
Vis Comput (2014) 30:739–749
DOI 10.1007/s00371-014-0983-9

ORIGINAL ARTICLE

Multimodal composition of the digital patient: a strategy
for the knee articulation

Hon Fai Choi · Andra Chincisan · Matthias Becker ·
Nadia Magnenat-Thalmann

Published online: 8 May 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Creating virtual bodies of real patients and using
them for diagnosis and treatment planning offer the poten-
tial to further empower clinical decision making by med-
ical experts. Virtual patient modeling allows to examine the
mechanical and physiological conditions under which articu-
lations are operating in a variety of activities without putting
the patient in hazard. The continuous scientific progress has
led to an increased range of musculoskeletal data and knowl-
edge being available, covering multiple scales of the muscu-
loskeletal system. A fuller integration of these modalities can
broaden the scientific basis of virtual articulation modeling
in patients, but poses challenges for data fusion and coupling
of simulations. Here, we present a multimodal strategy to
compose virtual models of the knee articulation based on a
complementary spectrum of data that enables simulations on
different scales.

Keywords Virtual human · Medical imaging ·
Segmentation · Multiscale modeling

1 Introduction

Clinical examinations and treatment planning for muscu-
loskeletal disorders (MSD) predominantly depend on the

H. F. Choi (B) · A. Chincisan · M. Becker · N. Magnenat-Thalmann
MIRALab, University of Geneva, Geneva, Switzerland
e-mail: choi@miralab.ch

A. Chincisan
e-mail: chincisan@miralab.ch

M. Becker
e-mail: becker@miralab.ch

N. Magnenat-Thalmann
e-mail: thalmann@miralab.ch

physician’s personnel experience, training and interpretation
of general guidelines. Medical assessment is often based on
subjective scoring indices [1], which often does not allow to
reliably differentiate underlying causes. Therefore, further
investigation and development of quantitative and patient-
specific methodologies to extract deeper information from
medical data are of paramount importance. This is particu-
larly compelling for the knee, which is the largest weight-
bearing joint in the human body, sustaining relative large
loads even during daily ambulatory activities. Moreover, the
articulation surfaces are incongruent, such that the dynamics
and stability are heavily dependent on the mechanical syn-
ergy of the soft tissues, making the knee joint particularly
susceptible to injury and arthritis [2].

Virtual patient modeling using principles of mechanics
can help provide a deductive means not only to better under-
stand MSD but also to assist clinicians. In order to ensure
that the assessment is pertinent to the patient’s case, con-
struction of the virtual model should rely on personalized
medical data as much as possible. However, it is a challeng-
ing endeavor to process all data modalities and individualize
all aspects of the musculoskeletal system in a single mod-
eling framework. Therefore, modeling approaches are often
focused on the input of the modality that is most relevant for
the application envisioned, while relying on approximations
to substitute for other aspects. Only recently have modeling
workflows emerged that incorporate a multimodal strategy
to maximize the subject-specific content by exploiting mul-
tiple modalities simultaneously [3,4]. However, the advance-
ment of musculoskeletal research has resulted in an expan-
sion of data acquisition methods that can further empower
virtual patient modeling, ranging from imaging techniques
that allow for functional examination [5] to microscale tis-
sue testing and cellular characterization of MSD [6]. There-
fore, the motivation for this paper is to present a modeling
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Fig. 1 Overview of the
multimodal workflow
combining subject-specific
(blue) and experimental (green)
data to construct models on
different levels as input to
macro- and microscale
simulations

workflow focusing on the knee articulation that takes further
advantage of the wide spectrum of available musculoskeletal
data, allowing to explore simulations on different scales as
illustrated in Fig. 1. In the following, the existing work is first
broadly reviewed, followed by a description of the method-
ological integration in the proposed multimodal workflow.
Then, a prospective case study demonstrating the value for
medical application is presented. Future developments and
perspectives are discussed in the conclusion.

2 Related work

2.1 Anatomical modeling

Medical imaging has become a cornerstone in clinical rou-
tine practice, requiring robust computational segmentation
procedures for morphological analysis. Deformable models
play an important role in medical image segmentation due
to their flexibility, robustness and the possibility to adapt
model properties. Bredno et al. [7] provide an overview of
the typical structure, common components and a discussion
of common pitfalls of deformable models. A survey of med-
ical image segmentation using deformable models can be
found in, e.g. [8].

An approach to increase robustness and correctness is to
perform segmentation based on multi-channel images. For
example, Chang et al. [9] presented an active contour model
for vector images and demonstrated it on RGB color images.
Similar concepts can be translated to procedures for multi-
channel magnetic resonance imaging (MRI) segmentation,
for which early work has considered the combination of T1,
T2 and proton density (PD) weighted images. More recently,
Angelini et al. [10] have devised a statistical hybrid approach
which was demonstrated with the Visible Human data set and

multi-protocol MRI volumes of the brain. Pauly et al. have
used regression and multi-atlas approaches for multi-channel
dixon images for organ localization, while segmentation of
MS lesions in multi-channel MR images based on spatial
decision forests was considered by Geremia et al. [11].

