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Abstract Moving data between processes has often been discussed as one of the
major bottlenecks in parallel computing—there is a large body of research, striving
to improve communication latency and bandwidth on different networks, measured
with ping-pong benchmarks of different message sizes. In practice, the data to be
communicated generally originates from application data structures and needs to be
serialized before communicating it over serial network channels. This serialization
is often done by explicitly copying the data to communication buffers. The message
passing interface (MPI) standard defines derived datatypes to allow zero-copy for-
mulations of non-contiguous data access patterns. However, many applications still
choose to implement manual pack/unpack loops, partly because they are more efficient
than some MPI implementations. MPI implementers on the other hand do not have
good benchmarks that represent important application access patterns. We demon-
strate that the data serialization can consume up to 80 % of the total communication
overhead for important applications. This indicates that most of the current research
on optimizing serial network transfer times may be targeted at the smaller fraction
of the communication overhead. To support the scientific community, we extracted
the send/recv-buffer access patterns of a representative set of scientific applications to
build a benchmark that includes serialization and communication of application data
and thus reflects all communication overheads. This can be used like traditional ping-
pong benchmarks to determine the holistic communication latency and bandwidth
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as observed by an application. It supports serialization loops in C and Fortran as
well as MPI datatypes for representative application access patterns. Our benchmark,
consisting of seven micro-applications, unveils significant performance discrepancies
between the MPI datatype implementations of state of the art MPI implementations.
Our micro-applications aim to provide a standard benchmark for MPI datatype imple-
mentations to guide optimizations similarly to the established benchmarks SPEC CPU
and Livermore Loops.

Keywords MPI datatypes · Benchmark · Data movement · Access-pattern

Mathematics Subject Classification 68M10 · 68M14

1 Motivation and state of the art

One of the most common benchmarks in HPC to gauge network performance is a
ping-pong benchmark over a range of different message sizes which are sent from
and received into a consecutive buffer. With such a benchmark we can judge the
minimum achievable latency and maximum available bandwidth for an application.
As we show in Fig. 1a, this correlates weakly with the communication overhead
that typical computational science applications experience, because such applications
generally do not communicate consecutive data, but serialize (often called pack) their
data into a consecutive buffer before sending it.

The MPI standard [15] is the de facto standard for implementing high-performance
scientific applications. The advantage of MPI is that it enables a user to write
performance-portable codes. This is achieved by abstraction: Instead of expressing
a communication step as a set of point-to-point communications in a low-level com-
munication API it can be expressed in an abstract and platform independent way. MPI
implementers can tune the implementation of these abstract communication patterns
for specific machines.
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Fig. 1 Bandwidth attained by several applications benchmarks, compared with a normal ping-pong of the
same size. No application is able to attain the performance outlined by the standard ping-pong benchmark
when manual pack loops are used. MPI datatypes (DDTs) recognize that the buffer in the NAS_LU_x (cf.
Sect. 2 for a detailed description of all patterns.) case is already contiguous and do not perform an extra
copy. However, there are also many cases where MPI DDTs perform worse than manual packing. a Manual
packing with Fortran 90. b Packing with MPI DDTs
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Fig. 2 An example use case for MPI derived datatypes

MPI derived datatypes allow the specification of arbitrary data layouts in all places
where MPI functions accept a datatype argument (e.g., MPI_INT). We give an example
for the usage of MPI DDTs to send/receive a vector of integers in Fig. 2. All elements
with even indices are to replaced by the received data, elements with odd indices are to
be sent. Without the usage of MPI DDTs one would either have to allocate temporary
buffers and manually pack/unpack the data or send a large number of messages. The
usage of MPI DDTs greatly simplifies this example. If the used interconnect supports
non-contiguous transfers (such as Cray Gemini [2]) the two copies can be avoided
completely. Therefore the usage of MPI DDTs not only simplifies the code but also
can improve the performance due to the zero-copy formulation. In Fig. 1b we show
that some applications can benefit from using MPI DDTs instead of manual pack loops
(for example NAS LU and MILC, as was already demonstrated in [13]).

