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Abstract
Objectives The aim of this study was to evaluate the efficacy
of four different powered toothbrushes with side-to-side
action for noncontact biofilm removal in vitro.
Materials and methods A three-species biofilm was formed
in vitro on protein-coated titanium disks using a flow cham-
ber combined with a static biofilm growth model. Subse-
quently, the biofilm-coated substrates were exposed to four
different side-to-side toothbrushes (A, B, C, and D) with
various brushing times (2, 4, and 6 s) and brushing (bristle-
to-disk) distances (0, 2, and 4 mm). The biofilm volumes
were measured using volumetric analyses with confocal laser
scanning microscope images and Imaris version 7.5.2
software.
Results The median percentages of biofilm reduction by the
analyzed toothbrushes ranged from 9 % to 80 %. The abil-
ities of the tested toothbrushes to remove the in vitro biofilm
differed significantly (p<0.05). Two of the tested tooth-
brushes (C and D) were capable of significant biofilm reduc-
tion by noncontact brushing.
Conclusions It was possible to reduce a three-species in vitro
biofilm by noncontact brushing with two out of four side-to-
side toothbrushes.
Clinical relevance Toothbrushes C and D show in vitro a
high efficacy in biofilm removal without bristle contact.
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Introduction

The treatment of biofilm-associated diseases, which includes
comprehensive periodontal or peri-implant therapy, is a chal-
lenge in human infectiology [1–3]. A biofilm is a microbial
structure that adheres to wet surfaces [4]. From a clinical
perspective, this complex structure plays a critical role
protecting the associated microorganisms from both the host
immune system and antimicrobial agents. It is commonly
understood that a pathogenic oral biofilm needs to be dis-
turbed by mechanical means, including self-performed daily
oral hygiene [5–7].

A recent systematic review reported that powered tooth-
brushes with side-to-side, multidimensional, and ultrasonic
actions can reduce biofilm in vitro by noncontact brushing
[8]. Interactions among hydrodynamic phenomena, passing
air bubbles, and acoustic energy transfer appear to contribute
to noncontact biofilm removal [9, 10]. Based on the current
evidence, the authors of the review suggested that future
research should consider (1) aspects of in vitro biofilm
formation and (2) the relevance of experimental brushing
protocols [8].

The strength of an in vitro biofilm depends on several
parameters, including its initial adhesion to a surface, the
acquisition of a salivary pellicle that provides receptors for
bacterial binding, and the microbial growth time [11, 12].
The co-aggregation of multiple bacterial species and the
presence of environmental factors, such as hydrodynamic
effects, influence the cohesive forces within a biofilm [13,
14]. In addition to the oscillation rate of the toothbrush head,
the brushing time, the distance between the toothbrush bris-
tles and the tooth surface, and the presence of a liquid
environment may affect the efficacy of a toothbrush [15,
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16]. Future in vitro studies of noncontact biofilm removal
may therefore benefit from the use of multispecies biofilms
grown under dynamic conditions on a suitable substratum
coated with a salivary pellicle. It is essential to consider the
possible translation of experimental findings to the clinical
setting when studying different brushing parameters.

The aim of the present study was to determine the efficacy
of four different powered toothbrushes with side-to-side
action for the noncontact removal of a multispecies biofilm
in vitro.

Materials and methods

Biofilm formation

A previously described protocol for multispecies biofilm
formation was utilized [17]. Briefly, Streptococcus sanguinis
DSM 20068, Fusobacterium nucleatum ATCC 10953, and
Porphyromonas gingivalisDSM 20709 were grown in liquid
broth, and the resulting bacterial suspensions were used for
biofilm formation.

Sterile disks of commercially pure titanium (Grade 2,
ASTM F-67) with a sandblasted/acid etched (SLA) surface,
5 mm in diameter and 1 mm in thickness (Straumann AG,
Basel, Switzerland), were used as substrates. Prior to each
experiment, the disks were placed in a serum/saliva mixture
(1:10) at room temperature for 15 min to allow protein
pellicle formation. Fasting-stimulated saliva from healthy
volunteers was prepared according to an established protocol
[18]. Before use, the saliva was mixed with pooled serum
(Blutspendezentrum, Basel, Switzerland). The protein-
coated substrates were placed in an anaerobic flow chamber
(details of the flow chamber system have been previously
described) [18–22]. The bacterial suspension was circulated
at 0.8 ml min−1 under anaerobic conditions (MACS MG;
Don Whitley Scientific Ltd.) in an atmosphere of 80 % N2,
10 % H2, and 10 % CO2 at 37 °C for 72 h and was renewed at
24-h intervals. The disks were removed from the anaerobic
flow chamber. The wells of a 12-well plate were filled with a
mixture of thioglycolate (bioMerieux SA, Geneva, Switzer-
land) enriched with 5 μg ml−1 hemin (Fluka, Buchs, Swit-
zerland) and 0.5 μg ml−1 menadione (VWR International,
Dietikon, Switzerland) and simulated body fluid [23] (1:1)
supplemented with 0.2 % glucose. Each biofilm-coated sub-
stratum was anaerobically incubated in a single well at 37 °C
for 18 h, for an overall biofilm growth time of 90 h.

