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ABSTRACT

The Abelian sandpile model is an archetypical model of the physical phe-

nomenon of self-organized criticality. It is also well studied in combina-

torics under the name of chip-firing games on graphs. One of the main

open problems about this model is to provide rigorous mathematical expli-

cation for predictions about the values of its critical exponents, originating

in physics. The model was initially defined on the cubic lattices Zd, but the

only case where the value of some critical exponent has been established

so far is the case of the infinite regular tree—the Bethe lattice.

This paper is devoted to the study of the abelian sandpile model on a

large class of graphs that serve as approximations to Julia sets of postcriti-

cally finite polynomials and occur naturally in the study of automorphism

group actions on infinite rooted trees. While different from the square

lattice, these graphs share many of its geometric properties: they are of

polynomial growth, have one end, and random walks on them are re-

current. This ensures that the behaviour of sandpiles on them is quite

different from that observed on the infinite tree. We compute the critical

exponent for the decay of mass of sand avalanches on these graphs and

prove that it is inversely proportional to the rate of polynomial growth

of the graph, thus providing the first rigorous derivation of the critical

exponent different from the mean-field (the tree) value.
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1. Introduction

The Sandpile Model was introduced in the late eighties by physicists Bak,

Tang and Wiesenfeld [5] in the aim of constructing an analytically tractable

model of a phenomenon often observed in nature and called self-organized

criticality. Its mathematical study was initiated by Dhar in [17]; in particular,

he proved that the model is abelian. This result was also recovered indepen-

dently in the work of Björner, Lovasz and Shor [10] where the same model was

studied under the name of chip-firing game on graphs. A detailed treatment

of the ASM can be found in [33], [18], [39].

A configuration is a distribution of an amount of chips (or of grains of

sand) on the vertices of a connected, possibly infinite, locally finite multigraph.

When the number of chips on a given vertex v exceeds its degree, the vertex is

declared to be unstable and is fired: a chip is sent along each edge incident

to v to the corresponding neighbour of v, providing a new configuration of the

model. The term abelian stands for the following convenient feature of the

model: the order in which we stabilize unstable vertices of a configuration does

not affect the result [17].

Once a stable configuration is reached, the game can be reactivated by adding

an extra chip on a randomly chosen vertex. In the case of a finite graph, this

defines a Markov chain whose stationary distribution is the uniform distribu-

tion supported by the unique recurrent class (more details in Section 2.1 below).

The dynamics of the model is described by avalanches, that is, sequences of

consecutive firings triggered by adding an extra chip to a random recurrent

configuration. Given a growing sequence of finite subgraphs {Γn}n≥1 of an infi-

nite graph Γ, criticality of the ASM on Γ is manifested in that various spatial

statistics associated with avalanches (such as their mass, length, diameter, etc.)

decay asymptotically according to a power law (with a cut-off), as Γn ↗ Γ.

Although many numerical simulations have been done in order to exhibit criti-

cality of ASM on lattices, as well as to determine various critical exponents,

there are only very few rigorously proven cases so far.

In the case of the d-regular tree, d ≥ 3 (also called the Bethe lattice), Dhar

and Majumdar proved in [19] that the critical exponent corresponding to the

mass M of an avalanche is δM = 3/2 in the large volume limit.
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On the one-dimensional lattice Z, the probability of observing an avalanche of

massM > 0 (respectively length L > 0) on a segment of length n is independent

of M (respectively L) and the behaviour of the model is not critical [41].

Numerical experiments as well as non-rigorous scaling arguments yield the

conjecture that on the two-dimensional lattice Z2, the critical exponent for the

mass of an avalanche is δM = 5/4 [38], whereas for d > 4 this critical exponent is

expected to be 3/2, by universality [37]. Criticality of ASM on Zd is confirmed

in [20]: the correlation between the indicator functions of having no chip on

vertex 0 and no chip on a vertex x ∈ Zd behaves as C|x|−2d in the large volume

limit.

Another family of graphs on which extensive simulations of avalanches have

been performed is the Sierpiński gasket, where it is shown that δM ≈ 1.46 [15].

See also [26].

In this paper we exhibit a family of infinite graphs for which we can explicitly

compute the critical exponent for the decay of avalanches (on the approximating

sequence of finite graphs). Our examples are regular graphs with geometric

properties significantly different from those of regular trees: the generic number

of ends is 1, they have polynomial growth rate, and the simple random walk

on them is recurrent. The method that we develop to prove criticality of the

model is also quite different from Majumdar–Dhar’s technique used to prove

criticality in the case of regular trees.

Our examples come from the theory of self-similar groups developed in

the past ten years by Grigorchuk, Nekrashevych and others (see [22], [36] and

references therein)—a natural source of families of finite graphs with interesting

infinite limits of self-similar nature. More precisely, a finitely generated group

G < Aut(T ) acting by automorphisms on a regular rooted tree T defines a

covering sequence {Γn}n≥1 of finite Schreier graphs describing the action of G

on each level of the tree. These graphs converge to infinite orbital Schreier

graphs {Γξ}ξ∈∂T of the limit action of G on the boundary ∂T of the tree (see

Section 3 for details).

One eminent example in the class of self-similar groups is the so-called Basil-

ica group introduced by Grigorchuk and Żuk in [24]. It can be realized as the

iterated monodromy group of the complex polynomial z2 − 1, which means in

particular that its Schreier graphs form an approximating sequence of the Julia

set of z2 − 1, the so-called Basilica fractal [36]. It is a 2-generated group which

acts by automorphisms on the binary tree.
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We show that the Basilica group provides us with an uncountable family of

4-regular one-ended graphs of quadratic growth where the critical exponent for

the mass of avalanches in the ASM is equal to 1 (Theorem 6.3.1). It also gives

an uncountable family of 2-ended graphs of quadratic growth with non-critical

ASM—the first such examples not quasi-isometric to Z (Theorem 6.2.1).

Technically, our approach relies on the fact that the Schreier graphs of the

Basilica group are cacti, i.e., separable graphs whose blocks are either cycles

or single edges (see Section 2.4). The groups of automorphisms of rooted trees

whose Schreier graphs are cacti, and to which our method therefore applies, form

a large class of groups characterized by Nekrashevych as iterated monodromy

groups of post-critically finite backward iterations of topological polynomials

[34]. Another example from this class of groups is the so-called “interlaced

adding machines”, or the IMG(−z3/2 + 3z/2) [35]. This group shares many

properties with the Basilica group, and the same goes for their Schreier graphs.

For the ASM, this group provides examples of graphs with the critical exponent

δM = 2 log 2/ log 3 > 1 (see Section 7 and Theorem 7.2.1).

More generally, in Theorem 8.1.1 we establish a connection between the crit-

ical exponent for the mass of avalanches in the ASM on one-ended Schreier

graphs and the degree of their polynomial growth. Quadratic polynomials

z2 + c with the values of c taken in smaller and smaller hyperbolic compo-

nents attached to the main cardioid of the Mandelbrot set provide examples of

iterated monodromy groups whose Schreier graphs have polynomial growth of

arbitrarily high degree. Consequently, probability distributions of the mass of

avalanches on these Schreier graphs decay as power laws with arbitrarily small

critical exponent. These examples are discussed in Subsection 8.2.

In order to address all these examples we develop the study of the abelian

sandpile model for unimodular random rooted graphs, a natural generalization

of homogeneous graphs (see [1] and Subsection 2.2 below) which are by definition

invariant probability distributions on the space X of (rooted isomorphism classes

of) locally finite, connected rooted graphs. They occur naturally as random

weak limits of finite graphs. Introduced by Benjamini and Schramm [7], the

random weak limit stands for passing to the limit in the space X , for a sequence

of (unrooted) graphs {Γn}n≥1, by choosing the root uniformly at random, thus

considering each unrooted graph Γn in the sequence as a probability distribution

ρn on X . The random weak limit of a sequence {Γn}n≥1 of connected graphs of
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bounded degree is defined to be the weak limit of the measures ρn in the space

of probability measures on X .

In Subsection 2.2 below, we introduce the ASM on sequences of graphs con-

verging in the space X of rooted graphs and discuss such issues as the choice of

dissipative vertices, the choice of root, and criticality in the random weak limit.

As previously mentioned, exhibiting the criticality of the ASM proceeds

through studying the statistical behaviour of avalanches, by looking at different

observable quantities related to them. In this paper, we focus our attention

on the mass of avalanches (i.e., the number of distinct vertices fired), however

a similar approach may be applied for studying their diameter (i.e., the diam-

eter of the subgraph spanned by vertices touched by the avalanche) or their

length (i.e., the total number of firings). Indeed, the key step in Subsection 2.3

(Proposition 2.3.4) depends on the avalanche and not only on its mass. It turns

out that the diameter can be studied in a very similar way to the mass (see

Remark 8.2.5). For the length, however, computations become more tedious.

Also, there is no clear relation between the length of avalanches and global ge-

ometrical properties of the underlying graph, as is the case for the mass (or the

diameter) of avalanches and the degree of polynomial growth of the graph.

The paper is structured as follows: in Section 2, we collect some facts and

notations about the ASM and then consider general properties of the model on

separable graphs and, in particular, on cacti. In Subsection 2.2, we introduce

and discuss the ASM on sequences of graphs converging in the space X of rooted

graphs, as well as criticality of the ASM in the random weak limit. Section 3

recalls basic notions about groups of automorphisms of rooted trees, self-similar

groups and their Schreier graphs. We show that any covering sequence of finite

regular graphs of even degree can be realized as Schreier graphs for an action

of a finitely generated group on a spherically homogeneous rooted tree, by

automorphisms. In Section 4, we go back to the study of avalanches and show

that for covering sequences of regular cacti critical in the random weak limit,

the critical exponent is almost surely constant. Section 5 recalls results from

[16] about the structure of finite and infinite Schreier graphs of the Basilica

group. In Section 6 we study the ASM on these graphs; in particular, we

show that almost all orbital Schreier graphs of the Basilica group are critical

with the critical exponent equal to 1. In Section 7, we consider the group

generated by two interlaced adding machines and exhibit examples with the

critical exponent equal to 2 log 2/ log 3 > 1. In Section 8, a relation is established
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between the critical exponent for the mass of avalanches and the degree of

polynomial growth, for 1-ended cacti; and graphs with arbitrarily small critical

exponents are discussed.

2. Abelian sandpile model

2.1. Chip-firing game on a graph. Let Γ = (V,E) be a finite connected

graph, possibly with multiple edges and loops, with a vertex set V ≡ V (Γ) and

an edge set E ≡ E(Γ). Let P ⊂ V be a non-empty set of vertices that will be

called dissipative vertices. We will write V0 := V \P . A configuration on Γ

is a function η : V0 −→ N. We say that η is stable if η(v) < deg(v) for all v ∈ V0

where deg(v) denotes the degree of v, that is, the number of edges incident to

v (each loop contributes two to the degree). An unstable configuration evolves

by firing its unstable vertices as long as there are some. Firing an unstable

vertex v corresponds to sending one chip along each edge incident to v to the

corresponding neighbour. We will adopt the convention that all chips reaching

a dissipative vertex p ∈ P leave the graph. The basic theorem about the game

asserts that every configuration reaches through a finite number of firings a

stable configuration. Moreover, the resulting stable configuration, the set of

vertices fired in the stabilization and the number of times each of these vertices

was fired are all independent of the order in which the unstable vertices are fired

[17]. Given a configuration η, a consecutive sequence of firings resulting in the

stabilization of η is called an avalanche. The number of vertices (respectively

distinct vertices) fired during the avalanche is called its length (respectively

mass). By the result cited above, both the mass and the length are the same

for all avalanches leading to the stabilization of a given configuration.

Let Ω denote the set of all stable configurations, and let us consider the

following Markov chain on Ω [33]. Starting from some initial stable configuration

η0, we add an extra chip to η0 on a vertex v ∈ V0 chosen according to some

initially fixed probability distribution π : V0 −→]0, 1] satisfying the condition

π(v) > 0 for all v ∈ V0. Then, we let the configuration η0 + δv stabilize

and denote by η1 ∈ Ω the resulting stable configuration. We then repeat the

previous operation with η1, and so on. Recurrent states of this Markov chain

form a single (communication) class, denoted by RΓ; consequently, the Markov

chain admits a unique stationary measure μ which is supported by RΓ. It turns

out that the set RΓ of recurrent (or critical) configurations can be given the
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structure of a group, and therefore μ is in fact the uniform measure on RΓ,

independently of the distribution π (see more on this at the very end of this

subsection).

The set of recurrent configurations can be constructed by a deterministic

procedure called the Burning Algorithm [17]. Given a configuration η and a

subgraph H ⊂ Γ not containing dissipative vertices, we say that the restriction

ηH is a forbidden sub-configuration of η if η(v) < degH(v) for every v ∈ H

(where degH(v) denotes the degree of v in H). Dhar has shown that a stable

configuration on Γ is recurrent if and only if it does not contain any forbidden

sub-configuration. The Burning Algorithm decides, given a configuration η,

whether it contains a forbidden sub-configuration or not, as follows. For t ≥ 1,

we define inductively the sets Bt and Ut, where Bt stands for the set of vertices

“burnt” at time t, and Ut stands for the set of vertices “un-burnt” up to time t.

We also denote by Γt the subgraph of Γ spanned by the vertices in Ut, whereas

Γ0 denotes the subgraph of Γ spanned by V0.

B1 :={v ∈ V0|η(v) ≥ degΓ0
(v)};

Ut :=V0\
t⋃

s=1

Bs;

Bt+1 :={v ∈ Ut|η(v) ≥ degΓt
(v)}.

If there exists t0 such that Bt0+1 is empty, then ηUt0
is forbidden. Otherwise,

every vertex of Γ is eventually burnt, which implies that η does not contain any

forbidden configuration.

We will use the following equivalent reformulation of Dhar’s theorem [33].

Theorem 2.1.1: A configuration c on Γ is recurrent if and only if there exists

a sequence of firings (with respect to c) p1 . . . pkv1v2 . . . v|V0| which is an enu-

meration of V . Here firing a dissipative vertex pi means that we add on each

neighbour v of pi as many chips as there are edges between v and pi in Γ. We

call such a sequence a burning sequence for c on Γ.

Note that applying a burning sequence to a recurrent configuration c returns c.

It can be deduced from this theorem that if |P | = 1, the Burning Algorithm

establishes a bijection between recurrent configurations and spanning trees in

Γ. (In the general case the bijection is between recurrent configurations and

spanning forests where each tree contains exactly one dissipative vertex [14].)
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An interesting result about recurrent configurations is that, when endowed

with the operation of adding configurations coordinatewise and then stabilizing,

they form an abelian group denoted by K(Γ) and called the critical group [9]

of the graph. In general, it is not easy to determine the algebraic structure of

K(Γ) and a particularly intriguing problem consists in establishing connections

between the decomposition of the critical group into invariant factors and the

graph structure [29], [4]. There are but a few examples of families of graphs

where the critical group and its decomposition have been computed, including

the complete graphs [4], the wheel graphs [9], finite balls in a regular tree [28],

[45], cacti [32] (see also Subsection 2.4 below). More detailed information about

the critical group, such as an explicit description of the neutral element and of

the inverses in terms of recurrent configurations, is very sparse; see [13] for

“thick trees”, [32] for cacti, and [27] for a study of the neutral element on

growing rectangles in Z2.

