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Abstract. To advance Fourier transform mass spectrometry (FTMS)-based

100 molecular structure analysis, corresponding development of the FTMS signal
processing methods and instrumentation is required. Here, we demonstrate utility
of a least-squares fitting (LSF) method for analysis of FTMS time-domain

50 (transient) signals. We evaluate the LSF method in the analysis of single- and
multiple-component experimental and simulated ion cyclotron resonance (ICR)
and Orbitrap FTMS transient signals. Overall, the LSF method allows one to

Y 90 .80 estimate the analytical limits of the conventional instrumentation and signal

Phase, °

processing methods in FTMS. Particularly, LSF provides accurate information on

initial phases of sinusoidal components in a given transient. For instance, the
phase distribution obtained for a statistical set of experimental transients reveals the effect of the first data-
point problem in FT-ICR MS. Additionally, LSF might be useful to improve the implementation of the
absorption-mode FT spectral representation for FTMS applications. Finally, LSF can find utility in
characterization and development of filter-diagonalization method (FDM) MS.
Key words: Fourier transform (FT), Fourier transform mass spectrometry (FTMS), Transient signal, Least-
squares fitting (LSF), Filter-diagonalization method (FDM), Absorption mode, Phase correction, First data-
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Introduction

tructural analysis of complex biological and environ-

mental samples greatly benefits from high resolution and
high mass accuracy provided by Fourier transform mass
spectrometry (FTMS) [1-4]. However, further improvement
of FTMS analytical characteristics is required. Advanced
signal processing in the time domain has recently gained a
particular attention in FTMS. Fourier transform (FT) with
absorption-mode spectral representation is, perhaps, the most
striking example of recent progress in applied advanced
signal processing aimed at increasing the resolving power
compared to that of the magnitude-mode FT employed
typically, for transients with the same lengths. Specifically,
the maximum gain in resolving power of the absorption
mode vs. the magnitude mode equals two. The principle of
absorption-mode FTMS originated in Fourier transform ion
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cyclotron resonance mass spectrometry (FT-ICR MS) and
FT nuclear magnetic resonance (NMR) spectroscopy [5-7].
Recently, the absorption mode has received a particular
attention in FT-ICR MS method development and applica-
tions [8—12]. In Orbitrap FTMS, the absorption mode is of a
high interest as well and has recently been implemented as a
principal part of the algorithm known as enhanced FT (eFT)
[4, 13, 14]. Unlike FT-ICR MS, Orbitrap FTMS allows for a
straightforward implementation of the absorption-mode
spectral representation since there exists a time point at
which the time-dependent phases of all ions trapped in the
orbitrap are equal in the first-order approximation. Addi-
tionally, to correct for higher-order phase deviations, an
accurate estimate of the actual phase function for particular
experimental conditions is required. The implementation of
the absorption-mode spectral representation on other elec-
trostatic ion traps is similar to that on Orbitrap FTMS and
relatively easy in comparison to FT-ICR MS [15].

Methods of non-FT signal processing refer to diverse
spectral and parameter estimators and are similar to those
applied for data processing in FT NMR spectroscopy. These
include the maximum entropy method (MEM), linear


https://core.ac.uk/display/200783421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s13361-014-0888-x

1264

prediction method (LPM), and other methods. However,
earlier attempts to implement these methods in FTMS have
suffered from numerical limitations and drawbacks familiar
from the FT NMR spectroscopy. Among the more modern
methods of non-FT signal processing, filter diagonalization
method (FDM), an optimized parameter estimator, has
demonstrated a particularly robust performance for 1D
NMR. Nevertheless, the FDM-based processing of experi-
mental ICR transients for analytical applications has been
accomplished only recently [16]. In MS applications, due to
its uncertainty principle, the FDM is able to provide the
required resolution performance for shorter transients com-
pared to FT-based signal processing. To take advantage of the
FDM's uncertainty principle, it is required that ion packets
corresponding to different mass-to-charge ratios, m/z, are
sufficiently coherent on the time scale of interest. That is, on
the phase plane the characteristic size of the ion packets does not
exceed the distance between them at the end of ion detection
[17]. Further characterization of FDM MS is thus of an
interest and shall benefit from implementation of a reference
signal processing method such as the least-squares fitting
(LSF).

