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Abstract. Percolation is the paradigm for random connectivity and has
been one of the most applied statistical models. With simple geometri-
cal rules a transition is obtained which is related to magnetic models.
This transition is, in all dimensions, one of the most robust continu-
ous transitions known. We present a very brief overview of more than
60 years of work in this area and discuss several open questions for
a variety of models, including classical, explosive, invasion, bootstrap,
and correlated percolation.

1 Introduction

Percolation is a classic problem in statistical physics and, like a cat with nine lives,
never seems to die. The study by its proper name began with the work of engineer
Simon Broadbent and mathematician John Hammersley in the 1950’s [1], inspired by
the workings of activated charcoal gas masks, but it was effectively already considered
by chemist Paul Flory in the early 1940’s in his study of gelation in polymers [2–4].
The King’s College London group of Cyril Domb, which included Michael Fisher,
John Essam, and M.F. Skyes, did a great deal to popularize the percolation problem
in the physics community starting in the 1960’s [5]. In an early paper, Fisher and
Essam showed that the polymerization model of Flory corresponds to percolation
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on the Bethe lattice [6,7]. There followed a great deal of work by physicists, includ-
ing Rushbrooke, Stanley, Coniglio, Halperin, Herrmann, Stauffer, Aharony, Havlin,
Duplantier, etc. [8–10]. A major breakthrough was the demonstration in 1969 by
Fortuin and Kasteleyn [11] that percolation is a limiting case of the general Potts
model, which includes the Ising model, and can be solved exactly. This paved the
way to many exact results in percolation (e.g., for scaling relations [12–14], the
hull [15–19], and the number of red bonds [20]), and allowed powerful renormalization
group ideas to be used [21]. Numerous variations of percolation, such as invasion per-
colation, first-passage percolation, directed percolation, and bootstrap percolation
were introduced. Exact “static” exponents in 2d were first proposed in the 1980’s
by den Nijs [22–24], Pearson and others, but attempts to find exact exponents for
conductivity (the Alexander–Orbach conjecture) [25], the backbone [26,27], and the
shortest path (chemical distance) [28] have not succeeded.
Finding percolation thresholds both exactly and by simulation has been an en-

during subject of research in this field (see [29] and references therein), as well as the
development of algorithms such as those by Hoshen and Kopelman [30], by Leath [31],
and by Newman and Ziff [32]. Finding rigorous proofs of exact thresholds and bounds
has also been an enduring area of research for mathematicians (Kesten [33],
Wierman [34], Grimmett [35], Bollobás and Riordan [36], etc.).
The derivation of an exact formula for the crossing probability on a rectangle by

Cardy in 1992 [37] (motivated by numerical work of Langlands et al. [38]) led to a great
deal of work on universal crossing properties in two-dimensional system, such as those
by Pinson [39], Watts [40], Simmons [41], etc. Around 2000, Schramm developed the
Stochastic Loewner Evolution (SLE) theory, which was soon applied to percolation
hulls [19,42,43]. This caused once again percolation to be an active area of research in
mathematical probability theory, and led to two Fields’ medals, to Stanislav Smirnov
and Wendelin Werner [18,44,45]. The results include rigorous derivation of the static
percolation exponents. Another infusion of interest in percolation came from the
surging field of network theory, which goes back to the study of random and complete
graphs by Erdős and Rényi (1959), where the formation of a “giant component” is
exactly analogous to percolation [46], but was revitalized by interest in small-world
and scale-free networks. In 2000, Newman and Moore found the critical point for
a random graph in the limit of large size, in which case the system is effectively a
Bethe lattice, and this result connects to the early work of Flory, Fisher and Essam,
but here with a general degree distribution [47]. In the field of random networks, the
model of explosive percolation (EP) was first introduced by Achlioptas, D’Souza and
Spencer [48], and this has been another problem that has led to a wave of new interest
in percolation.
In this article, we present some perspective on open problems and challenges in

percolation. The field is so vast that we can only touch on a subset of them, more
aligned with our own interests.