2.2. Avalanches on unimodular random rooted graphs. As explained

in the introduction, in this paper we propose to study avalanches on unimodular

random rooted graphs. Let X denote the space (of rooted isomorphism classes)

of locally finite, connected graphs having a distinguished vertex called the root;

X can be endowed with the following metric: given two rooted graphs (Γ, v)

and (Γ′, v′),

(1) Dist((Γ, v), (Γ′, v′)) := inf

{
1

r + 1
;BΓ(v, r) is isomorphic to BΓ′(v′, r)

}
,

where BΓ(v, r) is the ball of radius r in Γ centred in v. We say that a se-

quence of rooted graphs {(Γn, vn)}n≥1 converges to a limit graph (Γ, v) if

limn→∞ Dist((Γ, v), (Γn, vn)) = 0. If one supposes moreover that elements in X
have uniformly bounded degrees, then (X ,Dist) is a compact space.

Let us consider the ASM on an (infinite) rooted graph (Γ, v) ∈ X . As usual,

we shall approximate it by an exhaustive sequence of subgraphs; however, in

this non-homogeneous situation, we shall require that all subgraphs in the ex-

haustion contain the root.

Convention 2.2.1 (Exhaustions and dissipative vertices): Given an infinite rooted

graph (Γ, v), we shall say that a sequenceH1 ⊂ H2 ⊂ · · · ⊂ Γ of finite connected

subgraphs of Γ is an exhaustion of the rooted graph (Γ, v) if Γ =
⋃

n≥1 Hn

and v ∈ Hn for every n ≥ 1. Given an exhaustion {Hn}n≥1 of (Γ, v), the set
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Pn of dissipative vertices in Hn is defined to be, for every n, the internal

boundary of Hn in Γ, i.e., the vertices of Hn that have neighbours in the

complement Γ \Hn.

For all n ≥ 1, consider the probability space (RHn , μn) (with the natural

σ-algebra) where RHn is the set of recurrent configurations on the subgraph

Hn of Γ, and μn denotes the uniform distribution on RHn . Define the random

variable MavHn(·, v) : (RHn , μn) −→ N that maps a recurrent configuration on

Hn to the mass (i.e., the number of distinct vertices fired) of the avalanche

triggered by adding to this configuration an extra chip on the root v. Note

that the choice of the dissipative vertices specified in Convention 2.2.1 ensures

that the distance between the vertex on which we add an extra chip to some

recurrent configuration to trigger avalanches (we have chosen the root) and the

dissipative vertices grows as n→∞.

Definition 2.2.2: Let (Γ, v) be an infinite rooted graph and let {Hn}n≥1 and

{Pn}n≥1 be as in Convention 2.2.1. We say that the ASM on the sequence

{Hn}n≥1 approximating (Γ, v) has critical behaviour (with respect to the

mass of avalanches) if there are constants C1, C2 > 0 such that, for any ε > 0,

there exists Mε ≥ 1 such that for any M > Mε,

(2) C1M
−δ−ε ≤ lim

n→∞Pμn(MavHn(·, v) = M) ≤ C2M
−δ+ε

for some exponent δ > 0 (called the critical exponent). If this is the case, we

write limn→∞ Pμn(MavHn(·, v) = M) ∼M−δ.

Remark 2.2.3: If we denote L(M) := limn→∞ Pμn(MavHn(·, v) = M), then

criticality (condition (2)) implies that limM→∞ log(L(M))/ log(M) = −δ.
Note that, depending on the geometry of the underlying graph, it may happen

that not every integer M can be realized as the mass of an avalanche. In such

situations, we restrict our considerations to those integers which can be realized

as the mass of an avalanche.

The existence of the limit in Definition 2.2.2 is, a priori, not obvious; it is

well-defined if the measures μn converge weakly, as n→∞, to some probability

measure μ. This has been proven in the case of the regular tree [30] and of

the lattice Zd. In the case of Zd with d = 1, the limit μ is the Dirac measure

concentrated on the constant recurrent configuration c ≡ 1 [31]. If d ≥ 2, it is

proven in [3] that the measures μn converge weakly to a translation invariant
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probability measure μ; for 2 ≤ d ≤ 4, this holds for any exhaustion {Hn}n≥1

of Zd, and the measure μ is independent of the exhaustion; for d > 4, there

is an extra condition on the geometry of the Hn, but the authors conjecture

that the former stronger version also holds. The proof is based on the bijection

between recurrent configurations and spanning trees, and uses the fact that the

uniform distribution on spanning trees on Hn (with wired boundary conditions)

converges weakly to a probability measure supported by spanning forests on Zd

and called the Wired Uniform Spanning Forest (WUSF) [8]. If 2 ≤ d ≤ 4,

the WUSF is almost surely a one-ended tree. The proof of convergence of the

μn’s in this case directly applies to any infinite graph Γ such that the WUSF

on Γ is almost surely a one-ended tree. (Of course, if Γ is not transitive, one

cannot expect translation invariance of the limit measure μ.) If d > 4, then the

WUSF has almost surely infinitely many connected components, which makes

the proof of the convergence of the measures μn more complicated, and not

directly adaptable to general infinite graphs whose WUSF has many connected

components. Luckily, all examples that we consider in this paper satisfy the

condition that the WUSF is almost surely a one-ended tree. The proof of the

following statement is the same as the proof of Theorem 1 in [3], in the case

2 ≤ d ≤ 4.

Theorem 2.2.4: Let Γ be an infinite graph such that the WUSF on Γ is almost

surely a one-ended tree. Then, for any rooting (Γ, v) of Γ and for any exhaustion

{Hn}n≥1 of (Γ, v) satisfying Convention 2.2.1, the measures μn converge weakly

to a measure μ which is independent of the choice of the exhaustion.

Corollary 2.2.5: Under the assumptions of Theorem 2.2.4, the limit

limn→∞ Pμn(MavHn(·, v) = M) exists and does not depend on the exhaustion

{Hn}n≥1.

Proof. Note that, for a fixed 0 < M < ∞, observing an avalanche of mass

M triggered at v is a cylinder event. Indeed, the set of vertices of Hn fired

during an avalanche triggered by adding an extra chip on v induces a connected

subgraph containing v. For every n large enough, there exists rM such that the

ball of radius rM centred in v and contained in Hn contains all vertices which

may be involved in an avalanche of mass not greater than M . (See also Remark

1. (v) in [3].)
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We now turn to criticality of the ASM on unimodular random rooted graphs.

Let us recall (see [1] and references therein) that a unimodular random

rooted graph is a probability distribution ρ on the space X (with respect

to the Borel σ-algebra) which satisfies∫ ∑
w∈V (Γ)

f(Γ, v, w)dρ(Γ, v) =

∫ ∑
w∈V (Γ)

f(Γ, w, v)dρ(Γ, v)

for all Borel functions f : X̃ −→ [0,∞], where X̃ denotes the space of iso-

morphism classes of locally finite connected graphs with an ordered pair of

distinguished vertices, and the natural topology thereon.

Definition 2.2.6: Let ρ be an infinite unimodular random rooted graph. We say

that the ASM is ρ-critical, with critical exponent δ, if it is critical, with critical

exponent δ (in the sense of Definition 2.2.2), for ρ-almost every rooted graph.

Remark 2.2.7: Note that the classical setup for studying the ASM, that is, a

sequence of finite graphs exhausting Zd, fits into our, more general, setup and

corresponds to the case where the measure ρ is the atom supported by Zd.

It is an important open question (see [1]) whether all unimodular random

rooted graphs on X can be obtained as limits of finite graphs in the following

sense introduced by Benjamini and Schramm in [7]. Given a sequence {Γn}n≥1

of finite unrooted graphs, ρ is the random weak limit of {Γn}n≥1 if the

sequence {ρn}n≥1 converges weakly to ρ where, for every n, ρn is the probability

distribution on X induced by choosing a root in Γn uniformly at random. It is

an easy observation that any random weak limit of finite graphs is unimodular.

All examples of unimodular random rooted graphs that we consider in this

paper are constructed as random weak limits of sequences of finite graphs.

Definition 2.2.8: Given a sequence {Γn}n≥1 of finite unrooted graphs with ran-

dom weak limit ρ, we will say that the ASM on the sequence {Γn}n≥1 is critical

in the random weak limit (with critical exponent δ) if it is ρ-critical (with

critical exponent δ).

Remark 2.2.9: In concrete situations, provided with a sequence {(Γn, vn)}n≥1

of finite rooted graphs converging in X to an infinite rooted graph (Γ, v),

it is sometimes convenient to think of an exhustion {Hn}n≥1 of (Γ, v) (see

Convention 2.2.1) as a sequence of subgraphs of the finite graphs (Γn, vn)
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rather than subgraphs of the limit graph (Γ, v). By definition of convergence

in X , one can always choose the exhaustion {Hn}n≥1 of (Γ, v) so that, for

each n, Γn contains a subgraph isomorphic to Hn and containing the root

vn. In such a case, we may write limn→∞ Pμn(MavHn(·, vn) = M) instead of

limn→∞ Pμn(MavHn(·, v) = M).

2.3. ASM on separable graphs. For k ∈ N∗, a graph Γ = (V,E) is k-

connected if |V | > k and Γ\X is connected for every subset X ⊂ V with

|X | < k. A connected graph Γ is separable if it can be disconnected by

removing a single vertex. Such a vertex is called a cut vertex. Note that non-

separability of a connected graph is the same as 2-connectedness. The largest

2-connected components of a separable graph are called blocks. Any cut vertex

belongs to at least two different blocks.

Separable graphs belong to a wider class of tree-like graphs. Computations

of certain critical values for percolation and Ising model for such graphs can be

found in the Ph.D. thesis of Spakulova [43]. The study of the ASM on separable

graphs is also simplified thanks to its tree-like structure, and in particular by

the fact that the critical group of such a graph is a direct product of the critical

groups of its blocks [4]. In this paper, we will need more precise information

about recurrent configurations (see Lemma 2.3.2 below).

Remark 2.3.1: From now until the end of Section 2, we will assume that |P | = 1.

Indeed, the results of the two forthcoming subsections will be applied in Sections

6, 7 and 8 to graphs for which we will be able to choose one-element dissipative

sets satisfying our Convention 2.2.1. The choice of the unique dissipative vertex

will be explained in Convention 2.4.5 below.

Consider a finite separable graph Γ with blocks C1, . . . , Cs. Fixing one of

the vertices (denote it p and think it to be the dissipative vertex) induces the

following partial order on the vertices of Γ. For w,w′ ∈ V , we put w′ � w

if and only if w lies on any path in Γ joining w′ to p. For any 1 ≤ i ≤ s, let pi

be the smallest element of V (Ci) in this order. Then the following holds:

Lemma 2.3.2: Given Γ a finite separable graph with blocks C1, . . . , Cs and

a dissipative vertex p, a configuration c on Γ is recurrent if and only if, for

all 1 ≤ i ≤ s, the subconfiguration ci : V0(Ci) −→ N defined by ci(v) :=

c(v)−outdegCi(v) is recurrent on the subgraph Ci with pi considered as the
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dissipative vertex. (Here, for a subgraphH of Γ and a vertex v ofH , outdegH(v)

stands for the number of edges connecting v to the complement of H in Γ.)

Proof. Let c be a configuration on Γ. Suppose that c is recurrent, take a block

Ci and let v ∈ V (Ci). By Theorem 2.1.1, there exists a burning sequence

pv1 . . . v|V |−1 for c on Γ. Since c is stable, any vertex v ∈ V must have some

of its neighbours fired before being fired itself. Since every path joining v to p

contains the vertex pi, v cannot be fired before pi does. On the other hand, once

pi is fired, then every vertex of Ci can be fired in the order provided by the

sequence pv1 . . . v|V |−1. In particular, there is a subsequence of pv1 . . . v|V |−1

which is a burning sequence for ci on Ci with pi set as the unique dissipative

vertex.

Conversely, if for each block Ci the subconfiguration ci is recurrent, then one

can fire vertices of Γ as follows: after firing the vertex p, fire vertices belonging

to the blocks containing p according to the burning sequences provided by the

Burning Algorithm applied consecutively to each of these blocks. Then, repeat

the previous operation with the blocks sharing a vertex with the already fired

blocks. Since there is a burning sequence for each block of Γ, all vertices of Γ

are eventually fired.

The following definition and observation will be crucial in our study of

avalanches further on.

Definition 2.3.3: A block-path of length k in a separable graph Γ is a sequence

of k distinct blocks of Γ such that two consecutive blocks intersect.

Given w,w′ ∈ V , there is a unique block-path C1 . . .Cr of minimal length such

that w ∈ C1 and w′ ∈ Cr (where possibly C1 ≡ Cr). We say then that C1 . . . Cr
joins w to w′. Similarly, given w ∈ V and C a block of Γ, there is a unique

block-path C1 . . . Cr = C of minimal length such that w ∈ C1. We say then that

C1 . . . Cr joins w to C.

Proposition 2.3.4: Given a finite separable graph Γ with a dissipative vertex

p, and given a vertex v ∈ V0, let CPv := C1 . . . Cr be the block-path joining

v to p. Then, the avalanche triggered by adding an extra chip on v to some

recurrent configuration c depends only on the subconfigurations of c on the

blocks constituting CPv.
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Proof. If c(v) < deg(v) − 1, then the avalanche is trivial. If c(v) = deg(v) − 1,

then v becomes unstable after adding an extra chip, and a non-trivial avalanche

is initiated. Consider the block-path CPv joining v to p, let w be a separating

vertex belonging to some block of CPv, and consider the subgraph D(w) of Γ

induced by the set {v ∈ V0|v � w} of all descendants of w. Since c is recurrent,

we can conclude by Theorem 2.1.1 and the proof of Lemma 2.3.2 that each

time w is fired, every successor v 
 w is fired exactly once, and as a result the

subconfiguration on D(w) remains unchanged. This happens independently of

the recurrent subconfiguration on D(w). The statement follows.

2.4. ASM on cacti. In this paper, we will be interested in a particular class

of separable graphs called “cacti”.

Definition 2.4.1: A separable graph Γ, possibly with loops, is a cactus if its

blocks are either cycles (possibly of length 2), or single edges.

The ASM on cacti is addressed in [32] where the identity of the critical group

as well as inverses are explicitly realized in terms of configurations. Here we

will be rather interested in finding the asymptotic of avalanches on finite ap-

proximations of infinite cacti; see Theorem 2.4.6 below. In particular, we will

be interested in the behaviour of avalanches in the random weak limit for a

sequence of finite cacti. (Note that the limit of a sequence of finite rooted cacti

in local convergence is again a cactus.) Our results indicate that the answer

depends on such an invariant of the infinite graph as the number of ends. More

results in this direction can be found in [32].

2.4.1. ASM on cycles. As the building blocks of a cactus graph are cycles, we

will start by recalling and stating some easy facts about the ASM on cycles,

[41], [32], which will be useful later.

Let C be the cycle of length |C| and let V (C) = {p, v1, v2, . . . , v|C|−1}, where
p is the unique dissipative site and other vertices are numbered in the counter-

clockwise direction.