The LSF method is used in various branches of science
and its robust numerical implementation is a must in
scientific software packages. For instance, the LSF method
is often applied implicitly as in various routine problems
involving extraction of mean values and estimation of errors
from a statistical set of measurements. Moreover, the LSF
method’s applications include comprehensive fitting prob-
lems where experimental data is to be fitted with a
theoretical function in order to measure certain quantities
of interest. For instance, the LSF is useful in high energy
physics, where scarce statistics requires robust and sensitive
methods of signal retrieval, and the number of signals to
locate is limited [18]. In the MS field, the applications range
from improving accuracy of molecular mass measurements
to ion mobility mass spectrometry. Specifically, in FTMS
the LSF-type methods have been applied previously to
improve the peak shape representation of the m/z (or
frequency), already Fourier transformed, data. However,
the peak-shape fitting in the frequency domain may imply
reduced performance due to non-linear spectral interference
effects and manual restriction of the fitted frequency range.
Alternatively, fitting the raw data, viz. the transient signal, is
justified. Indeed, recall that in FTMS the metrological basis
for measurements of mass-to-charge ratios of ions is
provided by the theory of the transient signal [19-21]. For
a given ion, the transient signal consists of several sinusoidal
components that correspond to three eigen frequencies of ion
motion, as well as their harmonics and interharmonics.
Among these, the component with reduced cyclotron
frequency is normally made to contain the most of spectral
energy. For example, it is due to this theoretical form that
the ion’s m/z can be obtained from a corresponding peak
maximum in the Fourier spectrum plotted in the magnitude
or absorption mode. Similarly, the theoretical form enables
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other methods to be applied to a transient signal in order to
obtain the frequencies, abundances, and phases of analyzed
ions. The LSF method is a reasonable choice as it is
consistent with the fitting problem of interest and is able to
provide the required performance. To the best of our
knowledge, application of LSF methods for processing of
experimental time-domain signals in FTMS has not been
reported yet in the peer-reviewed literature, although
advantages of its implementation have been named in patent
applications [22, 23] as well as the LPM algorithm, an LSF-
type method, has shown utility for frequency chasing of
simulated FT-ICR MS transients [24].

In the context of the least-squares fitting of FTMS
transient signals, possible deviation of experimental tran-
sients from the theoretical form requires an additional
discussion. Specifically, the effect of signal damping, which
develops during the ion detection, can be detrimental if
present and not taken into account when an experimental
transient is fitted. In modern FTMS, the signal damping is
likely due to inharmonicity of the electric field in the mass
analyzer, rather than other effects such as insufficient level
of vacuum in the mass analyzer as in early FT-ICR mass
spectrometers. This conclusion follows from the contempo-
rary studies where the harmonization of the electric field in a
mass analyzer leads to a significant increase of the
transient’s lifetime relative to that typically obtained for
regular mass analyzers [25]. Nowadays, the signal damping
effect cannot be properly taken into account in LSF
calculations because the theoretical basis of the damping
mechanism is not well-developed. However, regardless of
the exact damping mechanism, in the current work the
theoretical form with sinusoidal components is applicable
since the damping effect in not noticeable at the time scale
of interest.

Using standard software for scientific computing, here we
implement the least-squares fitting of experimental transients
in FTMS. Performance of the LSF method is evaluated on
single and five-component transients. Comparisons between
the conventional magnitude-mode FT processing and LSF
are made for relatively short transients, emphasizing the
potential use of LSF as a reference method for the
development of FDM MS. Advantages and limitations of
LSF processing are outlined.

Experimental, Materials, and Methods
Sample Preparation

Peptides Substance P and MRFA were obtained from
Sigma-Aldrich (Buchs, Switzerland). LC-MS grade acetoni-
trile and water were obtained from Fluka (Buchs, Switzer-
land). Formic acid was obtained from Merck (Zug,
Switzerland). Peptide solutions were prepared in 1:1 (v/v)
water/acetonitrile solvent mixtures containing 1% (v/v) of
formic acid.
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Mass Spectrometry

The MS experiments were performed on a hybrid linear ion
trap Fourier transform ion cyclotron resonance mass spec-
trometer with a 10 T superconducting magnet (LTQ FT-ICR
MS Ultra; Thermo Scientific, Bremen, Germany) and a
hybrid dual linear ion trap Orbitrap Fourier transform mass
spectrometer with a high-field compact Orbitrap mass
analyzer (Orbitrap Elite FTMS; Thermo Scientific). Ions
were produced with a nano-electrospray ionization (nESI)
ion source (TriVersa Nanomate; Advion Biosciences, Ithaca,
NY, USA). Standard instrument control and data acquisition
systems were utilized (Thermo Scientific). The total number
of charges injected into the ICR cell or the Orbitrap was
controlled with the automatic gain control (AGC) function.
For both mass spectrometers, the target total charge (AGC
value) was set to the default value of 2x10°. The transient
signals were acquired in MIDAS data format. For both mass
spectrometers, the selected sampling frequency, f;, of the
built-in analog-to-digital converter (ADC) corresponded to
the typical broadband frequency (mass-to-charge) range and
was equal to 2.7306(6) MHz (16.384/6 MHz). For the
purpose of the current article, the measurements for two
types of analytes were taken: isolated monoisotopic ions of
singly charged peptide MRFA, m/z 524 (single peak, or a
singlet), and an isolated isotopic distribution of a doubly
charged peptide Substance P, m/z 674 (five peaks, or a
multiplet). Approximately 1000 single-scan transients were
acquired for each set of measurements. The length of
transient signals was 96 ms; further, each transient was cut
to the length, 7, of 24 ms unless stated otherwise. The
criterion for the choice of the transient length was based on
two limiting factors: its length should be sufficient for FT
signal processing to baseline-resolve the five isotopic peaks
of Substance P for both mass spectrometers employed; it
should not provide excessive resolution of the five peaks.
Specifically, 24 ms was the minimum transient length
required to baseline-resolve the isotopic envelope of Sub-
stance P analyzed on the 10 T FT-ICR MS. Additionally, the
chosen transient length is consistent with the requirement to
evaluate the LSF method as a reference method for further
FDM MS characterization.

