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Abstract A discontinuous Galerkin finite element heterogeneous multiscale method
is proposed for advection–diffusion problems with highly oscillatory coefficients. The
method is based on a coupling of a discontinuous Galerkin discretization for an effec-
tive advection–diffusion problem on a macroscopic mesh, whose a priori unknown
data are recovered from micro finite element calculations on sampling domains within
each macro element. The computational work involved is independent of the high
oscillations in the problem at the smallest scale. The stability of our method (depend-
ing on both macro and micro mesh sizes) is established for both diffusion dominated
and advection dominated regimes without any assumptions about the type of hetero-
geneities in the data. Fully discrete a priori error bounds are derived for locally periodic
data. Numerical experiments confirm the theoretical error estimates.

Mathematics Subject Classification (2010) 65N12 · 65N15 · 65N3 · 74Q05

1 Introduction

Transport problems from a wide range of applications including flow through aquifers
in hydromechanic and ground water modeling, infiltration of contaminant in hetero-
geneous media, filtration processes and transport of chemicals in biological processes
are modeled by advection–diffusion equations with highly heterogeneous coefficients
varying on microscopic scales. However, the scale of interest in many applications
is often much larger than these microscopic scales. Yet, standard numerical methods

A. Abdulle (B) · M. E. Huber
ANMC, Mathematics Section, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
e-mail: assyr.abdulle@epfl.ch

M. E. Huber
e-mail: martin.huber@epfl.ch

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/200783475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


590 A. Abdulle, M. E. Huber

as the finite element method (FEM) are not able to capture the effective behavior of
the transport phenomena unless the used discretization resolves the finest scale in the
problem, denoted by ε in what follows. Such scale resolution is often prohibitive in
terms of computational cost if the ratio between the finest scale and the scale of interest
spans several orders of magnitude.

Analytic treatments of such problems often rely on the homogenization theory
[19,34] that aims at finding an averaged (effective) equation for the original hetero-
geneous equation in order to describe the effective behavior of the solution. General
frameworks such as the G- or H -convergence (see [26] and [37], respectively) allow
to homogenize partial differential equations (PDEs) without structure assumptions
(e.g., such as periodicity or stationarity) on the heterogeneous coefficients. For the
stationary advection–diffusion problems that we consider in this paper such results
have been obtained in [13,36]. We note that for non-stationary advection–diffusion
problems (see for example [15]) the scaling for the advection term is usually different
than the scaling used in [13,36] for stationary problems. Indeed in [15] and related
works, the model problem obtained from a diffusive scaling of an unscaled micro-
scopic advection–diffusion equation, has a macroscopic Péclet number that scales as
O(1/ε) (we recall that the Péclet number is defined as the ratio between the norms
of the velocity field and the diffusion tensor of an advection–diffusion equation). In
turn, the homogenized problem has an (advection) enhanced diffusion tensor. We note
that the results are obtained for unbounded domains and in addition periodicity of the
velocity and diffusion terms are assumed as well as a divergence free velocity. Such
homogenization results cannot be applied to stationary advection–diffusion problems
as considered in this paper. In contrast in the model [13,36], the homogenized diffusion
tensor will not depend on the advection term, a somehow less physical situation, but
we allow for a non divergence free velocity and non-periodic velocity and diffusion
terms.

For practical purpose, the effective equations obtained by these analytic proce-
dures are usually unknown and not available in explicit form and numerical meth-
ods are needed. For elliptic and parabolic homogenization problems, various mul-
tiscale approaches have been proposed—see [6,9] and the references therein. In
[2], using the methodology of the heterogeneous multiscale method (HMM) pro-
posed by E and Engquist in [28], a time-dependent advection–diffusion problem
where the diffusion tensor is a multiple of the unit tensor and the velocity field
exhibits scale separation and high oscillations is studied. Therein, a heterogeneous
multiscale method based on a standard finite element method is combined with a
stabilized explicit Runge–Kutta method (ROCK) proposed in [1,10]. Further, for
one-dimensional hyperbolic and parabolic problems, a heterogeneous multiscale
method based on a discontinuous Galerkin method has been proposed and ana-
lyzed in [21]. Moreover, a time-dependent advection–diffusion problem with large
expected drift has been studied in [30] and in [32] numerical methods for singu-
larly perturbed time-dependent advection–diffusion problems that exhibit a multi-
scale behavior have been considered. Finally, we also mention a numerical method
based on the HMM that has been proposed in [40] for advection–diffusion prob-
lems. Similar stabilization techniques as used in this paper have been applied
therein. However, the stability of the method has not been analyzed in [40]. This

123



Discontinuous Galerkin finite element 591

constitutes one of the main contributions of our paper. Furthermore, the a priori
estimates derived there do not take into account the discretization error originat-
ing from the numerical computation of the effective data, i.e., the micro solver
error.

In this paper we construct and analyze a numerical method for stationary advection–
diffusion problems with highly oscillatory diffusion tensor and velocity field. The
effective equation for our problem can be shown to be again an advection–diffusion
problem with usually unknown effective diffusion tensor and velocity field [13,36].
The Péclet number is allowed to be large, i.e., we consider the case of advection
dominated problems. Two major modeling issues arise when trying to apply the meth-
ods developed for multiscale diffusion problems for (stationary) advection–diffusion
problems. First, if the velocity field varies over multiple scales, proper upscaling
for the advection term in the equation has to be built in the method. Second, even
for constant velocity fields, when the methods developed for diffusion problems
can be applied straightforwardly, the numerical method will become unstable if the
Péclet number becomes large. This phenomenon is well-known for single scale prob-
lems and a large variety of stabilization techniques have been developed in order
to adapt numerical methods to advection dominated problems (see [38] and refer-
ences therein). One class of stabilized methods relies on discontinuous finite element
methods (DG-FEM). In contrast to standard finite elements, the interelement conti-
nuity of the test and trial functions is relaxed, allowing flexibility in meshing and
local conservation properties. First introduced in [31] for a purely hyperbolic trans-
port equation, discontinuous Galerkin methods have been adapted to elliptic prob-
lems (see [17] for an overview) and, finally, to advection–diffusion-reaction prob-
lems. Their intrinsic flexibility makes them convenient for adaptivity techniques like
local mesh refinement (h-refinement) or local increase of the polynomial order (p-
refinement). An analysis of a hp-DG-FEM for advection–diffusion-reaction prob-
lems is presented in [33] by Houston et al. Further, Ayuso and Marini proposed
in [18] an analysis for a class of discontinuous Galerkin methods for advection–
diffusion-reaction problems “relaxing” the usual coercivity condition relating the
variable advection and reaction (see [18, Eq. (2.2)]) (as seen in [18], under these
conditions, the analysis already for single scale problems is nontrivial). This is the set-
ting adopted in this paper (see Sect. 5.1.1 for a discussion of this “relaxed coercivity
condition”).

The method proposed in this paper is built in the framework of the HMM. It is
based on macroscopic discontinuous Galerkin (DG) FEM with input data (the effec-
tive diffusion tensor and the effective velocity field) recovered from micro FEM on
sampling domains within the macroscopic elements. These sampling domains them-
selves scale with ε, the smallest scale in the problem and therefore, the computational
work needed for our method is independent of the fine-scale features of the medium.
Such combination of the HMM with the DG-FEM has already been proposed in [7]
for pure diffusion problems. The extension to advection–diffusion problems is non-
trivial. First, a careful (simultaneous) upscaling of the diffusion tensor and the velocity
field has to be built in the method. Indeed, the case of an oscillatory velocity field,
whose derivatives are unbounded with respect to ε is usually forbidden in a single
scale analysis (see hypothesis (H2) in [18]). Second, the proof of the stability of
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the method is quite involved as the macro-micro strategy used here introduces vari-
ational crimes (due to numerical integration and numerical upscaling) leading to a
non-consistent method and in particular to the loss of Galerkin orthogonality. Such
variational crimes, also called non-consistent perturbations, are not made in the sin-
gle scale method proposed in [18] (of course their method is non-conforming as it
is also based on a discontinuous Galerkin method). For purely diffusive problems,
as analyzed for the DG-HMM in [7], difficulties due to non-consistent perturbations
can be avoided by using appropriate quadrature formula and the uniform elliptic-
ity of the multiscale tensor. In contrast, the stability analysis including advection
necessitates an upper bound for the non-consistent perturbations committed in the
advective part. Beside the non-consistency, the variational crimes in our DG-HMM
introduce two further difficulties: in contrast to [18], the uniform boundedness on an
infinite dimensional functional space of the diffusive part of our method in a DG norm
is not available (due to numerical integration). To overcome this issue we need an
appropriate interpolation result (see Sect. 5.1.1). Finally, all the data involved in the
DG macro scheme come from micro simulations by FEM introducing yet another
discretization error (due to the numerical upscaling procedure) that has to be taken
into account in both the stability result and the a priori error estimates (see again
Sect. 5.1.1).

The stability of the DG-HMM is established for a general class of diffusion ten-
sors and velocity fields, that is, for general micro structures (without particular spatial
structure such as periodicity or stationarity) and for advection or diffusion dominated
problems. The method developed here is also suitable for advection–diffusion prob-
lems with boundary layers. Finally, optimal a priori error estimates are established for
locally periodic data. We note that our a priori error estimates rely on new a priori
error estimates for single scale DG-FEM based on numerical integration.

Our paper is organized as follows. In Sect. 2 we introduce the considered advection–
diffusion problem. Then, we derive the multiscale method in Sect. 3. In Sect. 4, we
summarize our main results on the stability and the a priori error estimates of the pro-
posed method, the stability of the method for general data and the a priori estimates
for locally periodic data. The proofs of the main results are provided in Sect. 5. Fur-
ther, we present numerical experiments for both periodic and non-periodic (random)
problems in Sect. 6 in order to confirm the theoretical estimates and to illustrate the
capabilities of the proposed method. Finally, the results about the effect of numerical
integration for single scale DG-FEM are derived in Appendix A.

Notation 1.1 In what follows, C denotes a generic positive constant, whose value can
change at any occurrence (see also Remark 4.2). We consider the usual Sobolev spaces
W s,p(�). For p = 2, we use the notation Hs(�), H1

0 (�) for p = 2 and s = 1 with
a vanishing trace on the boundary ∂�, W 1

per (Y ) = {v ∈ H1
per (Y ) |

∫
Y v(y) dy = 0}

where Hs
per (Y ) is defined as the closure of C∞

per (Y ) (the subset of C∞(Rd) of periodic
functions in Y = (0, 1)d ) for the Hs norm, and H1(div,�) = {v ∈ (L2(�))d | div v ∈
L2(�)}. For a matrix a ∈ R

d×d with entries ai j , we denote its Frobenius norm by

‖a‖F =
√∑

i
∑

j |ai j |2. Further, we denote the vectors of the canonical basis of R
d

by ei , for i = 1, . . . , d.
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Discontinuous Galerkin finite element 593

2 Model problem and homogenization results

In this section we introduce the advection–diffusion model problem and recall the
results of classical homogenization theory.

Let � ⊂ R
d , d ≤ 3, be a convex polygonal domain. Consider the multiscale

advection–diffusion problem with zero Dirichlet boundary conditions

− div(aε(x)∇uε(x))+ bε(x) · ∇uε(x) = f (x) in �,

uε(x) = 0 on ∂�,
(1)

with aε ∈ (L∞(�))d×d the diffusion tensor, bε ∈ (L∞(�))d the velocity field and
the source f ∈ L2(�). The variable ε represents a small scale in the problem, at
which the data aε, bε fluctuates. We assume that the family of tensors aε (indexed by
ε) are uniformly bounded and elliptic and the family of velocity fields bε is uniformly
bounded, i.e., there exist λ,�,B > 0 such that for any ξ ∈ R

d

λ|ξ |2 ≤ aε(x)ξ · ξ, |aε(x)ξ | ≤ �|ξ |, |bε(x)| ≤ B a.e. x ∈ �, ∀ ε > 0. (2)

As mentioned in the introduction, other scaling for the velocity field are usually used
for non-stationary problems (i.e., velocity fields that are not uniformly bounded in ε,
see e.g., [15]).

If the family of differential operators − div(aε(x)∇·) + bε(x) · ∇· satisfies the
coercivity

∫

�

aε(x)∇v · ∇v + bε(x) · ∇v v dx ≥ λ‖∇v‖2
L2(�)

∀v ∈ H1
0 (�), ∀ε > 0, (3)

an application of the Lax–Milgram theorem provides a unique weak solution uε ∈
H1

0 (�) for all ε > 0. These solutions are uniformly bounded independently of ε by
‖uε‖H1(�) ≤ C‖ f ‖L2(�) implying the existence of a subsequence of {uε} weakly
convergent in H1

0 (�). As a result of the H -convergence [13,36] there exists a sub-
sequence of {aε, bε} such that the corresponding sequence of solutions {uε} weakly
converges to u0 in H1

0 (�), the solution of the homogenized problem

− div(a0(x)∇u0(x))+ b0(x) · ∇u0(x) = f (x) in�,

u0(x) = 0 on ∂�,
(4)

where a0(x) ∈ (L∞(�))d×d is the homogenized tensor and b0(x) ∈ (L∞(�))d the
homogenized velocity field. Furthermore, a0 satisfies again the uniform ellipticity of
condition (2) and the operator − div(a0(x)∇·) + b0(x) · ∇· is coercive (in the sense
of (3)). Thus, the homogenized problem (4) has a unique solution.

