supports localized,

high-Ba, environments in which biotite crystals grew.

Heterogeneous Ba concentrations are likely to persist, as

Ba diffuses particularly slowly in silicate melts (Zhang and

Cherniak 2010).

The trachydacite zone high in the thick intracaldera

CRT accumulation (Mammoth Mountain Member,

66–68 % SiO2) is interpreted as a portion of the cumulate

with a slightly different composition/modal proportion than

the trachydacite fiamme in the outflow facies. As discussed

previously, mineral proportions and compositions of this

Mammoth Mountain Member appear to be broadly similar

to those in the crystal-poor rhyolite, e.g., subequal modal

sanidine and plagioclase with similar compositions to those

found in the rhyolite (Dorais et al. 1991; Riciputi 1991);

presence of clinopyroxene; and lower Al (lower pressure?)

amphibole compositions (Fig. 10). The chemical and

mineralogical variability of the inferred cumulate frag-

ments (trachydacite fiamme in outflow and intracaldera

facies, mafic clasts) suggests that modal mineralogy can be

rather variable in the leftover crystal residue. Such min-

eralogical complexities are documented in some plutons

with cumulate zones (e.g., Bachl et al. 2001; Turnbull et al.

2010).

Trace-element modeling can test further the potential

link between trachydacite fiamme and rhyolitic composi-

tions as, respectively, end-members of the leftover cumu-

late and the complementary extracted melt of a

differentiating magma reservoir with an initial dacitic

composition between these two end-members (Fig. 11; see

Mohamed 1998; Deering et al. 2011b, for similar modeling
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Fig. 8 Plagioclase compositions from the mafic clasts, crystal-rich

trachydacite fiamme and crystal-poor rhyolite in the CRT. a K2O

versus An content, b K2O versus An content, and c BaO versus An

content (BaO was not analyzed in plagioclase crystals from clasts due

to their low concentrations). Note the two trends in BaO–An space

in c
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exercises), keeping in mind that mixing/mingling with

recharge magma will also impact compositions of the

erupted material. The Ba, Sr, and Rb contents of an

extracted melt and resulting residua are modeled using

simple Rayleigh fractionation equations for both the liquid

and residual cumulate (Appendix 3 of ESM, Tables 2, 3;

Shaw 1970; Rollinson 1993; using equilibrium fraction-

ation here is not justified given the slow diffusion rates for

these elements and would not change the main trend).

Modal proportions for the models are set to match the

observed mineral assemblage of the fiamme. Initial trace-

element concentrations were determined graphically using

Harker diagrams (e.g., a composition between the fiamme

and rhyolite: star symbol in Fig. 11; Appendix 3 of ESM,

Table 2).

This model generates appropriate trace-element con-

centrations of Ba, Sr, and Rb for the end-members across a

range of melt fractions (F), resulting, at the extremes, in a

cumulate with high Ba–Sr (the trachydacite fiamme), and a

melt-rich component (e.g., rhyolite) with low Ba–Sr, using

widely accepted distribution coefficients (Nash and Cre-

craft 1985; Rollinson 1993; Appendix 3 of ESM, Table 3)

and reasonable initial concentrations for these elements. In

addition, the Zr distribution can be produced by the crys-

tallization and accumulation of *0.06 modal percent zir-

con without discernible impact on the evolution of Ba, Sr,

(a)

(b)

(c)

Fig. 9 Backscatter electron

images of sanidine and EMP

data from crystal-rich

trachydacite fiamme. a, b Show

BaO and orthoclase (Or)

concentration profiles from

interior to rim (line with arrow).

Many large phenocrysts from

both crystal-rich and crystal-

poor material typically have low

BaO cores (\1 wt%)
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or Rb. Compared with the rhyolite, similar to slightly

depleted LREE patterns and positive Eu anomalies in the

fiamme and mafic clasts (Fig. 3) are consistent with the

entrainment of plagioclase-rich cumulate (see Deering

et al. 2011b for a similar modeling exercise). Differing

amount of melt extraction, variable crystallization condi-

tions (e.g., depth and temperature of crystallization), and

mixing/mingling with more mafic recharge would also

have participated in producing the geochemical complexity

of the non-rhyolitic parts of the erupted material.

A key aspect of the controversy surrounding the origin

of zoned ignimbrites is the tendency to apply only one of

the end-member models discussed above (magma mixing

following recharge of either mafic or silicic magmas versus

in situ differentiation with crystal–liquid separation leading

to chemical heterogeneities). Clearly, the CRT has ele-

ments of both. Late recharge and associated reheating–

remelting of an already chemically zoned chamber (by

in situ differentiation) seems necessary to reconcile the

following observations: (1) the thermal gradient indicated

by the Fe–Ti oxides, (2) the relatively low crystal content

of the trachydacite fiamme (mostly \35 vol %) relative to

the crystal fraction required by fractionation models, (3)

the geochemical variability of the non-rhyolitic CRT

deposit (including mafic clasts), (4) the high Ba–Sr content

of the melt, (5) the embayed sieved textures and common

reverse zoning patterns in both biotite and sanidine, and (6)

the presence of moderately high-pressure, high-tempera-

ture amphiboles in the trachydacite fiamme. Evidence for

pre-eruptive recharge is ubiquitous in incrementally built

magma reservoirs (e.g., Lipman 2007) and should be

expected in the CRT. Some partial melting of the crystal-

line material is required for the cumulate, which likely

reached[75 vol % crystals, to erupt (Deering et al. 2011b).