Data Analysis

FT processing of transient signals was performed using the
framework pyFTMS, which was developed in-house and
written in Python and C/C++ programming languages. The
transients were processed following the conventional FTMS
workflow. Specifically, the transient signals first were
apodized with the von Hann window and zero-filled once.
Next, Fourier transform was applied to convert the time-
domain signals into the frequency-domain spectra with
magnitude-mode spectral representation. Finally, the spectra
were peak-picked using the standard three-point parabolic
interpolation of local maxima [26—28].
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To implement a parametric function that is to be
minimized for a given transient signal and to automate the
minimization procedure, a custom software written in C++
programming language was used. The transient signal, being
a sequence of instant voltages v,, Figure 1 and Supplemen-
tary Figure S1 (Supporting Information), where n = 0, ...,
N-1, and N is the total number of sampled points: N = £,T,
was parameterized by the fitting function F, defined as a
sum of K sinusoidal components:

K
F,,:Z Agsin(2znf nts + ¢),n=0,...,N—1, (1)
=1

where ¢, is the sample time, ¢, = I/f;. The parameters to
find are frequency f;, amplitude 4;, and initial phase ¢,
of the ™ sinusoidal component present in the transient.
The initial phases corresponded to the custom-defined
beginning of the transient signal. Since the lifetime of a
transient signal was typically much greater than the
transient duration analyzed, any detrimental effects (e.g.,
ion packet incoherence that develops with time) were not
taken into account when constructing the function F,,,
Equation (1).
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Figure 1. The principle of least-squares fitting (LSF) of
transient signals. Top panel shows the magnitude-mode
Fourier spectrum of a 24 ms-long experimental transient
signal shown in the middle panel. Bottom panel shows an
expanded view of the transient with sampled points and a
curve corresponding to the fitting function. The sampled
points are connected with a stair-step line for visual
convenience only. The transient signal was obtained in the
analysis of doubly charged peptide Substance P on the 10 T
FT-ICR MS
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The function to minimize was the y* function defined as:

Xz = (Fn_vn)2~ (2)

For minimization purpose, the MINUIT package was
used [29]. The parameters f; , 4, , and ¢, were varied to
locate the minimum deviation of the function, F,, , from the
digitized transient signal, v, , n =0, ... , N-1, in terms of the
minimum value of y®, Figure 1 and Supplementary
Figure S1 (in Supporting Information). Initial seeds for
amplitudes and frequencies were obtained with the FT signal
processing described above, while the seed values for initial
phases were set to zeros. The fit provided the set of
parameters f; , A, , and ¢, for each sinusoidal component
included in the fit function F,, as well as the minimum value
of ¥%. The calculations were carried out on a standard laptop
computer. Typical LSF processing time for a single transient
was on the order of 1 s.

Modeling of Transient Signals

Modeled transients were constructed using sinusoidal signals
with given frequencies, amplitudes, and initial phases. When
required, random noise with a given standard deviation o
was added to a transient signal. All these parameters were
obtained from the experimental data unless stated otherwise.
Specifically, the employed parameters of frequencies, am-
plitudes, and initial phases were the mean values of the
corresponding experimental distributions; the standard devi-
ation ¢ was obtained as (y*/N)"?. The modeled transients
were processed with FT and LSF methods, which were
implemented and applied as described above for the analysis
of experimental transient signals.

Results and Discussion

Least-Squares Fitting of a Single-Component
Transient Signal

As the first step, 1000 single-scan ICR transients (an
example is shown in Supplementary Figure SI, in
Supporting Information) and 1000 single-scan Orbitrap
transients containing the singlet were processed using LSF
and FT methods, Figure 2. For the set of ICR transients, the
amplitude, frequency, and phase distributions obtained with
LSF and FT methods are shown in Figure 2, top panel; the
corresponding mean values and standard deviations are
listed in Table 1, top section. Here, while the amplitude
distributions obtained with LSF and FT are similar, the
frequency distribution obtained with LSF method is
narrower than the one obtained with FT processing.
Additionally, the mean values of the frequency distributions
differ for LSF and FT processing.
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To verify which method provided more accurate values
of ion frequencies, the LSF and FT calculations were
performed for a set of 1000 modeled FT-ICR MS transient
signals, which were generated using the mean amplitude,
frequency, and initial phase values, as well as the noise
standard deviation obtained from the LSF processing of
the ICR transients (the values in question are shown with
red lines in Figure 2, middle panel and Table 1, middle
section of the rightmost column). Since that as the LSF
processing revealed two modes in the phase distribution
of the ICR transients, vide infira, the initial phases for the
modeled FT-ICR MS transients were randomly set to
either of the two phase values obtained for experimental
transients.