2 Classical uncorrelated percolation

The most basic question in percolation is the value of the threshold for a given
system. Exact thresholds in two dimensions for the square, triangular, honeycomb
and related lattices (kagomé and (3–122) site thresholds) were found by Sykes and
Essam in 1963, using the star-triangle transformation [49]. In 1984 Wierman [34]
generalized this transformation to find the threshold of the bow-tie lattice, and in
2006 Ziff and Scullard [50] showed that thresholds can be found for any lattice that
can be represented as a self-dual 3-hypergraph (that is, decomposed into triangles that
form a self-dual arrangement). Just recently, Grimmett and Manolescu [51] showed
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that thresholds can be found for any lattice that can be represented geometrically
as an isoradial graph, yielding a broad new class of exact thresholds and providing a
proof [52] of Wu’s 1979 conjecture [53] for the threshold of the checkerboard lattice.
So the widely held belief that there are just a handful of lattices where the threshold
is known exactly is no longer true. However, many systems of long interest (such as
site percolation on the square and honeycomb lattices, and bond percolation on the
kagomé lattice) do not fit into the self-dual hypergraph or isoradial forms and cannot
presently be solved. Is there another approach that can give exact thresholds to these
and other lattices? Or can a proof be made that thresholds for some lattices can never
be found in a closed form? New methods to obtain very high precision estimates of the
threshold with unprecedented precision (over 12 digits for some models) have been
developed by Jacobsen and Scullard [54,55], but none of these seem to suggest any
obvious closed-form values. For higher dimensions, exact thresholds would be very
beneficial but seem unlikely. In four dimensions, a claim for an exact threshold of
plaquettes has been made [56].
Likewise, there are no exactly known exponents for more dynamical properties

such as the shortest-path exponent dmin, dynamic exponent z, conductivity exponent
t, spectral dimension, etc., even in two dimensions (only the related exponent g is
known [57,58]). For directed percolation, which can be interpreted as a dynamical
form of percolation also related to the contact process, no exact results are known
for any dimension. After years of trying, it seems unlikely that these other exponents
will ever be found exactly, but perhaps a new breakthrough will be found.
Many questions relating to scaling functions and amplitude ratios were looked at

extensively in the 1980’s, but several questions remain unanswered, and with new
computers and algorithms these problems are worth revisiting [59]. Amplitude ratios
are useful for confirming universality of different percolation models [60,61]. Near
the percolation threshold the size distribution of percolation clusters satisfies the
scaling form ns(p) ∼ As−τf(B(p−pc)sσ) where A and B are system-dependent scale
factors, while τ and σ are universal exponents and f(z) is an universal function for
a given dimensionality. The universality of f(z) implies the universality of amplitude
ratios (such as the ratio of the mean cluster size an ε above and below pc), which
were studied extensively in the past [62]. With a precise determination of the scaling
function, many of these universal ratios should be able to be determined, but as far as
we know the scaling function has never been determined precisely and used for this.
For the correlation-length ξ, the amplitude ratio has been predicted to be exactly
2 [63], but because of questions of how the correlation length should be measured,
it seems that this value has never been verified numerically. In 2001, Seaton [64]

predicted an exact amplitude ratio for percolation, R̃+ξ = [α(2−α)(1−α)Ã+]1/dξ+0 =
[40/27

√
3]
1
2 = 0.9248 . . . where α = −2/3, Ã+ is the coefficient of the singular part

|p − pc|2−α of the free energy (number of clusters) and ξ+0 is the coefficient to the
divergence of the correlation length ξ ∼ ξ0(pc − p)−ν for p < pc. While this ratio
agreed with previous results by Delfino and Cardy [65], questions about the correct
definition of the correlation function to use remain.
A way to put the size distribution into a universal form is by considering the

enclosing area or volume; in that case the area of the n-th ranked cluster satisfies
Zipf’s law An ∼ C/n, with C known exactly in the case of two-dimensional enclosed
area [66,67]. How this quantity behaves away from pc and how that relates to regular
scaling functions has not been detailed. This same approach should apply to any
critical system, including directed percolation.
An early exact result in percolation is the density n of clusters of wet sites in bond

percolation at the threshold, found by Temperley and Lieb [68] for the square lattice

and evaluated simply as (3
√
3− 5)/2 [69], and is also known for bond percolation on

the triangular lattice [70]. Surprisingly, while many things have been proven exactly
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for site percolation on the triangular lattice, this quantity is known only numerically
there: n = 0.0176255(5) [69]. Can this quantity also be found exactly?