Toothbrush exposition

Four toothbrushes with side-to-side action were selected
according to the technical parameter of the number of head
oscillations per minute. The oscillation frequencies were

taken from the manufacturer's data. The selected tooth-
brushes were purchased in a store by one of the authors
(JCS) and were labeled toothbrush A (Trisa® Sonic Impulse,
Trisa Electronics AG, Triengen, Switzerland; 20,000 oscil-
lations per minute), toothbrush B (Oral-B® Pulsonic Slim
Type 3746, Braun GmbH, Kronberg, Germany; 27,000 os-
cillations per minute), toothbrush C (Philips® Sonicare
FlexCare HX6902/02, Philips GmbH, Hamburg, Germany;
31,000 oscillations per minute), and toothbrush D
(Waterpik® Sensonic® Professional SR-1000E, Water Pik
Inc., Fort Collins, CO, USA; 30,000 oscillations per minute).
Each toothbrushwas installed in an individuallymanufactured
and adjustable toothbrush apparatus.

After biofilm formation, each disk was gently dipped in
physiological saline to remove any nonadherent bacteria and
was then placed in the exposure container of the toothbrush
apparatus filled with physiological saline. The toothbrush
was aligned toward the center of the disk in a stationary
horizontal position with the following combinations of
brushing time and distance between the end of the longest
central bristles and the disk surface: 2 s/0 mm, 2 s/2 mm,
2 s/4 mm, 4 s/2 mm, and 6 s/2 mm [8]. In a preliminary
experiment, the distances between the bristles and the disk
surface were determined by a ruler for each toothbrush. Each
brushing position (0, 2, and 4 mm distance) yielded a bench-
mark on the mounting stage of the toothbrush apparatus to
adjust the toothbrushes precisely and reproducibly during the
subsequent experiments. Untreated disks served as controls.
The toothbrushes were fully charged before use, and the highest
mode of action for each product was employed. After the
toothbrush treatment, the disks were dipped in physiological
saline and subsequently prepared for 4′,6-diamidino-2-
phenylindole dihydrochloride (DAPI; Sigma-Aldrich, Buchs,
Switzerland) staining and analysis under a confocal laser scan-
ning microscope (CLSM; Carl Zeiss AG, Oberkochen,
Germany).

Microscopical analysis

The biofilms were fixed in 4 % paraformaldehyde (Sigma-
Aldrich, Buchs, Switzerland) for 30 min at 4 °C and were
washed once with phosphate-buffered saline (PBS). Next,
the biofilm-associated bacteria were permeabilized by expo-
sure to lysozyme (Sigma-Aldrich, Buchs, Switzerland;
70,000 U ml−1) for 3 min at room temperature and were
rinsed with physiological saline. The biofilm-coated disks
were then covered with DAPI solution for 3 min.

After DAPI staining, the biofilm-coated disks were washed
once with PBS, embedded in an inverted position in 10 μl of
Mowiol mounting medium, and stored at room temperature in
the dark for at least 8 h. The biofilms were examined under a
Zeiss LSM700 inverted confocal microscope working
through a vertical view. Images of 1,024×1,024 pixels in size
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were acquired using Zeiss ZEN 2010 software with the fluo-
rescence signal assigned to a blue color. Confocal images
were acquired using a 63× (numeric aperture 1.4) oil immer-
sion plan apochromatic objective lens and a 405-nm laser.

Three randomly selected microscopic fields near the center
of the disk, each 0.021 mm2 in diameter (corresponding to
0.32 % of the total surface area), were scanned. Vertical optical
sectioning at every position with a slice thickness of 0.29 μm
was used to generate Z-direction series. The biofilm volumes
were determined using volumetric analyses with Imaris version
7.5.2 software (Bitplane AG, Zurich, Switzerland). Three con-
focal datasets for each disk were analyzed, and the means and
standard deviations of the biofilm volumes were calculated.