Not many scientific codes leverage MPI DDTs, even though their usage would be
appropriate in many cases. One of the reasons might be that current MPI implementa-
tions in some cases still fail to match the performance of manual packing, despite the
work that is done on improving DDT implementations [8,20,22]. Most of this work
is guided by a small number of micro-benchmarks. This makes it hard to gauge the
impact of a certain optimization on real scientific codes.

Coming back to the high-level language analogy made before and comparing this
situation to the one of people developing new compiler optimizations techniques or
microarchitecture extensions we see that, unlike for other fields, there is no application-
derived set of benchmarks to evaluate MPI datatype implementations. Benchmark
suites such as SPEC [10] or the Livermore Loops [14] are used (e.g., [1]) to eval-
uate compilers and microarchitectures. To address this issue, we developed a set of
micro-applications1 that represent access patterns of representative scientific applica-
tions as optimized pack loops as well as MPI datatypes. Micro-applications are, simi-
larly to mini-applications [5,7,12], kernels that represent real production level codes.
However, unlike mini-applications that represent whole kernels, micro-applications
focus on one particular aspect (or “slice”) of the application, for example the I/O,
the communication pattern, the computational loop structure, or, as in our case, the
communication data access pattern.

1.1 Related work

Previous work in the area of MPI DDTs focuses on improving its performance, either
by improving the way DDTs are represented in MPI or by using more cache efficient

1 Which can be downloaded from http://unixer.de/research/datatypes/ddtbench.
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strategies for packing and unpacking the datatype to and from a contiguous buffer [8].
Interconnect features such as RDMA Scatter/Gather operations [22] have also been
considered. Several application studies demonstrate that MPI datatypes can outper-
form explicit packing in real-world application kernels such as FFTs [13] and matrix
redistribution [4]. However, performance of current datatype implementations remains
suboptimal and has not received as much attention as latency and bandwidth, proba-
bly due to the lack of a reasonable and simple benchmark. For example Gropp et al.
[11] found that several basic performance expectations are violated by MPI imple-
mentations in use today, i.e., sending data with a more expressive MPI datatype is in
some cases faster than using a less expressive one. The performance of MPI datatypes
is often measured using artificial micro-benchmarks, which are not related to spe-
cific application codes, such as the benchmarks proposed by Reussner et al. [17]. We
identify an unstructured access class, which is present in many molecular dynamics
and finite element codes. This access pattern is completely ignored in many datatype
optimization papers. However, the issue of preparing the communication buffer has
received very little attention compared to tuning the communication itself. In this
work, we show that the serialization parts of the communication can take a share of
up to 80 % of the total communication overheads because they happen at the sender
and at the receiver.

In contrast to the related work discussed in this section, our micro-applications
offer three important features: (1) they represent a comprehensive set of application
use cases, (2) they are easy to compile and use on different architectures, and (3)
they isolate the data access and communication performance parts and thus enable the
direct comparison of different systems. They can be used as benchmarks for tuning
MPI implementations as well as for hardware/software co-design of future (e.g., exas-
cale) network hardware that supports scatter/gather access. This paper is an extended
and improved version of [18]. In this version we extended the description of the ana-
lyzed application codes and investigated if the extracted access patterns are persistent
across the application run. We added results for the datatype performance of Cray’s
vendor MPI and compare the performance of manual pack loops implemented in
Fortran and C.