We note that the coercivity condition (3) often is ensured by the condition
− div bε(x) ≥ 0 for a.e. x ∈ � and ε > 0, assuming the regularity bε ∈ H1(div,�).
However, a similar condition for the homogenized velocity field, i.e., − div b0 ≥ 0,
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does not follow from [13, Theorem 2.1] directly, but will be assumed later on in (18),
as it is the standard assumption to analyze numerical methods for advection–diffusion
problems.

We notice, that we have chosen zero Dirichlet boundary conditions for the model
problem (1) for simplicity. The multiscale method and its analysis derived in Sects. 3
and 4 can be generalized to non-zero Dirichlet, Neumann or mixed boundary condi-
tions.
Péclet number. To distinguish the different regimes of problem (4) we define the
Péclet number Pe(x) for the homogenized problem (4) locally by

Pe(x) = |b0(x)|L
‖a0(x)‖F

∀ x ∈ �,

where L = diam� is the characteristic length of the domain. The problem (4) is called
diffusion dominated, if Pe(x) � 1 in �, or advection dominated, if Pe(x) 
 1 in �.
We assume, that Pe(x) has the same order for any x ∈ � and we will hence define
and use the global Péclet number Pe in the following (see Sect. 4 for the definition).

3 Multiscale method

The goal is to derive a multiscale method that captures the effective solution of (1)
at lower computational cost than solving (1) with standard numerical methods. We
recall that for problem (1) scale resolution with a standard numerical method involves
a computational cost of O(ε−d). The method we want to build will involve a com-
putational cost independent of ε. In [7] a multiscale method has been proposed for
a purely diffusive multiscale problem applying a discontinuous Galerkin method on
the macro scale. As input, this method uses solely the data provided by the fine scale
tensor aε. After having set up the framework of [7], we explain how to extend the
method to advection–diffusion multiscale problems. The proposed method will be
able to capture the effective solution of the multiscale advection–diffusion problem
by coupling a discontinuous Galerkin method based on quadrature points on the macro
scale with a standard FEM on (micro) sampling domains centered at these quadrature
points recovering the effective data.

3.1 Preliminaries

First, we introduce the quantities needed for the macroscopic discretization.
Macro mesh. We consider a macroscopic family of partitions TH of �, where TH is
a shape-regular macro mesh on� consisting of open, simplicial, not curved elements
K satisfying

⋃
K∈TH

K = �. Furthermore, we assume for simplicity that TH is a
conforming macro mesh, i.e., there are no hanging nodes. The element diameter HK

is defined by HK = diam K for K ∈ TH and the macro mesh size H is defined
by H = maxK∈TH HK . Here H 
 ε is allowed. By E we denote the set of all
open (d − 1)-dimensional interfaces of the elements of TH . We decompose E into
interior interfaces Eint and interfaces on the boundary EB , i.e., E = Eint ∪ EB . The
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Discontinuous Galerkin finite element 595

interface diameter He is defined by He = diam e for e ∈ E . Furthermore, we use the
notation

∫

�

· =
∑

e∈E

∫

e

·.

Based on the macro mesh TH we introduce the piecewise Sobolev space

H1(TH ) =
∏

K∈TH

H1(K ) = {v ∈ L2(�) | v|K ∈ H1(K ), ∀ K ∈ TH }.

Remark 3.1 For simplicity of exposition, we assume that the macro mesh is con-
forming. However, one of the most important advantages of discontinuous Galerkin
methods is the admissibility of irregular meshes which are useful for local refinement
of the mesh. The extension of the presented results to this class of more general meshes
is straightforward.

Macro finite element space. We define the piecewise linear finite element space for
the discontinuous Galerkin method on the macro mesh TH by

V 1(�, TH ) = {u H ∈ L2(�) | u H |K ∈ P1(K ) and u H |K∩∂� = 0, ∀ K ∈ TH },

where P1(K ) denotes the space of linear polynomials on K ∈ TH . We note, that
V 1(�, TH ) ⊂ H1(TH ). In comparison to a standard finite element space the interele-
ment continuity of the finite element functions is not postulated. Therefore, in the
process of deriving the weak formulation of Eq. (1) the integration by parts can only
be applied piecewisely on elements K ∈ TH .
Quantities on interfaces. Due to the lack of interelement continuity non-cancelling
terms on the boundaries ∂K arise which we need to quantify. Consider e ∈ E , v ∈
H1(TH ) and b ∈ R

d . First, we denote the outer normal vector on � and the outer
normal vector on K by n and nK , respectively, for any K ∈ TH . We notice, that v is
generally two-valued on ∂K in the sense of traces, for any K ∈ TH . If e is an interior
edge e ∈ Eint then there exist two triangles K1, K2 ∈ TH such that K1 ∩ K2 = e,
provided with outer normal vector n1 and n2 as well as interior traces v1 and v2,
respectively. The normal jump and the average of v on e are defined by

�v� = v1 · n1 + v2 · n2, {v} = 1

2
(v1 + v2).

If b · n1 = 0 we define

{
Ki = K1

Ko = K2
if b · n1 < 0, or

{
Ki = K2

Ko = K1
if b · n1 > 0.

The edge e is then called inflow and outflow edge of Ki and Ko with respect to b,
respectively. For b · n1 = b · n2 = 0 we choose a unique definition for Ki and Ko in
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596 A. Abdulle, M. E. Huber

order to facilitate further notation. As n1 = −n2 and |n1| = 1, there exists a smallest
k∗ ∈ {1, . . . , d} such that k∗ = min{1 ≤ k ≤ d | (n1)k = (n2)k}. We then define

{
Ki = K1

Ko = K2
if (n1)k∗ > 0, or

{
Ki = K2

Ko = K1
if (n1)k∗ ≤ 0.

Further, we introduce the simplified notation ni = nKi .
Analogously, we define these quantities for boundary edges. If e is a boundary edge

e ∈ EB then there exists a triangle K1 ∈ TH such that e = K1 ∩ ∂�, provided with
an outer normal vector n1 being n and the interior trace v1. The normal jump and the
average of v on e are defined by �v� = v1 · n and {v} = v1, respectively. If b · n < 0
then Ki = K1, ni = n, if b · n ≥ 0 then Ko = K1, ni = −n and furthermore

vi =
{
v1 b · n < 0

0 b · n ≥ 0
, vo =

{
v1 b · n > 0

0 b · n ≤ 0
.

Remark 3.2 Since the numerical and the analytic velocity field may lead to different
inflow and outflow directions, we will use the following notation: the indices i and o
(e.g., Ki ) will be used for the numerically computed velocity field, constant on one
interface (later on denoted by {bε}), while for the analytic velocity field we use the
indices i0(x) and o0(x), e.g., Ki0(x) for x ∈ e ∈ E .

3.2 DG-HMM for advection–diffusion problems

In this section, we introduce a multiscale method for advection–diffusion problems
based on a discontinuous Galerkin method on the macroscopic scale.
Quadrature formula. The proposed method is based on a quadrature formula on
the macro mesh. As we consider piecewise linear macro finite elements on simplicial
meshes, we apply a one-point quadrature formula, i.e., for a continuous function
g : � → R,

∫

�

g(x) dx ≈
∑

K∈TH

|K |g(xK ), (5)

where xK is located at the barycenter of K ∈ TH . We note, that the quadrature
formula (5) is exact for piecewise linear functions g.
Sampling domains. For the upscaling procedure of the micro scale data, sampling
domains around the quadrature points are defined. Let δ ≥ ε. For a macro element
K ∈ TH we consider the sampling domain Kδ around the barycenter xK defined by
Kδ = xK + δ I , where I = (− 1

2 ,
1
2 )

d .
Macro bilinear form. Having set up the necessary framework we define the macro
bilinear form for the multiscale advection–diffusion problem. We consider the macro
bilinear form B on V 1(�, TH ) × V 1(�, TH ) defined as the sum B = BD + BA of
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the diffusive part BD and the advective part BA given by

BD(v
H , wH ) =

∑

K∈TH

|K |
|Kδ|

∫

Kδ

aε∇vh
K · ∇wh

K dx −
∫

�

{aε∇vh} · �wH �ds

+
∫

�

μ�vH � · �wH � ds, (6)

BA(v
H , wH ) =

∑

K∈TH

|K |
|Kδ|

∫

Kδ

bε · ∇vh
K w

H (xK ) dx −
∫

�

{bε} · �vH �wH
i ds,

where vh
K , w

h
K are appropriate micro functions solving (8) on the sampling domain Kδ

and the average of multiscale fluxes {aε∇vh} is given by (9). The penalty weighting
functionμ is given piecewisely byμ|e = ‖{a0

K }‖FαH−1
e , where a0

K is the numerically
approximated homogenized tensor that will be defined in (15) and the penalization
parameter α > 1 is a positive parameter independent of the local mesh size and the
data aε(x). On an interface e ∈ E , the average of the effective velocity field {bε} is
defined in (11) and the trace wH

i is taken from the inflow element Ki with respect to
{bε}.
Micro solver. Let K ∈ TH be a macro triangle and Kδ its sampling domain. On this
sampling domain we consider a simplicial micro mesh Th and the micro finite element
space Sq(Kδ, Th) defined by

Sq(Kδ, Th) = {zh ∈ W (Kδ) | zh |T ∈ Pq(T ), ∀ T ∈ Th}, (7)

where Pq(T ) denotes the space of polynomials on the element T of total degree at
most q, with q ∈ N>0, and where the choice of W (Kδ) determines the boundary
conditions used for computing the micro functions vh

K . We consider two different
spaces:

• periodic coupling: W (Kδ) = W 1
per (Kδ) =

{
v ∈ H1

per (Kδ) |
∫

Kδ
v dx = 0

}
;

• Dirichlet coupling: W (Kδ) = H1
0 (Kδ).

The micro problems are defined by: find vh
K such that (vh

K − vH ) ∈ Sq(Kδ, Th) and

∫

Kδ

aε(x)∇vh
K · ∇zh dx = 0 ∀ zh ∈ Sq(Kδ, Th). (8)

Average of multiscale fluxes. Similarly as in the DG-HMM for diffusion problems,
proper averages of fluxes on edges are crucial for the bilinear form (6). We recall such
a construction first introduced in [5,7].

123



598 A. Abdulle, M. E. Huber

For e ∈ Eint , there exist K1, K2 ∈ TH with corresponding sampling domains
K 1
δ , K 2

δ such that e = K1 ∩ K2. The average of multiscale fluxes on e is defined by

{aε∇vh} = 1

2

⎛

⎜
⎜
⎝

1

|K 1
δ |

∫

K 1
δ

aε∇vh
K1

dx + 1

|K 2
δ |

∫

K 2
δ

aε∇vh
K2

dx

⎞

⎟
⎟
⎠ . (9)

Further, for e ∈ EB , there exists K ∈ TH with corresponding sampling domain Kδ
such that e = K ∩ ∂�. The average of multiscale fluxes on e is defined by

{aε∇vh} = 1

|Kδ|
∫

Kδ

aε∇vh
K dx .

We notice, that for the averages {aε∇vh} we omit the index K for the micro functions
vh

K as the neighboring elements for any e ∈ E are well-defined. Further, we emphasize
that in contrast to the usual definition of the flux average in DG methods, existence
of traces is not required for the average of multiscale fluxes. We also notice that the
computation of the average of multiscale fluxes does not lead to an extra computational
effort, as the quantities involved in the above integrals need to be computed anyway
in the formulation of the method (6).
Average of effective velocity field. In order to define the quantity {bε} we introduce
additional notations. Let K ∈ TH be a macro triangle and ϕH

K ,0, . . . , ϕ
H
K ,d the col-

lection of linear nodal basis functions on K . Furthermore, let FK denote an affine
C1-diffeomorphism such that FK (K̂ ) = K , where K̂ is the simplicial reference ele-
ment in R

d . The nodal basis ϕ̂H
0 , . . . , ϕ̂

H
d on K̂ is defined by ϕ̂H

0 (x̂) = 1 − ∑d
i=1 x̂i

and ϕ̂H
i (x̂) = x̂i , for i = 1, . . . , d. We order the basis functions on K such that

ϕH
K ,i (FK (x̂)) = ϕ̂H

i (x̂) for i = 0, . . . , d and x̂ ∈ K̂ . Let DK be the Jacobian matrix
of FK which is a constant d × d matrix. We introduce the matrix Qϕh

K
given by

Qϕh
K

= DK

⎛

⎝
| |

∇ϕh
K ,1 · · · ∇ϕh

K ,d
| |

⎞

⎠

T

, (10)

whereϕh
K ,i solves the micro problem (8) constrained by the macro nodal basis function

ϕH
K ,i for i = 1, . . . , d.

For e ∈ Eint , there exist K1, K2 ∈ TH with corresponding sampling domains
K 1
δ , K 2

δ such that e = K1 ∩ K2. The average of the effective velocity field on e is
defined by

{bε} = 1

2

⎛

⎜
⎜
⎝

1

|K 1
δ |

∫

K 1
δ

Qϕh
K1

bε(x) dx + 1

|K 2
δ |

∫

K 2
δ

Qϕh
K2

bε(x) dx

⎞

⎟
⎟
⎠ . (11)
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For e ∈ EB , there exists K ∈ TH with corresponding sampling domain Kδ such that
e = K ∩ ∂�. The average of the effective velocity field on e is defined by

{bε} = 1

|Kδ|
∫

Kδ

Qϕh
K

bε(x) dx .