The amplitude, frequency, and phase distributions ob-
tained with FT and LSF methods for the modeled transients
are shown in Figure 2, middle panel; their mean values and
standard deviations are given in Table 1, middle section. The
frequency distributions obtained for the modeled FT-ICR
MS transients are in agreement with those obtained for the
ICR transients. Specifically, for both experimental and
simulated sets of transients, the same gain in frequency
precision (ratio of standard deviations), ~1.6, of the LSF
method relative to the FT signal processing was obtained.
Ergo, in Figure 2, top panel, the increased standard deviation
of the FT frequency distributions can be assigned to the
processing loss of the FT-based signal processing workflow,
whereas the LSF method can be said to provide more precise
frequency values.

Next, consider the mean frequency values obtained for
the ICR and modeled transients, Figure 2 and Table 1.
For the modeled FT-ICR MS transients, the mean
frequency obtained with the LSF method is unbiased
compared with the mean frequency obtained with the FT
processing, which gives a noticeable shift from the true
frequency value. Therefore, for the frequency distribu-
tions obtained for the ICR transients, Figure 2, top, one
may conclude that the LSF frequency distribution is
unbiased, whereas FT processing produced shifted fre-
quency values. We consider this deviation not to be due
to physical effects of ion motion or ion detection but
rather to expected artifacts of the conventional signal
processing workflow in FTMS [28].

To identify the exact numerical cause of this bias, the
following numerical experiment was performed. Recall
that the discrete Fourier transform (DFT), which is
employed in practice to analyze sampled transient signals,
returns a replicated and, most importantly, sampled
version of a continuous Fourier spectrum, whose maxima
would provide the frequency values and abundances of
interest. Specifically, the acquisition time 7 and single
zero filling result in frequency spacing of Agf' = 1/(27) in
the sampled spectrum (in our case 7 = 24 ms and hence
Aygf = 21 Hz). Additionally, the full width of a spectral
peak of interest, which is defined by the Hann apodization
window and magnitude-mode spectral representation in
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Figure 2. Results of LSF (solid lines) and FT (dashed lines) processing of single-component transients: (top panels) 1000 ICR
transients; (middle panels) 1000 simulated transients with frequency /= 292941.44 Hz, amplitude 4 = 0.405, standard deviation
of noise ¢ = 0.65, randomly assigned phases ¢ = —-86.7° and ¢ = —80.5% and (bottom panel) 1000 Orbitrap transients. The
analysis was performed for a monoisotopic ion of peptide MRFA (m/z 524). Red lines show the parameters used for the transient
signal modeling, see Table 1 middle section of the rightmost column. Blue lines show the results of FT processing obtained
from the averaged set of 1000 single-scan 96 ms long experimental transients, see Table 1 top and bottom sections of the
rightmost column

our case, iS Ayngf = 4/T. Therefore, in the sampled
spectrum, the peak of interest has Ay,gf / Agf = 4*2=8
points per its full width. Among other effects, the
accuracy of frequency and abundance values is governed
by the peak picking procedure, which is the standard
three-point parabolic interpolation of the peak maximum
in our case. To investigate the influence of the peak
picking procedure on the accuracy of frequency values,
we generated 10 modeled transient signals with lengths 7=

24 ms and frequencies f,, n = 0, ..., 9, spanning the interval
Jo<fu<fotAqf, where f = 292941.44 Hz is the mean frequency
obtained with LSF processing of the ICR transients, Table 1,
top section. This way, the values A,,,qf were equal for these
modeled transients, whereas the eight spectral points were
differently distributed over the peak shape in their magnitude-
mode Fourier spectra. For these transients, the frequencies of
peak maxima, f, measured using the FT signal processing
workflow deviated from the corresponding values f, as the

Table 1. Mean Values and Standard Deviations of Frequencies, Amplitudes, and Initial Phases Obtained with LSF and FT Methods in the Analysis of the
Single-Component ICR Transients (Figure 2 top), Simulated Transients (Figure 2 middle), and Orbitrap Transients (Figure 2 bottom). The Rightmost Column
Shows Values Obtained with LSF for the Averaged Set of 1000 Experimental Transients of 96 ms Length and True Values Used for Transient Signal