Proposition 2.4.2: (1) There are exactly |C| recurrent configurations

c0, . . . , c|C|−1 on C. They are given by

cj(vi) =

⎧⎨
⎩0 if i = j,

1 otherwise,

and c0(vi) = 1 for i, j = 1, . . . , |C| − 1.
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(2) [32] Let η be a configuration on C and let cj be a recurrent configuration.

Then

[[cj + η]] = c[
j−∑|C|−1

k=1 η(vk)k
]

mod |C|
,

where [[·+ ·]] denotes the result of adding configurations coordinatewise

and then stabilizing.

Corollary 2.4.3: If η = t · δvk for some 1 ≤ k ≤ |C| − 1 and t ≥ 1 (i.e.,

η(vk) = t and η(vi) = 0 for i �= k), then

(3) [[cj + t · δvk ]] = c[j−tk] mod |C| .

We now turn to avalanches on C. Note that the mass of any avalanche on C

is trivially bounded from above by |C| − 1. Fix a vertex vi0 ∈ V (C) on which

an extra chip is added. By symmetry, we can suppose without loss of generality

that 2i0 ≤ |C|. As above, let μ denote the uniform distribution over the set of

recurrent configurations.

Proposition 2.4.4 ([32]): In the notations above,

Pμ(MavC(·, vi0) = M) =

⎧⎪⎪⎨
⎪⎪⎩
0 if 0 < M < i0,

1
|C| if i0 ≤M ≤ |C| − 1− i0,

2
|C| if |C| − i0 ≤M < |C| − 1.

Moreover, Pμ(MavC(·, vi0) = 0) = Pμ(MavC(·, vi0) = |C| − 1) = 1
|C| .

Proof. Since there are |C| different recurrent configurations on C, there are at

most |C| distinct avalanches. The mass of an avalanche is zero (respectively,

|C| − 1) if and only if the configuration on which we add the extra chip is ci0
(respectively, c0). We thus have Pμ(MavC(·, vi0) = 0) = Pμ(MavC(·, vi0) =

|C| − 1) = 1
|C| .

Let cj be a recurrent configuration. If i0 > j, then the mass of the avalanche

is given by MavC(cj , vi0) = |C| − 1 − j, whereas if i0 < j, it is given by

MavC(cj , vi0) = j − 1. Thus, if we fix 0 < M < |C| − 1, there are at most

two avalanches of mass M , more precisely:

• if 0 < M < i0, then there is no recurrent configuration providing an

avalanche of mass M ;

• if i0 ≤ M ≤ |C| − 1 − i0, then there is one configuration providing an

avalanche of mass M , which is cM+1;
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• if |C| − i0 ≤ M < |C| − 1, then there are two configurations providing

an avalanche of mass M , which are cM+1 and c|C|−1−M .

2.4.2. Avalanches on cacti. Our analysis of the dynamics of avalanches on infi-

nite graphs associated with self-similar groups will be based on Theorem 2.4.6

below, a general result about avalanches on finite approximations of infinite

one-ended cacti.

Let (Γ, v) be an infinite one-ended cactus rooted at v. Note that there exists

a unique block-path CPv = C1C2 . . . of infinite length in Γ starting at v (i.e.,

v ∈ C1 but v /∈ C2). Using the notations from Subsection 2.3, for each i ≥ 1,

pi denotes the cut vertex between Ci and Ci+1. Removing pi disconnects Γ into

several connected components (one of which is infinite). Let D(pi) denote the

subgraph of Γ consisting of the union of all finite components, together with

pi. Denote by di the number of vertices in D(pi); we thus have an increasing

sequence of positive integers {di}i≥1.

We can choose an exhaustion {Hn}n≥1 of (Γ, v) so that, for any n ≥ 1, the

internal boundary of Hn consists of a unique vertex p(n) (see Convention 2.2.1);

this vertex is a cut vertex in Γ between two consecutive blocks of CPv.

Convention 2.4.5 (Choice of dissipative vertex in one-ended cacti): Given an

infinite one-ended cactus (Γ, v), let {Hn}n≥1 be an exhaustion of (Γ, v) such

that, for each n, v ∈ V (Hn) and the internal boundary of Hn consists of a

unique vertex p(n); set p(n) to be the unique dissipative vertex in Hn.

Theorem 2.4.6: Let (Γ, v) be an infinite one-ended cactus rooted at v. Let

{Hn}n≥1 be an exhaustion of (Γ, v) as in Convention 2.4.5 and, for any n ≥ 1,

let p(n) be the dissipative vertex in Hn. Denote by CPn
v = C1 . . . Crn ⊂ CPv

the finite block-path in Hn joining v to p(n). Suppose that
∑rn

j=1,|Cj |>2
1

|Cj |
converges as rn →∞. Then, for any integer M large enough that occurs as the

mass of an avalanche, we have

L

2 · |CiM | · |CiM+1| ≤ lim
n→∞Pμn(MavHn(·, v) = M) ≤ 2

|CiM | · |CiM+1| ,

where 0 < L ≤ 1, and the index iM is uniquely determined by the condition

diM−1 ≤M < diM .
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Proof. Consider the subgraph Hn of Γ for some fixed n ≥ 1 and let c be a

recurrent configuration on Hn. If s is the number of blocks constituting Hn, c

can be decomposed into s subconfigurations c1, . . . , cs where ci is a recurrent

configuration on the block Ci (see Lemma 2.3.2). If c(v) = deg(v)−1, then upon

adding an extra chip on v, an avalanche starts on C1 which possibly extends

to further blocks of CPn
v . Since the order of firings does not matter, we can

suppose that one starts stabilizing the subconfiguration on Cj+1 only when the

subconfiguration on Cj is already stable. Recall that, by Proposition 2.3.4, it

is enough to keep track of the subconfigurations of c on the blocks of CPn
v .

For any 1 ≤ j ≤ rn, we say that the avalanche reaches the block Cj if pj−1 is

fired during the avalanche. Note that if Cj is a single edge, then cj(pj−1) =

deg(pj−1)− 1. Once an avalanche has reached Cj and if Cj is not a single edge,

then the subavalanche on Cj has two “branches”, each of them propagating in

the direction of pj along a path joining pj−1 to pj . Since the subconfiguration

cj on Cj is recurrent, there is at most one vertex w ∈ V (Cj)\{pj} such that

cj(w) = deg(w)− 2 (see Proposition 2.4.2). Hence, at least one of the branches

of the subavalanche extends to pj so that at least one chip reaches pj . Then, if

pj is not fired, we say that the avalanche stops on Cj .
With every recurrent configuration c on Hn, one associates a sequence of pos-

itive integers {tj(c)}rn−1
j=0 , where tj(c) is the number of chips that have reached

pj during the avalanche triggered by adding an extra chip to c. By convention,

fix t0(c) ≡ 1. Recall that, on a cycle Cj , there are |Cj | recurrent configurations
which are cj0, . . . , c

j
|Cj|−1. For 1 ≤ j ≤ rn−1, the three following situations may

occur:

(S1) tj(c) − tj−1(c) = 1: this situation occurs if and only if cj = cj0 and

[[cj0 + tj−1(c) · δpj−1 ]] �= cj0;

(S2) tj(c) − tj−1(c) = 0: this occurs if and only if either cj = cj0 and

[[cj0 + tj−1(c) · δpj−1 ]] = cj0, or cj = cjk for some 0 < k < |Cj | and
[[cjk + tj−1(c) · δpj−1 ]] �= cj0;

(S3) tj(c) − tj−1(c) = −1: this occurs if and only if cj = cjk for some

0 < k < |Cj | and [[cjk + tj−1(c) · δpj−1 ]] = cj0.

The difference |tj(c)−tj−1(c)| cannot be greater than one, since the total amount

of chips in a recurrent configuration on a cycle Cj is either |Cj | − 1 or |Cj | − 2

(see Proposition 2.4.2 and Lemma 2.3.2). Finally, note that if the block Cj is a

single edge, then tj(c) = tj−1(c).
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We consider now avalanches of some fixed mass M . Since we are interested

in the asymptotic behaviour of avalanches as n tends to infinity and since we

have supposed that rn tends to infinity (as n → ∞), we can suppose without

loss of generality that M < drn−1; all these avalanches reach some block CiM ,

1 ≤ iM < rn and stop on it (i.e., vertex piM−1 is fired but not vertex piM ).

Note that an avalanche cannot stop on a cycle of length two.

Let us now find bounds on the number of recurrent configurations on Hn

producing avalanches of mass M . Let c be such that the avalanche triggered by

adding an extra chip to c on v is of mass M . Then, its corresponding sequence

{tj(c)}rn−1
j=0 satisfies

• tj(c) ≥ 1 for all 0 ≤ j ≤ iM − 1;

• tiM (c) = 1;

• tj(c) = 0 for all iM < j ≤ rn − 1.

We have to distinguish two cases.

Case 1: Suppose that there exists 1 ≤ j0 < iM such that Cj0 is a cycle

of length two, and suppose that j0 is the smallest such index. Consider the

sequence {tj}rn−1
j=0 defined by tj = 1 if j < j0, tj = 2 if j0 ≤ j < iM , tiM = 1

and tj = 0 if j > iM .

Case 2: If there is no index j0 such that Cj0 is a cycle of length two, then

define {tj}rn−1
j=0 by tj = 1 if j ≤ iM and tj = 0 if j > iM .

We count the number of recurrent configurations c whose associated sequence

{tj(c)}rn−1
j=0 coincides with {tj}rn−1

j=0 . In the first case, it follows from Corollary

2.4.3 that, for each j < iM such that Cj is not a single edge nor a cycle of length

two, there are at least |Cj | − 2 recurrent subconfigurations on Cj satisfying

the right-hand side of (S2). If Cj is a cycle of length two, and j0 < j <

iM , then both recurrent subconfigurations on Cj satisfy the right-hand side

of (S2). The subconfiguration on Cj0 must be cj0 = cj00 (see (S1)) whereas

the subconfigurations on CiM , CiM+1 are uniquely determined by (S3). In the

second case, for each j < iM such that Cj is not a single edge, there are at least

|Cj |− 2 recurrent subconfigurations on Cj satisfying the right-hand side of (S2).

Consider now the subavalanche on the cycle CiM , denoting its mass by m

(so that d(piM−1, piM ) ≤ m < |CiM |). By Proposition 2.4.4 and its proof, at

least one, but at most two, subconfigurations on CiM provoke subavalanches

of such mass. The subconfiguration on CiM+1 is uniquely determined by (S3).

Finally, in both cases, configurations on the remaining blocks of Hn can be
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chosen freely since they do not influence the avalanche (see Proposition 2.3.4).

Thus, the number N of recurrent configurations on Hn producing an avalanche

of mass M is at least

N ≥ 2R ·
iM−1∏
j=1

|Cj |>2

(|Cj | − 2) ·
∏

Cj⊂Γn
Cj �=C1,...,CiM+1

|Cj |,

where R = |{Cj; Cj is a cycle, |Cj | = 2, j0 < j < iM}| and the latter product

runs over blocks of Hn which are not single edges. Since the total number of

recurrent configurations on Hn (which is the number of spanning trees of Hn)

is equal to the product of the lengths of the cycles in Hn, the probability of

observing an avalanche of mass M on Hn upon adding an extra chip on v is

bounded from below by

(4)

Pμn(MavHn(·, v) = M) ≥N
∏

Cj⊂Γn

|Cj |−1

≥ 1

2 · |CiM | · |CiM+1|
iM−1∏
j=1

|Cj |>2

(
1− 2

|Cj |
)
.

The upper bound

(5) Pμn(MavHn(·, v) = M) ≤ 2

|CiM | · |CiM+1|
follows from the fact that, in the first case, the subconfigurations on CiM and

CiM+1 are uniquely determined by (S3), whereas in the second case, there are

at most two subconfigurations on CiM producing a subavalanche on CiM of mass

m and the subconfiguration on CiM+1 is uniquely determined.

The product
∏iM−1

j=1,|Cj |>2 (1− 2/|Cj|) converges as iM → ∞ to a limit L > 0

if and only if the series
∑

j≥1,|Cj |>2
2

|Cj | converges (see, for instance, [44]). In

such a case, it is bounded by L from below for every iM ≥ 2. This completes

the proof.

3. Actions on rooted trees and their Schreier graphs

Let {qn}n≥0 be a sequence of positive integers and let T be a rooted tree such

that all vertices of the n-th level of T (i.e., vertices situated at distance n from

the root) have qn children; T is called spherically homogenous and {qn}n≥0

is the spherical index of T . For any n ≥ 1, letXn be a qn-letters alphabet. Then,



382 M. MATTER AND T. NAGNIBEDA Isr. J. Math.

any vertex of the n-th level of T can be regarded as an element of
∏n

i=1 Xi =: Ln

(the root is viewed as the empty word). Also, write Xω :=
∏

n≥1 Xn, which

is the set of infinite words ξ such that, for any n ≥ 1, the n-th letter of ξ

belongs to Xn. The set X
ω can be identified with the boundary ∂T of the tree,

which is defined as the set of infinite geodesic rays starting at the root of T .

The cylindrical sets
⋃

n≥0{w
∏

i>n Xi|w ∈ Ln} generate the σ-algebra of Borel

subsets of the space Xω. We shall denote by λ the uniform measure on Xω.

Consider the group Aut(T ) of all automorphisms of T , i.e., the group of

all bijections of the set of vertices of T preserving the root and the incidence

relation; the levels of the tree are thus preserved by any automorphism of T . A

group G ≤ Aut(T ) is said to be spherically transitive if it acts transitively

on each level of the tree.

For G < Aut(T ) we define the following subgroups of G: the stabilizer of a

vertex v ∈ T in G denoted by StabG(v) = {g ∈ G|g(v) = v}; the stabilizer of

the n-th level of the tree in G denoted by StabG(Ln) =
⋂

v∈Ln
StabG(v); fi-

nally, the stabilizer of a boundary point ξ ∈ Xω inG denoted by StabG(ξ) =

{g ∈ G|g(ξ) = ξ}. Suppose that G is spherically transitive; then the following

properties hold:

• The subgroups StabG(v), for |v| = n, are all conjugate and of index∏n
i=1 qi.

• ⋂
ξ∈∂T StabG(ξ) is trivial.

• Denote by ξn the prefix of ξ of length n. Then

StabG(ξ) =
⋂
n∈N

StabG(ξn).

• StabG(ξ) has infinite index in G.

Consider a finitely generated group G with a set S of generators such that

id �∈ S and S = S−1, and suppose that G acts on a set M . Then, one can

consider a graph Γ(G,S,M) with the set of vertices M , and two vertices m,m′

joined by an oriented edge labeled by s if there exists s ∈ S such that s(m) = m′.
If the action of G on M is transitive, then Γ(G,S,M) is the Schreier graph

Γ(G,S, StabG(m)) of the group G with respect to the subgroup StabG(m) for

some (any) m ∈ M . If the action of G on M is not transitive, and m ∈ M ,

then we denote by Γ(G,S,m) the Schreier graph of the action on the G-orbit

of m, and we call such a graph an orbital Schreier graph. In what follows,
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we will often forget about labels. Also, since S = S−1, our graphs are graphs

in the sense of Serre [42].