As for the average of multiscale fluxes, the average of the effective velocity field uses
quantities already computed for assembling the stiffness matrix of the diffusive part
BD . In order to assemble the terms of BA on the edges the effective velocity field has
to be stored for every K ∈ TH similarly as for the multiscale fluxes appearing in BD .
Macro solution. Our multiscale method for computing an effective solution of prob-
lem (1) reads as follows: find u H ∈ V 1(�, TH ) such that

B(u H , vH ) =
∫

�

f vH dx ∀ vH ∈ V 1(�, TH ). (12)

Remark 3.3 The diffusive part BD is the extension of the incomplete interior penalty
Galerkin method (IIPG) of [25] to multiscale problems. It only differs in the lack
of the symmetrizing term in comparison to the multiscale method proposed in [7].
The advective part BA is a multiscale extension of the advective part of the method
proposed in [33].

3.3 A useful reformulation of the DG-HMM

For the stability and the a priori error analysis of the FE-HMM (multiscale methods
based on standard FEM) it turns out that it is convenient to define a numerically
homogenized tensor a0

K (cf. e.g. [7, Section 5]). In that way, the diffusive form BD

can be reformulated as a standard DG-FEM based on numerical integration applied
to a modified macro problem. An analogous reformulation of the advective form BA

will also be derived (this will allow to motivate the definition of {bε}). We emphasize
that this reformulation will only be used for the analysis but not for actual numerical
computations.

To begin with, we consider a micro problem with modified right-hand side for
i = 1, . . . , d: find ψ i,h

K ∈ Sq(Kδ, Th) such that

∫

Kδ

aε(x)∇ψ i,h
K · ∇zh dx = −

∫

Kδ

aε(x)ei · ∇zhdx ∀ zh ∈ Sq(Kδ, Th). (13)

We also consider the following similar problem for i = 1, . . . , d: find ψ i
K ∈ W (Kδ)

such that
∫

Kδ

aε(x)∇ψ i
K · ∇z dx = −

∫

Kδ

aε(x)ei · ∇z dx ∀ z ∈ W (Kδ). (14)
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Based on the finite element micro functions ψ i,h
K and the exact micro functions ψ i

K ,
we define two tensors

a0
K = 1

|Kδ|
∫

Kδ

aε
(

I d + J T
ψh

K (x)

)
dx, a0

K = 1

|Kδ|
∫

Kδ

aε
(

I d + J T
ψK (x)

)
dx, (15)

where Jψh
K (x)

and JψK (x) are d × d matrices with entries
(

Jψh
K (x)

)

il
= ∂ψ

i,h
K

∂xl
and

(
JψK (x)

)
il = ∂ψ i

K
∂xl

, respectively. We recall that the tensor a0
K enters in the penalty

weighting function μ for the macro bilinear form (6). It can be computed following
[6, Theorem 18]. The estimation of this tensor does not constitute a computational
overhead as the micro problems (13) need already to be solved to assemble BD [indeed
the solution of (8) can be obtained from the solutions of (13)].

Lemma 3.4 [7, Lemma 5.4, Corollary 5.5] Let vh
K , w

h
K be the solutions of the micro

problem (8) such that vh
K − vH ∈ Sq(Kδ, Th) (resp. wh

K − wH ∈ Sq(Kδ, Th)) with
Sq(Kδ, Th) ⊂ W 1

per (Kδ) (periodic coupling) or Sq(Kδ, Th) ⊂ H1
0 (Kδ) (Dirichlet

coupling). Then the following identities hold

1

|Kδ|
∫

Kδ

aε(x)∇vh
K · ∇wh

K dx = a0
K ∇vH (xK ) · ∇wH (xK ),

1

|Kδ|
∫

Kδ

aε(x)∇vh
K dx = a0

K ∇vH (xK ).

The average of the multiscale fluxes can be reformulated analogously (similar to
[7, Lemma 5.6]).

Lemma 3.5 Let K1, K2 ∈ TH having a common interface e. Let vh
K1

and vh
K2

be the

solution of (8) in K1 and K2, respectively, constrained by vH ∈ V 1(�, TH ) employing
periodic or Dirichlet boundary conditions. Then

{aε∇vh} = {a0
K ∇vH }.

Hence, one can reformulate the diffusive part BD of the method (cf. [7, Proposition
5.7]) by

BD(v
H , wH ) =

∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇wH (xK )−

∫

�

{a0
K ∇vH } · �wH � ds

+
∫

�

μ�vH � · �wH � ds. (16)
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Next, we define the velocity field b0
K and its counterpart b

0
K analogously to a0

K and
a0

K , respectively,

b0
K = 1

|Kδ|
∫

Kδ

(I d + Jψh
K
(x))bε(x)dx, b

0
K = 1

|Kδ|
∫

Kδ

(I d + JψK (x))b
ε(x)dx .

Following Lemma 3.4 we have that 1
|Kδ |

∫
Kδ

bε · ∇vh
K dx = b0

K · ∇vH (xK ), and if we

set vH = ϕH
K ,i , observing that ∇ϕH

K ,i = (DT
K )

−1ei , we obtain

eT
i D−1

K b0
K = b0

K · ∇vH = 1

|Kδ|
∫

Kδ

(∇ϕh
i )

T bεdx,

for i = 1, . . . , d, hence, we obtain b0
K = 1

|Kδ |
∫

Kδ
Qϕh

K
bεdx , where Qϕh

K
is defined

in (10). Thus, it follows that {bε} = {b0
K }. Taking into account that for K ∈ TH and

vH , wH ∈ V 1(�, TH ) it holds

∫

K

b0
K · ∇vHwH dx = |K | b0

K · ∇vH (xK )w
H (xK ),

the advective part BA can then be reformulated as

BA(v
H , wH ) =

∑

K∈TH

∫

K

b0
K · ∇vHwH dx −

∫

�

{b0
K } · �vH �wH

i ds. (17)

For the analysis of the method carried out in Sects. 4 and 5.2 we always use the macro
bilinear form in its reformulated version of (16) and (17).

4 Main results

In this section, we present our main results, namely the stability of the multiscale
method (6) for general data aε, bε and a priori error estimates in both advection and
diffusion dominated regimes for locally periodic data. We start by defining the norm
used in our analysis.

Definition 4.1 For vH ∈ V 1(�, TH ), let the norm |||vH ||| = (|||vH |||2D + |||vH |||2A)1/2
be defined by the following problem-dependent norms

|||vH |||2D = a∞‖∇vH ‖2
L2(�) + a∞|vH |2∗,D, |||vH |||2A = b∞‖vH ‖2

L2(�) + |vH |2∗,A,
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where a∞ = ess supx∈� ‖a0(x)‖F , b∞ = ess supx∈� |b0(x)| and |vH |2∗,R =
∑

e∈E ‖γ (R)1/2�vH �‖2
L2(e), a weighted mesh-dependent semi-norm with

γ (R) =
{
αH−1

e for R = D, (i.e., with respect to diffusion),

|b0 · n| for R = A, (i.e., with respect to advection).

We note that the diffusion norm |||·|||D is the same as the norm used in [7] scaled
by a1/2∞ . Hence, for an advection dominated problem |||·|||D is dominated by |||·|||A.
As in our multiscale method variational crimes are committed, we need to introduce
two quantities rvc,A,TH and rvc,A,E , that quantify the variational crimes in BA, due to
numerical integration on the macroscopic scale and the numerical upscaling procedure.
We consider

rvc,A,TH = 1

b∞
sup

K∈TH
x∈K

|b0
K − b0(x)|, rvc,A,E = 1

b∞
sup
e∈E
x∈e

|{b0
K } − b0(x)|,

and we define rvc,A = rvc,A,TH + rvc,A,E . Further, the global Péclet number for the
effective problem is given by Pe = b∞L

a∞ , where L = diam�.

Remark 4.2 In order to have an analysis for which the constants do not blow up in
either the diffusion or the advection dominated regimes, the dependence of usually
generic constants on a∞, b∞ as well as λ,�,B cannot be neglected. Hence, we use
generic constants which only depend on terms of the type �

λ
, a∞
λ

, b∞
B and quantities

independent of a∞, b∞, H, h, ε, δ.

4.1 Stability results

The stability of the multiscale method (6) is proved for data aε, bε without any special
spatial structure. We recall that for data aε, bε satisfying (2) and (3), it holds for the
effective data that b0 ∈ (L∞(�))d and (see [13,36])

a0 ∈ (L∞(�))d×d , a0(x)ξ · ξ ≥ λ|ξ |2, |a0(x)ξ | ≤ �|ξ | a.e. x ∈ �,∀ ξ ∈ R
d .

For the stability analysis, we assume additionally that

b0(x) ∈ W 1,∞(�), − div b0(x) ≥ 0 a.e. x ∈ �, (18)

b0(x) has no closed curves , b0(x) = 0 ∀ x ∈ �. (19)

The condition (18) is the standard assumption for the velocity field for formulating
and analyzing DG-FEM for single scale advection–diffusion problems. Further, the
condition (19) is used in [18] for the construction of a weighting function ϕ (see
Eq. (34)) fundamental for the analysis of DG-FEM for advection–diffusion-reaction
problems in the |||·||| norm.
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To prove the stability of the numerical method (6), we derive the following inf–sup
condition.

Theorem 4.3 Assume (2), (18) and (19). Then, there exist α > 1, H0 > 0, R0 > 0
such that, for

H < H0, rvc,A < R0, (20)

the numerical method defined by (6) fulfills the inf–sup condition

sup
wH ∈V 1(�,TH )

B(vH , wH )

|||wH ||| ≥ αS|||vH ||| ∀ vH ∈ V 1(�, TH ), (21)

where the stability constant αS is independent of H, h, ε, δ.

We emphasize that the constants α, H0, R0 are independent of H, h, ε, δ. Further,
the inf–sup condition (21) implies the existence and uniqueness of the solution of (12).

Theorem 4.4 Assume (2), (18) and (19). Then the bilinear form (6) is uniformly
bounded on V 1(�, TH )×V 1(�, TH ) independently of H, h, ε, δ. Furthermore, under
the additional conditions (20) of Theorem 4.3, the problem (12) has a unique solution
u H in V 1(�, TH ) which satisfies

|||u H ||| ≤ 1

αS
‖ f ‖L2(�), (22)

where αS, independent of H, h, ε, δ, is the stability constant of Theorem 4.3.

4.2 A priori error estimates

As discussed in Sect. 1, the a priori error estimates are derived for locally periodic data
aε, bε. The estimates rely on new results about the effect of numerical integration for
DG-FEM applied to single scale problems, see Appendix A. We note that the assump-
tion of local periodic data is only needed to estimate the modeling error, whereas
the estimates of the macro and micro error given in Theorem A.1 and Lemma 5.13,
respectively, are still valid for non-periodic data.

Assumption 4.5 We assume local periodicity of aε and bε in the sense that there
exist a tensor a(x, y) and a velocity field b(x, y) both Y -periodic in y such that
aε(x) = a(x, x

ε
) and bε(x) = b(x, x

ε
). Furthermore, we postulate Lipschitz continuity

of a and b with respect to the first variable

ai j (x, y), bi (x, y) ∈ W 1,∞(�, L∞(Y )), 1 ≤ i, j ≤ d.

In order to derive the a priori error estimates, we aim to decompose the total error
into macro error emac and the quantity eH M M

|||u0 − u H ||| ≤ emac + eH M M , (23)
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where u0 is the solution of the homogenized problem (4) and u H is the solution of (12).
The explicit formulas for emac and eH M M will be given in the proof of Theorem 4.6.
While the macro error is due to the macroscopic solver B̃0, a discontinuous Galerkin
finite element method with numerical quadrature (introduced in Sect. 5.2.1) to solve the
homogenized problem (4), the term eH M M is the error solely caused by the upscaling
procedure intrinsically encoded into B. By a Strang type result similar to [7, Lemma
5.10] we can trace eH M M back to the quantities

rH M M,D = 1

a∞
sup

K∈TH

‖a0
K − a0(xK )‖F , rH M M,A = 1

b∞
sup

K∈TH

|b0
K − b0(xK )|.

(24)

Theorem 4.6 Let u0 and u H be the solutions of (4) and (12), respectively.
Assume (2), (18), (19) and the regularity u0 ∈ H2(�), a0 ∈ (W 1,∞(�))d×d ,
b0 ∈ (W 2,∞(�))d . Furthermore, assume that H, rvc,A and α satisfy the hypothe-
sis of Theorem 4.3. Then, the following a priori error estimate holds

|||u0 − u H ||| ≤ C
(

a1/2∞ H + b1/2∞ H3/2 + b1/2∞ min{Pe1/2 H2, H}
+a1/2∞ rH M M,D + b1/2∞ rH M M,A

)
‖u0‖H2(�),

where C is independent of H, h, ε, δ.

The fully discrete error analysis relies on the decomposition of rH M M,D and
rH M M,A into modeling error rmod,· and micro error rmic,· due to diffusion D and
advection A, respectively,

rH M M,D ≤ 1

a∞
sup

K∈TH

‖a0(xK )− a0
K ‖F + 1

a∞
sup

K∈TH

‖a0
K − a0

K ‖F

=: rmod,D + rmic,D, (25)

rH M M,A ≤ 1

b∞
sup

K∈TH

|b0(xK )− b
0
K | + 1

b∞
sup

K∈TH

|b0
K − b0

K | =: rmod,A + rmic,A.

(26)

In order to estimate the micro error we assume the following regularity of the exact
micro functions ψ i

K and the velocity field bε.

(H1) ψ i
K ∈ Hq+1(Kδ) and |ψ i

K |Hq+1(Kδ)
≤Cε−q√|Kδ| for K ∈TH , i = 1, . . . , d.