The mean volumes of the biofilms on the exposed sub-
strates were compared to those of the unexposed control
from the same experiment. The percent reduction or expan-
sion of each biofilm was recorded. A biofilm volume of at
least 15,000 μm3 on the control disk was required for an
experiment to be included in the analysis.

Statistical analysis

A total of 16 independent flow chamber experiments were
used to generate 96 biofilm-coated titanium disks. Each of
the 16 experiments included a control disk. A total of 80
biofilm-coated disks were randomly distributed to each ex-
perimental group, which was defined by the brushing time
and brushing distance. Randomization was performed using
a computer-generated list (Microsoft Office Excel® 2011,
Microsoft Corp., Redmond, WA, USA).

The results of a Shapiro–Wilk test indicated that most of
the data were not normally distributed. Therefore, a one-
sample Wilcoxon signed-rank test was applied. The null
hypothesis was that the median percentage of biofilm reduc-
tion by noncontact brushing was zero.

All the calculations were performed using SPSS® soft-
ware (SPSS® Statistics 20.0.0; SPSS Inc., Chicago, IL,
USA). The differences in the percent biofilm reduction
achieved by the different toothbrushes were evaluated using
the Mann–Whitney U test. A result was considered to be
statistically significant if p<0.05.

Results

Impact of brushing time

The differences in biofilm reduction after various brushing
times are shown in Fig. 1. A significant difference in biofilm
reduction between toothbrushes A and D was observed after
a brushing time of 2 s (p=0.029). There were no other
significant differences in biofilm reduction after any other
brushing times with the toothbrushes (p>0.05).

Impact of brushing distance

The differences in biofilm reduction at various brushing
distances are shown in Fig. 2. There was a significant differ-
ence between contact and noncontact brushing with 4 mm
distance for toothbrush C (p=0.029). Moreover, a significant
difference in biofilm reduction between toothbrushes A and
D was observed at a brushing distance of 2 mm (p=0.029).
There were no other significant differences between any
other variables of the toothbrushes (p>0.05).

Overall efficacy

The efficacy of the tested toothbrushes for noncontact bio-
film removal is shown in Fig. 3. Significant differences in
biofilm reduction were noted between toothbrushes A and C,
toothbrushes A and D, as well as toothbrushes B and D.
There were no other significant differences between any
other toothbrushes. The biofilms were significantly reduced
by toothbrush C (p=0.001, n=16) and toothbrush D
(p=0.001, n=16). The reduction of biofilms was not signif-
icantly predictable for toothbrush A (p=0.352, n=16) and
toothbrush B (p=0.959, n=16).

Fig. 1 Reduction in the biofilm volume (percent) after three different
brushing times (at a brushing distance of 2 mm). The negative values
represent expansions of the biofilm. The boxplot indicates the medians,
interquartile ranges (IQRs), and full range of values from four indepen-
dent experiments (n=4)
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Microscopic images

Representative CLSM images of biofilms after a brushing
time of 4 s are shown in Fig. 4. The effective reductions in
biofilm volumes (compared to an unexposed control) are
depicted for toothbrushes C and D. In contrast, biofilm
expansions are illustrated in the microscopic images from
the experiments with toothbrushes A and B.

Discussion

The present study evaluated the efficacy of four side-to-side
toothbrushes for noncontact brushing in vitro. The tooth-
brushes were selected according to the technical parameter
of the number of head oscillations, which ranged from
20,000 to 31,000 oscillations per minute. Because an oral
hygiene session may include various brushing distances and
times for different tooth surfaces, an evaluation of the overall
efficacy of the tested toothbrushes may be helpful. The
median percentages of biofilm reduction ranged from 9 %
to 80 %. The toothbrushes differed significantly in their

capability for noncontact biofilm removal (p<0.05). Signif-
icant biofilm reductions were achieved by two of the tested
toothbrushes.