2 Representative communication data access patterns

We analyzed many parallel applications, mini-apps and application benchmarks for
their local access patterns to send and receive memory. Our analysis covers the domains
of atmospheric sciences, quantum chromodynamics, molecular dynamics, material
science, geophysical science, and fluid dynamics. We created seven micro-apps to
span these application areas. Table 1 provides an overview of investigated application
classes, their test cases, and a short description of the respective data access patterns. In
detail, we analyzed the applications WRF [19], SPECFEM3D_GLOBE [9], MILC [6]
and LAMMPS [16], representing respectively the fields of weather simulation, seis-
mic wave propagation, quantum chromodynamics and molecular dynamics. We also
included existing parallel computing benchmarks and mini-apps, such as the NAS
Parallel Benchmarks (NPB) [21], the Sequoia benchmarks as well as the Mantevo
mini-apps [12].
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Table 1 Overview of the application areas, test names, and access patterns of the micro-applications
contained in our benchmark

Application class Testname Access pattern

Atmospheric science WRF_x_vec Struct of 2d/3d/4d face exchanges in different
directions (x,y), using different (semantically
equivalent) datatypes: nested vectors (_vec)
and subarrays (_sa)

WRF_y_vec

WRF_x_sa

WRF_y_sa

Quantum chromodynamics MILC_su3_zd 4d face exchange, z direction, nested vectors

Fluid dynamics NAS_MG_x 3d face exchange in each direction (x,y,z) with
vectors (y,z) and nested vectors (x)

NAS_MG_y

NAS_MG_z

NAS_LU_x 2d face exchange in x direction (contiguous) and
y direction (vector)

NAS_LU_y

Matrix transpose FFT 2d FFT, different vector types on
send/recv side

SPECFEM3D_mt 3d matrix transpose, vector

Molecular dynamics LAMMPS_full Unstructured exchange of different particle types
(full/atomic), indexed datatypes

LAMMPS_atomic

Geophysical science SPECFEM3D_oc Unstructured exchange of acceleration data for
different earth layers, indexed datatypes

SPECFEM3D_cm

Those applications spend a significant amount of their run-time in communication
functions, for example MILC up to 12 %, SPECFEM3D_GLOBE up to 3 %, and WRF
up to 16 % for the problems we use in our micro-applications, which is confirmed by
the analysis done in [3] and [9].

We found that MPI DDTs are rarely used in the HPC codes considered, and thus
we analyzed the data access patterns of the (pack and unpack) loops that are used to
(de-)serialize data for sending and receiving. Interestingly, the data access patterns of
all those applications can be categorized into three classes: Cartesian Face Exchange,
Unstructured Access and Interleaved Data.

In the following we will describe each of the three classes in detail and give specific
examples of codes that fit each category.

2.1 Face exchange for n-dimensional Cartesian grids

Many applications store their working set in n-dimensional arrays that are distributed
across one or more dimensions. In a communication face, neighboring processes then
exchange the “sides” of “faces” of their part of the working set. Such access patterns
can be observed in many of the NAS codes, such as LU and MG, as well as in WRF and
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(a) (b)

Fig. 3 Data layout of the NAS LU and MG benchmark. a NAS MG, b NAS LU

MILC. For this class of codes, it is possible to construct matching MPI DDTs using the
subarray datatype or nested vectors. Some codes in this class, such as WRF, exchange
faces of more than one array in each communication step. This can be done with MPI
DDTs using a struct datatype to combine the sub-datatypes that each represents a
single array.

The Weather Research and Forecasting (WRF) application uses a regular three-
dimensional Cartesian grid to represent the atmosphere. Topographical land informa-
tion and observational data are used to define initial conditions of forecasting simu-
lations. The model solution is computed using a Runge–Kutta time-split integration
scheme in the two horizontal dimensions with an implicit solver in the vertical dimen-
sion. WRF employs data decompositions in the two horizontal dimensions only. WRF
does not store all information in a single data structure, therefore the halo exchange
is performed for a number of similar arrays. The slices of these arrays that have to
be communicated are packed into a single buffer. We create a struct of hvectors of
vector datatypes or a struct of subarrays datatypes for the WRF tests, which are named
WRF_{x,y}_{vec,sa}, one test for each direction, and each datatype choice (nested
vectors or subarrays, respectively). WRF contains 150 different static datatypes which
can be reused during the application run.