Modeling

Parameters LSF mean LSF std FT mean FT std FT 96 ms (averaged) /true
ICR experimental data
Amplitude 0.405 0.076 0.408 0.080 0.404
Frequency, Hz 292941.44 0.22 292941.25 0.35 292941.44
Phase,’ —-86.7/-80.5 1.1 N/A N/A —83.447
ICR simulated data
Amplitude 0.405 0.004 0.405 0.005 0.405
Frequency, Hz 292941.44 0.22 292941.24 0.34 292941.44
Phase,’ —86.7/-80.5 1.1 N/A N/A -86.7/-80.5
Orbitrap experimental data
Amplitude 175 19 173 19 173.65
Frequency, Hz 531878.97 0.09 531878.70 0.08 531878.97
Phase,” 57 7 N/A N/A 57.098
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peak shape relocates over the eight frequency points,
which are fixed. That is, since the three-point interpola-
tion is only an approximation of the actual peak shape,
which is the Hann spectral function in our case, the peak
picking procedure leads to the systematic errors in
frequency measurements as follows from the correlation
between the measurement error Af = f —f, and the true
frequency f,, Supplementary Figure S2 (in Supporting
Information). Thus, we conclude that the frequency bias
in question, Figure 2, top panel, demonstrates the limited
accuracy of the peak interpolation procedure of the
conventional FT signal processing workflow. Moreover,
this conclusion is also in agreement with the results obtained
in a separate FT analysis of the averaged set of longer,
T =96 ms, 1000 ICR transients, as shown with blue lines in
Figure 2, top panel: since the full width A4 is inversely
proportional to the transient’s length, 7, the frequency bias
in question reduces as the time 7 increases from 24 ms to
96 ms.

Additionally, the amplitude distributions obtained for the
modeled FT-ICR MS transients, Figure 2, middle panel, are
similar for the both methods, as well as the two obtained
previously for the ICR transients, Figure 2, top panel.
However, the former are narrower than the latter. Hence,
unlike the numerical effects in frequency distributions
discussed above, broadening in the amplitude distribu-
tions obtained for the ICR transients, Figure 2, top panel,
indicates influence of physical effects (e.g., the scan-to-
scan variation in the number of ions injected into the
mass analyzer).

Importantly, in addition to amplitude and frequency
values, the LSF method provides the initial phases of the
sinusoidal components, shown as distributions in Figure 2,
right panels. The corresponding mean values and stan-
dard deviations are given in Table 1. Interestingly, for
the ICR transients the phase distribution obtained with
LSF processing contains two prominent peaks instead of
one. That is, the initial phase of each transient belongs
either to the first or second modes of the phase
distribution. The observed phase difference between the
two modes corresponds to ~1/16 us, which translates into
~16 MHz in the frequency scale. Notably, a multiple of
the latter equals the frequency of the quartz generator,
32.768 MHz, of the analog-to-digital converter employed.
Therefore, the two-mode phase distribution is likely due
to the finite precision of the electronics synchronization.
We conclude this phenomenon to be of a random nature
since no correlation with the scan number has been
found, as demonstrated below for the analysis of five-
component transients. Thus, we assign the appearance of
the two modes to the “first data-point problem,” which
includes a number of effects in digitization of transient
signals. For instance, in FT NMR spectroscopy, it has
been previously reported that the “first data-point
problem” resulted in peak shape artifacts in absorption-
mode FT NMR spectra.

T. Aushev et al.: Least-Squares Fitting of FTMS Transients

For the set of Orbitrap transients, the amplitude,
frequency, and phase distributions obtained with LSF and
FT methods are shown in Figure 2, bottom panel; the
corresponding mean values and standard deviations are
given in Table 1, bottom section. The frequency distribu-
tions do not demonstrate a noticeable difference in their
standard deviations, Table 1. Hence, we conclude that in
contrast to the analysis of the ICR transients, here the
experimental deviation of ion frequencies is the major
contribution to the obtained standard deviations, whereas
the processing loss of the FT workflow was less significant.
The obtained amplitude distributions are analogous to those
of the FT-ICR MS data analysis, Figure 2, top panel. The
phase distribution is, however, substantially different from
the FT-ICR MS results: a single rather wide phase
distribution with a flat top is observed, vide infra.

Least-Squares Fitting of a Multiple-Component
Transient Signal

As the next step, we analyze experimental transients
containing the isotopologues from five isotopic fine-struc-
ture clusters of peptide Substance P, Figure 1. Given the
time scale of interest, the LSF method should resolve the
five isotopic peaks, whereas the isotopologues of each fine-
structure cluster are likely beyond the resolution perfor-
mance of the LSF method. Therefore, the following
numerical experiment with a modeled transient signal was
performed in order to test the LSF’s applicability to
transients with fine-structure ions. Using the m/z values
and abundances of all isotopologues from the five fine-
structure clusters of doubly protonated Substance P, we
generated a 24 ms-long transient signal composed of
sinusoidal components with corresponding amplitudes and
frequencies, Supplementary Table S1 (in Supporting Infor-
mation) left columns. For each cluster of isotopologues, the
differences in phases accumulated by the ions during the
delay between the end of the ion excitation and beginning of
the ion detection can be neglected. Hence, for the sinusoidal
components of the generated transient, the initial phases
were set to zero.