For musculoskeletal applications, muscle segmentation
in MRI images has proven to be a particularly complex
task because of the low contrast between adjacent muscles.
Existing approaches all invoke prior knowledge as a statis-
tical model to account for inter-subject variations to cope
with the contrast problem. Amongst others, an approach
based on multi-resolution deformable models has been con-
sidered [12], while Baudin et al. [13] presented a method
that uses random walks for thigh muscle segmentation.
Incorporation of multi-channel data can provide additional
constraints, but has not been considered yet for muscle
segmentation.

2.2 Dynamical modeling

In biomedical applications, simulations of human muscu-
loskeletal dynamics are most commonly performed using
multi-body models in which the musculoskeletal system is
represented as rigid segments which articulate in connecting
joints and are actuated on by muscle forces [14]. To keep the
computational cost manageable, joints are modeled with ide-
alized geometries, while the musculotendon units are defined
as series of line segments that represent their effective lines
of action by approximating the centroidal path between the
muscle attachments [14]. Construction of the musculoskele-
tal model typically depends on scaling of a generic model
that is based on average anthropomorphic measurements in
cadavers according to body segment dimensions of the indi-
vidual. Alternatively, MRI data can be used to construct the
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model from the 3D anatomy of bones and muscles, which
allows to incorporate details such as bone deformities, result-
ing in more accurate subject-specific models [2,4].

The simplifications made in multi-body models are not
always adequate. When medical evaluation focuses on a sin-
gle joint or muscle, more realistic modeling and simulation
are required to increase the physical and mechanical details.
Therefore, physically based approaches have been investi-
gated to utilize continuum mechanics formulations for sim-
ulations of volumetric muscle deformation to account for
the changing muscle geometry during contraction. Predicting
the deformation allows to assess the internal displacements
inside the muscle, which is difficult to measure experimen-
tally. Several numerical approaches exist to solve the result-
ing partial differential equations, of which the finite element
(FE) method has been widely adopted [15]. Subject-specific
modeling approaches based on medical imaging have been
proposed recently in, e.g. [16,17]. However, subject-specific
FE simulation studies of muscle function so far have only
considered simple prescribed joint motions as boundary con-
ditions [16,18], while distributions of activation level has
been typically assumed to be uniform [16] or approximated
from surface electromyogram (EMG) measurements [18].

2.3 Knee joint modeling

The knee joint plays an important role in body movement,
involving multiple interactions between bones, cartilages,
menisci, ligaments, tendons and muscles. FE analysis has
been extensively used in the past years to understand and
predict biomechanical behavior of knee articulation using
3D computational models. Several constitutive models as
proposed in, e.g. [19,20] have been developed to simu-
late and investigate the mechanical response of the soft
tissues in the knee (e.g. menisci, cartilage or ligaments).
These studies typically use a generic anatomical knee model
to demonstrate the stress–strain relationships for idealized
kinematics that represent the range of motion during motor
tasks.

Only a limited number of studies such as [21,22] have
been dedicated to FE knee models that combine both subject-
specific anatomy and kinematical measurements. This is in
part due to the time- and work-intensive process that is
needed to create a complete subject-specific model, compris-
ing medical image segmentation, volumetric meshing and
acquisition of kinematics data. Despite many studies report-
ing on the knee joint, the combined mechanical behavior
of knee components during normal and pathological move-
ments has not been fully uncovered, limiting the medical
applications. Moreover, a 3D subject-specific model that
considers both the connective soft tissues and muscles has
not been yet presented in the literature. However, a com-
plete understanding of the knee joint functionality needs to

address and correlate different biological scales, from cellu-
lar to organ level, especially when considering pathological
progression. Recently, a multiscale modeling approach was
proposed to investigate the coupling between macroscopic
joint articulation and the microscopic deformations of chon-
drocyte cells in the cartilage [23]. The proposed method con-
sidered continuum FE models for both the articulation model
and a tissue model with embedded chondrocyte cells, but did
not account for stochastic cellular processes.