NAS MG communicates the faces of a 3d array in a 3d stencil where each process
has six neighbors. The data access pattern for one direction is visualized in Fig. 3a.
The data-access pattern in MG can be expressed by an MPI subarray datatype or using
nested vectors. Our NAS_MG micro-app has one test for the exchange in each of the
three directions NAS_MG_{x,y,z} using nested vector datatypes. NAS MG uses a few
different but static access patterns and therefore all datatypes can be reused.

The NAS LU application benchmark solves a three-dimensional system of equa-
tions resulting from an unfactored implicit finite-difference discretization of the
Navier–Stokes equations. In the dominant communication function, LU exchanges
faces of a four-dimensional array. The first dimension of this array is of fixed size
(5). The second (nx) and third (ny) dimension depend on the problem size and are
distributed among a quadratic processor grid. The fourth (nz) dimension is equal
to the third dimension of the problem size. Figure 3b visualizes the data layout.
Our NAS_LU micro-app represents the communication in each of the two directions
NAS_LU_{x,y}. NAS LU uses a few different but static access patterns and therefore
all datatypes can be reused.
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The MIMD Lattice Computation (MILC) Collaboration studies Quantum Chro-
modynamics (QCD), the theory of strong interaction, a fundamental force describing
the interactions of quarks and gluons. The MILC code is publicly available for the study
of lattice QCD. The su3_rmd application from that code suite is part of SPEC CPU2006
and SPEC MPI. Here we focus on the CG solver in su3_rmd. Lattice QCD represents
space-time as a four-dimensional regular grid of points. The code is parallelized using
domain decomposition and communicates with neighboring processes that contain
off-node neighbors of the points in its local domain. MILC uses 96 different MPI
DDTs to accomplish its halo exchange in the 4 directions (named ±x,±y,±z,±t).
The datatypes stay the same over the course of the application run. The MILC_su3_zd
micro-app performs the communication done for the −z direction.

An important observation we made from constructing datatypes for the applications
in the face exchange class is that the performance of the resulting datatype heavily
depends on the data layout of the underlying array. For example, if the exchanged face
is contiguous in memory (e.g., for some directions in WRF and MG), using datatypes
can essentially eliminate the packing overhead completely. That is the reason we
included tests for all different directions of each application.

2.2 Exchange of unstructured elements

The codes in this class maintain scatter–gather lists which hold the indices of elements
to be communicated. Molecular Dynamics applications (e.g., LAMMPS) simulate the
interaction of particles. Particles are often distributed based on their spatial location
and particles close to boundaries need to be communicated to neighboring processes.
Since particles move over the course of the simulation each process keeps a vector of
indices of local particles that need to be communicated in the next communication step.
This access pattern can be captured by an indexed datatype. A similar access pattern
occurs in Finite Element Method (FEM) codes (e.g., Mantevo MiniFE/HPCCG) and
the Seismic Element Method (SEM) codes such as SPECFEM3D_GLOBE. Here
each process keeps a mapping of mesh points in the local mesh defining an element
and the global mesh. Before the simulation can advance in time the contributions
from all elements which share a common global grid point need to be taken into
account.

LAMMPS is a molecular dynamics simulation framework which is capable of
simulating many different kinds of particles (i.e., atoms, molecules, polymers, etc.)
and the forces between them. Similar to other molecular dynamics codes it uses a
spatial decomposition approach for parallelization. Particles are moving during the
simulation and may have to be communicated if they cross a process boundary. The
properties of local particles are stored in vectors and the indices of the particles that
have to be exchanged are not known a priori. Thus, we use an indexed datatype to
represent this access. We created two tests, LAMMPS_{full,atomic}, that differ in the
number of properties associated with each particle. The LAMMPS code in its current
form does not amend to datatype reuse.