(B1) bε ∈ W 1,∞(�) and |bεi |W 1,∞(�) ≤ CBε−1 for i = 1, . . . , d.

We refer to [7, Remark 5.1] for justification and discussion of (H1). Further, we
observe that for smooth periodic velocity fields of the form bε(x) = b(x/ε) = b(y),
Y -periodic in y, we have by the chain rule ∂xi b(x/ε) = 1

ε
∂yi b(y). For the analysis of

the modeling error we assume

(H2) aε and bε are collocated in the slow variable at xK , i.e., aε(x) = a(xK , x/ε)
and bε(x) = b(xK , x/ε) on any K ∈ TH , where xK is the quadrature node in K .
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This is possible due to the local periodicity of aε and bε (see Remark 5.16 for gener-
alization).

For the discussion of the micro errors rmic,· and the modeling errors rmod,· we refer
to Sect. 5.2.2. The fully discrete a priori error bounds for the DG-HMM proposed in
this paper read as follow.

Theorem 4.7 In addition to the assumptions of Theorem 4.6, assume (H1), (H2) and
(B1). Then

• for periodic coupling, i.e., W (Kδ) = W 1
per (Kδ) and δ

ε
∈ N,

|||u0 − u H ||| ≤ C

(

a1/2∞ H + b1/2∞ H3/2 + b1/2∞ min{Pe1/2 H2, H}

+a1/2∞
(

h

ε

)2q

+ b1/2∞
(

h

ε

)q+1
)

, (27)

• for Dirichlet coupling, i.e., W (Kδ) = H1
0 (Kδ) and δ > ε,

|||u0 − u H ||| ≤ C

(

a1/2∞ H + b1/2∞ H3/2 + b1/2∞ min{Pe1/2 H2, H} + a1/2∞
(

h

ε

)2q

+ a1/2∞
ε

δ
+ b1/2∞

(
h

ε

)q+1

+ b1/2∞
(ε

δ

)1/2
)

, (28)

where C is independent of H, h, ε, δ.

We note that the first two terms of estimates (27) and (28) are known from the single
scale analysis [18], the third term quantifies the effect of numerical integration on the
macro scale derived in Theorem A.1 and the remaining terms describe the influence
of micro and modeling error solely due to the multiscale strategy.

Remark 4.8 We observe that the numerical integration in the advective part introduces
the additional term b1/2∞ min

{
Pe1/2 H2, H

}
into the a priori estimates (compare esti-

mate (61) and Theorem A.1). We note that this additional term is at least of linear
order. In our numerical experiments however, the linear order of convergence is never
seen, not even for large Péclet number.

Further, the a priori estimate presented in Theorem 4.7 allows to define micro-
macro refinement strategies for optimal convergence in the |||·||| norm with minimal
computational costs for advection or diffusion dominated problems. Indeed, assume
for example that we choose linear micro finite elements, i.e., q = 1, and we denote by
Nmac and Nmic the number of macro and micro elements in each spatial dimension
of the macro and the micro mesh, respectively, when discretizing� and the sampling
domains Kδ by quasi-uniform triangular meshes (we note that the choice q = 1 leads
to a quadratic convergence of rmic,D and rmic,A which is of higher order than the
convergence of emac). We get the refinement strategies
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(DD) H ∼ ( h
ε

)2
(i.e., Nmic ∼ √

Nmac) for diffusion dominated problems,

(AD) H
3
2 ∼ ( h

ε

)2
(i.e., Nmic ∼ (Nmac)

3/4) for advection dominated problems.

Complexity. We recall, that Nmac and Nmic denote the number of macro and micro
elements in each spatial dimension on the macro domain � and the micro domains
Kδ , respectively. Thus, the macro and micro degree of freedom (DOF) are of order
O(Mmac) and O(Mmic), respectively, where Mmac = N d

mac and Mmic = N d
mic, and

the total DOF is of order O(Mmac · Mmic). Further, the macro mesh size H is given by
H = 1/Nmac and the micro mesh size h by h = δ/Nmic. Since the sampling domain
size δ is of order O(ε) we get h/ε = C/Nmic, where C is a moderate constant.
Therefore, in view of Theorem 4.7, Nmic can be chosen independently of ε.

The refinement strategies (DD) and (AD) presented above lead to optimal conver-
gence rates in the |||·||| norm with minimal computational cost. We observe, that

Mmic ∼ √
Mmac for (DD) refinement, Mmic ∼ M3/4

mac for (AD) refinement,

leading to a complexity (independent of ε) of O(M3/2
mac) floating point operations for

the optimal (linear) convergence rate in the |||·||| norm for a diffusion dominated problem
and O(M7/4

mac) floating point operations for the optimal (superlinear) convergence rate
in the |||·||| norm for an advection dominated problem. This holds under the assumption
that the cost of the method is proportional to the total degree of freedom.

5 Proof of the main results

In this section, we provide the proofs of our main results presented in Sect. 4. We first
prove the stability of the DG-HMM (6) in Sect. 5.1 and then derive the a priori error
estimates in Sect. 5.2.

5.1 Proof of the stability results

In this section, we first show an interpolation result (Lemma 5.5) important for the
stability proof and characterize the variational crimes in the advective part BA of the
DG-HMM (Lemma 5.7). Then, we give the proof of the stability result.

5.1.1 Bound on multiscale fluxes, weighting function, interpolation result
and variational crimes

We start by stating some useful inequalities often used in what follows. The discrete
Poincaré inequality (see [16, Lemma 2.1]) is given by

‖v‖2
L2(�)

≤ C2
P

(
‖∇v‖2

L2(�)
+ |v|2∗,D

)
∀ v ∈ H1(TH ), (29)

where |·|∗,D is the mesh-dependent semi-norm, introduced in Definition 4.1. Fur-
thermore, we use two well-known results from standard finite element methods. The
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first one is the interpolation result of [22, Theorem 3.1.4]: let K ∈ TH , k ∈ N,
u ∈ Hk+1,p(K ) and PH u ∈ Pk(K ) be its L2 orthogonal projection onto Pk(K ).
Then it holds

|u − PH u|W m,q (K ) ≤ C |K | 1
q − 1

p Hk+1−m
K |u|W k+1,p(K ), (30)

for 1 ≤ p, q ≤ ∞ and m ∈ N with 0 ≤ m ≤ k + 1. The second one is the scaled
trace inequality [14, Theorem 3.10]: let K ∈ TH and e ∈ E such that e ⊂ K . Then,
for v ∈ H1(K ) we have

‖v‖L2(e) ≤ C H1/2
e ‖∇v‖L2(K ) + C H−1/2

e ‖v‖L2(K ). (31)

In this article, we shall often use the combination of (31) and the inverse inequality
[22, Theorem 3.2.6] for piecewise linear polynomials vH ∈ V 1(�, TH )

‖vH ‖L2(e) ≤ C H−1/2
e ‖vH ‖L2(K ). (32)

Finally, we recall that the quadrature formula (5) satisfies

√ ∑

K∈TH

|K ||∇vH (xK )|2 = ‖∇vH ‖L2(�),

√ ∑

K∈TH

|K ||vH (xK )|2 ≤ CL2‖vH ‖L2(�),

for any vH ∈ V 1(�, TH ), where CL2 > 0 is a constant independent of H .
Bound on multiscale fluxes. The following energy inequalities and bounds on the
multiscale fluxes related to the diffusive part BD are needed for the stability proof.
They have first been derived in [7] and [6]. First, we recall the energy equivalence [3,
Proposition 3.2].

Lemma 5.1 Let vH ∈ V 1(�, TH ) and let vh
K be the solution of the micro problem (8)

with either periodic or Dirichlet coupling. Assume that (2) holds, then

‖∇vH ‖L2(Kδ) ≤ ‖∇vh
K ‖L2(Kδ)

≤ �

λ
‖∇vH ‖L2(Kδ).

As a simple consequence we recover uniform boundedness and ellipticity of the
numerically homogenized tensor a0

K and a bound for the numerically homogenized
velocity field b0

K , respectively.

Corollary 5.2 Let vH ∈ V 1(�, TH ), K ∈ TH and assume (2). Then it holds

|a0
K ∇vH (xK )| ≤ �2

λ
|∇vH (xK )|, ‖a0

K ‖F ≤ �2

λ
d, |b0

K | ≤ B�
λ

√
d

a0
K ∇vH (xK ) · ∇vH (xK ) ≥ λ|∇vH (xK )|2, ‖{a0

K }‖F ≥ λ.
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We also recall the following bound for the multiscale fluxes first derived in [7,
Lemma 4.3] that is fundamental for proving stability of the DG-HMM proposed in
[7].

Lemma 5.3 For vH , wH ∈ V 1(�, TH ) and assuming (2) it holds

∣
∣
∣
∣
∣
∣

∫

�

{aε∇vh} · �wH � ds

∣
∣
∣
∣
∣
∣
≤ Cg

�2

λ
α−1/2‖∇vH ‖L2(�)|wH |∗,D,

where Cg is independent of H, h, ε, δ, α.

Weighting function. For the stability analysis of the advective part BA, the use of a
weighting function ϕ will be crucial. We motivate conditions (18), (19) and the use of
ϕ by briefly reviewing the stability analysis for single scale problems with advection
denoted by b(x): the importance of considering a weighting function for the control
of BA was already noticed in [35], where problems with constant velocity fields b are
studied. For variable velocity fields, the standard coercivity condition used in literature
(see e.g. [20,33] with reaction term set to zero) is given by

∃ c0 > 0 such that − div b(x) ≥ c0 ∀ x ∈ �, (33)

leading to coercivity results of the type BA(v
H , vH ) ≥ c0‖vH ‖2

L2(�) + |vH |2∗,A. On
one hand, the condition (33) excludes constant velocity fields b. On the other hand,
c0 = 0 would not allow to control BA(v

H , vH ) from below by the L2 norm. In
contrast, the weaker condition (19) that we assume in our analysis, used in [18,24] in
combination with (18), allows for stability results (through an inf–sup condition) for
a broader class of velocity fields b(x) provided a suitable use of a weighting function.

To construct such a weighting function, we follow the derivation given in [18] for
single scale problems. The hypotheses (19) imply the existence of η ∈ W 2,∞(�) such
that b0(x) · ∇η(x) ≥ 2b∞ for any x ∈ � (see [18, Remark 2.1]). Using this function
η, we introduce

ω(x) = exp(−η(x)), ϕ(x) = ω(x)+ κ, (34)

where κ > 0 and ϕ is called weighting function. As η ∈ W 2,∞(�) there exists a
constant Cω > 0 such that

1

Cω
≤ ω(x) ≤ Cω, |∇ω(x)| ≤ Cω, ‖ω‖W 2,∞(�) ≤ Cω ∀ x ∈ �. (35)

To bound ϕ from below and above we introduce ϕ∗ = 1
Cω

+ κ and ϕ∗ = Cω + κ ,
respectively. Finally, we observe that the weighting function ϕ satisfies

−b0 · ∇ϕ(x) ≥ 2b∞
1

Cω
∀ x ∈ �. (36)
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Remark 5.4 For periodic data aε, bε the velocity field b0 is constant. Therefore, condi-
tions (19) reduce to b0 = 0 and a possible choice forη is given byη(x) = 2 b0

b∞ ·x . Since

� is bounded, the bounds (35) can be specified explicitly using e−2R ≤ ω(x) ≤ e2R ,
where R > 0 satisfies � ⊂ BR(0).

Interpolation results. The analysis of the single scale methods in [18] uses the uniform
boundedness of the diffusive part (see [18, Equation (4.9)]) of the form

BD(v
H , w) ≤ Cd |||vH |||D|||w|||D ∀ vH ∈ V 1(�, TH ), w ∈ Ṽ ,

where Ṽ ⊂ H1(TH ) is an infinite-dimensional subspace. However, since BD is based
on the quadrature formula (5), such a uniform boundedness of BD does not hold in
general. The following lemma, based on interpolation results, is used to overcome this
difficulty.

Lemma 5.5 Let vH ∈ V 1(�, TH ), ϕ defined in Eq. (34) and PH (ϕv
H ) be the L2

projection of ϕvH onto V 1(�, TH ). Then, assuming (2), it holds

∣
∣
∣
∣
∣
∣

∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇(ϕvH − PH (ϕv

H ))(xK )

∣
∣
∣
∣
∣
∣

≤ C
�2

λ
Cω‖∇vH ‖L2(�)‖vH ‖L2(�),

where C is independent of H and κ .

Proof We observe that ϕvH − PH (ϕv
H ) = ωvH − PH (ωv

H ) is independent of κ .
An application of the interpolation result (30) and using locally the inverse inequality
[22, Theorem 3.2.6] (thus the constant C will depend on the shape regularity of TH )
leads to

|∇(ωvH − PH (ωv
H ))(xK )|

≤ |ωvH − PH (ωv
H )|W 1,∞(K ) ≤ C |K |−1/2 HK |ωvH |H2(K )

≤ C |K |−1/2 HK ‖ω‖W 2,∞(K )(‖vH ‖2
L2(K ) + ‖∇vH ‖2

L2(K ))
1/2

≤ C‖ω‖W 2,∞(K )|K |−1/2‖vH ‖L2(K ),

which, combined with Corollary 5.2, concludes the proof

∣
∣
∣
∣
∣
∣

∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇(ϕvH − PH (ϕv

H ))(xK )

∣
∣
∣
∣
∣
∣

≤ �2

λ

∑

K∈TH

|K ||∇vH (xK )||∇(ωvH − PH (ωv
H ))(xK )|

≤ C
�2

λ
Cω‖∇vH ‖L2(�)‖vH ‖L2(�).