In LSF analysis of this transient signal, for each cluster of
isotopologues the provided frequency should be about the
average frequency calculated in the sense of weighted
average with weights equal to the corresponding abun-
dances. In turn, the amplitudes are expected to be close to
the sum of abundances of the isotopologues in a given
cluster. These expected values of frequencies and amplitudes
are listed in Supplementary Table S1, center columns 9, in
Supporting information). The frequencies and amplitudes
obtained in the LSF analysis of the modeled transient
confirm these points, Supplementary Table S1, right col-
umns (in Supporting Information) and, hence, validate the
LSF’s applicability to the experimental transients with fine
structure ions.
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We thus proceed to the analysis of the experimental
transients in question. Figure 3 shows frequency, amplitude,
and phase distributions obtained with LSF and FT process-
ing of 1000 ICR transient signals containing the ions of five
isotopic fine-structure clusters of Substance P. Table 2
details the corresponding mean and standard deviation
values. For all five components, the LSF processing
provided better frequency precision than that of the FT
processing: the frequency distributions obtained with LSF
are narrower compared with those obtained with FT signal
processing, Figure 3 top and Table 2, similar to the analysis
of the ICR transients containing the singlet from the
previous subsection.

Additionally, systematic errors were observed in the FT
results: the frequency distributions obtained with the FT
processing shift toward higher frequencies (e.g., peak f; at
~227400 Hz), or toward lower frequencies (e.g., peak f; at
227737 Hz), as follows from Figure 3, top panel and
Table 2. These systematic errors negatively influence the
overall accuracy of ion frequency measurement and would
translate into the corresponding mass errors upon calibration.
These deviations are presumably due to the spectral artifacts
of the conventional FT signal processing workflow. These

1269

include the limited accuracy of the peak maximum interpo-
lation procedure and the nonlinear interference of spectral
components [28]. The former was discussed in the above
analysis of the transients containing the singlet. As for the
latter, note that the resolving power was just the minimum
required to baseline-resolve the peaks in question, Figure 1,
top panel. Therefore, the maximum of a given peak is
somewhat influenced by the tails of other peak shapes [30].
One could expect that similar to the singlet data, accurate
interpolation of each peak shape would solve the problem of
spectral interference. However, for the magnitude-mode
spectra, numerical implementation of such procedure is
complicated as it implies a nonlinear summation of different
peak shapes at a given frequency. On the other hand, as the
acquisition time increases, a better accuracy of the peak
interpolation procedure is achieved as discussed in the
previous subsection, and the spectral interference effect
reduces because of the increased resolution of peaks [28, 30,
31]. A separate FT analysis of a set of longer, 7 = 96 ms
1000 ICR transients indicates the following results, as
shown with blue lines in Figure 3, top panel and Table 2,
rightmost column. Relative to the frequencies obtained with
LSF processing of 24-ms transients, the frequencies obtained
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Figure 3. Results of LSF and FT processing of ICR multiple-component transients. Top and middle panels show frequency
and amplitude distributions obtained with LSF (solid lines) and FT (dashed lines). Bottom panel shows phase distributions
obtained with LSF; solid and dashed lines correspond to the two-mode split of the phase distributions. Bin widths for frequency
distributions (top panel, from left to right): 1.0, 0.2, 0.1, 0.05, and 0.04 Hz; for amplitude distributions (middle panel, from left to

right): 0.1, 0.2, 0.5, 1.0, and 1.5; and phase distribution (bottom

panel): 1°. The set of 1000 transients with five components of

an isotopic distribution of a doubly charged peptide Substance P was obtained experimentally on the 10 T FT-ICR MS, see
Figure 1. Blue lines show the mean values obtained with FT processing for the set of longer, 7 = 96 ms, 1000 ICR transients,

see Table 2 rightmost column
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Table 2. Mean Values and Standard Deviations of Frequencies, Amplitudes, and Initial Phases Obtained with LSF and FT Methods for the ICR Five-
Component Transients (Figure 3). The Rightmost Column Shows the Mean and Standard Deviation Values Obtained with FT Processing for the Set of

Longer, 7=96 ms, 1000 ICR Transients

Parameters LSF mean LSF std FT mean FT std FT 96 ms
Amplitude 1 28.8 1.6 28.6 1.6 26.8+1.6
Frequency 1, Hz 227737.40 0.05 227736.85 0.08 227737.56+0.03
Phase 1,° -81.5/~79.6 0.3 N/A N/A N/A

Amplitude 2 22.4 1.2 22.3 1.2 20.5+1.2
Frequency 2, Hz 227568.35 0.06 227568.49 0.10 227568.34+0.03
Phase 2,° —66.7/-61.6 0.5 N/A N/A N/A

Amplitude 3 10.5 0.5 10.4 0.5 9.2+0.5
Frequency 3, Hz 227399.67 0.13 227400.40 0.19 227399.67+0.05
Phase 3,° -51.9/-46.7 0.9 N/A N/A N/A

Amplitude 4 3.81 0.22 3.76 0.23 3.2+0.2
Frequency 4, Hz 227231.32 0.34 227232.55 0.52 227231.03+0.11
Phase 4.° -36.6/-31.4 1.8 N/A N/A N/A