3 Multimodal physiological model of knee articulation

Simulation of physiological joint articulation encompasses a
combination of anatomical, kinematical and physical mod-
eling, which allows to identify underlying relations. This
is exemplified by previous research efforts at MIRALab,
which have culminated in an innovative modeling work-
flow to reconstruct subject-specific 3D articulations of the
hip joint and analyze and visualize the functional implica-
tions during large movements [3]. In summary, the work-
flow starts from the segmentation of bones and soft tissues
in MRI acquisitions, for which an efficient approach was
developed based on dynamic deformable models. The seg-
mented bone structures (femur and pelvis) are subsequently
registered with body scan and optical motion capture data.
This allows to compute the joint motion from the marker
movements, for which a robust soft tissue artifacts (STA)
correction algorithm was devised that accounts for geomet-
rical constraints to avoid non-physiological dislocation and
bone penetration. The reconstructed joint kinematics form
the input to calculate the deformation and mechanical stress
in the surrounding cartilage structures in FE simulations
using a fast and accurate first-order corotational scheme. As a
result, this modeling workflow allowed to detect the hip joint
regions most affected by collisions and high cartilage stress
in professional dancers, which correlated with radiological
analyzes.

This modeling workflow demonstrates how integration
between data modalities combined with virtual simulations
can enhance medical profiling of patients. However, physio-
logical content of the virtual articulation model can be fur-
ther enhanced by increasing the spectrum of data modali-
ties, but this poses challenges related to data fusion and cou-
pling between simulations. Here, we present a multimodal
approach focusing on the knee articulation that infuses addi-
tional data modalities not considered previously. As shown in
Fig. 1, the broad spectrum of modalities provides a comple-
mentary mix of subject-specific data acquisitions performed
in clinical practice and detailed experimental measurements.
In the next sections, the synergy between the different modal-
ities in the construction of virtual models of knee articulation
on different scales is described.
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Fig. 2 The complete pipeline for acquisition and post-processing of multi-channel MRI images. Acquisition is followed by consecutive filtering
steps to separate air, fat and muscles

3.1 Anatomical modeling

The differences in appearances and contrast obtained with
different MRI protocols can potentially be used to enhance
deformable model segmentation. Therefore, we consider two
type of imaging sequences, T1 Turbo Spin Echo (TSE) and
mDixon to acquire images of the lower limbs. As shown
in Fig. 2, six different channels are obtained. The scans give
different magnitude-based images from mDixon and T1/TSE
sequence. The mDixon magnitude images are the in-phase
image II, the opposed-phase image IO, the fat image IF and
the water image IW. The T1/TSE scan produces an magnitude
image IM and a phase image IP.

The resulting multi-channel MRI data sets pose consider-
able challenges in terms of efficient managing of data flows
during segmentation calculations which are not specifically
considered in current systems for medical image segmenta-
tion research. Therefore, a dedicated computational frame-
work for multi-channel deformable model segmentation was
implemented that builds upon current state-of-the-art open
source software packages. The framework has supporting
mechanism for model loading and handling using the Open-
Mesh library1. The image processing component is based on
ITK2, which provides many advanced filtering algorithms
and has special features to load multiple image sets and to
perform calculations. An interface layer was created using
the Lua language to make the complete framework script-
able, which allows for fast changes and the integration into
more complex setups.

The segmentation process of the muscles consist of
deforming a generic mesh model into the shape of the mus-
cle using appropriate image forces. A combination of dif-

1 http://www.openmesh.org.
2 http://www.itk.org.

Fig. 3 Overview of the main components of the iteration process of
the deformable model comprising forces calculation and deformation
simulation. A dedicated framework allows for an efficient integration
between the different components

ferent forces is used: growing forces along mesh normals
to prevent model stagnation at low image information areas
and smoothing forces that impose continuity and curvature
constraints. The actual image information can be exploited
using gradients, intensity profiles and texture information.
In our approach we combine the acquired images (II, IO,
IF, IW, IM, IP) as input to simultaneously compose multi-
channel image force based on the differences in image visi-
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bility. The deformable model segmentation process has two
main components: The construction of forces that guide the
deformation and the integration in a simulation to balance
these forces. The iterative process is shown in Fig. 3. The
force balancing in the simulation part deforms the mesh
models as soft bodies and manages properties like stiffness,
damping and general shape preservation. Collision detection
plays an important role as many of the muscles are touching
each other. In our deformable model framework, algorithms
from the Bullet Physics3 engine for physical simulations are
implemented to manage the multiple collision detections effi-
ciently.

3.2 Soft tissue fiber modeling

A multimodal strategy for the physical simulation of joint
articulation involves a coupling of subject-specific anatom-
ical models with biomechanical models of the tissue mate-
rial behavior. The material laws are typically described in
local coordinate systems with reference to microstructural
directions of material anisotropy. In the musculoskeletal soft
tissues such as muscles, tendons, ligaments and menisci,
the anisotropy is determined by the orientations of the fiber
bundles. The trajectories of these bundles define the force
directions in muscles while reinforcing the tensile strength
in the connective tissue structures. Therefore, an adequate
representation of the fiber arrangement within the anatomical
model is required to enable realistic simulations of deforma-
tion.