��
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610 A. Abdulle, M. E. Huber

Furthermore, we recall the results of [18, Lemma 4.2] and extend them in a straight-
forward way to the norms introduced in Definition 4.1.

Lemma 5.6 Let ϕ ∈ W 2,∞(�) be the function defined in Eq. (34). For vH ∈
V 1(�, TH ) let PH (ϕv

H ) be the L2 projection of ϕvH onto V 1(�, TH ). Then it holds

‖ϕvH − PH (ϕv
H )‖L2(�) ≤ CCωH‖vH ‖L2(�),

|ϕvH − PH (ϕv
H )|H1(�) ≤ CCω‖vH ‖L2(�),

(37)

⎛

⎝
∑

K∈TH

‖ϕvH − PH (ϕv
H )‖2

L2(∂K )

⎞

⎠

1/2

≤ CCωH1/2‖vH ‖L2(�), (38)

as well as

|PH (ϕv
H )− ϕvH |∗,D ≤ CCωα

1/2‖vH ‖L2(�), (39)

|||PH (ϕv
H )− ϕvH ||| ≤ CI Cωα

1/2|||vH |||, (40)

where the generic constants C,CI are independent of H, h, ε, δ, α, κ, ω.

Variational crimes. In order to prepare the analysis of the advective part BA we derive
an important bound for the variational crimes committed in BA.

Lemma 5.7 Let vH , wH ∈ V 1(�, TH ) and g ∈ C0(�), then

∣
∣
∣
∣
∣
∣

∑

K∈TH

∫

K

b0
K · ∇vH wH g dx −

∫

�

b0 · ∇vH wH g dx

∣
∣
∣
∣
∣
∣

≤ ‖g‖L∞(�)b∞rvc,A,TH ‖∇vH ‖L2(�)‖wH ‖L2(�),∣
∣
∣
∣
∣
∣

∫

�

{b0
K } · �vH �(wH g)i ds −

∫

�

b0 · �vH �(wH g)i0(s)ds

∣
∣
∣
∣
∣
∣

≤ Cr‖g‖L∞(�)α
−1/2b∞rvc,A,E |vH |∗,D‖wH ‖L2(�),

where Cr is independent of H, h, δ, ε and α.

Proof While the first estimate can be obtained in a straightforward way we split the
second term into I1 and I2 with

I1 =
∫

�

({b0
K } − b0(s)) · �vH �wH

i g ds, I2 =
∫

�

b0(s) · �vH �(wH
i − wH

i0(s))g ds,

123



Discontinuous Galerkin finite element 611

where we used the continuity of g. The term I1 can be estimated applying the scaled
trace inequality (32)

|I1| ≤ ‖g‖L∞(�)α
−1/2b∞rvc,A,E |vH |∗,D

(
∑

e∈E
He‖wH

i ‖2
L2(e)

)1/2

≤ C‖g‖L∞(�)α
−1/2b∞rvc,A,E |vH |∗,D‖wH ‖L2(�).

Further, we observe that for any x ∈ e ∈ E it holds

either wH
i (x)− wH

i0(x)(x) = 0, (if ni0(x) = ni )

or |b0(x) · ni0(x)| ≤ b∞rvc,A,E , (if ni0(x) = −ni ),
(41)

using b0(x) · ni0(x) ≤ 0 and {b0
K } · ni0(x) ≥ 0 in the latter case. Combining (41) with

the scaled trace inequality (32) leads to the estimate of I2

|I2| ≤ ‖g‖L∞(�)
∑

e∈E

∫

{x∈e | ni0(x) =ni }
|b0(s) · ni0(s)||�vH �||wH

i − wH
i0(s)| ds

≤ C‖g‖L∞(�)α
−1/2b∞rvc,A,E |vH |∗,D

(
∑

e∈E
He‖|wH

i | + |wH
i0(x)|‖

2

L2(e)

)1/2

≤ C‖g‖L∞(�)α
−1/2b∞rvc,A,E |vH |∗,D‖wH ‖L2(�).

��

5.1.2 Inf–sup condition and stability result

The inf–sup condition (21) in Theorem 4.3 relies on a lower bound of B(vH , ϕvH ),
where ϕ is the smooth weighting function defined in (34).

Lemma 5.8 Let BD and BA be the bilinear forms of (6) and the weighting function
ϕ be given by (34). Under the conditions (2), (18) and (19), it holds

BD(v
H , ϕvH ) ≥ λ

a∞

(

ϕ∗ − Cω
�2

λ2 CL2CP − ϕ∗

2
Cg
�2

λ2 α
−1/2

)

|||vH |||2D, (42)

BA(v
H , ϕvH )≥ 1

2Cω
|||vH |||2A−ϕ∗ Pe1/2

L1/2 (rvc,A,TH +Crα
−1/2rvc,A,E )|||vH |||D|||vH |||A,

(43)

|||ϕvH ||| ≤ Cω
√

2(CP + κ)|||vH |||. (44)

123



612 A. Abdulle, M. E. Huber

Proof First, the diffusive part is decomposed into three terms

BD(v
H , ϕvH ) =

∑

K∈TH

|K |
|Kδ|

∫

Kδ

aε∇vh
K · ∇(ϕvH )hK dx −

∫

�

{aε∇vh} · �ϕvH � ds

+
∫

�

μ�vH � · �ϕvH � ds = I1 + I2 + I3,

denoting by (ϕvH )hK the solution of the micro problem constrained by ϕvH . Since
ϕ ∈ C1(�) the micro problem is well-defined. Using the reformulation (16), in view
of the estimates of Corollary 5.2, we obtain

I1 =
∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇vH (xK )ϕ(xK )

+
∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇ϕ(xK )v

H (xK )

≥ ϕ∗λ‖∇vH ‖2
L2(�) − Cω

�2

λ
CL2‖∇vH ‖L2(�)‖vH ‖L2(�)

≥ ϕ∗λ‖∇vH ‖2
L2(�) − Cω

�2

λ
CL2CP

(
‖∇vH ‖2

L2(�) + |vH |2∗,D
)
,

where the discrete Poincaré inequality (29) is used. Further, we observe that �ϕvH � =
ϕ�vH � due to the regularity of ϕ. Applying Lemma 5.3 and Corollary 5.2 on I2 and
I3, respectively, leads to

|I2| =
∣
∣
∣
∣
∣
∣

∫

�

{aε∇vh} · �vH �ϕ ds

∣
∣
∣
∣
∣
∣
≤ ϕ∗Cg

�2

λ
α−1/2‖∇vH ‖L2(�)|vH |∗,D

≤ ϕ∗

2
Cg
�2

λ
α−1/2

(
‖∇vH ‖2

L2(�) + |vH |2∗,D
)
,

I3 =
∑

e∈E
‖{a0

K }‖F

∫

e

αH−1
e �vH � · �vH �ϕ ds ≥ ϕ∗λ|vH |2∗,D .

For BA, we first observe that the identity

1

2
�(vH )2� − �vH �vH

i0(x) = −1

2
|�vH �|2ni0(x), (45)

holds for every x ∈ e ∈ E . Then, we separate the terms due to variational crimes,
apply integration by parts and use (45)
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BA(v
H , ϕvH ) =

∑

K∈TH

∫

K

b0 · ∇vH (ϕvH ) dx −
∫

�

b0 · �vH �(ϕvH )i0(s) ds

+
∑

K∈TH

∫

K

(b0
K − b0) · ∇vH (ϕvH )dx

︸ ︷︷ ︸
I4

−
∫

�

{b0
K } · �vH �(ϕvH )i − b0 · �vH �(ϕvH )i0(s) ds

︸ ︷︷ ︸
I5

= 1

2

∫

�

(− div(b0)ϕ − b0 · ∇ϕ)(vH )2 dx

+
∫

�

ϕ b0
(

1

2
�(vH )2� − �vH �vH

i0(s)

)

ds + I4 − I5

≥ 1

Cω
b∞

∫

�

(vH )2 dx + 1

2

∫

�

−b0 · ni0(s)|�vH �|2ϕ ds + I4 − I5,

where − div b0 ≥ 0 of hypothesis (18) and the lower bound (36) are used. Using
Lemma 5.7 with g = ϕ for estimating the terms I4 and I5 leads to

BA(v
H , ϕvH ) ≥ 1

Cω
b∞‖vH ‖2

L2(�) + 1

2Cω
|vH |2∗,A

− ϕ∗b∞rvc,A,TH ‖∇vH ‖L2(�)‖vH ‖L2(�)

− ϕ∗Crα
−1/2rvc,A,E |vH |∗,D‖vH ‖L2(�),

from which the claimed lower bound (43) for the advective part BA follows. Finally,
the continuity of the mapping vH �→ ϕvH with respect to |||·||| can be shown by a direct
computation. ��

Since ϕvH is not an element of V 1(�, TH ) in general, we consider wH =
PH (ϕv

H ), where PH denotes the L2 projection onto V 1(�, TH ). Hence, we decom-
pose B(vH , PH (ϕv

H )) into B(vH , ϕvH )+B(vH , PH (ϕv
H )−ϕvH )where the second

term can be seen as a perturbation.

Lemma 5.9 Let BD and BA be as in (6) and ϕ be given by (34). Under the condi-
tions (2), (18) and (19), there exist two positive constants CD and CA independent of
ω and κ such that

|BD(v
H , ϕvH − PH (ϕv

H ))| ≤ CDCωα
1/2|||vH |||2D,

|BA(v
H , ϕvH − PH (ϕv

H ))| ≤ CACωα
−1/2 H

Pe1/2

L1/2 |||vH |||D|||vH |||A,

for any vH ∈ V 1(�, TH ), where CD and CA are independent of H, h, ε, δ, α, κ .
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Proof We start by estimating the diffusive part BD

BD(v
H , PH (ϕv

H )− ϕvH ) =
∑

K∈TH

|K |a0
K ∇vH (xK ) · ∇(PH (ϕv

H )− ϕvH )(xK )

−
∫

�

{aε∇vh} · �PH (ϕv
H )− ϕvH � ds

+
∑

e∈E
‖{a0

K }‖F

∫

e

αH−1
e �vH � · �PH (ϕv

H )−ϕvH � ds.

We use Lemma 5.5, the interpolation estimate (39), Corollary 5.2 and α > 1 to obtain
the first estimate

∣
∣
∣BD(v

H , PH (ϕv
H )− ϕvH )

∣
∣
∣ ≤ C

�2

λ
Cω‖∇vH ‖L2(�)‖vH ‖L2(�)

+ Cg
�2

λ
α−1/2‖∇vH ‖L2(�)|PH (ϕv

H )− ϕvH |∗,D

+ �2

λ
d|vH |∗,D|PH (ϕv

H )− ϕvH |∗,D

≤ CCω
�2

λ

(
(1 + Cg)‖∇vH ‖L2(�)‖vH ‖L2(�) + α1/2|vH |∗,D‖vH ‖L2(�)

)

≤ CDCωα
1/2|||vH |||2D.

For the advective part, we observe that the first term of BA(v
H , PH (ϕv

H ) − ϕvH )

(see (6)) vanishes

∫

K

b0
K · ∇vH (PH (ϕv

H )− ϕvH ) dx = 0 ∀ K ∈ TH ,

using the definition of the L2 projection and the fact that b0
K · ∇vH is constant on any

K ∈ TH . Hence, applying Corollary 5.2 and the interpolation estimate (38) lead to

|BA(v
H , PH (ϕv

H )− ϕvH )| =
∫

�

|{b0
K }||�vH �||(PH (ϕv

H )− ϕvH )i |ds

≤ CBα−1/2 H1/2|vH |∗,D
(
∑

e∈E
‖(PH (ϕv

H )− ϕvH )i‖2
L2(e)

)1/2

≤ CCωBα−1/2 H |vH |∗,D‖vH ‖L2(�).

��
Proof of Theorem 4.3 Let vH ∈ V 1(�, TH ). We consider PH (ϕv

H ) ∈ V 1(�, TH ),
where the weighting function ϕ is defined in (34) up to the parameter κ > 0. For the
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proof of the inf–sup condition we prove

(i) B(vH , PH (ϕv
H )) ≥ C2|||vH |||2, (ii) |||PH (ϕv

H )||| ≤ C1|||vH |||, (46)

where C1,C2 > 0 are independent of H, h, ε and δ. These estimates then directly
imply the inf–sup condition with stability constant αS = C2/C1

sup
wH ∈V 1(�,TH )

B(vH , wH )

|||wH ||| ≥ B(vH , PH (ϕv
H ))

|||PH (ϕvH )||| ≥ C2|||vH |||2
C1|||vH ||| = αS|||vH |||.

For showing (46).(i), we combine Lemmas 5.8, 5.9 and Young’s inequality

BD(v
H , PH (ϕv

H )) ≥ λ

a∞

(

ϕ∗ − Cω
�2

λ2 CL2CP − ϕ∗

2
Cg
�2

λ2 α
−1/2

)

|||vH |||2D
− CDCωα

1/2|||vH |||2D,

BA(v
H , PH (ϕv

H )) ≥ 1

2Cω
|||vH |||2A − 1

2

Pe1/2

L1/2

×
(
ϕ∗(rvc,A,TH + Crα

−1/2rvc,A,E )+CACωα
−1/2 H

)
|||vH |||2,

where the estimates are explicit in H, κ, α and rvc,A,TH , rvc,A,E . The goal is to find
constants α > 1, H0 > 0, R0 > 0 and suitable choice of κ > 0, such that for H < H0
and rvc,A < R0, it holds

(a) BD(v
H , PH (ϕv

H )) ≥ 2C∗|||vH |||2D,
(b) BA(v

H , PH (ϕv
H )) ≥ 2C∗|||vH |||2A − C∗|||vH |||2.