Suppose now that G acts spherically transitively on a spherically

homogeneous rooted tree T with spherical index {qn}n≥0. Then, the n-th

Schreier graph of G is by definition Γn := Γ(G,S, Ln) = Γ(G,S, Pn), where

Pn = StabG(w) with some (any) w ∈ Ln. For each n ≥ 1, let

πn+1 : Γ(G,S, Ln+1) −→ Γ(G,S, Ln) be the map defined on the vertex set

of Γ(G,S, Ln+1) by πn+1(x1 · · ·xnxn+1) = x1 · · ·xn. Since Pn+1 ≤ Pn, πn+1

induces a surjective morphism between Γ(G,S, Ln+1) and Γ(G,S, Ln). This

morphism is a graph covering of degree qn.

We also consider the action of G on ∂T ≡ Xω and the orbital Schreier

graphs Γξ := Γ(G,S,G · ξ) = Γ(G,S, Pξ), where Pξ = StabG(ξ) with ξ ∈ ∂T .

Recall that, given a ray ξ, we denote by ξn the prefix of ξ of length n, and that

Pξ =
⋂

n Pn. It follows that the infinite Schreier graph (Γξ, ξ) rooted at ξ is

the limit of finite Schreier graphs (Γn, ξn) rooted at ξn, as n→∞, in the com-

pact metric space (X ,Dist) (of rooted isomorphism classes) of rooted connected

graphs with uniformly bounded degrees (see Subsection 2.2). Orbital Schreier

graphs are interesting infinite graphs that contain information about the group

and its action on the tree. The random weak limit of the sequence {Γn}n≥1,

concentrated on the classes of rooted-isomorphism of the orbital Schreier graphs

{(Γξ, ξ)}ξ∈∂T , is often a continuous measure; see, e.g., [16].

Proposition 3.0.1: Let {Γn}n≥1 be a covering sequence of finite 2k-regular

graphs (k ∈ N∗). Then there exists a rooted tree T , and a group G of automor-

phisms of T such that the Γn’s can be realized as Schreier graphs (with respect

to an appropriate set of generators) of the action of G on T .

Proof. For any n ≥ 1, let qn be the degree of the covering πn+1 : Γn+1 −→ Γn.

One associates a tree of preimages T with the covering sequence {Γn}n≥1

as follows: T is an infinite rooted tree with vertex set
⋃

n≥1 V (Γn) ∪ {∗} such

that the n-th level of T is V (Γn) and every vertex v of the n-th level has qn

children corresponding to the fibre of v in Γn+1 (by convention, the root ∗ of T

has |V (Γ1)| children). For any n ≥ 1, we denote by T[n] the rooted subtree of

T of height n.

We proceed by induction on n. Consider the graph Γ1. By a theorem of

Petersen (see, for instance, [21]), every 2k-regular graph has a 2-factor, that is,

a 2-regular spanning subgraph. Denote by F 1
1 , . . . , F

1
k the decomposition of Γ1
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into 2-factors. Any F 1
i is a collection Ci

1, . . . , C
i
ti of disjoint cycles. Assign an

arbitrary orientation to each of them, so that each 2-factor F 1
i determines a

unique permutation σ1
i of the vertex set of Γ1. For 1 ≤ i ≤ k, label the edges of

the cycles Ci
1, . . . , C

i
ti in Γ1 by σ1

i . Consider the subgroup G1 of automorphisms

of T[1] generated by the set of permutations {σ1
1 , . . . , σ

1
k}. The Schreier graph

Γ(G1, {σ1
1 , . . . , σ

1
k}, V (Γ1)) coincides with Γ1 labeled as above.

Suppose that there is a subgroup Gn = 〈σn
1 , . . . , σ

n
k 〉 of automorphisms of

T[n] such that for every 1 ≤ m ≤ n, Γ(Gn, {σn
1 , . . . , σ

n
k }, V (Γm)) coincides with

Γm. Every automorphism σn
i corresponds to a 2-factor Fn

i of Γn (i.e., Fn
i with

its edges labeled by σn
i coincides with Γ(〈σn

i 〉, {σn
i }, V (Γn))). We construct the

group Gn+1 by extending every automorphism σn
i to an automorphism σn+1

i of

T[n+1]. Consider the 2-factor Fn
i =

⋃ti
s=1 C

i
s. For any v ∈ V (Γn), number its

children in T by v1, . . . , vqn ; consider the (unique) cycle C
i
s containing v together

with its fibre Ci
s1, . . . , C

i
srs (1 ≤ rs ≤ qn) in Γn+1. The orientation of Ci

s induces

an orientation on each cycle of the fibre. For 1 ≤ l ≤ rs, consider C
i
sl and a child

vj ∈ V (Ci
sl) of v. If the neighbour (with respect to the induced orientation)

of vj in Ci
sl is a child wj′ of w ∈ V (Γn), then let the automorphism σn+1

i

transpose vertices vj and vj′ in T[n+1]. Then, consider wj′ together with its next

neighbour uj′′ in Ci
sl and let σn+1

i transpose vertices wj′ and wj′′ . Continue like

this along Ci
sl until vj is reached again. We thus obtain a set {σn+1

1 , . . . , σn+1
k }

of automorphisms of T[n+1] such that the restriction of every σn+1
i to T[n] is σ

n
i .

For every 1 ≤ i ≤ k, label the edges of Γn+1 belonging to the fibre of Fn
i by

σn+1
i . By construction, the subgroup Gn+1 of Aut(T[n+1]) generated by these

automorphisms is such that Γ(Gn+1, {σn+1
1 , . . . , σn+1

k }, V (Γn+1)) coincides with

Γn+1 labeled as above.

For i=1, . . . , k, consider the automorphisms of T defined by σi :=limn→∞ σn
i ,

and letG = 〈σ1, . . . , σk〉 be the subgroup of Aut(T ) generated by these elements.

As, for any n ≥ 1, σn
i is the restriction of σi to T[n], replace in each Γn the

labels σn
i by σi for 1 ≤ i ≤ k. Then, for any n ≥ 1, the Schreier graph

Γ(G, {σ1, . . . , σk}, V (Γn)) of the action of G on the n-th level of T coincides

with Γn newly labeled.

It follows from a result of Nekrashevych (see Theorem 3.0.2 below) that if

{Γn}n≥1 is a covering sequence of finite 2k-regular cacti, and only then, the

corresponding group of automorphisms of the tree of preimages (see Proposi-

tion 3.0.1) is an iterated monodromy group of a post-critically finite backward
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iteration of topological polynomials. A post-critically finite backward iter-

ation is a sequence f1, f2, . . . of complex polynomials (or orientation-preserving

branched coverings of the plane) such that there exists a finite set P with all

critical values of f1 ◦ f2 ◦ · · · ◦ fn belonging to P for every n. The iterated

monodromy group of such a sequence is the automorphism group of the tree

of preimages Tt =
⊔

n≥0(f1◦f2◦· · ·◦fn)−1(t) induced by the monodromy action

of the fundamental group π1(C\P , t), where t is an arbitrary basepoint.

Theorem 3.0.2 (Nekrashevych [34]): An automorphism group G of a rooted

tree T is an iterated monodromy group of a post-critically finite backward itera-

tion of polynomials if and only if there exists a generating set of G with respect

to which the Schreier graphs of the action of G on T are cacti.

Suppose now that the rooted tree T is q-regular (i.e., qn = q for any n ≥ 0).

Then, given a finite alphabet X = {0, 1, . . . , q− 1}, any vertex of the n-th level

of T can be regarded as an element of Xn, the set of words of length n in the

alphabet X (X0 consists of the empty word), whereas the boundary ∂T of T is

identified with Xω, the set of infinite words in X ; write X∗ =
⋃

n≥0 X
n.

Given g ∈ Aut(T ) and v ∈ X∗, define g|v ∈ Aut(T ), called the restriction

of the action of g to the subtree rooted at v, by g(vw) = g(v)g|v(w)
for all w ∈ X∗. For any vertex v of the tree, the subtree of T rooted at

v is isomorphic to T . Therefore, every automorphism g ∈ Aut(T ) induces

a permutation of the vertices of the first level of the tree and q restrictions,

g|0, . . . , g|q−1, to the subtrees rooted at the vertices of the first level. It can

be written as g = τg(g|0, . . . , g|q−1), where τg ∈ Sq describes the action of

g on the first level of the tree. In fact, Aut(T ) is isomorphic to the wreath

product Sq � Aut(T ) where Sq denotes the symmetric group on q letters, and

thus Aut(T ) ∼= �∞i=1Sq.

For a subgroup G < Aut(T ), the natural question, whether restricting the ac-

tion to a subtree isomorphic to T preservesG, motivates the following definition.

It was forged around 2000 (see, e.g., [23]), though self-similar groups were known

before—this class of groups contains many exotic examples of groups, including

groups of intermediate growth, non-elementary amenable groups, amenable but

not subexponentially amenable groups.

Definition 3.0.3: The action of a group G by automorphisms on a q-regular

rooted tree T is self-similar if g|v ∈ G, ∀v ∈ X∗, ∀g ∈ G.
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Consequently, if G < Aut(T ) is self-similar, an automorphism g ∈ G can be

represented as g = τg(g|0, . . . , g|q−1), where τg ∈ Sq describes the action of g

on the first level of the tree, and g|i ∈ G is the restriction of the action of g to

the subtree Ti rooted at the i-th vertex of the first level. So, if x ∈ X and w is

a finite word in X , we have g(xw) = τg(x)g|x(w).
Self-similar groups can be also characterized as automata groups, i.e.,

groups generated by states of an invertible automaton (see, e.g., [23]). An

automaton over the alphabet X with the set of states S is defined by the

transition map μ : S × X → S and the output map ν : S × X → X . It

is invertible if, for all s ∈ S, the transformation ν(s, ·) : X → X is a per-

mutation of X . It can be represented by its Moore diagram where vertices

correspond to states and, for every state s ∈ S and every letter x ∈ X , an

oriented edge connects s with μ(s, x) labeled by x|ν(s, x). A natural action on

the words over X is induced, so that the maps μ and ν can be extended to

S ×X∗: μ(s, xw) = μ(μ(s, x), w), ν(s, xw) = ν(s, x)ν(μ(s, x), w), where we set

μ(s, ∅) = s and ν(s, ∅) = ∅. If we fix an initial state s in an automaton A, then

the transformation ν(s, ·) on the set X∗ is thus defined; it is denoted by As.

The image of a word x1x2 . . . under As can be easily found using the Moore dia-

gram: consider the directed path starting at the state s with consecutive labels

x1|y1, x2|y2, . . .; the image of the word x1x2 . . . under the transformation As is

then y1y2 . . .. More generally, given an invertible automaton A = (S, X, μ, ν),

one can consider the group generated by the transformations As, for s ∈ S;
this group is called the automaton group generated by A and is denoted by

G(A).

To a group with a self-similar action that is contracting (which means the

existence of a finite set N ⊂ G such that for every g ∈ G there exists k ∈ N such

that g|v ∈ N , for all words v of length greater than or equal to k), Nekrashevych

associates its limit space J (G), often a fractal. Rescaled finite Schreier graphs

form a sequence of finite approximations to the compact J (G). Orbital Schreier

graphs Γξ on the other hand describe the local structure of the limit space.

An important class of self-similar groups is formed by iterated monodromy

groups of partial self-coverings of path connected and locally path connected

topological spaces (e.g., of complex rational functions). If the covering is ex-

panding, its Julia set is homeomorphic to the limit space of its iterated mon-

odromy group. Details about this very interesting subject can be found in [36].
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4. Invariance property of avalanches of the ASM on cacti

In this section, we return to studying avalanches on cacti. Our aim here is to

show that Theorem 2.4.6 can be applied not only to individual limits in the

space X of rooted graphs but also in the random weak limit. More precisely,

we show:

Proposition 4.0.1: Let {Γn}n≥1 be a covering sequence of finite 2k-regular

cacti (k ∈ N∗) such that the conditions of Theorem 2.4.6 are satisfied in the

random weak limit ρ. Then, asymptotically in M, the probability distribution

limn→∞ Pμn(MavHn(·, v) = M) (where {Hn}n≥1 is an exhaustion of (Γ, v) sat-

isfying Convention 2.4.5) is ρ-almost everywhere the same. In particular, the

critical exponent is almost surely constant.

The following lemma was explained to us by G. Elek:

Lemma 4.0.2: Let G ≤ Aut(T ) be a finitely generated spherically transitive

group of automorphisms of a rooted tree T . Recall that λ denotes the uniform

measure on the boundary ∂T of T and consider the application φ : ∂T −→ X ,

φ(ξ) := (Γξ, ξ), mapping a point ξ ∈ ∂T to the (rooted isomorphism class of

the) orbital Schreier graph Γξ rooted at ξ. Then φ is measurable and the image

of λ under φ is the random weak limit of the sequence {Γn}n≥1 of finite Schreier

graphs of the action of G on the levels of T .

Proof. The σ-algebra on X is generated by cylindrical sets of the form C(H,w) :=

{(Γ, v)|BΓ(v, r) � (H,w)}, where r ∈ N and (H,w) is a finite rooted graph. We

say that a vertex v of Γ has r-type (H,w) if the ball of radius r centred in v is

isomorphic to (H,w).

Fix r ∈ N; for any ξ ∈ ∂T , there exists a smallest integer n(ξ) such that the

balls BΓξ
(ξ, r) and BΓn(ξn, r) are isomorphic for all n ≥ n(ξ). For any n ≥ 1,

given a finite rooted graph (H,w), define the set

An := {v ∈ V (Γn)|v = ξn(ξ) for some ξ ∈ ∂T and v has r-type (H,w)}.

Also, define Bn :=
⋃

m>n{w ∈ V (Γm)|w = ξn(ξ) for some ξ ∈ ∂T}. Then

φ−1(C(H,w)) =
⋃
n≥1

(⋃
An

vXω\
(⋃

Bn

wXω ∩
⋃
An

vXω

))
,

so that φ−1(C(H,w)) is a Borel set, and thus φ is measurable.
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Note that the integer-valued function ξ �→ n(ξ) is measurable; hence, for any

ε > 0, there exists nε such that λ({ξ ∈ ∂T |n(ξ) > nε}) < ε. We claim that

λ(φ−1(C(H,w))) = lim
n→∞

1

|V (Γn)| |{v ∈ V (Γn)|v has r-type (H,w)}.

Indeed, given ε > 0, we say that a vertex v ∈ V (Γn) is ε-bad if

λ({ξ ∈ vXω|ξ and v have different r-types}) > ε/n.

We have

λ({ξ ∈ ∂T |n(ξ) > nε}) =
∑

v∈V (Γnε )

λ({ξ ∈ vXω|n(ξ) > nε}) < ε.

It is easy to check that the proportion of terms in the previous sum which are

greater than
√
ε/nε must be less than

√
ε. Since, for any ε > 0 and v ∈ V (Γnε),

{ξ ∈ vXω|ξ and v have different r-types} ⊂ {ξ ∈ vXω|n(ξ) > nε},
it follows that the proportion of vertices in Γnε which are

√
ε-bad is smaller

than
√
ε. This shows that the difference

λ(φ−1(C(H,w)))− 1

|V (Γn)| |{v ∈ V (Γn)|v has r-type (H,w)}|

can be made arbitrarily small by taking n large enough.