SPECFEM3D_GLOBE is a spectral-element application that allows the simula-
tion of global seismic wave propagation through high resolution earth models. It is
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used on some of the biggest HPC systems available [9]. The earth is described by a
mesh of hexahedral volume elements. Grid points that lie on the sides, edges or cor-
ners of an element are shared between neighboring elements. SPECFEM3D_GLOBE
maintains a mapping between grid points in the local mesh to grid points in the global
mesh. Before the system can be marched forward in time, the contributions from
all grid points that share a common global grid point need to be considered. The
contribution for each global grid point needs to be collected, potentially from neigh-
boring processes. Our micro-app representing SPECFEM3D_GLOBE has two tests,
SPECFEM3D_{oc,cm}, which differ in the amount of data communicated per index.
The nine different datatypes needed by this code can be reused, since their usage only
depends on the used mesh, which does not change during runtime.

The Mantevo mini-app MiniFE has a data access pattern very similar to
SPECFEM3D_GLOBE, which is not surprising, since MiniFE models a finite ele-
ment code and the seismic element method in SPECFEM3D_GLOBE is a variant
of the FEM method. The Mantevo mini-app MiniMD is a miniature version of the
LAMMPS code described above.

Our results show that current MPI DDT implementations are often unable to
improve such unstructured access over packing loops. Furthermore, the overhead of
creating datatypes for this kind of access (indexed datatypes) is high.

2.3 Interleaved data or transpose

Fast Fourier Transforms (FFTs) are used in many scientific applications and are
among the most important algorithms in use today. FFTs can be multi-dimensional:
As the one-dimensional Fourier Transform expresses the input as a superposition of
sinusoids, the multi-dimensional variant expresses the input as a superposition of plane
waves, or multi-dimensional sinusoids. For example, a two-dimensional FFT can be
computed by performing 1d-FFTs along both dimensions. If the input matrix is dis-
tributed among MPI processes along the first dimension, each process can compute
the first 1d-FFT without communication. After this step the matrix has to be redis-
tributed, such that each process now holds complete vectors of the other dimension,
which effectively transposes the distributed matrix. After the second 1d-FFT has been
computed locally the matrix is transposed again to regain the original data layout. In
MPI the matrix transpose is naturally done with an MPI_Alltoall operation.

Hoefler and Gottlieb presented a zero-copy implementation of a 2d-FFT using MPI
DDTs to eliminate the pack and unpack loops in [13] and demonstrated performance
improvements up to a factor of 1.5 over manual packing. The FFT micro-app captures
the communication behavior of a two-dimensional FFT.

SPECFEM3D_GLOBE exhibits a similar pattern, which is used to transpose a
distributed 3D array. We used Fortran’s COMPLEX datatype as the base datatype for
the FFT case in our benchmark (in C two DOUBLEs) and a single precision floating
point value for the SPECFEM3D_mt case. The MPI DDTs used in those cases are
vectors of the base datatypes where the stride is the matrix size in one dimension. To
interleave the data this type is resized to the size of one base datatype. An example for
this technique is given in Fig. 4.

123



Application-oriented ping-pong benchmarking 287

Fig. 4 Datatype for 2d-FFT

(a) (b) (c)

Fig. 5 Measurement loops for the micro-applications. The time for each phase (rectangle) is measured on
process 0. a Manual Pack Loop, b Send/Recv with MPI DDTs, c MPI_Pack

3 Micro-applications for Benchmarking MPI datatypes

We implemented all data access schemes that we discussed above as micro-
applications with various data sizes. For this, we used the original data layout and
pack loops whenever possible to retain the access pattern of the applications. We also
choose array sizes that are representing real input cases. The micro-applications are
implemented in Fortran (the language of most presented applications) as well as C to
enable a comparison between compilers. We compiled all benchmarks with highest
optimization.