Amplitude 5 1.17 0.10 1.13 0.11 0.9+0.1
Frequency 5, Hz 227064.1 1.0 227065.1 1.9 227062.8+0.3
Phase 5.° -21.9/-16.4 5.0 N/A N/A N/A

with FT processing of 96-ms transients deviate less than the
frequencies obtained with FT processing of 24-ms transients.
Hence, this agreement with the theoretical aspects given
above confirms the systematic deviations in question,
Figure 2, top and Table 2, to be due to the spectral artifacts
of the conventional FT signal processing. Although the
increase of the acquisition time can potentially lead to
variation of the ion frequency, vide infra, the increased
frequency error attributable to the latter apparently was less
than the decreased frequency error due to the spectral
artifacts under consideration.

The amplitude distributions obtained for the considered
transient signals, Figure 3, middle panel and Table 2, are
consistent with the theoretical abundances of unresolved
isotopic clusters of doubly protonated Substance P, Supple-
mentary Table S1, center columns (in Supporting Informa-
tion). The obtained distributions of initial phases are shown
in Figure 3, bottom panel. Here, the phase distribution for
each of the sinusoidal components is split between the two
families (solid and dashed lines), similar to the analysis of
the ICR single-component transients described in the
previous subsection, Figure 2, top panel. As previously,
comparison of the quartz frequency and the distances
between the phase distributions of these five components
confirms the role of the “first data point problem.”
Supplementary Figure S3 (Supporting Information) indicates
a random nature of phase allocation to the first and second
modes. Another striking feature of the phase distributions
shown in Figure 3 is the high phase coherence, especially
evident for the most abundant monoisotopic and A+1
isotopic peaks, as follows from their narrow distributions.

Additionally, a set of modeled FT-ICR MS transients
containing the multiplet was generated using the mean
values of the distributions in question, Figure 3 and Table 2.
The results of the FT and LSF processing for these transients
are shown in Supplementary Figure S4 and Supplementary
Table S2 (in Supporting Information) and are similar to
those obtained for the experimental transients, Figure 3.

Figure 4 demonstrates application of LSF processing to
the set of 1,000 Orbitrap FTMS transients containing the
multiplet. Table 3 lists the corresponding mean values and
standard deviations. The amplitude distributions correlate
with those of FT-ICR MS data analysis, Figure 3. For the
frequency distributions, the behavior of their mean values is
analogous to that of the results for the ICR transients
containing the multiplet, Figure 3, whereas the standard
deviations are the same for the two methods, similar to the
analysis of the Orbitrap FTMS transients containing the
singlet, Figure 2, bottom panel. The phase distributions,
Figure 3 bottom panel, also follow the behavior found for
the single-component Orbitrap FTMS transients, Figure 2,
bottom panel. The spreads of phases for all five isotopic
peaks are comparable. Additionally, the FT and LSF results
obtained on modeled Orbitrap FTMS transients containing
the multiplet and generated using the parameters from
Table 3 are presented in Supplementary Table S3 (in
Supporting Information).

Least-Squares Fitting for FTMS Characterization
and Development

The phase information provided by LSF may be particularly
useful for correction of phase functions and improving the
accuracy of absorption mode FT spectral representation. The
nature of the reported phase coherence in FT-ICR MS is,
apparently, due to the ion excitation process by rf electric
field and low level of phase de-coherence of ion packets on
the considered time scale. The observed phase coherence of
ion packets and its negligible scan-to-scan variation are
remarkable.

Contrary to FT-ICR MS, ion excitation in Orbitrap FTMS
is done upon ion injection into the Orbitrap mass analyzer
from the C-trap. As a result, finite jitter between ion ejection
from the C-trap and ion capturing into stable trajectories
inside of the Orbitrap (achieved upon pulsing of central
electrode potential) may lead to a scan-to-scan variation of
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Figure 4. Frequency, amplitude, and phase distributions obtained with LSF (solid lines) and FT (dashed lines) processing of
multiple-component Orbitrap transients. The set of 1000 transients with five components of an isotopic distribution of a doubly
charged peptide Substance P was obtained experimentally on the Orbitrap Elite FTMS. Bin widths for frequency distributions
(top panel, from left to right): 0.3, 0.08, 0.06, 0.06, and 0.06 Hz; for amplitude distributions (middle panel, from left to right): 0.5,

2,5, 10, and 10; and phase distribution (bottom panel): 2°

the phases of ion packets. Significant reduction of the jitter
time on more recent Exactive series Orbitrap FTMS, down
to 20-30 ns, provides correspondingly narrower phase
distributions [17]. Additionally, of equal importance is the
precision of the electronics synchronization between the ion
injection event and the signal acquisition event. Therefore,
provided that the jitter time is sufficiently low and the data