Because in vivo 3D measurements are difficult the achieve,
computational approaches have been devised to construct
mathematical representations of fiber bundle arrangements
in 3D anatomical models for physical simulations. Different
methods were proposed with application for muscles [16,17],
ligaments [24] and menisci [25]. However, most of these
approaches involve geometrical simplifications or assump-
tions pertaining to the anatomical shape of a specific tissue
organ, such that the proposed methods are difficult to general-
ize for the variability in soft tissue anatomy. Consequently, a
multimodal construction of the knee joint articulation which
involves multiple soft tissues would require the implementa-
tion of plural methods based on disparate numerical concepts
which is impractical to manage. The main musculoskeletal
soft tissues share a common hierarchical bundled organiza-
tion of fibers running between attachments, which has phys-
ical properties that can be represented by a Laplacian vector
field as demonstrated for skeletal muscles [26]. Therefore,
we propose to extend the application of the Laplacian based
approach as a collective methodological basis to model the
3D fiber arrangements in anatomical models of the various
musculoskeletal soft tissues.

3 http://bulletphysics.org/.

The Laplacian method involves solving the differential
Laplace equation in the anatomical model which requires the
generation of a volumetric mesh as for the construction of a
FE model. The attachment areas are indicated on the surface
and a uniform flux can be applied as Neumann boundary con-
ditions, which allows for the generation of physically plau-
sible fiber directions in the absence of experimental data as
demonstrated in skeletal muscle models in [26]. Solutions of
the fiber orientation vectors can be obtained using common
finite element or finite volume methods, but the latter also cal-
culates the corresponding element flux values in the mesh.
This allows for a robust tracing of the fiber bundle trajectories
between the attachments, contrary to tracing methods based
on vector interpolation.

Some tissues are characterized by multiple fiber fami-
lies. In the knee menisci, for example, the fibers are orga-
nized in circumferential bundles, with sparse bundles in the
radial directions. Therefore, meniscus tissue is often modeled
as an orthotropic material, which requires the definition of
three perpendicular directions that reflects the multiple fiber
anisotropy. The definition of the circumferential and radial
fiber orientations can be obtained by applying the Lapla-
cian method with the attachments defined at, respectively, the
horns of the menisci and at the internal and external surfaces
as illustrated in Fig. 4 (indicated in red and green, respec-
tively).

The feasibility of the Laplacian approach to generate fiber
trajectories in anatomical models of the wide range of muscu-
loskeletal soft tissue structures is illustrated in Fig. 4. There-
fore, it can provide a collective methodological basis that
allows for a comprehensive implementation, which benefits
from fast solving strategies for the linear Laplace equation.
This is particularly useful for surgical simulators which are
valuable additions to traditional teaching methods, but cur-
rently available devices require further enhancement of the
realism in the soft tissue behavior, which can be achieved by
incorporating representations of fiber orientations to model
the anisotropy. In future steps, the Laplacian approach can be
further developed through detailed comparison with subject-
specific measurements, when a reference method or data set
has been established, allowing for optimizing the boundary
conditions at the attachment areas to match or smooth exper-
imental data.

3.3 Dynamic joint articulation modeling

Physical simulation of joint articulation requires the defini-
tion of external forces as boundary conditions. A common
approach is to estimate muscle and joint reaction forces in
dynamic simulations based on multi-body models [14], lim-
iting the muscle action to discrete point locations. However,
this only gives adequate approximations for muscles with
narrow tendon insertions. Anatomical 3D representations are
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Fig. 4 Fiber trajectories
generated with the Laplacian
based approach as demonstrated
in examples of multiple
musculoskeletal soft tissues

Fig. 5 Overview of the multimodal strategy for a dynamic knee articulation model. Volumetric FE representations of the large anterior quadriceps
muscles with broad attachments are combined with multi-body line-action representations of the posterior hamstring muscles

more suited for muscles with broad attachments, but require
computationally expensive methods such as FE to calculate
the deformation and forces. Therefore, we propose an inter-
mediate solution that accounts for muscles with narrow inser-
tions using action-line representations while large muscles
with broad attachments are incorporated through FE volu-
metric models, as illustrated in Fig. 5.