All benchmark results shown in this paper have been obtained on either the Odin
cluster at IU Bloomington or on JYC, the Blue Waters test system at the National Cen-
ter for Supercomputing Applications. Odin consists of 128 nodes with AMD Opteron
270 HE dual core CPUs and an SDR Infiniband interconnect. JYC consists of a sin-
gle cabinet Cray XE6 (approx. 50 nodes with 1,600 Interlagos 2.3–2.6 GHz cores).
We used the GNU compiler version 4.6.2 and compiled all benchmarks with −O3
optimization.

We performed a ping-pong benchmark between two hosts using MPI_Send() and
MPI_Recv() utilizing the original pack loop and our datatype as shown in Fig. 5. Our
benchmark also performs packing with MPI using MPI_Pack() and MPI_Unpack()
(cf. Fig. 5c), however, packing overhead for explicit packing with MPI has been
omitted due to lack of space and the small practical relevance of those functions. For
comparison we also performed a traditional ping-pong of the same data size as the
MPI DDTs type size.

The procedure runs two nested loops: the outer loop creates a new datatype in each
iteration and measures the overhead incurred by type creation and commit; the inner
loop uses the committed datatype a configurable number of times. In all experiments
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Fig. 6 Median duration of the different benchmark phases for the WRF_x_vec test, using Open MPI 1.6
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Fig. 7 Median duration of the different benchmark phases for the SPECFEM3D_cm test, using Open MPI
1.6 on Odin

we used 10 outer loop iterations and 20 iterations of the inner loop. Time for each phase
(rectangles in Fig. 5) is recorded in a result file. We provide an example script for GNU
R to perform the packing overhead analysis as shown in this paper. Measurements are
done only on the client side, so the benchmark does not depend on synchronized clocks.

If we measure the time for each phase multiple times (in the two loops described
above) and plot the median value for each phase, we get a result as shown in Fig. 6,
where we plot the times for three different sizes of the WRF_x_vec test, using Open
MPI 1.6. Note that the time for packing has been added to the communication round
trip time (RTT) of manual packing to enable direct comparison with the MPI DDT case
where packing happens implicitly and is thus also included in the communication time.

It can be seen that using MPI datatypes is beneficial in this case. The WRF applica-
tion exhibits a face exchange access pattern, as explained before. The datatypes needed
for this pattern are simple to create, therefore also the datatype creation overhead is
low. For the SPECFEM3D_cm test (Fig. 7) the situation is different: datatypes for
unstructured exchanges are very costly to construct. Also none of the MPI implemen-
tations was able to outperform manual packing for this test. Unless otherwise noted
we assume datatype reuse in all benchmarks. That means the costs for creating and
destroying datatypes (or allocating/freeing buffers) are not included in the communi-
cation costs. This is reasonable because most applications create their datatypes only
once during their entire run and amortize these costs over many communication steps.

For two-dimensional FFTs (Fig. 8), the usage of derived datatypes also improves
performance, compared with manual packing. Note the large difference in the times
required for manual packing compared to manual unpacking—this is caused by the
fact that during packing large blocks can be copied, while during unpack each element
has to be handled individually.
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Fig. 9 Packing overheads (relative to communication time) for different micro-apps and datasizes and MPI
implementations on Odin

It is interesting to know the fraction of time that data packing needs, compared with
the rest of the round-trip. Since we can not measure the time for data-packing directly
in the MPI DDT benchmark we use the following method: Let tpp be the time for a
round-trip including all packing operations (implicit or explicit) and tnet the time to
perform a ping-pong of the same size without packing.

The overhead for packing relative to the communication time can be expressed as
ovh = tpp−tnet

tpp
.

The serial communication time tnet was practically identical for the tested MPI
implementations (<5 % variation). This enables us to plot the relative overheads for
different libraries into a single diagram for a direct comparison. Figure 9 shows those
relative pack overheads for some representative micro-application tests performed
with Open MPI 1.6 as well as MVAPICH 1.8 on the Odin cluster; we always ran one
process per node to isolate the off-node communication.