Proof of Proposition 4.0.1. Observe that the conditions of Theorem 2.4.6 are

all measurable; in particular, the subset C ⊂ X constituted by one-ended

cacti is measurable. Using notations from Subsection 2.4.2, for any M ∈ N,

let XM : C −→ R+ be the function mapping a one-ended cactus (Γ, v) to

1/(|CiM | · |CiM+1|) if the integer M occurs as the mass of an avalanche on (Γ, v),

and to 0 otherwise. The function XM is measurable as, for any fixed M ∈ N

and a, b ∈ R, the event {(Γ, v)|a ≤ 1/(|CiM | · |CiM+1|) < b} is a cylinder event.

For any function g : N −→ R+, consider the event

Eg :=
⋃

M0≥1

⋂
M≥M0

{(Γ, v)|XM (Γ, v) = g(M) or XM (Γ, v) = 0}.

Our aim is to show that Eg is of ρ-measure 0 or 1, and this will be done by

using an ergodicity argument.

It follows from Proposition 3.0.1 that the sequence {Γn}n≥1 can be realized as

Schreier graphs (with respect to an appropriate set of generators) of an action of

a group G of automorphisms of a rooted tree T . Since the graphs we consider

are connected, the action of G on T is spherically transitive, and hence the
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action of G on the boundary ∂T of T is ergodic with respect to the uniform

measure λ (see, for instance, Proposition 6.5 in [23]).

By Lemma 4.0.2, the application φ : ∂T −→ X , φ(ξ) := (Γξ, ξ) is measurable,

and the random weak limit ρ of the sequence {Γn}n≥1 is the image under φ

of the uniform measure λ. Recall that a measure μ on a standard Borel space

(X,B) with an equivalence relation R is R-ergodic, if every Borel R-invariant

subset of X is of μ-measure 0 or 1. Consider the equivalence relation R on

X , the change of root, that identifies different rootings of a graph. One easily

checks that the random weak limit ρ = φ(λ) is R-ergodic.

We verify that the event Eg is R-invariant: let (Γ, v) and (Γ′, v′) be one-ended
cacti and suppose that (Γ, v) and (Γ′, v′) are R-equivalent. Let CPv = C1C2 . . .
be the unique block-path of infinite length in (Γ, v) starting at v (respectively,

CPv′ = C′1C′2 . . . in (Γ′, v′) starting at v′) and recall that pi (respectively p′i)
denotes the cut vertex between Ci and Ci+1 (respectively, between C′i and C′i+1)

(see Subsection 2.4.2). Since (Γ, v) and (Γ′, v′) are one-ended and isomorphic as

unrooted graphs, then, up to some initial segment, CPv and CPv′ are isomorphic

(i.e., there exist k, l ≥ 1 such that CkCk+1 . . . and C′lC′l+1 . . . are isomorphic).

Moreover, the subgraphsD(pk+i) ⊂ (Γ, v) andD(p′l+i) ⊂ (Γ′, v′) are isomorphic

for any i ≥ 0. It follows thatXM (Γ, v) = XM (Γ′, v′) for anyM sufficiently large.

Thus, by ergodicity of ρ, the event Eg has probability 0 or 1. It follows then

from Theorem 2.4.6 that the asymptotical behaviour (in M) of the distribution

limn→∞ Pμn(MavHn(·, v) = M) is ρ-almost everywhere the same.

5. The Basilica group and its Schreier graphs

The Basilica group B is an automorphism group of the rooted binary tree which

is generated by two automorphisms a and b having the following self-similar

structure:

(6) a = e(b, id), b = (0 1)(a, id),

where id denotes the trivial automorphism of the tree, whereas e is the identity

permutation in S2. In other words, a fixes the first level, then acts as b on the

subtree rooted at 0 and as the identity on the subtree rooted at 1, whereas b

permutes the vertices of the first level, then acts as a on the subtree rooted at

0 and as the identity on the subtree rooted at 1. It can be easily checked that

the action of B on the binary tree is spherically transitive.
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The group B was introduced by Grigorchuk and Żuk [24] as the group gen-

erated by the three-state automaton represented in Figure 1. It can also be

described as the iterated monodromy group IMG(z2− 1) of the complex poly-

nomial z2 − 1 [36] (see Figure 2).

a��
��

b��
��

id��
���

1|1

�

1|0

�
0|0, 1|1

�

0|0

�

0|1

Figure 1. The automaton generating the Basilica group.

Figure 2. The Julia set J (z2 − 1).

For each n ≥ 1, we denote by Γn ≡ Γ(B, {a, b}, {0, 1}n) the Schreier graph of

the action of the Basilica group B on the n-th level of the binary tree. These

graphs, appropriately rescaled, form an approximating sequence of the Basilica

Julia set J (z2−1) (this is used, for example, by Rogers and Teplyaev in [40] for

defining laplacians on the Julia set). The graphs {Γn}n≥1 can be constructed

recursively as follows:
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Proposition 5.0.1 ([16]): The Schreier graph Γn+1 is obtained from Γn by

applying to all subgraphs of Γn given by single edges the rules represented in

Figure 3.

SR1 SR2 SR3

⇓ ⇓ ⇓

1u

11u 01u

u v

0u 0v

0u 0v

00u
10v

00v

•

• •

• •

• •

• •

•
•

•

a

a
b

b

b

a

a

b
a

b

with

0 1
Γ1 • •a a

b

b

Figure 3. Rewriting rules for construction of the Basilica

Schreier graphs and the Schreier graph Γ1.

It follows that, for each n ≥ 1, Γn is a 4-regular cactus such that removing

any cut vertex disconnects Γn into exactly two components. Images of Γ2, Γ3

and Γ4 appear in Figure 4. Let us call the unique cycle of Γn containing vertices

0n and 0n−11 the central cycle of Γn. Given any vertex v ∈ V (Γn), there is a

unique block-path (see Subsection 2.3) CPv = C1 . . . Cr joining v to the central

cycle of Γn.

Definition 5.0.2 (Decoration of a vertex): (1) Let v ∈ V (Γn)\{0n} be a cut

vertex. Denote by U1 and U2 the two connected components obtained

by removing v, so that moreover 0n ∈ U1. The decoration D(v) of v

is the subgraph induced by the vertex set V (U2) ∪ {v}.
(2) Let v be a vertex with a loop. Then D(v) is the subgraph induced by

{v}.
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Figure 4. Basilica Schreier graphs Γn, 2 ≤ n ≤ 4.

(3) If v = 0n, then D(0n) is the subgraph induced by V (Ui) ∪ {0n} where

0n−11 /∈ Ui.

A decoration of a given vertex v ∈ V (Γn) is called a k-decoration (or a

decoration of height k) if it is isomorphic to the decoration of the vertex 0k for

some 1 ≤ k ≤ n.

The following proposition collects some of the properties of the graph Γn.

Proposition 5.0.3: For any n ≥ 1, consider the Schreier graph Γn. Then, the

following hold:
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(1) [16] Every decoration in Γn is a k-decoration for some 1 ≤ k ≤ n.

(2)

|D(0n)| =
⎧⎨
⎩

1
3 (2

n + 2) if n is even,

1
3 (2

n + 1) if n is odd.

(3) The lengths of the cycles constituting Γn are all powers of two; the

number νk of cycles of length 2k (k ≥ 1) is

νk =

⎧⎨
⎩3 · 2n−2k−1 for 1 ≤ k ≤ n

2 − 1

3 for k = n
2

if n is even, and

νk =

⎧⎪⎪⎨
⎪⎪⎩
3 · 2n−2k−1 for 1 ≤ k ≤ �n2 � − 1

4 for k = �n2 �
1 for k = �n2 �

if n is odd.

The proofs of statements (2) and (3) are straightforward when using the

substitutional rules described in Proposition 5.0.1 and induction on n.

The structure of the critical group K(Γn) follows now immediately (see Sub-

section 2.3).

Proposition 5.0.4: If n is even, then K(Γn) is isomorphic to
n
2 −1∏
k=1

(
Z/2kZ

)3·2n−2k−1

× (
Z/2

n
2 Z

)3
,

and if n is odd, then K(Γn) is isomorphic to

	n
2

−1∏

k=1

(
Z/2kZ

)3·2n−2k−1

×
(
Z/2	

n
2 

Z

)4

×
(
Z/2�

n
2 �
Z

)
.

Note that since the lengths of the cycles in Γn are all powers of two, the

latter decomposition corresponds to the decomposition of K(Γn) into invariant

factors.

Given a ray ξ ∈ {0, 1}ω, the sequence {(Γn, ξn)}n≥1 of finite Schreier graphs,

rooted at the n-th prefix ξn of ξ, converges in (X ,Dist) to the infinite orbital

Schreier graph (Γξ, ξ) ≡ (Γ(B, {a, b},B · ξ), ξ). The following results classify

all rays ξ ∈ {0, 1}ω with respect to the number of ends of the corresponding
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limit graph (can be equal to 4, 2 or, almost surely, to 1), as well as providing

information about different types of isomorphisms of infinite orbital Schreier

graphs.

Theorem 5.0.5 ([16]): Set

Ei = {ξ ∈ {0, 1}ω|the infinite Schreier graph Γξ has i ends}.
Then:

(1) E4 = {w0ω, w(01)ω | w ∈ {0, 1}∗};
(2) E1 = {α1β1α2β2 . . . , αi, βj ∈ {0, 1}|

{αi}i≥1 and {βj}j≥1 both contain infinitely many 1’s};
(3) E2 = {0, 1}ω \ (E1  E4).

Corollary 5.0.6 ([16]): (1) There exists only one class of isomorphism of

4-ended (unrooted) infinite Schreier graphs. It contains a single orbit.

(2) There exist uncountably many classes of isomorphism of 2-ended (un-

rooted) infinite Schreier graphs. Each of these classes contains exactly

two orbits.

(3) There exist uncountably many classes of isomorphism of 1-ended (un-

rooted) infinite Schreier graphs. The isomorphism class of Γ1ω is a

single orbit, and every other class contains uncountably many orbits.

Recall that φ : {0, 1}ω −→ X , φ(ξ) := (Γξ, ξ), is the application mapping

an infinite binary sequence ξ to the (rooted isomorphism class of the) orbital

Schreier graph Γξ rooted at ξ, and that the random weak limit of the sequence

of finite Schreier graphs {Γn}n≥1 is the image under φ of λ, the uniform measure

on {0, 1}ω (see Lemma 4.0.2).

Proposition 5.0.7 ([16]): The random weak limit of the sequence of finite

Schreier graphs {Γn}n≥1 is concentrated on 1-ended graphs.

We first describe the limit graphs with four and two ends (proofs can be

found in [16]). Given ξ ∈ E4, any orbital Schreier graph Γξ is isomorphic to

the four-ended graph Γ(4) constructed as follows (see Figure 7): take two copies

R1 and R2 of the double ray whose vertices are naturally identified with the

integers. Let these two double rays intersect at vertex 0. For every k ≥ 0, define

the subset of Z,

Ak :=
{
n ∈ Z|n ≡ 2k mod 2k+1

}
.
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Attach to each vertex of Ak in R1 (respectively, in R2) a (2k + 1)-decoration

(respectively, a (2k + 2)-decoration) by its unique vertex of degree 2.

For any ξ ∈ E2, ξ can be written as ξ = α1β1α2β2 . . . where exactly one of

the sequences {αi}i≥1 or {βi}i≥1 has finitely many 1’s. If {αi}i≥1 has finitely

many 1’s, the graph Γξ is isomorphic to the following graph Γ(ξ): consider the

subsets of Z

A′
0 :=2Z and A′

k :=

{
n∈Z|n≡2k−1−

k∑
i=1

2iβi+1 mod 2k+1

}
for each k≥1.

Construct Γ(ξ) as a double ray with integer vertices with, for each k ≥ 0, a

(2k + 2)-decoration attached by its unique vertex of degree 2 to every vertex

corresponding to an integer in A′
k.

In the case where {βi}i≥1 has finitely many 1’s, the graph Γ(ξ) is defined

similarly, replacing β by α in the definition of A′
k and attaching (2k + 1)-

decorations instead of (2k + 2)-decorations (see Figure 5).

Corollary 5.0.8: The two-ended orbital Schreier graphs Γξ, ξ ∈ E2, form an

uncountable family of non-isomorphic graphs which are not quasi-isometric to

the one-dimensional lattice.
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Figure 5. A finite part of Γξ, ξ ∈ E2.
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We now proceed to the case of one-ended limit graphs. Let ξ ∈ {0, 1}ω.
Recall that for a finite Schreier graph Γn with a root ξn, CPξn denotes the

unique block-path joining ξn to the central cycle in Γn. In the case of one-

ended limit graphs, we have:

Lemma 5.0.9 ([16]): Let ξ ∈ E1. Then the limit

(7) (CPξ, ξ) := lim
n→∞(CPξn , ξn)

is well-defined and the graph CPξ is isomorphic to the unique block-path of

infinite length in (Γξ, ξ) starting at ξ.

Remark 5.0.10: It follows from Theorem 2.4.6 that for understanding the as-

ymptotic of avalanches it is enough to keep track of the sizes of blocks C1, C2, . . .
constituting the block-path CPξ.

We will need the following technical lemmas:

Lemma 5.0.11 ([16]): An element ξ ∈ {0, 1}ω, ξ �= w1ω for any w ∈ {0, 1}∗,
belongs to E1 if and only if there exists a unique triple (l, {mk}k≥0, {tk}k≥0)

where l ≥ 1 and m0 ≥ 0 are integers and m0 is even; t0 = 0; and {mk}k≥1,

{tk}k≥1 are sequences of strictly positive integers and the mk’s are even, such

that ξ can be written as

(8) ξ = 0l−11(0x0
10x

0
2 . . . 0x

0
m0
2
)1t1(0x1

10x
1
2 . . . 0x

1
m1
2
)1t2 . . .

with xj
i ∈ {0, 1} for all i, j.

If ξ = w1ω for some w ∈ {0, 1}∗, then there exists a unique triple

(l, {mk}k0

k=0, {tk}k0

k=0) where l ≥ 1 and m0 ≥ 0 are integers and m0 is even;

t0 = 0; and {mk}k0

k=1, {tk}k0

k=1 are finite sequences of strictly positive integers

and the mk’s are even, such that ξ can be written as

ξ=0l−11(0x0
10x

0
2 . . . 0x

0
m0
2
)1t1(0x1

10x
1
2 . . . 0x

1
m1
2
)1t2. . .1tk0 (0xk0

1 0xk0
2 . . . 0xk0

mk0
2

)1ω.

Lemma 5.0.12 ([16]): Let ξ ∈ E1 and define a sequence of integers ai = aξi ,

i ≥ 1, as follows: if ξ = 1ω, then ai := i for all i ≥ 1. If ξ �= 1ω, then

Lemma 5.0.11 provides a triple (l, {mk}, {tk}) associated with ξ. For all j ≥ 1,

0 ≤ s < tj , let aTj−1+s+1 := l +Mj−1 + Tj−1 + s, where Mj :=
∑j

k=0 mk and

Tj :=
∑j

k=0 tk. Then:
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• The sequence {ai}i≥1 is increasing. More precisely,

(9) ai+1 − ai =

⎧⎨
⎩mj + 1 if there exists j > 0 such that i = Tj ,

1 otherwise.