However, volumetric models require multidimensional
input data to be used effectively. To obtain input of subject-
specific dynamical behavior, we consider a fusion with
dynamic cine-MRI and positron emission tomography (PET)
images to extract input parameters needed for simulations
of volumetric muscle contraction (Fig. 1). Cine-MRI allows
to visualize muscle deformation in the scanner, but only in
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Fig. 6 Overview of the proposed workflow for constitutive modeling
of knee cartilage and menisci tissue. Microscale tissue measurements
allow for the construction of compartmental models with heteroge-
neous material parameters for physical simulations of mechanical stress

and strain during articulation. Cellular measurements provide input for
microscale models of cellular interactions that determine the evolution
of diseased tissue behavior, resulting in changes of material parameters
as feedback to the physical simulations

2D imaging planes to enable sufficient acquisition speed.
Therefore, registration with segmentations from static MR
images is required to extrapolate 3D deformation data, which
can be used to optimize model parameters and for valida-
tion. PET imaging allows to measure volumetric distributions
of metabolic activity in muscles after exercise [5]. Conse-
quently, PET measurements offer the possibility to charac-
terize the muscle activation levels in regional detail suitable
for volumetric models. However, PET imaging does not give
information about the temporal activation profile, which can
be extracted from the EMG signals.

Input of subject-specific 3D knee kinematics remains dif-
ficult to acquire. The knee joint is a diarthrodal articula-
tion that is only lightly constrained by the bone geometry,
such that contact-based STA correction algorithms is likely
less efficient than as demonstrated for the hip joint [3]. A
potential solution is to combine cluster fitting of motion
capture data with in vitro measurements of 3D knee kine-
matics, which provides a statistical constraint determined
by the inter-subject variability. Additionally, these measure-
ments provide a surrogate for subject-specific models in
case the mobility is restricted in patients as illustrated in
Sect. 4.

3.4 Constitutive soft tissue modeling

The majority of modeling studies rely on measurements
obtained from experimental mechanical testing of in vitro
cadaver or animal tissue samples to characterize the consti-
tutive or material parameters [27]. These experiments typ-
ically quantify the macroscopic behavior of the soft tissue,
assuming an overall uniform material behavior. However,

the structural organization in biological soft tissues is com-
monly characterized by heterogeneous composition, which
reflects the non-uniformity in mechanical loading condi-
tions occurring during joint articulation. Accounting for this
heterogeneity will provide a more detailed characterization
of the local mechanical environment in different soft-tissue
regions, which enables a more precise localization of high
stress regions. This can be achieved by microscopic mea-
surements (nano-indentation, dynamic mechanical analysis
(DMA)) [6] to characterize the regional variations in mater-
ial parameters. To incorporate these measurements, compart-
mental models of knee cartilage and menisci are developed
with a subdivision according to clinical standard, such that
locally measured material parameters can be assigned to each
segment (Fig. 6). As such, physical simulations performed in
these models allow to relate the local mechanical stress and
strain to the distributions of cells and biomolecules in the
different compartments. However, the mechanical properties
will evolve during disease progression as determined by the
physiological processes mediated by the cells in response
to the mechanical loading. Indeed, the local tissue defor-
mation influences a wide range of fundamental cell behav-
iors such as inflammation, proliferation or secretion of tissue
matrix components such as collagen [6]. Therefore, introduc-
ing data of the cellular mechanobiology provides a means to
construct predictive analyses that can aid in the prognosis
of disease progression. To achieve this aim, stochastic rule-
based methods as utilized in crowd simulations [28] provide
a promising approach to model the microscale interactions
between cells, molecules and therapeutic agents while offer-
ing a flexible solution to couple with the macroscale joint
articulation simulations in a feedback loop as illustrated in
Fig. 6.
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4 Case study: knee stability analysis

The ligaments have a major role in stabilizing the knee to
ensure physiologic knee kinematics. The four major liga-
ments are anterior cruciate ligament (ACL), posterior cruci-
ate ligament (PCL), medial collateral ligament (MCL) and
lateral collateral ligament (LCL). A good understanding of
the mechanical coordination between the knee ligaments is
of great importance for preventing and treating ligament
injuries. The objective of this study is to investigate whether a
3D finite element model reconstructed from MRI data (Fig. 7)
combined with experimental in vitro data provides a suit-
able tool to evaluate this mechanical coordination as a virtual
instrument for preoperative planning in ligaments surgery.

The model included the bony structures (femur, tibia,
fibula) and all four major ligaments. The ligament segmen-
tations were converted in tetrahedral volumetric meshes,
while the bones were represented as rigid triangular poly-
gon meshes. The ligaments were modeled as transversely
isotropic hyperelastic Mooney–Rivlin behavior incorporat-
ing the fiber structure, which were generated with the Lapla-
cian approach [26]. Simulations of knee stability were per-

Fig. 7 High-resolution MRI image of the knee, with indication of the
cruciate ligaments

formed using the open source FEBio (v1.6) simulation envi-
ronment [29].

Validation of the FE Model was performed by comparing
in vitro measurements of anterior–posterior tibia translation
kinematics with the translations predicted by the computa-
tional model.

The tibial reaction force in relation to the displacement
in the anterior/posterior direction is shown in Fig. 8, which
demonstrates a close agreement between the FE simulation
results and the experimental measurements. Assessment of
the mechanical stresses in the ligaments system under vary-
ing kinematical cases were investigated which included flex-
ion from 0◦ to 45◦ (Flex) and internal rotation from 0◦ to 15◦
(IR).