123



290 T. Schneider et al.

MILC_su3_zd NAS_LU_x NAS_LU_y SPECFEM3D_cm SPECFEM3D_oc WRF_x_vec WRF_y_sa WRF_y_vec

0

25

50

75

100

25
K

50
K

75
K

10
0K 10

K

20
K

30
K

40
K 0

10
K

20
K

30
K

40
K

50
K

10
0K

15
0K 5K 10

K

60
K

90
K

12
0K

15
0K 50

K

60
K

70
K

80
K

90
K

50
K

60
K

70
K

80
K

90
K

Datasize [Byte]

P
ac

ki
ng

 O
ve

rh
ea

d 
[%

]

Pack Method
Manual Packing (C)
MPI DDTs (Cray MPI)
Manual Packing (Fortran 90)

Fig. 10 Packing overheads (relative to communication time) for different micro-apps and datasizes and
compilers on JYC

Note that the overhead for the creation of the datatype was not included in the
calculations of the packing overheads in Fig. 9, because most applications are able to
cache and reuse datatypes. From this figure we can make some interesting observations:
In the NAS_LU_x test case both MPI implementations outperform manual packing by
far, the packing overhead with MPI DDTs is almost zero. In this case the data is already
contiguous in memory, and therefore does not need to be copied in the first place—the
manual packing is done anyway in the NAS benchmark to simplify the code. Both MPI
implementations seem able to detect that the extra copy is unnecessary. We observe that
the datatype engine of Open MPI performs better than MVAPICH’s implementation.
The SPECFEM3D tests show that unordered accesses with indexed datatypes are not
implemented efficiently by both Open MPI and MVAPICH. This benchmark shows
the importance of optimizing communication memory accesses: up to 81 % of the
communication time of the WRF_x_vec test case are spent with packing/unpacking
data, which can be reduced to 73 % with MPI DDTs. In the NAS_LU_x case, which
sends a contiguous buffer, using MPI DDTs reduce the packing overhead from 30 to
7 % without increasing the code complexity.

In Fig. 10 we compare the packing overhead of several micro-applications when
different compilers are used. We implemented each test in C as well as in Fortran (while
most of the original code was written in Fortran). For most tests there is no significant
difference. For WRF the packing loop expressed in Fortran is slightly faster. For MILC
the packing loop written in C is much faster on JYC. Cray’s MPI implementation is
outperformed by manual packing in all of our tests. This indicates some optimization
potential in the datatype implementation of Cray MPI.

123



Application-oriented ping-pong benchmarking 291

4 Conclusions

We analyzed a set of scientific applications for their communication buffer access
patterns and isolated those patterns in micro-applications to experiment with MPI
datatypes. In this study, we found three major classes of data access patterns: Face
exchanges in n-dimensional Cartesian grids, irregular access of datastructures of vary-
ing complexity based on neighbor-lists in FEM, SEM and molecular dynamics codes
as well as access of interleaved data in order to redistribute data elements in the case
of matrix transpositions. In some cases (such as WRF) several similar accesses to
datastructures can be fused into a single communication operation through the usage
of a struct datatype. We provide the micro-applications to guide MPI implementers
in optimizing datatype implementations and to aid hardware-software co-design deci-
sions for future interconnection networks.

We demonstrated that the optimization of data packing (implicit or explicit) is
crucial, as packing can make up up to 80 % of the communication time with the data
access patterns of real world applications. We showed that in some cases zero-copy
formulations can help to mitigate this problem. Those findings make clear that system
designers should not rely solely on ping-pong benchmarks with contiguous buffers,
they should take the communication buffer access patterns of real applications into
account.

While we present a large set of results for relevant systems, it is necessary to
repeat the experiments in different environments. Thus, we provide the full benchmark
source-code and data analysis tools at http://unixer.de/research/datatypes/ddtbench/.
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