(47)

We then immediately see that by setting C2 = C∗ the estimate (46).(i) follows.
We thus start by proving (47).(a). First, we choose the penalization parameter α

such that

A(α) : 1

4
> Cg

�2

λ2 α
−1/2,

is satisfied. Further, we choose κ > 0 such that the conditions

B(α, κ) : ϕ∗ > ϕ∗

2
,

ϕ∗

2
> Cω

�2

λ2 CL2CP ,
ϕ∗

8

λ

a∞
> CDCωα

1/2,

hold, fixing the weighting function ϕ. Defining C∗ = min{CDCωα1/2

2 , 1
4Cω

} and for α
and κ satisfying A and B the bound (47).(a) can be shown.
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We continue with the conditions leading to the bound (47).(b). First, we define H0
as the supremum over all H > 0 such that

C(α, H) : 1

2
C∗ >

1

2

Pe1/2

L1/2 CACωHα−1/2,

is satisfied. We thus have

BA(v
H , PH (ϕv

H )) ≥ 2C∗|||vH |||2A −
(

1

2

Pe1/2

L1/2 ϕ
∗ max(1,Cr )rvc,A + 1

2
C∗

)

|||vH |||2.

Second, we define R0 the value such that for rvc,A < R0 it holds

D(κ, rvc,A) : 1

2
C∗ >

1

2

Pe1/2

L1/2 ϕ
∗ max(1,Cr )rvc,A,

thus BA(v
H , PH (ϕv

H )) ≥ 2C∗|||vH |||2A − C∗|||vH |||2 for H < H0 and rvc,A < R0 and
we have shown (47).(b).

The second part (46).(ii) follows by using estimate (44) and the interpolation
result (40)

|||PH (ϕv
H )||| ≤ |||ϕvH ||| + |||PH (ϕv

H )− ϕvH ||| ≤ C1|||vH |||,

with C1 = Cω max{√2(CP + κ),CIα
1/2}. ��

We remark that any α > α0 > 1, α0 being a threshold value satisfying A, can
be chosen. However, the choice of α influences κ through the condition B and R0
through condition D. Hence, the choice of α has an impact on the upper bounds for
the variational crimes rvc,A.

Remark 5.10 It might be of interest to compare the conditions A,B,C,D to the con-
ditions used in the stability proof of DG-FEM for single scale problems presented in
[18, Theorem 4.4]. While the condition A corresponds to [18, Equation (3.2), (4.16)],
B corresponds to a condition elaborated in [18, Theorem 4.4] combined with the con-
ditions [18, Equation (4.15), (4.21)] stated in the definition of the weighting function
ϕ. We emphasize that a smallness assumption on H has already been necessary for
[18, Theorem 4.4]. Thus, condition C can be considered as its counterpart within our
analysis. Finally, condition D is due to the variational crimes committed in the advec-
tive part BA. We remark that for rvc,A = 0 the conditions used in the above proof are
similar to the ones used in [18, Theorem 4.4].

Remark 5.11 Combining estimates (53) and (57), we will show in Sect. 5.2 that for
locally periodic data (cf. Assumption 4.5) satisfying (H1), (H2) and (B1)

rvc,A ≤
⎧
⎨

⎩

C
(

H + ( h
ε

)q+1
)

if W (Kδ) = W 1
per (Kδ) and δ

ε
∈ N

C
(

H + (
ε
δ

)1/2 + ( h
ε

)q+1
)

if W (Kδ) = H1
0 (Kδ) and δ > ε

.
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Thus, under appropriate coupling conditions and parameters H, h, δ, the term rvc,A

can be arbitrarily small and the condition rvc,A < R0 for a R0 > 0 of Theorem 4.3
can be satisfied.

Proof of Theorem 4.4 In order to show the uniform boundedness of B we use the
results of Lemma 5.3, Corollary 5.2 and follow the steps of the proof of Lemma 5.9.
For vH , wH ∈ V 1(�, TH ), we obtain

|BD(v
H , wH )| ≤ C |||vH |||D|||wH |||D, |BA(v

H , wH )| ≤ C Pe1/2 |||vH |||D|||wH |||A,

where the constants C are independent of H, h, ε, δ, α. Combining the uniform bound-
edness with Theorem 4.3 leads to the existence and uniqueness of the solution of (12)
and estimate (22). ��

5.2 Proof of the a priori error estimates

In this section, we derive the a priori error estimates for DG-HMM for advection–
diffusion problems with locally periodic data (Assumption 4.5). The analysis is per-
formed in two steps: first, in Sect. 5.2.1, we estimate the macroscopic error of the
discontinuous Galerkin method emac and identify the term eH M M explicitly. Then,
in Sect. 5.2.2, the micro error and the modeling error are estimated. Combining both
steps gives Theorem 4.7.

5.2.1 Semi-discrete error

In order to estimate the macro error emac we introduce a discontinuous Galerkin finite
element method for the homogenized problem (4) using numerical integration. This
method (never used in practice as the data of (4) are usually not known) is only defined
for the convergence analysis.

Single scale method with quadrature. For vH , wH ∈ V 1(�, TH ) we define the
bilinear form B̃0 as the sum B̃0 = B̃D,0 + B̃A,0 where B̃D,0 and B̃A,0 are given by

B̃D,0(v
H , wH ) =

∑

K∈TH

|K | a0(xK )∇vH (xK ) · ∇wH (xK )

−
∫

�

{a0(xK )∇vH (xK )} · �wH � ds +
∫

�

μ̃S�vH � · �wH � ds,

B̃A,0(v
H , wH ) =

∑

K∈TH

|K | b0(xK ) · ∇vH (xK ) w
H (xK )

−
∫

�

{b0(xK )} · �vH �wH
ı̃0

ds,

(48)

where for an interior edge e ⊂ K1 ∩ K2, for some K1, K2 ∈ TH ,
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{a0(xK )∇vH (xK )} = 1

2

(
a0(xK1)∇vH (xK1)+ a0(xK2)∇vH (xK2)

)
,

{b0(xK )} = 1

2

(
b0(xK1)+ b0(xK2)

)
.

Further, the penalty weighting function μ̃S is given piecewisely by μ̃S|e =
‖{a0(xK )}‖FαH−1

e , where the penalization parameter α > 1 is a positive parameter
independent of the local mesh size and the data a0, and ı̃0 denotes the trace taken from
the inflow element with respect to {b0(xK )} - cf. Remark 3.2. Then, we denote by
ũ0,H the solution of the variational problem: find ũ0,H ∈ V 1(�, TH ) such that

B̃0(ũ
0,H , vH ) =

∫

�

f vH dx ∀ vH ∈ V 1(�, TH ). (49)

In the proof of Theorem 4.6 we will use the following estimates obtained by com-
bining the interpolation estimates (30) and the scaled trace inequality (32)

|||u0 − PH u0|||D ≤ Ca1/2∞ H |u0|H2(�), |||u0 − PH u0|||A ≤ Cb1/2∞ H3/2|u0|H2(�),

(50)

where PH u0 ∈ V 1(�, TH ) denotes the L2 projection of u0 onto V 1(�, TH ) and u0 is
assumed to be in H2(�). Further, the L2 projection PH u0 is bounded in the |||·||| norm

|||PH u0|||D ≤ Ca1/2∞ ‖u0‖H2(�), |||PH u0|||A ≤ Cb1/2∞ ‖u0‖H2(�), (51)

where the bounds on |PH u0|∗,· are derived using the fact that |PH u0|∗,· =
|PH u0 − u0|∗,· as H2(�) ↪→ C0(�) for d ≤ 3 and u0 = 0 on ∂�.

The next step is to estimate the difference between B and B̃0.

Lemma 5.12 Let vH , wH ∈ V 1(�, TH ) then

|BD(v
H , wH )− B̃D,0(v

H , wH )|
≤ Ca1/2∞ rH M M,D

(
‖∇vH ‖2

L2(�) + |vH |2∗,D
)1/2|||wH |||D,

|BA(v
H , wH )− B̃A,0(v

H , wH )|
≤ Cb1/2∞ rH M M,A

(
‖∇vH ‖2

L2(�) + |vH |2∗,D
)1/2|||wH |||A,

where rH M M,D and rH M M,A are defined in (24) and C is independent of H, h, δ, ε
and α.
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Proof We start by estimating the difference in the diffusive part

∣
∣
∣BD(v

H , wH ) −B̃D,0(v
H , wH )

∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

K∈TH

|K | (a0
K − a0(xK ))∇vH (xK ) · ∇wH (xK )

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∫

�

{
(

a0
K − a0(xK )

)
∇vH (xK )} · �wH � ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

e∈E

(
‖{a0

K }‖F − ‖{a0(xK )}‖F
) ∫

e

αH−1
e �vH � · �wH � ds

∣
∣
∣
∣
∣
∣

= |I1|+|I2|+|I3|.

The terms I1 and I2 are estimated by following the proof of [7, Lemma 5.10]

|I1| ≤ a∞rH M M,D‖∇vH ‖L2(�)‖∇wH ‖L2(�),

|I2| ≤ Cgα
−1/2a∞rH M M,D‖∇vH ‖L2(�)|wH |∗,D,

and I3 can be bounded by using the reverse triangle inequality

|I3| ≤
∫

�

‖{a0
K }−{a0(xK )}‖FαH−1

e �vH � · �wH � ds ≤a∞rH M M,D|vH |∗,D|wH |∗,D.

Further, the estimate for the advective part can be derived straightforwardly from
Lemma 5.7. ��

Proof of Theorem 4.6 We first split the error into |||u0 − u H ||| ≤ |||u0 − PH u0||| +
|||PH u0 − u H ||| using the L2 projection PH u0. Then, the stability of the multiscale
method allows us to estimate the second term

αS |||PH u0−u H |||≤ sup
wH ∈V 1(�,TH )

B(PH u0 − u H , wH )

|||wH |||

= sup
wH ∈V 1(�,TH )

B(PH u0, wH )− ∫
�

fwH dx

|||wH |||

= sup
wH ∈V 1(�,TH )

B(PH u0, wH )− B̃0(ũ0,H , wH )

|||wH |||

= sup
wH ∈V 1(�,TH )

B(PH u0, wH )− B̃0(PH u0, wH )+ B̃0(PH u0−ũ0,H , wH )

|||wH ||| .
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Hence, we get for the error

|||u0 − u H ||| ≤ |||u0 − PH u0||| + 1

αS
sup

wH ∈V 1(�,TH )

B̃0(PH u0 − ũ0,H , wH )

|||wH |||

+ 1

αS
sup

wH ∈V 1(�,TH )

B(PH u0, wH )− B̃0(PH u0, wH )

|||wH ||| .

In view of (23) the first two terms quantify the macroscopic error emac and the third
term representing eH M M , quantifies the error due to our multiscale strategy. The first
term can be estimated using (50), while the second term (including the contribution
to the macroscopic error arising from the use of numerical quadrature) is estimated in
Theorem A.1. Finally, Lemma 5.12 allows to the estimate the third term

eH M M ≤C
(

a1/2∞ rH M M,D +b1/2∞ rH M M,A

)(
‖∇ PH u0‖2

L2(�) + |PH u0|2∗,D
)1/2|||wH |||.

The approximation property (50) and the boundedness (51) of the L2 projection con-
clude the proof. ��

5.2.2 Fully discrete error

In this section, we first estimate the contribution of the micro error rmic,D and rmic,A

defined in (25) and (26), respectively (due to the standard FEM on the micro mesh) for
general oscillating data aε , bε. In a second step, we derive bounds for the modeling error
rmod,D , rmod,A [see again (25) and (26)] for locally periodic data (see Assumption 4.5).
Finally, we combine the estimates for macro, micro and modeling error to prove
Theorem 4.7.
Micro error. Important ingredients for the a priori estimates for the micro errors rmic,D

and rmic,A are Assumption (H1) and (B1) providing the necessary regularity of ψ i
K

as well as the proper scaling with respect to ε of the derivatives of ψ i
K and bε. We

emphasize that Lemma 5.13 is valid for data aε, bε without any assumption on their
spatial structure.

Lemma 5.13 Consider the micro finite element space defined in (7) with q ∈ N>0
and assume that (2), (H1) and (B1). Furthermore, we assume that Dirichlet boundary
conditions are used in (13) and (14) for general data aε(x), bε(x). For the special
case when aε(x) = a(xK , x/ε) = a(xK , y) and bε(x) = b(xK , x/ε) = b(xK , y) are
Y -periodic in y, collocated in the slow variables at the quadrature points xK of the
sampling domain Kδ and δ/ε ∈ N, we assume that periodic boundary conditions are
used in (13) and (14). Then, for any K ∈ TH ,

‖a0
K − a0

K ‖F ≤ Ca∞
(

h

ε

)2q

, (52)
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|b0
K − b0

K | ≤ Cb∞
(

h

ε

)q+1

, (53)

where C is independent of H, h, ε and δ.