• For all i ≥ 1, the size of Ci in CPξ ⊂ Γξ is equal to 2�ai/2�.

The description from Lemma 5.0.11 allows us to classify the words ξ ∈ E1

giving rise to isomorphic orbital Schreier graphs Γξ (see Theorem 5.4 in [16]).

Proposition 5.0.13: The orbital one-ended Schreier graphs Γξ, ξ ∈ E1, form

an uncountable family of 4-regular graphs of quadratic growth (for a proof of

this fact, see [11]).
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Figure 6. A finite part of Γ1ω .
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Remark 5.0.14: It follows also from Theorem 5.4 in [16] that any two non-

isomorphic Schreier graphs Γξ and Γη for ξ, η ∈ E1 are not quasi-isometric.

Also, none of them is quasi-isometric to Z2.

Indeed, let Γξ �� Γη and suppose that the sequences {aξi } and {aηi } do not

coincide eventually (i.e., there do not exist i0, j0 such that aξi0+k = aηj0+k for all

k ≥ 0). Since, under a quasi-isometry, CPξ must be mapped to CPη and since

the length of the i-th cycle of CPξ (respectively, CPη) is 2�a
ξ
i/2� (respectively,

2�a
η
i /2�), we get a contradiction. On the other hand, if we suppose that the

sequences {aξi } and {aηi } do eventually coincide, then condition (c) in Theorem

5.4 of [16] is not satisfied, which means that the difference of the distances

between successive cut vertices of CPξ, respectively CPη, diverges.

To see that Z2 is not quasi-isometric to any orbital Schreier graph Γξ for

ξ ∈ E1, note that any quasi-isometry between infinite graphs maps a bi-infinite

self-avoiding path to a bi-infinite self-avoiding path. However, there is no bi-

infinite self-avoiding path in Γξ, for any ξ ∈ E1.

Figure 6 depicts a neighbourhood of the root of the one-ended graph (Γ1ω , 1
ω).

6. Avalanches on Basilica Schreier graphs

In this section, we study avalanches of the ASM on finite approximations of the

infinite orbital Schreier graphs (Γξ, ξ), ξ ∈ {0, 1}ω, of the Basilica group.

Given ξ ∈ {0, 1}ω and given an exhaustion {Hn}n≥1 of (Γξ, ξ) (see Convention

2.2.1), we look at the probability distribution, as n→∞, of the random variable

MavHn(·, ξ) giving the mass of an avalanche triggered by adding a chip on

the root ξ to a recurrent configuration on Hn chosen uniformly at random.

Recall from Section 5 that, for almost every infinite binary sequence ξ, the

orbital Schreier graph Γξ has 1 end (these boundary points are partitioned into

uncountably many uncountable classes of isomorphic Γξ’s), that there also exist

an uncountable infinity of ξ’s that give rise to orbital Schreier graphs with 2 ends

(partitioned into countable isomorphism classes), and a countable number of ξ’s

with a 4-ended Γξ (all isomorphic as unrooted graphs). We examine separately

the asymptotic distribution of the mass of avalanches depending on the number

of ends in the orbital infinite graph Γξ. The four-ended and two-ended graphs

are shown to be non-critical (Theorems 6.1.2 and 6.2.1). However, almost every
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one-ended graph, and therefore also almost every orbital Schreier graph of the

Basilica group, is critical with the critical exponent equal to 1 (Theorem 6.3.1).

6.1. Limit graphs with four ends. Recall that all orbital Schreier graphs

Γξ’s that have 4 ends are isomorphic to the graph Γ(4) described in Section 5.

Therefore it is enough to examine one such Γξ, and we will consider ξ = 0ω.

Let {(Γn, 0
n)}n≥1 be the sequence of finite rooted Schreier graphs converging

in X to (Γ0ω , 0
ω). For any n ≥ 1, we fix in Γn four dissipative vertices as

follows: consider the vertices 0n−11 and 0n−210; for each of them, its neighbours

which are situated on a path from it to 0n are dissipative. The infinite graph

(Γ0ω , 0
ω) is exhausted by the subgraphs Hn that are isomorphic, for each n, to

the connected component of 0n in Γn remaining when removing the above four

vertices, together with these four dissipative vertices (see Remark 2.2.9). As n

tends to infinity, both cycles in Γn containing 0n grow and split in the limit,

sending vertices 0n−11 and 0n−210 to infinity and giving in the limit the four

infinite paths in Γ0ω intersecting at 0ω (see Figure 7 and [16]). Consequently, our

choice of subgraphsHn and of dissipative vertices corresponds to our Convention

2.2.1.

It is further convenient to merge in Hn all four dissipative vertices into a

single dissipative vertex p. The graph H̄n obtained in this way is still separable

but is not a cactus anymore. More precisely, all blocks of H̄n but one are

cycles denoted by C1, . . . , Cs. Denote the exceptional block by B; it consists

of vertices 0n and p, and of four disjoint paths, P1 to P4, where |P1| = |P2| =
2�

n
2 �−1 − 1 whereas |P3| = |P4| = 2�

n−1
2 �−1 − 1 (see Figure 7). Note that

considering the ASM on the graphHn is equivalent to consider it on H̄n. Indeed,

merging all dissipative vertices into a single dissipative vertex does not affect

either the structure of chip configurations (as they are defined on non-dissipative

vertices only) or the firing rules (as dissipative vertices are never fired during

the stabilization process), hence does not affect avalanches. Also, RHn ≡ RH̄n
,

since performing the Burning Algorithm on Hn is equivalent to performing it

on the graph H̄n (as the graphs spanned by the sets of vertices V0(Hn) and

V0(H̄n) are isomorphic).

The description of recurrent configurations on H̄n (and hence on Hn) follows

now directly from Lemma 2.3.2, Proposition 2.4.2 and from Theorem 2.1.1.

Given a block Ci of H̄n, denote its vertices by pi, v
i
1, . . . , v

i
|Ci|−1 (recall from

Subsection 2.3 that pi denotes the smallest element of V (Ci) in the order �.)
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0n . . . p2 ≡ p•
P2

...

p1 ≡ p•
P1

. . .
p4 ≡ p•

P4

...

p3 ≡ p•
P3
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Figure 7. The graph Hn as a subgraph of Γn.

The following result shows that the ASM on the sequence {Hn}n≥1 approxi-

mating the

Proposition 6.1.1: A chip configuration c : V0(H̄n) −→ N on H̄n is recurrent

if and only if it has the form

c = c1j1 + c2j2 + · · ·+ csjs + cB,
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where for every 1 ≤ i ≤ s, ji ∈ {0, 1, . . . , |Ci| − 1}. If ji �= 0, then

ciji : V0(H̄n) −→ N is given by

ciji(w) =

⎧⎪⎪⎨
⎪⎪⎩
2 if w = viji ,

3 if w = vik for k = 1, . . . , |Ci| − 1, k �= ji,

0 otherwise,

whereas if ji = 0,

ci0(w) =

⎧⎨
⎩3 if w = vik for k = 1, . . . , |Ci| − 1,

0 otherwise.

The subconfiguration cB : V0(H̄n) −→ N satisfies:

(1) 2 ≤ cB(v) ≤ 3 for every v ∈ V0(B)\{0n};
(2) for 1 ≤ i ≤ 4, cB(v) = 2 for at most one vertex v ∈ V (Pi)\{0n} with

the additional condition that at least one path Pi is such that c(v) = 3

for every v ∈ V (Pi)\{0n};
(3)

∣∣{1 ≤ i ≤ 4|∃v ∈ V (Pi)\{0n} | cB(v) = 2}∣∣ ≤ cB(0n) ≤ 3;

(4) cB(w) = 0 for all w /∈ V0(B).

infinite orbital Schreier graph (Γ0ω , 0
ω) is non-critical in the sense of Defini-

tion 2.2.2:

Theorem 6.1.2: Consider the infinite orbital Schreier graph (Γ0ω , 0
ω). Then

there exist constants C1, C2 > 0 such that

(10) C1 · 2− 3n
2 ≤ Pμn(MavHn(·, 0n) = M) ≤ C2 · 2−n.

Proof. Consider the graph H̄n for n > 5. Given any recurrent configuration

c, it follows from Proposition 2.3.4 that the avalanche triggered by adding an

extra chip on 0n to c only depends on the subconfiguration cB of c on the block

B of H̄n.

Given an integer M > 0, we count the number of recurrent configurations on

H̄n producing an avalanche of mass M . We first compute the total number of

recurrent configurations on the block B, which is the number κ(B) of spanning

trees of B. Recall that |P1| = |P2| = 2�
n
2 �−1−1 and |P3| = |P4| = 2�

n−1
2 �−1−1.

As it does not influence the final result, we omit the additive constant for
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technical convenience, and we get

κ(B) = 2|P1|2|P3|+ 2|P3|2|P1| =
⎧⎨
⎩23n/2−1 if n is even,

3 · 2(3n−5)/2 if n is odd.

Given a recurrent configuration cB on the block B, denote by li(c
B) the

distance between 0n and the vertex situated on Pi with only 2 chips on it (see

2. in Proposition 6.1.1). If there is no such vertex on some of the paths Pi,

then set li(c
B) = |Pi|. We look now at how the mass of avalanches triggered

by adding an extra chip on 0n depends on the li’s: if at least one of the li’s

grows (respectively decreases), then the mass grows (respectively decreases).

Thus, in order to keep the mass M of the avalanche unchanged while modifying

the values of the li’s, we must let some of them grow as well as some of them

decrease. Suppose without loss of generality that decorations of odd heights

are attached to the paths P1 and P2, whereas decorations of even heights are

attached to the paths P3 and P4. It follows (see proof of Proposition 2.3.4) that

an increase of l1 (respectively l3) must be thus compensated by a decrease of l2

(respectively l4) whereas an increase of l2 (respectively l4) must be compensated

by a decrease of l1 (respectively l3).

Observe now that if c1 and c2 are two recurrent configurations on H̄n such that

l1(c
B
1 )+l2(c

B
1 ) �= l1(c

B
2 )+l2(c

B
2 ) (or similarly l3(c

B
1 ) + l4(c

B
1 ) �= l3(c

B
2 ) + l4(c

B
2 )),

then the masses of the avalanches triggered respectively by c1 and c2 are differ-

ent.

It follows from the previous observation that avalanches which are less likely

to occur are those of small mass. We derive the lower bound in (10) by counting

the number of recurrent configurations on B leading to avalanches on H̄n of

minimal mass. There are exactly two such recurrent configurations cBmin and

dBmin; cBmin satisfies l1(c
B
min) = l2(c

B
min) = l3(c

B
min) = 1 whereas dBmin satisfies

l1(d
B
min) = l2(d

B
min) = l4(d

B
min) = 1. Normalizing by κ(B) yields the lower

bound in (10).

On the other hand, the most likely avalanches arise from recurrent configu-

rations c with cB on B satisfying l1(c
B) + l2(c

B) = |P1| + 1. There are not

more than 2|P2| + 2(|P1| − 2) ≤ 2�
n
2 �+1 such recurrent configurations on B.

Normalizing by κ(B) yields the upper bound in (10).

Remark 6.1.3: A careful computation yields approximate values for the con-

stants C1 ≈ 3.77 and C2 ≈ 5.65.
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6.2. Limit graphs with two ends. The Basilica group provides us with an

uncountable family of two-ended graphs not quasi-isometric to Z (see Section

5). We prove in this subsection that the ASM on sequences of finite graphs

approximating these infinite graphs does not exhibit a critical behaviour with

respect to the mass of avalanches, in the sense of Definition 2.2.2.

Some particular cases of sequences of cacti approximating a 2-ended graph

were already studied by Ali and Dhar in [2], where they considered graphs

obtained from Z by replacing even edges by cycles of fixed length L. (Note that

if L = 2, the corresponding graphs are essentially the Schreier graphs associated

with the self-similar action on the binary rooted tree of the so-called Grigorchuk

group, the first example of a group of intermediate growth.) Ali and Dhar have

found that the ASM on these sequences of decorated chains is not critical; in

particular, they have shown that Pμn(MavΓn(·, vn) = M) = f(Mn )n−1 where

f denotes some scaling function. The behaviour of avalanches with respect to

their mass is thus similar to what one obtains on a sequence of growing cycles Cn

of length n approximating the lattice Z where Pμn(MavCn(·, vn) = M) ∼ 1/n

(see Subsection 2.4.1).

Let ξ ∈ E2, let Γξ be the corresponding two-ended orbital Schreier graph and

let {(Γn, ξn)}n≥1 be the sequence of finite rooted Schreier graphs converging in

X to (Γξ, ξ). Recall that CPξn denotes the block-path in Γn joining the vertex

ξn to the central cycle of Γn.

For any n ≥ 1, we fix in Γn two dissipative vertices p1 and p2; these are the

two neighbours of 0n such that any path joining ξn to 0n contains one of them.

The infinite graph (Γξ, ξ) is exhausted by the subgraphsHn that are isomorphic,

for each n, to the connected component of ξn in Γn remaining when removing

both the above vertices, together with them (see Remark 2.2.9). As n tends

to infinity, the length of the central cycle in Γn grows and splits in the limit,

sending vertex 0n to infinity and giving the bi-infinite path in Γξ (see Figure 5

and [16]). Consequently, our choice of subgraphs Hn and of dissipative vertices

corresponds to our Convention 2.2.1.

The recurrent configurations onHn are given by Lemma 2.3.2 and Proposition

2.4.2 (as in Subsection 6.1, we may merge both dissipative vertices p1 and p2

into a single one, p; the resulting graph H̄n is still separable and RHn ≡ RH̄n
).

As in the case of Γ0ω , the ASM on the sequence {Hn}n≥1 approximating the

infinite orbital Schreier graph (Γξ, ξ) has non-critical behaviour if ξ ∈ E2:
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Theorem 6.2.1: Let ξ ∈ E2 and consider the two-ended orbital rooted Schreier

graph (Γξ, ξ). Then the probability distribution of the mass of an avalanche on

Hn satisfies

Pμn(MavHn(·, ξn) = M) ∼ 2−
n
2 .

Proof. Let ξ ∈ E2. Observe that there exists a subsequence {ni}i≥1 of N such

that, for every i ≥ 1, the vertex separating the penultimate cycle of the block-

path CPξni
from the last cycle of CPξni

is different from 0n. Let n ≥ 1 belong

to such a subsequence and consider the graph Γn. The root ξn belongs to some

k-decoration attached to the central cycle of Γn by some vertex v �= pi, i = 1, 2.

Note that if we choose n large enough, k does not depend on n.

Let c be a (randomly chosen) recurrent configuration on Hn ⊂ Γn. By Propo-

sition 2.3.4, the mass of the avalanche triggered by adding to c an extra chip

on ξn depends only on the subconfigurations of c on CPξn .