These rotations were applied in the origin of the femur
coordinate system and were in the physiologic range of walk-
ing [30]. The fiber strain was calculated in all cases to quan-
tify the mechanical loading, of which the peak values under
various angles are shown in Fig. 9c, d. In case of flexion,
the highest value of the fiber strain was found for the MCL
(around 0.31), suggesting that the MCL is the primary liga-
ment to insure stability during flexion. During internal rota-
tion, the fiber strain values were approximately three times
lower compared to the values occurring during flexion. The
highest fiber strain values (around 0.1) appeared in the collat-
eral ligaments, responsible for the lateral knee stability. The
highest values of fiber strain can be observed in the MCL,
while the second ligament that supported internal/external
rotations was found to be the LCL. Figure 9 also shows the
main ligament stabilizers for each rotation: MCL is the main
contributor for flexion while both MCL and LCL are impor-
tant for internal rotation.

This study demonstrates that in vitro measurements pro-
vide a useful calibration for FE models in surgical plan-
ning and rehabilitation strategies. The anterior–posterior tib-
ial translation as a measure of knee laxity is an important

Fig. 8 Tibial force versus
anterior/posterior displacement
in two in vitro cadaver
experiments (S1 and S2) and
simulated in the 3D FE model
(FEM)
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Fig. 9 FE simulations of fiber strain for flexion (Flex) and internal rotation (IR): a rotation orientations; b example of fiber strain distributions
during flexion; peak fiber strains for c flexion and d internal rotation

medical indicator for the evaluation of knee instability [31].
The simulation results also demonstrate the mechanical load-
ing interaction between all major knee ligaments under vary-
ing kinematical rotations, which has not yet been considered
in detail previously. As illustrated in Fig. 9, the mechani-
cal relations between the ligaments depends strongly on the
range of knee rotations. To enable a comparison with results
in previous studies, The motions have been varied separately.
For surgical application, combinations of these motions can
be systematically simulated to obtain a full kinematical map
of the peak mechanical stresses for each ligament, allow-
ing to detect the range of motion that imposes the most risk
for further knee destabilization and injury. This information
will allow the surgeon to refine the diagnosis and restore the
primary function in the ligaments more effectively.

5 Conclusion and future work

The creation of virtual models of human articulation that can
support medical diagnosis and treatment of musculoskele-
tal disorders remains a difficult challenge. Nowadays, physi-
cians have a multitude of acquisition methods at their disposal
for medical profiling of a patient’s condition, but a determin-
istic approach for individual prognosis of treatment outcome
or disease progression has not yet been reliably achieved.
Evaluation through simulations in a virtual patient model
provides a valuable instrument that can aid in achieving this
goal, but requires investigation of approaches that can inte-
grate data from multiple domains effectively to leverage the
coupling between models of mechanical and physiological
processes on different scales. In this work, we presented a
multimodal strategy for virtual modeling of knee articula-
tion that takes advantage of a complementary spectrum of
data acquisitions, covering non-invasive subject-specific data
from medical modalities, as well as experimental measure-
ments to assess parameters that are difficult to determine in

clinical practice. As demonstrated in a case study of knee
stability evaluation, a multimodal approach offers extended
opportunities for model validation and verification, which
has to be considered carefully for medical applications. In
future steps, the coupling between multiscale simulations
will be further explored to investigate how the propagation of
feedback between stochastic models of cellular processes and
mechanical simulations of knee joint articulation can provide
a scientific basis for prognosis of disease progression.

Acknowledgments This work has been funded by the EU FP7 Marie-
Curie ITN project MultiScaleHuman under Grant number 289897. We
thank the University Hospital of Geneva in Switzerland, for providing
the medical images, and the biomechanics laboratory LBB-MHH of
the medical school in Hanover, Germany, for the experimental data of
knee displacement. One of the authors, Nadia Magnenat Thalmann, is
grateful to Humboldt Foundation to have allowed her to spend some
time in Germany for collaboration with LBB-MHH and the Leibniz
University in Hanover.