The present in vitro model is characterized as follows:

Previous in vitro studies of noncontact biofilm removal
have used one or two species for biofilm formation [8].
In this study, three different oral bacteria were selected
and included in a multispecies biofilm, probably in-
creasing the biological plausibility and at the same time,
however, increasing the microbial variability. The adhe-
sion characteristics of bacteria in mono-species biofilms
may differ from those of bacteria derived from dental
biofilms caused by bacterial interactions [13]. However,
the enormous variety of oral microflora, which can
consist of over 700 different bacterial species, makes
mimicking the intraoral situation in a laboratory biofilm
model unfeasible [24, 25].
SLA titanium disks were used as a standardized substra-
tum. The adhesion-promoting properties of SLA titani-
um disks may promote the initial bacterial colonization,
which is thought to represent a critical phase of biofilm
formation [26–28]. Thereafter, biofilm growth and mat-
uration may occur independently of the underlying sur-
face properties [12, 27].
A dynamic flow chamber system was employed for the
initial biofilm growth. The dynamic conditions in the
flow chamber system are intended to mimic the flow
rate and shear forces of the saliva flow in the oral
environment [18, 19]. In contrast, static systems may
enhance biofilm growth, leading to a more compact,
multilayered biofilm [14, 29]. The strengths of biofilms
grown in static and dynamic systems may differ from
each other [30, 31]. However, this investigation aimed
to model a combination of the strengths of dynamic and
static biofilm systems.
The brushing parameters were adapted by the clinical
reality. Brushing times of up to 6 s were derived from
calculations of the time available for cleaning a single
tooth surface within an overall toothbrushing time of 2
to 3 min [8]. Distances of 2 and 4 mm from the longest
central bristles to the biofilm-containing disk were used
in the experiments.

Several groups have recently suggested that changes in
detachment forces may mediate noncontact biofilm removal
[8]. Adams et al. [32] observed the movements of fluid and
air bubbles. Side-to-side and multidimensional toothbrushes
generated similar shear forces despite having different bio-
film removal efficacies, which indicates that hydrodynamic
forces may not be the only important influence of biofilm
removal. Because the mechanisms of noncontact biofilm re-
moval have not been characterized in detail, however, it
remains unclear which effects are responsible for this process.

Fig. 2 Reduction in the biofilm volume (percent) at three different
brushing distances (after a brushing time of 2 s). The negative values
represent expansions of the biofilm. The boxplot indicates the medians,
IQRs, and full range of values from four independent experiments
(n=4)
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The interplay among (1) hydrodynamic effects in terms of
shear forces, (2) thermodynamic surface tension forces caused
by passing air bubbles, and (3) acoustic energy transfer in
terms of sound pressure waves may be associated with
noncontact biofilm removal [8].

Previous studies have failed to find a significant influence
of brushing time on noncontact biofilm removal when the
brushing distance is ≤2 mm [8]. The brushing times in these
reports ranged from 5 to 30 s, and the majority of biofilm-
associated bacteria were removed within 5 s. The present
data demonstrated a trend toward greater biofilm reduction
after 6 s compared to 2 s. However, the impact of brushing
time on noncontact biofilm removal was not significant
when there was a brushing time per surface of 2 to 6 s.

Increasing brushing distances have impeded noncontact
biofilm removal by powered toothbrushes in recent studies
[8]. No significant change in biofilm removal after an in-
crease of the brushing distance from 2 to 4 mm was observed
in the present study. This finding might be due to the shorter
but more clinically relevant brushing time and the shorter

distance of 4 mm employed in the current protocol compared
to 6 mm in previous studies.

Under several conditions, two of the tested toothbrushes
caused a volumetric expansion of the biofilm. A trend toward
a greater degree of biofilm expansion was observed at a 4-
mm brushing distance compared to a 2-mm distance. These
data are consistent with those of Busscher et al. [10], who
reported that biofilm expansion occurred at distances of 4
and 6 mm using side-to-side and multidimensional brushes.
Busscher et al. [10] have suggested that biofilm expansion
occurs via a viscoelastic mechanism. The energy transfer
from the toothbrush to the biofilm may lead to a plastic
deformation manifested as an expansion of the biofilm
[10]. The authors attributed the enhanced variability in their
results to plastic deformation, which may be difficult to
control. In the present study, biofilm expansion was also
correlated with a greater variety in the results of repeated
measurements, which was observed for toothbrushes A and
B (the two toothbrushes with lower frequencies). In addition,
an interesting phenomenon was observed in the CLSM

Fig. 3 Overall reduction in the
biofilm volume (percent) after
noncontact brushing (brushing
times of 2, 4, and 6 s; brushing
distances of 2 and 4 mm). The
negative values represent
expansions of the biofilm. The
boxplot indicates the medians,
IQRs, and full range of values
from 16 independent
experiments (n=16). The data
points denote outliers with IQRs
greater than twice the median
value. The statistically calculated
differences (Mann–Whitney U
test) among the four analyzed
toothbrushes are shown in the
table
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images for toothbrush C and D, indicating an altered biofilm
structure (Fig. 4). The relevance of this microscopically
observed biofilm morphology is unknown. However, this
finding requires further research.