Proof The error estimate (52) for non-symmetric tensors aε has been derived in [27]
and [12, Lemma 4.6] (for symmetric tensors the error bound has first been published in
[3,4] for piecewise linear micro functions and stated for higher order micro functions
in [7, Lemma 5.2]). We thus proceed with proving (53). Let 1 ≤ j ≤ d and K ∈ TH .
Integrating by parts leads to

∫

Kδ

bε · ∇ψ j,h
K dx =

∫

∂Kδ

bεψ j,h
K · n ds −

∫

Kδ

div(bε)ψ j,h
K dx = −

∫

Kδ

div(bε)ψ j,h
K dx,

where the boundary integral vanishes. Indeed, for periodic data and δ/ε ∈ N we
choose periodic coupling in (8) and we observe that bε(x)ψ j,h

K (x) is Kδ-periodic.
Therefore, the values on opposing faces cancel. In all other cases, we choose Dirichlet
coupling in (8) and thus ψ j,h

K (x) is equal to zero on the boundary. Analogously, it

holds
∫

Kδ
bε · ∇ψ j

K dx = − ∫
Kδ

div(bε)ψ j
K dx . Hence, we examine the j-th entry of

the difference of the vectors b0
K and b

0
K

(b0
K − b

0
K ) j = 1

|Kδ|
∫

Kδ

bε(x) · (∇ψ j,h
K − ∇ψ j

K )dx

= 1

|Kδ|
∫

Kδ

div(bε(x))
(
ψ

j
K − ψ

j,h
K

)
dx .

Using standard finite element result for the L2 error, Assumptions (H1) and (B1) leads
to

|(b0
K − b

0
K ) j | ≤ 1

|Kδ|

⎛

⎜
⎝

∫

Kδ

|div bε|2dx

⎞

⎟
⎠

1/2

‖ψ j
K − ψ

j,h
K ‖L2(Kδ)

≤ C
1

|Kδ| |b
ε|W 1,∞(Kδ)

√|Kδ|hq+1|ψ j
K |Hq+1(Kδ)

≤ Cb∞
(

h

ε

)q+1

.

��
Remark 5.14 The optimality of the estimate of the micro error due to advection (53)
is shown for q = 1 in Sect. 6. In contrast, this is an open issue for q > 1. Further, if bε

is a linear combination of the rows of aε, i.e., there exist β1, . . . , βd ∈ R independent
of x such that (bε(x))T = ∑d

i=1 βi aεi (x), following [7, Lemma 5.2], one can show
that the micro error due to advection can again be estimated by Cb∞( h

ε
)2q .
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Modeling error. Next, we provide estimates for the modeling error rmod,D and rmod,A.
We remark, that for data aε, bε without any assumptions about their spatial structure,
the modeling error cannot be estimated in general. Thus, the estimates of Lemma 5.15
are derived for locally periodic data.

For the class of locally periodic data results in periodic homogenization theory show,
that the whole sequence {uε} weakly converges to u0, the solution of the homogenized
problem (4) (see [34, p. 31], [19, Sect. 13]). Furthermore, the homogenized quanti-
ties a0(x) and b0(x) can be calculated as special averages involving the solutions of
(infinitely many) cell problems. For an arbitrary x ∈ �, let us introduce the first order
correctors χk(x, y) : �× Y → R with χk(x, ·) ∈ W 1

per (Y ), for k = 1, . . . , d, the
unique solution of the cell problem

∫

Y

a(x, y)∇χk(x, y) · ∇v(y) dy = −
∫

Y

a(x, y)ek · ∇v(y) dy ∀ v ∈ W 1
per (Y ).

Then, the homogenized tensor a0(x) at x ∈ � is given by

a0
i j (x) = 1

|Y |
∫

Y

ai j (x, y)+
d∑

k=1

aik(x, y)
∂χ j

∂yk
(x, y) dy, 1 ≤ i, j ≤ d, (54)

and the homogenized velocity field b0 has the explicit representation

b0
j (x) = 1

|Y |
∫

Y

b j (x, y)+
d∑

k=1

bk(x, y)
∂χ j

∂yk
(x, y) dy, 1 ≤ j ≤ d. (55)

Based on the representations (54) and (55), we can estimate the modeling error.

Lemma 5.15 Let K ∈ TH . We assume that the data aε(x), bε(x) satisfy (2), Assump-
tion 4.5, and (H2), i.e., they are collocated in the slow variable, i.e., aε(x) =
a(xK , x/ε), bε(x) = b(xK , x/ε), where xK is the quadrature node of the sampling
domain Kδ . Then

‖a0(xK )− a0
K ‖F ≤

{
0 if W (Kδ) = W 1

per (Kδ) and δ
ε

∈ N

Ca∞ ε
δ

if W (Kδ) = H1
0 (Kδ) and δ > ε

, (56)

|b0(xK )− b
0
K | ≤

{
0 if W (Kδ) = W 1

per (Kδ) and δ
ε

∈ N

Cb∞
(
ε
δ

)1/2
if W (Kδ) = H1

0 (Kδ) and δ > ε
. (57)

where C is independent of ε, δ.

Proof The estimates (56) for the modeling error due to diffusion have been derived
in [29, Theorem 3.2] and in [6, Proposition 14] (for the case δ/ε ∈ N). Therefore,
we discuss the proof of estimates (57). The first estimate is derived by following the
proof of [6, Proposition 14]. The second estimate follows [29, Theorem 3.2] and [34,
Equation (1.51)]. ��
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Proof of Theorem 4.7 Follows from the combination of Theorem 4.6 and Lemma 5.13.
��

Remark 5.16 We notice that without Assumption (H2), i.e., collocating aε(x) and
bε(x) in the slow variable x , additional terms of order δ arise in estimates (56) and (57).
Further, in view of Lemma 5.15, the coupling δ/ε ∈ N and periodic boundary condi-
tions is optimal for locally periodic data. Finally, we remark, that for a one-dimensional
homogenization problem with periodic data a resonance error due to advection of order
ε/δ can be shown. Thus, the optimality of estimate (57) is an open question.

6 Numerical results

In this section, we present numerical experiments confirming the sharpness of the
convergence rates derived in Theorem 4.7. Furthermore, we apply the proposed method
on an advection dominated problem where the solution exhibits a boundary layer and
we illustrate the applicability of our multiscale strategy for nonperiodic (random)
tensors with variable cell size.

6.1 Convergence rates

In order to corroborate our theoretical convergence rates, we first choose a simple
periodic problem with known homogenized data a0 and b0 and analytically known
homogenized solution u0. If we choose periodic boundary conditions for the micro
problems (8) and the size δ of the sampling domains Kδ such that δ/ε ∈ N, the mod-
eling error vanishes and we can verify numerically the macro and micro convergence
rates. Then, for piecewise linear micro elements, i.e., q = 1, the error in the |||·||| norm
satisfies

|||u0 − u H ||| ≤ C

(

a1/2∞ H + b1/2∞ H3/2 + a1/2∞
(

h

ε

)2

+ b1/2∞
(

h

ε

)2
)

,

which is a robust convergence rate (i.e., independent of ε). We emphasize that for
periodic data the use of numerical integration on the macro scale does not have any
influence as in this case the homogenized data are constant. Thus we can omit the term
b1/2∞ min{Pe1/2 H2, H} in estimate (27).

We consider problem (1) on the domain� = (0, 1)2 with a tensor aε(x) = ν ãε(x)
and a velocity field bε(x) = �(x/ε)(1, 1)T , where ãε(x) = �(x/ε)I d, ν > 0, and

�(y) = 64

9
√

17

(

sin (2πy1)+ 9

8

)(

cos (2πy2)+ 9

8

)

.

The homogenized quantities a0 and b0 are given by a0 = ν I d and b0 =
(1, 1)T (cf. [34, Chapter 1.2] and Remark 5.14) leading to Pe = diam�/ν. The
source f is adjusted such that the homogenized solution u0 is given by u0(x) =
sin(2πx1) sin(2πx2). Further, we choose the size of the sampling domains δ = ε
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Fig. 1 Homogenization test problem of Sect. 6.1 with periodic data. Error in |||·||| norm as a function of Nmac .
Macro meshes with Nmac = 8, 16, 32, 64, 128, 256, 512, 1024. Refinement strategy (DD) with Nmic ∼√

Nmac where Nmic = 3, 4, 6, 8, 12, 16, 23, 32. Refinement strategy (AD) with Nmic ∼ (Nmac)
3/4 where

Nmic = 5, 8, 14, 23, 39, 64, 108, 182

and we investigate a diffusion and an advection dominated problem with Pe = 1 and
Pe = 106, respectively.

We consider a family of macro partitions TH with 2 · N 2
mac triangles, which are

generated by uniformly refining a coarse mesh T̃ (Nmac denotes the number of macro
elements in each spatial dimension). The initial macro partition T̃ in turn is constructed
by randomly perturbing a uniform mesh with Nmac = 8. Therefore, the ratio H/Nmac

is constant for different TH . Such non-uniform meshes are chosen in order to prevent
possible super-convergence for meshes suitably aligned with the velocity field (cf.
[24]). Further, we choose α = 10 as penalization parameter for the diffusive part
BD .

In Fig. 1 the error between u0 and the DG-HMM numerical solution in the |||·|||
norm is plotted under different refinement schemes for Nmac and Nmic (described in
Sect. 4.2). In Fig. 1a we observe that without simultaneous refinement of H and h/ε the
micro error becomes dominant for large Nmac leading to an overall error independent of
Nmac. The optimality of the simultaneous refinement strategy (DD) for purely diffusive
problems has been discussed in [6]. In Fig. 1b we employ the simultaneous refinement
strategies (DD) and (AD) for the advection dominated problem. We emphasize that
the refinement strategy (DD) is not sufficient to obtain the rate 1.5 for the advection
dominated problem as the micro error converging with a linear rate with respect to
H becomes dominant for Nmac > 100. In summary, we observe that the convergence
rates predicted by Theorem 4.7 are verified numerically for problems with constant
homogenized data.

As next step, we modify the precedent test problem by taking locally periodic data.
We replace ãε(x) and bε(x) by (cf. Examples of [8, Section 5])

ãε(x) =
(
�1

(
x, x

ε

)
0

0 �2
(
x, x

ε

)
)

, bε(x) =
(
�1

(
x, x

ε

)

�2
(
x, x

ε

)
)

,
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Fig. 2 Homogenization test problem of Sect. 6.1 with locally periodic data. Error in |||·||| norm as a
function of Nmac . Macro meshes with Nmac = 8, 16, 32, 64, 128, 256, 512, 1024. Refinement strategy
(DD) with Nmic ∼ √

Nmac where Nmic = 3, 4, 6, 8, 12, 16, 23, 32. Refinement strategy (AD) with
Nmic ∼ (Nmac)

3/4 where Nmic = 5, 8, 14, 23, 39, 64, 108, 182

�1(x, y) =
(

x3
1 + 3 + 2

√
17

8 sin(2πy1)+ 9

)−1

,

�2(x, y) =
(

x2
2 + 0.05 + (x1x2 + 1)

2
√

17

8 cos(2πy2)+ 9

)−1

.

Hence, aε(x) is an anisotropic, locally periodic tensor. The data is chosen such that
the homogenized quantities are given by the elementwise harmonic mean

a0(x) = ν

(
�0

1 (x) 0
0 �0

2 (x)

)

, b0(x) =
(
�0

1 (x)
�0

2 (x)

)

,

�0
1 (x) =

(
x3

1 + 5
)−1

, �0
2 (x, y) =

(
x2

2 + 0.05 + 2(x1x2 + 1)
)−1

,

where we remark that − div b0(x) ≥ 0 holds on�. Beside the different data aε, bε we
exactly take the same setting as in the precedent test for periodic data (here we also
adjust f such that u0(x) = sin(2πx1) sin(2πx2)). Additionally, for solving the micro
problem (8) on an element K ∈ TH , we collocate �1 and �2 in the slow variable x at
the barycenter xK .

By comparing the results of Fig. 2 for locally periodic data to the results of Fig. 1
we identify the same behavior for both advection and diffusion dominated problems
under different refinement strategies. We observe that the effect of the numerical
integration in the advective part does not alter the convergence rate for this test case
(see Remark 4.8).

We emphasize that for the advection dominated problem the evaluation of the right-
hand side

∫
�

f vH dx of the variational problem (12) is done using a high order quadra-
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ture formula in order to overkill the effect of numerical integration in the evaluation
of the right-hand side

∫
�

f vH dx .