As the avalanche propagates along the k-decoration attached at v, a certain

amount of chips migrates in the direction of the central cycle of Γn and finally

reaches v. If the amount of chips eventually reaching v is greater than one,

then, necessarily, the avalanche will propagate in both directions on the whole

central cycle and the mass of the avalanche will be maximal (denote this mass

by Mmax). The same happens if only one chip reaches v but every vertex on

the central cycle has three chips on it. On the other hand, if only one chip

reaches v and if there is a vertex on the central cycle with only two chips on

it, then the avalanche will propagate along the central cycle in such a way that

in one direction it will reach one of the dissipative vertices but in the other

direction it will be stopped at the vertex with only two chips. Denote by P

the probability that at least two chips reach v during an avalanche. Similarly,

denote by P̃ the probability that the mass M of the avalanche is greater than

the cardinality of the decoration attached to v (which, by Proposition 5.0.3, is

equal to 1/3(2k + 1) or 1/3(2k + 2) depending on the parity of k). Note that

neither P nor P̃ depend on n.

Observe that, by Proposition 2.4.4 and its proof, there are at most two sub-

configurations on the central cycle producing avalanches of the same mass. Col-

lecting together all previous observations, we have, for M sufficiently large,

Pμn(MavHn(·, ξn) = M) =

⎧⎨
⎩P̃ · α

|C|−2 if M < Mmax,

P + 1−P
|C|−2 if M = Mmax,
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where α ∈ {1, 2} and |C| denotes the length of the central cycle. Since |C| ∼ 2
n
2 ,

the result follows.

6.3. Limit graphs with one end. Recall from Section 5 that E1 ⊂ {0, 1}ω
denotes the subset of full measure consisting of such rays ξ that the infinite

orbital Schreier graph Γξ has one end. For ξ ∈ E1, consider the sequence

{ξn}n≥1 of vertices of the ray belonging to the consecutive levels of the tree,

and the rooted finite Schreier graphs {(Γn, ξn)}n≥1 converging to (Γξ, ξ). Let

CPξn = C1 . . . Crn be the unique block-path in Γn joining ξn to the central cycle

of Γn. By Lemma 5.0.9, (CPξ, ξ) = limn→∞(CPξn , ξn) is a well-defined block-

path isomorphic to the unique block-path of infinite length in (Γξ, ξ) starting

at ξ. Recall that there exists a subsequence {ni}i≥1 of N such that, for every

i ≥ 1, the vertex separating the penultimate cycle of the block-path CPξni

from the last cycle of CPξni
is different from 0n. Let n ≥ 1 belong to such a

subsequence. For any n ≥ 1, we set p(n) := 0n in Γn to be dissipative. The

infinite graph (Γξ, ξ) is exhausted by the subgraphs Hn that are isomorphic,

for each n, to the connected component of ξn in Γn remaining when removing

vertex 0n, together with 0n (see Remark 2.2.9). Our choice of subgraphs Hn

corresponds to Convention 2.4.5. The following statement is the main result of

this section:

Theorem 6.3.1: For almost every ξ ∈ E1 (with respect to the uniform measure

λ on {0, 1}ω), we have

(11) lim
n→∞Pμn(MavHn(·, ξn) = M) ∼M−1.

As an immediate consequence of Theorem 6.3.1 and Proposition 5.0.7, we

have:

Corollary 6.3.2: The ASM on the sequence {Γn}n≥1 of Schreier graphs of

the Basilica group is critical in the random weak limit, with critical exponent

equal to 1.

Given ξ ∈ E1, let (l, {mk}, {tk}) be the triple provided by Lemma 5.0.11 and

let {ai}i≥1 be the sequence associated with ξ as defined in Lemma 5.0.12, so

that the size of the i-th block of CPξ is 2�
ai
2 �.

In order to prove Theorem 6.3.1, we will need the following lemma:
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Lemma 6.3.3: Choose ξ ∈ E1 uniformly at random. Then there is almost

surely only a finite number of indices j such that the corresponding terms of

the sequence {mk}k≥0 associated with ξ satisfy mj ≥ 2j.

Proof. With any ξ ∈ E1 is associated a triple (l, {mk}, {tk}) given by Lemma

5.0.11. For any j ≥ 1, define the event Aj := {ξ ∈ E1|mj ≥ 2j}. By defini-

tion of the sequence {mk} (see (8) in Lemma 5.0.11), for all r > 0, we have

P(mj ≥ 2r) ≤ 2−r. Thus, P(Aj) ≤ 2−j and, by the Borel–Cantelli Lemma,

P(lim supj→∞ Aj) = 0.

We turn now to the proof of Theorem 6.3.1:

Proof. Choose ξ ∈ E1 uniformly at random. For any n ≥ 1, consider the finite

Schreier graph (Γn, ξn), the block-path CPξn and the sequence {ai}i≥1 associ-

ated with ξ (see Lemma 5.0.12). For further convenience, we interpolate the

sequence {ai}i≥1 by an increasing continuous function a : [0,+∞) −→ [0,+∞)

such that a(0) = 0.

Recalling that |Ci| = 2�a(i)/2� for every i ≥ 1, the series

∞∑
i=1

1

|Ci| =
∞∑
i=1

2−�a(i)
2 �

converges, and it follows from Theorem 2.4.6 that

(12)
L

2 · |CiM | · |CiM+1| ≤ Pμn(MavHn(·, ξn) = M) ≤ 2

|CiM | · |CiM+1| ,

where CiM denotes the block on which each avalanche of mass M stops, and

0 < L ≤ 1 is a constant depending on the sequence {ai}i≥1 ≡ {a(i)}i≥1. From

(12), we get

(13)
L

4
· 2−a(iM )+a(iM+1)

2 ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2− a(iM )+a(iM+1)

2 .

On the other hand, the mass of an avalanche which stops on CiM is bounded

by

(14) |D(0a(iM−1)+1)| < M < |D(0a(iM )+1)|,
where |D(0a(iM )+1)| is the number of vertices in the decoration of vertex 0a(iM )+1

in Γa(iM )+1. By Proposition 5.0.3, (14) implies

1

3

(
2a(iM−1)+1 + 1

)
< M <

1

3

(
2a(iM )+1 + 2

)
.
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These inequalities can be rewritten as⎧⎨
⎩a(iM − 1) < log(3M − 1)− 1,

a(iM ) > log(3M − 2)− 1,

where log(·) ≡ log2(·). Since a is increasing, one may write⎧⎨
⎩iM < a−1(log(3M − 1)− 1) + 1,

iM > a−1(log(3M − 2)− 1).

The difference a−1(log(3M − 1)− 1) + 1− a−1(log(3M − 2)− 1) tends to 1 as

M → ∞. We can then assume that iM = �a−1(log(3M))� for M sufficiently

large.

We show that, almost surely, a(iM + 1)/a(iM ) tends to 1 as M →∞. Recall

that (see Lemma 5.0.12), for all j ≥ 1, 0 ≤ s < tj ,

a(Tj−1 + s+1) = l+Mj−1 +Tj−1 + s, where Mj :=

j∑
k=0

mk and Tj :=

j∑
k=0

tk.

Writing i := Tj−1 + s + 1, a(i) = l + Mj−1 + i − 1, we consider j ≡ j(i) as

a (non-decreasing) function of i (corresponding to the number of terms in the

sum Mj−1). Note that j(i) ≤ i. By Lemma 5.0.12,

a(i+ 1)− a(i) =

⎧⎨
⎩mj(i) + 1 if i is such that i = Tj(i),

1 otherwise.

On the other hand, it follows from Lemma 6.3.3 that, almost surely, there exists

j0 ≥ 1 such that mj ≤ 2j for all j > j0. We thus have

1 ≤ a(i + 1)

a(i)
≤ a(i) +mj(i) + 1

a(i)
≤ 1 +

2j(i)

a(i)
+

1

a(i)
,

where the last inequality holds almost surely for any i sufficiently large. Clearly,

2j(i)/a(i) ≤ 2j(i)/i. We check that j(i)/i, which is non-increasing, tends to 0

as i→∞. For the sake of contradiction, suppose that j(i)/i tends (from above)

to C > 0 as i→∞. It is easy to check that, given any finite word w ∈ {0, 1}∗,
w appears almost surely as a subword in ξ ∈ {0, 1}ω situated as far as we want

in ξ, i.e., given n0 ≥ 1, P (ξ = ξnwξ
′, n ≥ n0, ξ

′ ∈ {0, 1}ω}) = 1. It follows that,

almost surely, the sequence {tk}k≥0 (see Lemma 5.0.11) is not bounded. Thus,

we can find tk0 large enough such that j(i0)/i0 < C, where i0 = Tk0−1+ tk0 and
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j(i0) = k0, and we get a contradiction. Since iM tends to infinity as M → ∞,

we conclude that, almost surely, a(iM + 1)/a(iM) tends to 1 as M →∞.

Write xM := a−1(log(3M)) so that iM = �xM�. For any ε > 0, there exists

M0 such that, for all M > M0, a(xM ) < a(iM + 1) ≤ (1 + ε)a(iM ). It follows

then from (13) that for n and M sufficiently large,

L

4
· 2− a(xM )(2+ε)

2 ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2− a(xM )

1+ε ,

and hence

L

4
· (3M)−

2+ε
2 ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · (3M)−

1
1+ε .

We thus conclude that, almost surely,

lim
n→∞Pμn(MavHn(·, ξn) = M) ∼M−1.

7. Schreier graphs of IMG(−z3/2+ 3z/2)—Examples with the critical

exponent > 1

In this section, we examine the ASM on Schreier graphs of still another (though

similar to the Basilica) self-similar group, and compute the critical exponent for

the mass of avalanches in the random weak limit to be 2 log 2/ log 3 > 1.

7.1. Interlaced adding machines. The adding machine A is a group of au-

tomorphisms of the binary rooted tree generated by an automorphism a defined

self-similarly by a = (0 1)(id, a). Thus, the action of a on the n-th level of the

tree corresponds to adding one to the binary representation of integers mod-

ulo 2n (recall that vertices of the n-th level are identified with binary words of

length n). It follows that, for any n ≥ 1, the Schreier graph Γ(A, {a}, {0, 1}n)
is a cycle of length 2n. The action of the automorphism a on the boundary of

the tree is free and the group generated by a is Z. It follows that the orbital

Schreier graphs Γ(A, {a},A·ξ), for ξ ∈ {0, 1}ω, are all isomorphic (as unlabeled

graphs) to the bi-infinite path. In other words, the random weak limit of the

sequence {Γ(A, {a}, {0, 1}n)}n≥1 is atomic and supported by a single graph,

which is Z. As mentioned in the introduction, it is easy to see that the ASM is

not critical in this case.

The interlaced adding machines group I is a spherically transitive group of

automorphisms of the ternary rooted tree T generated by two automorphisms
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a and b with the following self-similar structure:

a = (0 1)(id, a, id), b = (0 2)(id,id, b).

The group I is the iterated monodromy group of the complex polynomial

−z3/2 + 3z/2 (see [35]), whose Julia set is represented in Figure 8.

Figure 8. The Julia set J (−z3/2 + 3z/2).

One notices that this Julia set looks very much like the Basilica Julia set

(see Figure 2). The Basilica Schreier graphs and the Schreier graphs Γ̃n :=

Γ(I, {a, b}, {0, 1, 2}n) are also very similar.

It follows directly from the definition of the group I that, for any n ≥ 1,

the Schreier graph Γ̃n is a 4-regular cactus and has all its edges labeled either

by a or by b. The number of vertices of Γ̃n is 3n, so that the covering map

πn+1 : Γ̃n+1 −→ Γ̃n is of degree 3.

By [12], the Schreier graphs Γ̃ξ := Γ(I, {a, b}, I · ξ) have either 1, 2 or 4

ends, and the number of ends is one for almost all ξ with respect to the uniform

measure on the boundary ∂T of the tree. More precisely, we have a classification

in terms of ternary sequences of the orbital Schreier graphs with respect to their

number of ends, in the spirit of the Basilica case treated in [16]. Given a word

w ∈ {0, 1, 2}∗, we say that w is of type A (respectively, B) if it does not contain

the letter 2 (respectively, 1). Any word (finite or infinite) in {0, 1, 2} can be

decomposed into an alternative succession of blocks of type A and B.

Theorem 7.1.1: (1) The orbital Schreier graph Γ̃ξ has one end if and only

if the number of blocks in the decomposition of ξ into blocks of type A

and B is infinite;
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(2) the orbital Schreier graph Γ̃ξ has four ends if and only if

ξ ∈ {w0ω, w1ω, w2ω|w ∈ {0, 1, 2}∗};

(3) in all other cases, the orbital Schreier graph Γ̃ξ has two ends.

For i = 1, 2, 4, denote by

Ẽi := {ξ ∈ {0, 1, 2}ω| the orbital Schreier graph Γ̃ξ has i ends}.

Moreover, we also have:

Proposition 7.1.2: There exist uncountably many non-isomorphic orbital

Schreier graphs with one end.

Proposition 7.1.2 follows from Theorem 7.1.1 together with the following

lemma, proved similarly to Proposition 5.6 in [16].

Lemma 7.1.3: Let w ∈ {0, 1, 2}n. Then:
(1) the total number of blocks in the decomposition of w into blocks of

type A and B equals the number of blocks in the block-path CPw in Γ̃n

joining w to 0n;

(2) the size of the i-th block in the block-path CPw is equal to 2νi , where

νi denotes the length of the prefix of w containing the i first blocks.

We will also need the following result obtained by following the method de-

veloped in [11].

Proposition 7.1.4: For almost every ξ ∈ {0, 1, 2}ω (with respect to the uni-

form measure λ on ξ ∈ {0, 1, 2}ω), the degree of polynomial growth of Γ̃ξ is

log 3/ log 2.

7.2. Criticality of the ASM on the Schreier graphs of

IMG(−z3/2+3z/2). In this subsection, we consider avalanches of the ASM on

finite approximations of the infinite orbital rooted Schreier graphs (Γ̃ξ, ξ), where

ξ ∈ Ẽ1. For any n ≥ 1, we set the vertex p(n) := 0n in Γ̃n to be dissipative. As

in the case of Basilica Schreier graphs, the infinite graph (Γ̃ξ, ξ) is exhausted by

the subgraphs Hn that are isomorphic, for each n, to the connected component

of ξn in Γn remaining when removing vertex 0n, together with 0n (see Remark

2.2.9). It follows from Lemma 7.1.3 and Theorem 7.1.1 that the number of

blocks in the block-path CPξn joining ξn to 0n in (Γ̃n, ξn) tends to infinity as
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n →∞. Consequently, our choice of subgraphs Hn corresponds to Convention

2.4.5. We will prove the following:

Theorem 7.2.1: For almost every ξ ∈ Ẽ1 (with respect to the uniform measure

λ on {0, 1, 2}ω), we have

lim
n→∞Pμn(MavHn(·, ξn) = M) ∼M− 2 log 2

log 3 .

Corollary 7.2.2: We thus exhibit an uncountable family of non-isomorphic

4-regular, one-ended graphs of superlinear but subquadratic growth, such that

the ASM on the sequences of finite graphs approximating them is critical with

critical exponent equal to 2 log 2/ log 3 > 1.