Table 3. Mean Values and Standard Deviations of Frequencies, Ampli-
tudes, and Initial Phases Obtained with LSF and FT Methods for the
Orbitrap Five-Component Transients as Presented in Figure 4

Parameters LSF mean LSF std FT mean FT std
Amplitude 1 68 17 68 17
Frequency 1, Hz 468962.89 0.08 468962.58 0.08
Phase 1,° 168 6 N/A N/A
Amplitude 2 54 14 54 14
Frequency 2, Hz 468788.82 0.08 468788.85 0.08
Phase 2,° 105 6 N/A N/A
Amplitude 3 26 7 26 7
Frequency 3, Hz 468614.89 0.08 468614.93 0.11
Phase 3,° 44 6 N/A N/A
Amplitude 4 9.1 2.4 9.2 24
Frequency 4, Hz 468440.92 0.11 468441.10 0.12
Phase 4.° -16 6 N/A N/A
Amplitude 5 1.6 0.6 1.7 0.6
Frequency 5, Hz 468265.97 0.67 468267.92 0.44
Phase 5,° —67 13 N/A N/A

acquisition trigger is sufficiently precise, the phase distribu-
tion of ions in the Orbitrap mass analyzer can presumably be
narrower and exhibit the ultimate two-mode behavior shown
by the FT-ICR MS data. Nevertheless, the obtained phase
distributions are well-defined for successful transient signal
averaging and absorption-mode phasing for both ICR and
Orbitrap FTMS (including the eFT algorithm for the latter).

Complementary applications of the LSF method include
the analysis of time-dependent quantities of the transient
signal. Specifically, LSF can be used in studies of deviations
of the ion frequency along the transient or, equivalently, the
nonlinear variation of the total phase accumulated by an ion
during the detection period. For example, the LSF analysis
shows that the frequency (to be exact, the frequency
averaged over the detection period), depends on the transient
duration, Supplementary Figure S5 (in Supporting Informa-
tion). The variation of the average frequency implies the
corresponding change in the instantaneous frequency along
the transient signal. This finding correlates with the study by
Aizikov et al. [32]. Preliminary results demonstrate that the
current implementation of LSF allows for reduction of
transient duration to 12 ms (i.e., two isotopic beats for the
multiplet, Figure 1) without drawbacks for method perfor-
mance, whereas shortening transient duration further to 6—
12 ms, for the transients in question, results in noticeable
deviations in parameters returned by LSF. Presumably, this
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behavior shows restrictions of the LSF’s uncertainty princi-
ple for the case of a transient signal composed of sinusoidal
components with regularly spaced frequencies.

Advantages and Limitations of LSF Processing
for FTMS

To summarize, advantages of the LSF processing for FTMS
based on the examples in the current study can be seen both
for the FTMS hardware and signal processing characteriza-
tion as well as improvement of FTMS analytical perfor-
mance. Specifically, LSF provides information on the phases
of the transient components, presumably more accurate than
the phases typically available from the FT processing. The
LSF method also returns more precise values for frequen-
cies, whereas the FT processing may lead to an increased
standard deviation as a processing loss. It thus might be
envisioned that these advantages translate into improved
resolution (including influence of the improved phase
function) and mass accuracy (via improved frequency and
m/z precision) in FTMS. Additionally, since it considers the
full-scale harmonic inversion problem, Equation (1), as is,
the LSF method can be used as a reference method for
development and characterization of the filter diagonaliza-
tion method (FDM) MS.

A large number of fitting parameters complicates the LSF
to converge. Therefore, the limitations of routine LSF
implementation in FTMS are primarily due to the upper
limit of the number of sinusoidal components to be fitted. As
of today, this upper limit is at around 40 components per
transient for the LSF implementation employed in this work.
Another particular aspect of LSF processing is its require-
ment of the seed parameters (e.g., approximate frequencies).
Therefore, LSF can be most efficiently applied only in
combination with other signal processing methods (e.g., FT
and FDM).

Conclusions

We described and evaluated the application of the least-
squares fitting (LSF) method for analysis of experimental
transient signals in FTMS when the transient signal consists
of a few sinusoidal components. In comparisons to the
typically employed FT processing, the LSF processing
yielded superior precision in determination of the frequen-
cies of sinusoidal components of transient signals. For low
abundance ions present in an isotopic distribution, the LSF
method provided information on their amplitudes with
precision not worse than that achieved by FT. Complemen-
tary to FT processing, the LSF provides the phases of the
sinusoidal components with high precision so that even the
“first data-point problem” has been revealed in experimental
FT-ICR MS data. Thus, the LSF method is particularly
useful in studies addressing the current analytical limits in
FTMS and aiming to advance the analytical performance of
FTMS via corresponding development of instrumentation

T. Aushev et al.: Least-Squares Fitting of FTMS Transients

and signal processing methods. Owing to numerical limita-
tions, the application area of the LSF method in FTMS
should not be confused with the analysis of transient signals
obtained for measurements of broadband mass spectra
corresponding to hundreds or thousands of ions with
different m/z ratios.
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