6.2 Advection dominated multiscale problem with a boundary layer

We consider the periodic data aε, bε used in the first part of Sect. 6.1 and adjust f
such that the homogenized solution u0 is given by

u0(x) = x1x2

(

1 + e− Pe − e− Pe(1−x1)(1−x2)

1 − e− Pe

)

,

which exhibits a boundary layer of width O(Pe−1) near to {1} × [0, 1] ∪ [0, 1] × {1}.
Such problems have been used as model problems for single scale methods (see [18,
Example 4] and the references therein). We compare the behavior of the two multiscale
methods DG-HMM, described in this article, and FE-HMM with a macro solver based
on standard FEM. The FE-HMM is built on the method described in [11] by adding the
advective part

∑
K∈TH

|K |
|Kδ |

∫
Kδ

bε·∇vh
K w

H (xK ) dx , the first term of BA defined in (6).
We choose the size of the sampling domains δ = ε, periodic coupling in the micro

problems (8), the penalization parameter α = 10 and Nmic = 16, the number of micro
elements in each spatial dimension in the sampling domains. Further, we construct
a highly anisotropic mesh consisting of 1,800 triangles (see Fig. 3a) such that the
boundary layer for Pe = 103 is properly resolved. We can observe in Fig. 3b and
Fig. 3e that on this macro triangulation both numerical methods, DG-HMM and FE-
HMM, are able to capture the boundary layer for Pe = 103 correctly and produce
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Fig. 3 Advection dominated test problem with boundary layer of Sect. 6.2 with Pe ∈ {103, 105}. DG-
HMM based on DG-FEM macro solver. FE-HMM based on standard FEM macro solver. Error in L2 norm
as a function of Pe for DG-HMM and FE-HMM on an anisotropic mesh
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similar results. Next, we investigate the robustness of the two methods with respect to
the Péclet number Pe. We take the macro triangulation given in Fig. 3a and compute
the numerical solution using DG-HMM and FE-HMM for Pe ∈ {103, . . . , 108}. We
see in Fig. 3f that for Pe = 105 the result obtained by the FE-HMM exhibits unphysical
oscillations polluting the numerical solution on the entire domain� due to the standard
FEM macro solver. In contrast, as DG-HMM is based on a discontinuous Galerkin
macro solver, it produces qualitatively good results apart from oscillations limited to
the boundary layer (see Fig. 3c). This nice robustness of the DG-HMM with respect
to the Péclet number Pe can as well be observed in Fig. 3d where we compare the
error in the L2 norm for DG-HMM and FE-HMM for different Péclet numbers Pe on
the macro mesh given in Fig. 3a. While the error for the FE-HMM depends linearly
on Pe, the error for the DG-HMM only slightly increases due to the peaks in the
boundary layer. We emphasize that such results for DG-HMM can only be obtained
for a penalization term μ which scales with the magnitude of the diffusion tensor a0

which is achieved by including the factor ‖{a0
K }‖F in (6).

6.3 Example with non-periodic, random data

In practice, the diffusion tensor aε and the velocity field bε may neither be known
analytically nor satisfy a periodicity assumption. In porous media, log-normal fields
are often used to model the heterogeneities of the media (e.g., see [39]). We con-
sider problem (1) with a random tensor aε and a random velocity field bε based
on log-normal stochastic fields Wa(x) and Wb(x) on � with an underlying normal
distribution of mean zero and variance σ 2 = 0.5 (cf. [11, Section 4.2]). The ran-
dom fields are generated by a moving ellipse average method with correlation lengths
εx = 0.01, εy = 0.02 at 5,0002 discrete points. For an arbitrary x ∈ �we use bilinear
interpolation. We set aε(x) = Wa(x) I d, bε(x) = Wb(x) (1, 0)T and f (x) = 1 on�.

First, we compute a reference solution using a standard FEM on a fine mesh with
106 degrees of freedom (Fig. 4b). Then, we apply DG-HMM for a uniform macro mesh
of 2,048 triangles and we take again the penalization parameter α = 10. The numer-
ical solution is computed for sampling domains of different sizes δi , i = 1, . . . , 5.
Additionally, Nmic,i is chosen such that the micro mesh size h = δi/Nmicroi remains
constant. Finally, we employ Dirichlet coupling for the micro problems (8).

We notice that the fine scale solution approximates uε and some care is needed in
order to compare the fine scale and DG-HMM solutions. It is already known for pure
diffusion problems that the error in the L2 norm between the DG-HMM solutions and
the fine scale solution can be O(ε) close, while the error measured in the H1 norm is
O(1). Therefore, we choose to compare the energy norm ‖·‖E rather than to compute
the error in the H1 norm.

In Table 1 we compare the energy norm ‖u‖E =
√∑

K∈TH

∫
K a0

K ∇u · ∇u dx of
the DG-HMM solutions for different sampling domain sizes δi to the ‖·‖E norm of the
fine scale solution. Further, the error in the L2 norm between the DG-HMM solutions
for different δi and the fine scale solution are computed. We observe in Table 1 (see
also Fig. 4) that for both, the energy norm ‖·‖E and the error in the L2 norm, improved
results are obtained for larger sampling domains.
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Fig. 4 Test problem with random data of Sect. 6.3. Reference fine scale solution based on standard FEM.
DG-HMM numerical solutions for different sampling domains

Table 1 Energy norm ‖·‖E of the DG-HMM and fine scale solutions (standard FEM), error in L2 norm
between the DG-HMM solutions and the fine scale solution (standard FEM) for sampling domains of
different sizes δi for the test problem Sect. 6.3

δ1 = 0.015 δ2 = 0.03 δ3 = 0.06 δ4 = 0.12 δ5 = 0.24 Fine scale
Nmic,1 = 8 Nmic,2 = 16 Nmic,3 = 32 Nmic,4 = 64 Nmic,5 = 128

Energy norm ‖·‖E 0.1768 0.1779 0.1793 0.1811 0.1823 0.1859

Error in L2 norm 0.0032 0.0032 0.0029 0.0023 0.0022 –

7 Conclusion

In this paper we have constructed and analyzed a discontinuous Galerkin FE-HMM
method for advection–diffusion problems. The method is constructed to allow for gen-
eral microstructures (not necessarily periodic) and stability results have been estab-
lished for a general class of advection–diffusion problems for which we relax the
usual coercivity condition relating advection and reaction. We also allow for variable
diffusion tensors and velocity fields and our analysis includes the cases of advection
or diffusion dominated problems. The complexity of our method has been shown to
be independent of the smallest scale in the medium and the numerical work scales
with the macroscopic degrees of freedom. A priori error estimates in the H1 norm
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and convergence to the homogenized solution are proved under the assumption of
locally periodic data. To this end, we derived new results about the effect of numerical
integration for single scale DG-FEM for advection–diffusion problems. Numerical
experiments given for both periodic and non-periodic data, show the capabilities of
the proposed method. Finally, an extension of the presented results to meshes with
hanging nodes is straightforward, whereas the generalization to higher order macro
finite elements in the spirit of [7, Section 5.4] has not been adressed yet at all.

Acknowledgments This work was supported in part by the Swiss National Science Foundation under
Grant 200021 134716/1.

Appendix A: The effect of numerical integration for single scale DG-FEM

In this section, we study the influence of numerical integration for a single scale
discontinuous Galerkin method. Without loss of generality we take the homogenized
problem (4) as model problem for a single scale advection–diffusion problem. The
single scale analysis presented in this section consists of two parts. First, we briefly
comment on the analysis of the single scale DG-FEM without numerical quadrature
used here for advection–diffusion problems, as it slightly differs from the method
analyzed in [18] due to the choice of a different model problem. Second, we derive the
stability and a priori results for the single scale DG-FEM with numerical quadrature
defined in (49).

A.1 DG-FEM without numerical quadrature

For vH , wH ∈ V 1(�, TH ), let us introduce the bilinear form B0 = BD,0 + BA,0 by

BD,0(v
H , wH ) =

∫

�

a0(x)∇vH (x) · ∇wH (x) dx −
∫

�

{a0(s)∇vH (s)} · �wH � ds

+
∫

�

μS�vH � · �wH � ds,

BA,0(v
H , wH ) =

∫

�

b0(x) · ∇vH (x) wH (x) dx −
∫

�

b0(s) · �vH �wH
i0(s) ds,

(58)

with the penalty weighting function μS on an edge e ∈ E given by μS|e =
α‖{a0(s)}‖F H−1

e , where the penalization parameter α > 1 is a positive parame-
ter independent of the local mesh size and the data a0, and the index i0(s) is dis-
cussed in Remark 3.2. We define u0,H as the solution of the variational problem: find
u0,H ∈ V 1(�, TH ) such that
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B0(u
0,H , vH ) =

∫

�

f vH dx ∀ vH ∈ V 1(�, TH ). (59)

Compared to the bilinear form B̃0, defined in (48), the integrals are evaluated exactly
in B0, i.e., no numerical quadrature is used. Thus, the method given by (59) is free of
any non-consistent perturbations and the Galerkin orthogonality holds

B0(u
0 − u0,H , vH ) = 0 ∀ vH ∈ V 1(�, TH ). (60)

The stability of the method can be shown following the proof of Theorem 4.3 by
setting rvc,A = 0 (cf. Remark 5.10). Moreover, the a priori error estimate can be
derived analogously to [18, Theorem 5.1], i.e., if u0 ∈ H2(�) then

|||u0 − u0,H ||| ≤ C(a1/2∞ H + b1/2∞ H3/2)|u0|H2(�). (61)

A.2 DG-FEM with numerical quadrature

In this section, we study the single scale DG-FEM based on the bilinear form B̃0 given
by (48).
Stability. The proof of the inf–sup condition for B̃0 follows the proof of Theorem 4.3
by replacing a0

K and b0
K by a0(xK ) and b0(xK ), respectively, leading to

r̃vc,A = 1

b∞
sup

K∈TH
x∈K

|b0(xK )− b0(x)| + 1

b∞
sup
e∈E
x∈e

|{b0(xK )} − b0(x)|,

This yields the same conditions A, B, C and D as in the proof of Theorem 4.3 with
rvc,A replaced by r̃vc,A.
A priori error estimate. Having shown the inf–sup condition for B̃0 we derive the
a priori error estimate for the single scale DG-FEM based on numerical integration
used as estimate for the macro error emac.

Theorem A.1 Let u0 ∈ H2(�), a0 ∈ (W 1,∞(�))d×d and b0 ∈ (W 2,∞(�))d . Then
the solution ũ0,H of the variational problem (49) satisfies the estimate

|||u0 − ũ0,H ||| ≤ C
(

a1/2∞ H + b1/2∞ H3/2 + b1/2∞ min{Pe1/2 H2, H}
)
‖u0‖H2(�),

where C is independent of H.

Proof We combine the ideas of the proof of Theorem 4.6 and [18, Theorem 5.1].
We decompose the total error into two parts |||u0 − ũ0,H ||| ≤ |||u0 − PH u0||| +
|||PH u0 − ũ0,H ||| using the L2 projection PH u0. Then, using the inf–sup condition
for B̃0, with stability constant α̃S , and the consistency (60) leads to
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α̃S|||PH u0 − ũ0,H ||| ≤ sup
wH ∈V 1(�,TH )

B̃0(PH u0 − ũ0,H , wH )

|||wH |||

= sup
wH ∈V 1(�,TH )

B̃0(PH u0, wH )− B0(u0,H , wH )

|||wH |||

= sup
wH ∈V 1(�,TH )

B̃0(PH u0, wH )− B0(u0, wH )

|||wH ||| .

Thus, we get the error decomposition

|||u0 − ũ0,H ||| ≤ |||u0 − PH u0||| + 1

α̃S
sup

wH ∈V 1(�,TH )

B0(PH u0 − u0, wH )

|||wH |||

+ 1

α̃S
sup

wH ∈V 1(�,TH )

B̃0(PH u0, wH )− B0(PH u0, wH )

|||wH ||| ,

where the first two terms are identical to the error terms arising in the proof of (61) and
the third term quantifies the effect of the numerical integration. Due to the decomposi-
tions B0 = BD,0 + BA,0 and B̃0 = B̃D,0 + B̃A,0 given by (58) and (48), respectively,
we first estimate the difference B̃D,0(PH u0, wH )− BD,0(PH u0, wH ). Following the
ideas of Lemma 5.12 we have

|B̃D,0(PH u0, wH )− BD,0(PH u0, wH )|
≤ C‖a0‖W 1,∞(�)H

(
‖∇ PH u0‖2

L2(�) + |PH u0|2∗,D
)1/2|||wH |||D

≤ Ca1/2∞ H‖u0‖H2(�)|||wH |||D. (62)

Next, we need to estimate B̃A,0(PH u0, wH )−BA,0(PH u0, wH ). Following Lemma 5.7
we obtain

∣
∣
∣
∣
∣
∣

∑

K∈TH

∫

K

(
b0(xK )− b0(x)

)
· ∇ PH u0 wH dx

∣
∣
∣
∣
∣
∣

≤ C‖b0‖W 1,∞(�)H‖∇ PH u0‖L2(�)‖wH ‖L2(�) ≤ Cb1/2∞ H‖u0‖H2(�)|||wH |||A.

(63)
∣
∣
∣
∣
∣
∣

∫

�

{b0(xK )} · �PH u0�wH
ı̃0

ds −
∫

�

b0(s) · �PH u0�wH
i0(s) ds

∣
∣
∣
∣
∣
∣

≤ Cα−1/2 sup
e∈E,x∈e

|{b0(xK )} − b0(x)||PH u0 − u0|∗,D‖wH ‖L2(�)

≤ Cb1/2∞ H2|u0|H2(�)|||wH |||A, (64)
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where we used |PH u0|∗,D = |PH u0 − u0|∗,D , as H2(�) ↪→ C0(�) for d ≤ 3 and
u0 = 0 on ∂�. If b0 has the additional regularity b0 ∈ (W 2,∞(�))d , we can improve
estimate (63) using [23, Theorem 4]

∣
∣
∣
∣
∣
∣

∑

K∈TH

∫

K

(
b0(xK )− b0(x)

)
· ∇ PH u0 wH dx

∣
∣
∣
∣
∣
∣

≤ C‖b0‖W 2,∞(�)H
2‖∇ PH u0‖L2(�)‖∇wH ‖L2(�)

≤ C
b∞
a1/2∞

H2‖u0‖H2(�)|||wH |||D. (65)

Finally, combining estimates (62), (63), (64) and (65) allows to estimate the effect of
the quadrature

|B̃0(PH u0, wH )− B0(PH u0, wH )|
≤ C

(
a1/2∞ H + b1/2∞ min{Pe1/2 H2, H} + b1/2∞ H2

)
‖u0‖H2(�)|||wH |||.

��
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