References

1. Rossi, R., Dettoni, F., Bruzzone, M., Cottino, U., D’Elicio, D.G.,
Bonasia, D.E.: Clinical examination of the knee: know your tools
for diagnosis of knee injuries. BMC Sports Sci. Med. Rehabil. 3(1),
25 (2011)

2. Viceconti, M., Testi, D., Taddei, F., Martelli, S., Clapworthy, G.,
Jan, S.: Biomechanics modeling of the musculoskeletal apparatus:
status and key issues. Proc. IEEE 94(4), 725–739 (2006)

3. Magnenat-Thalmann, N., Schmid, J., Assassi, L., Volino, P.: A
comprehensive methodology to visualize articulations for the phys-
iological human. In: 2010 International Conference on Cyber-
worlds (CW), pp. 1–8 (2010)

4. Scheys, L., Desloovere, K., Spaepen, A., Suetens, P., Jonkers, I.:
Calculating gait kinematics using MR-based kinematic models.
Gait Posture 33(2), 158–164 (2011)

5. Kalliokoski, K.K., Boushel, R., Langberg, H., Scheede-Bergdahl,
C., Ryberg, A.K., Dossing, S., Kjaer, A., Kjaer, M.: Differential glu-
cose uptake in quadriceps and other leg muscles during one-legged
dynamic submaximal knee-extension exercise. Front Physiol. 2, 75
(2011). doi:10.3389/fphys.2011.00075

123

http://dx.doi.org/10.3389/fphys.2011.00075


748 H. F. Choi et al.

6. McKee, C.T., Last, J.A., Russell, P., Murphy, C.J.: Indentation ver-
sus tensile measurements of young’s modulus for soft biological
tissues. Tissue Eng. Part B. Rev. 17(3), 155–164 (2011)

7. Bredno, J., Lehmann, T.M.T., Spitzer, K.: A general discrete
contour model in two, three, and four dimensions for topology-
adaptive multichannel segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 25(5), 550–563 (2003)

8. Becker, M., Magnenat-Thalmann, N.: Deformable Models in Med-
ical Image Segmentation. In: 3D Multiscale Physiological Human,
1st edn., chap. 4, pp. 81–106. Springer-Verlag, London (2014)

9. Chan, T.F., Sandberg, B., Vese, L.A.: Active contours without edges
for vector-valued images. J. Vis. Commun. Image Represent. 11(2),
130–141 (2000)

10. Angelini, E.D., Imielinska, C., Jin, Y., Laine, A.F.: Improving
statistics for hybrid segmentation of high-resolution multichannel
images. In: Medical Imaging 2002: Image Processing, vol. 4684,
pp. 401–411 (2002)

11. Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A.,
Ayache, N.: Spatial decision forests for MS lesion segmentation
in multi-channel MR images. In: Proceedings MICCAI 2010, pp.
111–118. Springer, Berlin Heidelberg (2010)

12. Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI seg-
mentation using multi-resolution simplex meshes with medial rep-
resentations. Med. Image Anal. 14(3), 291–302 (2010)

13. Baudin, P.Y., Azzabou, N., Carlier, P.G., Paragios, N.: Prior knowl-
edge, random walks and human skeletal muscle segmentation. In:
Proceedings MICCAI 2012, pp. 569–576. Springer, Berlin Heidel-
berg (2012)

14. Pandy, M.G., Andriacchi, T.P.: Muscle and joint function in human
locomotion. Ann. Rev. Biomed. Eng. 12(1), 401–433 (2010)

15. Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: Modeling
and simulation of skeletal muscle for computer graphics: a survey.
Found Trends Comput. Graph. Vis. 7(4), 229–276 (2012)

16. Blemker, S.S., Delp, S.L.: Three-dimensional representation of
complex muscle architectures and geometries. Ann. Biomed. Eng.
33(5), 661–673 (2005)

17. Maurice, X., Sandholm, A., Pronost, N., Boulic, R., Thalmann,
D.: A subject-specific software solution for the modeling and the
visualization of muscles deformations. Vis. Comput. 25(9), 835–
842 (2009)

18. Fernandez, J.W., Hunter, P.J.: An anatomically based patient-
specific finite element model of patella articulation: towards a diag-
nostic tool. Biomech. Model Mechanobiol. 4(1), 20–38 (2005)

19. Pena, E., Calvo, B., Martínez, M., Doblaré, M.: A three-
dimensional finite element analysis of the combined behavior of
ligaments and menisci in the healthy human knee joint. J. Bio-
mech. 39(9), 1686–1701 (2006)

20. John, D., Pinisetty, D., Gupta, N.: Image based model develop-
ment and analysis of the human knee joint. Biomedical Imaging and
Computational Modeling in Biomechanics. Lecture Notes in Com-
putational Vision and Biomechanics, vol. 4, pp. 55–79. Springer,
Netherlands (2013)

21. Yang, N.H., Nayeb-Hashemi, H., Canavan, P.K., Vaziri, A.: Effect
of frontal plane tibiofemoral angle on the stress and strain at the
knee cartilage during the stance phase of gait. J. Orthop. Res.
28(12), 1539–1547 (2010)

22. Shim, V., Mithraratne, K., Anderson, I., Hunter, P.: Simulating in-
vivo knee kinetics and kinematics of tibio-femoral articulation with
a subject-specific finite element model. In: World Congress on
Medical Physics and Biomedical Engineering, IFMBE Proceed-
ings 25(4), 2315–2318 (2010)