Interestingly, a pronounced biofilm expansion was caused
in the present study by the powered toothbrushes that oper-
ated at lower frequencies (20,000 and 27,000 head oscilla-
tions per minute for toothbrushes A and B, respectively).
Toothbrushes C and D had higher frequencies of 31,000 and
30,000 oscillations per minute, respectively. The biofilms
were significantly reduced by toothbrush C and toothbrush
D. Significant differences in the overall efficacy of biofilm
reduction were noted between toothbrushes A and C, tooth-
brushes A and D, and between toothbrushes B and D indi-
cating that oscillation frequency may be a factor in biofilm
removal. However, the impacts of oscillation and of other
technical parameters on biofilm removal were not investi-
gated and remain a challenging aim for further research. An
appropriate design is currently under preparation in our
laboratory. The frequency and amplitude of the bristle vibra-
tions, as well as the bristle design (for example, the number,
configuration, length, and material of the bristles), are ex-
amples of factors that may influence noncontact biofilm

removal. Until the impacts of these technical parameters
are better understood, the interpretation of our results should
be limited to the toothbrushes tested.

Previous studies have frequently reported noncontact bio-
film removal levels of more than 50 % by side-to-side
toothbrushes [8]. This finding is in accordance with the
present results of median biofilm reductions of 62 % and
80 % by toothbrushes C and D, respectively. In contrast,
toothbrushes A and B achieved biofilm reductions of greater
than 50 % in a minority of experiments, leading to median
overall efficacies of 9 % and 13 %, respectively.

The surface roughness of the SLA titanium disks differs
from the physical properties of human tooth surfaces. How-
ever, a translation of the noncontact biofilm removal results
from industrially manufactured surfaces to enamel or dentine
surfaces may be possible due to several microbial similarities
between periodontal and peri-implant lesions in humans [33,
34]. The standardized rough titanium surface was selected to
promote the initial bacterial colonization [26, 27]. Industri-
ally manufactured surfaces may help ensure the repeatability
and reproducibility of biofilm formation, in contrast to non-
standardized tooth surfaces, which exhibit variable surface
characteristics. In addition, collecting a reliable number of

Fig. 4 Representative CLSM
images after a brushing time of
4 s at a brushing distance of
2 mm: overlaid images (1–5) and
cross-sections (6–10) of
unexposed biofilms (control) and
biofilms treated with
toothbrushes A, B, C, and D.
Bar=10 μm
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human teeth for research remains a challenge due to avail-
ability and ethical considerations. This study of noncontact
biofilm removal may also be interpreted as a first study on
the efficacy of side-to-side toothbrushes on exposed rough
titanium surfaces. A rough titanium surface may be exposed
after peri-implantitis or resective peri-implantitis treatment
[35]. Two of the toothbrushes examined in this study were
able to reduce a three-species biofilm on a rough titanium
surface by noncontact brushing.

The present data were obtained in an in vitro environment.
From a clinical perspective, the prevention and treatment of
periodontal and peri-implant diseases, as well as the establish-
ment of long-term oral health, require the correct daily perfor-
mance of dental plaque removal by the patient [7]. Noncom-
pliance with oral hygiene practices, however, is a major prob-
lem in self-performed oral hygiene, particularly in patients
with lower socioeconomic status [36–39]. Inadequate compli-
ance is correlated with the deterioration of the periodontal
tissues, leading to periodontal or peri-implant diseases
[40–43]. Powered toothbrushes with various modes of action
have been developed to improve and simplify oral hygiene
[44]. Currently, several models are commercially available;
they vary in terms of technical parameters and sale prices.

It would therefore be desirable to examine the efficacy of
toothbrushes for noncontact biofilm removal in clinical stud-
ies after demonstrating their efficacy in laboratory studies. A
clinical setting is challenging; it may require appropriate
follow-up visits and the standardization of indices and clin-
ically relevant thresholds for differences in plaque and gin-
gival health outcomes [45].

Conclusions

In conclusion, this study produced evidence that two of the
tested side-to-side toothbrushes, i.e., C and D, were able to
reduce an in vitro biofilm by noncontact brushing. The
efficacy of the tested toothbrushes for noncontact biofilm
removal differed significantly. The extrapolation of these
in vitro findings to powered toothbrushes that were not
examined here is not recommended.
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