Proof. Let ξ ∈ Ẽ1 and let ξ = A1B1A2B2 . . . be its decomposition in blocks of

type A and B (A1 may be empty). For any n ≥ 1, consider the Schreier graph

(Γ̃n, ξn), the block-path CPξn in Γ̃n and denote its blocks by C1C2 . . . Crn , so
that rn is the number of blocks in the above decomposition of the prefix ξn of

ξ. By Lemma 7.1.3, for any i ≥ 1, the size of Ci is given by

(15) log2(|Ci|) = νi =

⎧⎨
⎩
∑i/2

k=1(|Ak|+ |Bk|) if i is even,∑(i−1)/2
k=1 (|Ak|+ |Bk|) + |A(i+1)/2| if i is odd,

where |Ak| (respectively |Bk|) denotes the length of the block Ak (respectively

Bk). For further convenience, we interpolate the sequence {νi}i≥1 by a contin-

uous, increasing function ν : [0,+∞) −→ [0,+∞) such that ν(0) = 0. As the

series
∑

i≥1
1

|Ci| converges, it follows from Theorem 2.4.6, that

(16)
L

2 · |CiM | · |CiM+1| ≤ Pμn(MavHn(·, ξn) = M) ≤ 2

|CiM | · |CiM+1| ,

where CiM denotes the block on which each avalanche of mass M stops, and

0 < L ≤ 1 is a constant depending on the sequence {νi}i≥1 ≡ {ν(i)}i≥1. From

(16), we get

(17)
L

2
· 2−(ν(iM )+ν(iM+1)) ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2−(ν(iM )+ν(iM+1)).

Observe that, for any n ≥ 1 and 1 ≤ k ≤ n, the cardinality of a k-decoration

in Γ̃n (see Definition 5.0.2) is equal to 1/2(3k + 1). It follows that the mass of

an avalanche which stops on CiM is bounded by

1/2(3ν(iM−1) + 1) < M < 1/2(3ν(iM) + 1).
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Since ν is increasing, this leads to⎧⎨
⎩iM < ν−1(log3(2M − 1)) + 1,

iM > ν−1(log3(2M − 1)).

As iM is an integer, we have iM = �ν−1(log3(2M − 1))�.
Lemma 7.2.3: For almost every ξ ∈ Ẽ1, limi→∞

ν(i+1)
ν(i) = 1.

Proof of the lemma. By (15), {ν(i)}i≥1 satisfies

ν(i+ 1)− ν(i) =

⎧⎨
⎩|Ai/2+1| if i is even,

|B(i+1)/2| if i is odd.

For every k ≥ 1, define the event Ek := {ξ ∈ {0, 1, 2}ω| |Ak| ≥ k} (respec-

tively, Ēk := {ξ ∈ {0, 1, 2}ω| |Bk| ≥ k}). As P(Ek) ≤
(
2
3

)k
and

∑
k≥1

(
2
3

)k
<

∞, it follows from the Borel–Cantelli Lemma that P(lim supk→∞ Ek) = 0. Iden-

tically, P(lim supk→∞ Ēk) = 0. In other words, there almost surely exists i0 ≥ 1

such that, for all i > i0, |Ai/2+1| < i/2+1 (respectively, |B(i+1)/2| < (i+1)/2).

We have, for i even,

1 ≤ ν(i+ 1)

ν(i)
=

ν(i) + |Ai/2+1|
ν(i)

≤ 1 +
i

2ν(i)
+

1

ν(i)
,

where the last inequality holds almost surely for any i sufficiently large. The

same bound holds for i odd. Using an argument similar to the proof of Theorem

6.3.1, we check that i/ν(i), which is non-increasing, tends to 0 as i→∞.

Let xM = ν−1(log3(2M − 1)) + 1, so that iM = �xM�. By Lemma 7.2.3, for

any ε > 0, there exists M0 such that, for any M > M0, ν(iM+1) ≤ (1+ε)ν(iM).

From (17), we get

L

2
· 2−(2+ε)ν(iM ) ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2− 2+ε

1+εν(iM+1).

As iM ≤ xM ≤ iM + 2 and ν is increasing, we have

L

2
· 2−(2+ε)ν(xM) ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2− 2+ε

1+εν(xM−1).

Using, for the lower bound, the fact that for any ε′ > 0, there is M ′
0 such that

for any M > M ′
0, ν(ν

−1(log3(2M − 1)) + 1) ≤ (1 + ε′) log3(2M − 1), we get

L

2
· 2−(2+ε)(1+ε′) log3(2M−1) ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · 2− 2+ε

1+ε log3(2M−1),
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which is equivalent to

L

2
· (2M − 1)

− (2+ε)(1+ε′)
log2(3) ≤ Pμn(MavHn(·, ξn) = M) ≤ 2 · (2M − 1)

− 2+ε
(1+ε) log2(3) .

Thus, almost surely, limn→∞ Pμn(MavHn(·, ξn) = M) ∼M− 2 log 2
log 3 .

8. Growth of Orbital Schreier Graphs and Critical Exponent of the

ASM

In this section we show that, under some conditions, the critical exponent of the

ASM on a finite approximation of an infinite one-ended cactus is related to the

growth of that graph. Then, we exhibit a family of iterated monodromy groups

of quadratic polynomials such that the ASM on the corresponding sequences

of Schreier graphs is critical in the random weak limit, with arbitrarily small

critical exponent.

8.1. Degree of polynomial growth of orbital Schreier graphs and

critical exponent. Given a locally finite graph Γ and v ∈ V (Γ), we say that

Γ has polynomial growth of degree α if the quantity

α := lim sup
r→∞

log(|BΓ(v, r)|)
log r

is finite. Note that α does not depend on the choice of v.

Let (Γ, v) be an infinite one-ended cactus rooted at v. Let CPv = C1C2 . . .
be the unique block-path of infinite length in Γ starting at v. Recall from

Subsection 2.4.2 that, for each i ≥ 1, pi denotes the cut vertex between Ci
and Ci+1, and that D(pi) denotes the subgraph of Γ consisting of the union of

all finite connected components remaining when removing pi, together with pi.

Finally, recall that di denotes the number of vertices in D(pi).

Theorem 8.1.1: Let (Γ, v) be an infinite one-ended cactus rooted at v. Let

{Hn}n≥1 be an exhaustion of (Γ, v) as in Convention 2.4.5 and, for any n ≥ 1,

let p(n) be the dissipative vertex in Hn. Denote by CPn
v = C1 . . .Crn ⊂ CPv the

finite block-path in Hn joining vertex v to p(n). Suppose that
∑rn

j=1,|Cj |>2
1

|Cj |
converges as rn → ∞. Suppose moreover that the subgraphs D(pi), i ≥ 1,

satisfy the following requirements:

(1) there exists a constant c > 0 such that, for any i sufficiently large,

Diam(D(pi)) ≤ c|Ci|;
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(2) limi→∞
log di−1

log di
= 1.

Then, for any ε > 0, there exists M0 such that, for any M > M0,

C1 ·M− 2
β′−ε ≤ lim

n→∞Pμn(MavHn(·, v) = M) ≤ C2 ·M− 2
β+ε ,

where

C1, C2 > 0, β := lim sup
i→∞

log di
logDiam(D(pi))

and β′ := lim inf
i→∞

log di
logDiam(D(pi))

.

In particular, if β = β′, then the ASM on the sequence {Hn}n≥1 approxi-

mating (Γ, v) is critical (in the sense of Definition 2.2.2) with critical exponent

equal to δ = 2/β.

Corollary 8.1.2: Let (Γ, v) be as in Theorem 8.1.1. Suppose that Γ has

polynomial growth and that its degree of growth α is given by the quantity

limi→∞ log di

log Diam(D(pi))
. Then the critical exponent δ is related to the growth

degree α of Γ by δ = 2/α.

Proof. From Theorem 2.4.6, for any integer M large enough that occurs as the

mass of an avalanche, we have

(18)
L

2 · |CiM | · |CiM+1| ≤ Pμn(MavHn(·, v) = M) ≤ 2

|CiM | · |CiM+1| ,

where the index iM is uniquely determined by the condition diM−1 ≤M < diM
and 0 < L ≤ 1 is a constant. Applying logarithms to these inequalities and

normalizing, we get

(19)
log diM−1

logDiam(D(piM ))
≤ logM

logDiam(D(piM ))
<

log diM
logDiam(D(piM ))

.

By condition (2), we have

lim inf
M→∞

log diM−1

logDiam(D(piM ))
= lim inf

M→∞
log diM

logDiam(D(piM ))
= β′.

On the other hand, condition (1) implies that for any M sufficiently large,

logM

log (c|CiM |)
≤ logM

logDiam(D(piM ))
≤ logM

log (c̃|CiM |)
(the upper bound follows from the fact that, by definition, Ci ⊂ D(pi) for any

i ≥ 1). Hence, for any ε > 0, there exists M0 such that, for any M > M0,

β′ − ε <
logM

log (c|CiM |)
< β + ε,
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which is equivalent to

1

c
M

1
β+ε < |CiM | <

1

c
M

1
β′−ε .

If we normalize in (19) by log Diam(D(piM+1)), we obtain similarly

1

c
M

1
β+ε < |CiM+1| < 1

c
M

1
β′−ε .

Thus we have

c2M
−2

β′−ε <
1

|CiM | · |CiM+1| < c2M
−2
β+ε

and by inserting in (18), we get the result.

8.2. Examples with arbitrarily small critical exponent. We will now

consider a particular family of self-similar groups of automorphisms of the bi-

nary rooted tree that gives rise to Schreier graphs of bigger and bigger degree

and of bigger and bigger polynomial growth. These graphs satisfy the condi-

tions of our Theorem 8.1.1, and thus provide examples of criticality with critical

exponent arbitrarily close to 0.

The groups we are going to consider are realized as iterated monodromy

groups of quadratic polynomials z2 + c, where the parameter c is chosen to be

the centre of one of the secondary p/q-components of the Mandelbrot set, so

that the critical point 0 of the polynomial z2 + c belongs to a super-attracting

cycle of length q ≥ 2. The case q = 2 corresponds to the Basilica group (see

Figure 2), and the case q = 3 is the so-called Douady rabbit (see Figure 10).

If the orbit of 0 under iterations of the polynomial z2+ c is a finite cycle, one

can associate to the polynomial a kneading automaton Av, where v is a finite

binary word, and the self-similar group K(v) generated by Av is the iterated

monodromy group of z2 + c (see Chapters 6.6–6.11 in [36]). The length of the

word v is equal to the size of the orbit of 0 under iterations of the polynomial.

For a word v = x1x2 . . . xk−1 ∈ {0, 1}k−1, k > 1, the automaton Av has k + 1

states (including the identity state) and its Moore diagram is pictured in Figure

9 (for x ∈ {0, 1}, we write x̄ := 1− x).

Consequently, the generators {a1, . . . , ak} of the group K(v) generated by Av

have the following self-similar structure:

a1 = (0 1)(ak, id), ai+1 =

⎧⎨
⎩e(ai, id) if xi = 0,

e(id, ai) if xi = 1,
for i = 1, . . . , k − 1.
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x1|x1

xi−1|xi−1

x̄i|x̄i
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x̄k−1|x̄k−1

x̄i−1|x̄i−1

Figure 9. The automaton Av corresponding to the word v = x1x2 · · ·xk−1.

We can, for example, consider the family of groups K(0k−1) for k > 1. The

group K(0) is the Basilica group that we have already studied in Sections 5 and

6, whereas K(00) is the group IMG(z2 + c) where c ≈ −0.1225+ 0.7448i. The

Julia set of this group, called the Douady Rabbit, is represented in Figure 10.

For any k > 1, the group K(0k−1) is the iterated monodromy group of a post-

critically finite polynomial and, by Theorem 3.0.2, the Schreier graphs of the

action of K(0k−1) on the levels of the binary rooted tree are cacti. By extending

to the groups K(0k−1), for any k > 1, the analysis done for the Basilica group,

we obtain the following description of the finite Schreier graphs:

Proposition 8.2.1: Let k ≥ 2, and consider the Schreier graphs

Γn := Γ(K(0k−1), {a1, . . . , ak}, {0, 1}n) of the action of K(0k−1) on the levels of

the binary rooted tree. Given ξn ∈ Γn, let CPξn = C1 . . . Crn be the block-path

joining ξn to the vertex 0n in Γn. Then rn ≤ n and the sizes of the blocks of

CPξn are given by |Cj| = 2bj , where the sequence {bj}rnj=1 is a non-decreasing

sequence of positive integers with no constant segments of length greater than

k.
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Figure 10. The Julia set of the Douady Rabbit.

By [12], almost all orbital Schreier graphs

Γξ := Γ(K(0k−1), {a1, . . . , ak},K(0k−1) · ξ)

(with respect to the uniform distribution on the boundary ∂T of the tree) have

one end. Denote by E1 ⊂ ∂T the set of full measure comprising infinite words ξ

such that the corresponding orbital Schreier graph Γξ has one end. For ξ ∈ E1,

as in the case of Basilica one-ended Schreier graphs, the limit limn→∞(CPξn , ξn)

is isomorphic to CPξ, the unique block-path of infinite length in Γξ starting at

ξ. Similarly to Subsection 6.3, for any n ≥ 1, we set p(n) := 0n in Γn to be

dissipative. The infinite graph (Γξ, ξ) is exhausted by the subgraphs Hn that

are isomorphic, for each n, to the connected component of ξn in Γn remaining

when removing vertex 0n, together with 0n (see Remark 2.2.9). Our choice of

subgraphsHn corresponds to Convention 2.4.5. It thus follows from Proposition

8.2.1 that the orbital rooted Schreier graph (Γξ, ξ) satisfies the assumptions of

Theorem 2.4.6.

On the other hand, the orbital Schreier graphs Γξ have polynomial growth,

and by applying an algorithm from [11], we show that the degree of polynomial

growth grows with k (essentially this is due to the fact that the graphs are

2k-regular).
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Proposition 8.2.2: The degree of polynomial growth of the orbital Schreier

graphs Γξ of the action of K(0k−1) on ∂T is at least k/2.

One also verifies that, for almost every ξ ∈ E1, the orbital rooted Schreier

graph (Γξ, ξ) satisfies the assumptions of Theorem 8.1.1 with β = β′ = k, which

then implies the following:

Theorem 8.2.3: For k ≥ 2, the ASM on the sequence {Γn}n≥1 of Schreier

graphs of the action of K(0k−1) is critical in the random weak limit (in the

sense of Definition 2.2.8) with critical exponent δ = 2/k.

Corollary 8.2.4: {K(0k−1)}k≥2 is a family of self-similar groups such that

the ASM on the associated sequences of Schreier graphs is critical in the random

weak limit, and the critical exponent δ > 0 can be arbitrarily small.

Remark 8.2.5: Another quantity related to the size of avalanches, the diameter

of the subgraph spanned by vertices touched by the avalanche, can be studied in

a very similar way to the mass. For all examples of Schreier graphs we consider

in this paper, one can slightly modify the proof of Theorem 2.4.6 to get bounds

for the probability distribution of the diameter of avalanches, instead of the

mass. Since the examples we consider satisfy, almost surely, the assumptions of

Theorem 8.1.1, one can deduce that the critical exponent δ′ > 0 defined with

respect to the diameter of avalanches (see Definition 2.2.2) is related to the

growth degree α of the graph by δ′ = 1/α.

Acknowledgements. Figure 10 is reproduced under the terms of Creative

Commons Attribution-ShareAlike 3.0 license. Figures 1, 3, 4 and 6 were pub-

lished for the first time in [16].
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