23. Sibole, S.C., Erdemir, A.: Chondrocyte deformations as a func-
tion of tibiofemoral joint loading predicted by a generalized high-
throughput pipeline of multi-scale simulations. PLoS One 7(5),
e37538 (2012)

24. Heimann, T., Chung, F., Lamecker, H., Delingette, H.: Subject-
specific ligament models: Toward real-time simulation of the knee
joint. In: Computational Biomechanics for Medicine, pp. 107–119.
Springer, New York (2010)

25. Erdemir, A.: Open knee: a pathway to community driven modeling
and simulation in joint biomechanics. In: Proceedings ASME/FDA
2013 1st Annual Frontiers in Medical Devices. Washington, DC,
USA (2013)

26. Choi, H.F., Blemker, S.S.: Skeletal muscle fascicle arrangements
can be reconstructed using a laplacian vector field simulation. Plos
One 8(10), e77576 (2013)

27. Kazemi, M., Dabiri, Y., Li, L.P.: Recent advances in computational
mechanics of the human knee joint. Comput. Math. Methods. Med.
2013 (2013). doi:10.1155/2013/718423

28. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individ-
ual agents in high-density crowd simulation. In: Proceedings 2007
ACM SIGGRAPH/Eurographics Symposium on Computer, Ani-
mation, pp. 99–108 (2007)

29. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite
elements for biomechanics. J. Biomech. Eng. 134, 011005–1,
011005–10 (2013)

30. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement
of lower extremity kinematics during level walking. J. Orthop. Res.
8(3), 383–392 (1990)

31. Kupper, J., Loitz-Ramage, B., Corr, D., Hart, D., Ronsky, J.: Mea-
suring knee joint laxity: a review of applicable models and the need
for new approaches to minimize variability. Clin. Biomech. 22(1),
1–13 (2007)

Hon Fai Choi is a postdoc-
toral researcher in MIRALab
at the University of Geneva in
Switzerland, currently working
on the European FP7 Marie-
Curie MultiScaleHuman project.
He received a M.Sc. in biology
(2006) from Ghent University
and a M.Sc. in physics (2002) and
a Ph.D. in biomedical sciences
(2011) from the Catholic Uni-
versity of Leuven in Belgium.
He was a BAEF postdoctoral fel-
low at the University of Virginia,
USA, in 2012. His research focus

is on computational musculoskeletal modeling, with an emphasis on
muscle biomechanics.

Andra Chincisan received a
M.Sc. in Multimedia Technolo-
gies (2012) and a B.Sc. in IT
and Telecommunications (2010)
from the Technical University of
Cluj-Napoca, Romania. She is
a Ph.D. candidate and research
assistant in MIRALab at the
University of Geneva, Switzer-
land. She is currently working on
the European FP7 Marie Curie
MultiScaleHuman project. Her
research is focused on muscu-
loskeletal modeling of human
articulations.

123

http://dx.doi.org/10.1155/2013/718423


Multimodal composition of the digital patient 749

Matthias Becker is a Ph.D. can-
didate and research assistant in
Computer Science at MIRALab
at the University of Geneva.
He obtained his M.Sc. in Com-
puter Science from the Leibniz
Universität Hannover, Germany,
in 2011. His research interests
include medical imaging tech-
niques, image filtering, segmen-
tation, and deformable models.
He currently works on the EU
FP7 Marie Curie research project
MultiScaleHuman.

Nadia Magnenat-Thalmann has
pioneered Virtual Humans
research over the past 30 years
with over 500 publications. She
obtained degrees in various dis-
ciplines and a PhD in Quantum
Physics from the University of
Geneva. From 1977 to 1988, she
was a Professor at the University
of Montreal. Since 1989, she has
been Professor at the University
of Geneva creating the interdis-
ciplinary MIRALab. During her
career, she has received numer-
ous distinctions, recently, several

Dr. Honoris Causa (Ottawa, Canada and Leibniz University of Han-
nover), the Eurographics Career Award and the Humboldt Research
Award. She is Editor-in-Chief of The Visual Computer Journal pub-
lished by Springer, and a life member of the Swiss Academy of Engi-
neering Science.

123


	Multimodal composition of the digital patient: a strategy  for the knee articulation
	Abstract 
	1 Introduction
	2 Related work
	2.1 Anatomical modeling
	2.2 Dynamical modeling
	2.3 Knee joint modeling

	3 Multimodal physiological model of knee articulation
	3.1 Anatomical modeling
	3.2 Soft tissue fiber modeling
	3.3 Dynamic joint articulation modeling
	3.4 Constitutive soft tissue modeling

	4 Case study: knee stability analysis
	5 Conclusion and future work
	Acknowledgments
	References