Conclusions

We propose the following model to explain the chemically

and thermally zoned 1,000 km3 CRT, building upon pre-

vious studies of similar units (e.g., Lipman 1967; Hildreth

1981; Worner and Schmincke 1984a; Worner et al. 1985;
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Fig. 10 Representative CRT amphibole compositions (this study;

Riciputi 1991), compared to Fish Canyon Tuff (FCT, gray shaded

fields; Bachmann et al. 2002). The low Al, Ti compositions for the

CRT, which plot with the main FCT population, are from the

Mammoth Mountain Member (data from Riciputi 1991). The high-Al,

Ti compositions from the FCT are rare pargasitic cores, interpreted as

relicts from deeper, hotter conditions of crystallization
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Bacon and Druitt 1988; Grunder and Mahood 1988;

Hildreth and Fierstein 2000; Hildreth 2004; Fowler and

Spera 2010; Evans and Bachmann 2013; Pamukcu et al.

2013). After the eruption of the massive Fish Canyon Tuff

at *28 Ma, an upper-crustal magma reservoir regrew in

the same area by incremental addition of similar high-K

calc-alkaline dacite that has formed the Fish Canyon Tuff.

This magma reservoir was dominantly maintained in a

mush state (Marsh 1981; Koyaguchi and Kaneko 1999;

Huber et al. 2009) as it grew in a pre-warmed upper crust,

undergoing differentiation by crystal–liquid separation at

intermediate (50–70 vol %) crystallinity (Brophy 1991;

Bachmann and Bergantz 2004; Dufek and Bachmann

2010), and resulting in a liquid-rich cap with its residual

cumulate. Reheating and partial resorption of low-tem-

perature phases (e.g., feldspars and biotite) toward the top

of the cumulate, due to recharge shortly prior to eruption,

reduced crystallinity and allowed scouring of the top of the

cumulate mush at the end of the eruption: The observed

range of *5–35 vol % crystals is much lower than the

expected crystallinity of *65–80 % at the time of melt

extraction (e.g., Deering et al. 2011a, b). Such a late

recharge is recorded in the CRT by the presence of

amphibole and Fe–Ti oxide that reveal P–T gradients.

Resorption of low-temperature mineral phases (sanidine,

biotite, and some low-An plagioclase) caused by this

reheating accounts for observed textural complexities and

local enrichments in Ba and Sr in the melt, while high-Ba

rims on large sanidine and biotite phenocrysts require late

crystallization from this enriched melt following resorp-

tion. Entrainment of minor phases from the cumulate, such

as zircon, explains the other unusual concentrations in trace

elements in the trachydacite fiamme.

The CRT shares a number of features with many other

zoned ignimbrites observed globally (thermal, composi-

tional, and crystallinity gradients), regardless of tectonic

setting or mode of origin (calc-alkaline, alkaline, and

peralkaline). However, explanations for the origin of the

full spectrum of erupted compositions vary considerably

(e.g., Bacon and Druitt 1988; Wolff et al. 1990; Civetta

et al. 1997; Brown et al. 1998; de Silva et al. 2001; Troll

and Schmincke 2002; Ginibre et al. 2004; Hildreth and

Wilson 2007). Although many have suggested that the

crystal-rich and crystal-poor portions of the reservoir were

related by fractional crystallization, the crystal-rich portion

is not always recognized as a remobilized cumulate (i.e., a

crystalline portion of the reservoir that has physically

accumulated crystals). Rather, the zoning is more com-

monly interpreted as the result of fractionating from a

slightly less-evolved portion of the magma reservoir or a

simple binary mixing between two different magmas.

Recent studies (i.e., the Ammonia Tanks Tuff, Deering

et al. 2011b; the Peach Spring Tuff, Pamukcu et al. 2013;

and the Bishop Tuff, Evans and Bachmann 2013), in

addition to this one, have indicated that late-erupted

material from several of the largest compositionally zoned

ignimbrites in North America includes crystal-rich cumu-

lates from the upper-crustal reservoir, exhumed by heating,

dissolution, and remobilization during eruption. These

observations require that the processes important in form-

ing these zoned ignimbrites, and, in particular, the rhyolitic

melt pockets, occur at relatively shallow depths (5–10 km

depth in most regions) and include both mixing and frac-

tionation—neither in isolation. In fact, mixing/recharge is

likely a necessary process required to remobilize any part

of these cumulate piles, assuming that high crystallinities

([70 vol % crystals) must be achieved in these zones to

produce the melt-rich rhyolite caps. It is also expected that

most of the cumulate zone, which was not partially molten

prior to eruption, remained in the ground as plutonic left-

overs. Therefore, a growing body of evidence now indi-

cates that in situ crystal–liquid separation into a lower

crystal-rich cumulate zone, and upper eruptible lenses, is

common in incrementally built upper-crustal magma res-

ervoirs of high-flux magmatic provinces.
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