3 Classical percolation with long-range correlated disorder

Percolation theory and related models have been applied to study transport and
geometrical properties of disordered systems [71,72]. Among the first papers on cor-
related percolation is the work of Coniglio and Klein [73]. They have studied bond
percolation on Ising clusters and found that in two dimensions the Ising critical point
coincides with the percolation critical point for clusters of parallel spins.
Frequently, disorder is characterized by a power-law long-ranged spatial correla-

tion. This fact has motivated studies of percolation models where the sites of the
lattice are not occupied independently, but instead with long-range spatial correla-
tion, in a process named correlated percolation [71,72,74–87]. The qualitative picture
that emerged is that, in the presence of long-range correlations, percolation clusters
become more compact and their transport properties change accordingly. These find-
ings have also been confirmed by experimental studies of the transport properties of
clusters in correlated invasion percolation [88,89].
The typical strategy to investigate correlated percolation is to work with a land-

scape of random heights h, where h(x) is the height of the landscape at the lattice
site at position x [71,74–76,90,91]. Recently, ranked surfaces have been introduced,
providing the adequate framework to tackle this problem [86,92]. The ranked surface
of a discrete landscape is constructed as follows: One first ranks all sites in the land-
scapes according to their height, from the smallest to the largest value. Then, a ranked
surface is constructed where each site has a number corresponding to its position in
the rank. The following percolation model can then be defined: Initially, all sites of
the ranked surface are unoccupied. The sites are occupied one-by-one, following the
ranking. At each step, the fraction of occupied sites p increases by the inverse of the
total number of sites in the surface. By this procedure, a configuration of occupied
sites is obtained, the properties of which depend on the landscape. For example, if
the heights are distributed uniformly at random, classical percolation with fraction of
occupied sites p is obtained [32,93,94]. To generate ranked surfaces with power-law
correlated disorder the Fourier filtering method is used [75,95–102].
The focus is usually on the dependence of percolation properties on how the corre-

lations decay with the spatial distance, typically characterized by the Hurst exponent
H. Schmittbuhl et al. have shown that for H > 0, there is no percolation transi-
tion [76]. Instead, compact clusters grow and merge in such a way that the size of
the largest cluster grows linearly with the fraction of occupied sites. By contrast,
for H < 0 the percolation transition is critical and critical exponents can be found.
According to the extended Harris criterion, the critical exponents should change with
H [74,76,85,86,103,104]. It was found that the fractal dimension of the largest cluster,
its perimeter, as well as the dimension of its shortest path and backbone depend on
H [75,76,86,90,105]. Strong dependence on H is also found for the electrical conduc-
tivity exponent of the largest cluster and the growth of bridge sites in the correlated
percolation model. Schrenk et al. have proposed a functional dependence of several
exponents on the Hurst exponent H [86]. While these relations were found as the
simplest rational expressions giving the considered critical exponents as function of
H, they do not have theoretical support. It is still an open question if these expres-
sions can be found by scaling arguments or field theory. Concerning the perimeter
fractal dimension of the largest cluster, it was found numerically that the duality
relation of Duplantier [106] is fulfilled in the full range of Hurst exponents [86]. A
more theoretical argument supporting this finding is also still missing.
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4 Variants of percolation

“Classical” (ordinary) percolation deals [9,10] with the situation where small bridges
are either established or removed randomly, irreversibly, and independently, until large
scale connectivity is either established or lost. Here, a “bridge” might be a link or a
node in a network, with regular lattices being very regular class of special networks.
Apart from this no other processes of relevance go on, which means that each bridge
is dealt with only once, whence the randomness or the phenomenon can be either
considered as frozen (a view mostly taken in condensed matter) or as characterizing
a stochastic contagion process, in which case it is describing the spreading of some
epidemic [107], computer malware, or public opinion. In the latter context, it is also
called the SIR (“susceptible-infected-removed”) epidemic model [61,108,109], to be
contrasted to the SIS (“susceptible-infected-susceptible”) model where bridges are
removed after a finite life time (of infectivity), and which corresponds to directed
percolation in space-time (the directness being that of the time arrow). Both SIR
and SIS (i.e., undirected and directed percolation) show transitions between phases
with and without long range connectivity, which are continuous (“second order”) in
the sense that a suitable order parameter (which usually is the density of the largest
connected cluster) is zero at the transition point and increases continuously (but of
course with singular derivatives) as one enters the supercritical (connected) phase.
Deviations from this classical model can involve any of the basic ingredients:

1. “Bridges” (links, infections) themselves can already be long ranged. Models with
power behaved long range interactions have been studied in statistical physics since
the late 1960’s , when it was realized that the 1-dimensional Ising model can have
a non-trivial phase transition if interactions are sufficiently long ranged, with a
decay ∼ 1/r2 being the turning point [110–112]. Very early, Thouless [112] argued
that the transition in this model is of Kosterlitz-Thouless [113] type, i.e. it is of
infinite order, the correlation length does not scale with a power of the distance
from the critical point, and there are generic power laws with continuously varying
exponents in the subcritical phase. The same should be true for percolation. But
his arguments were soon shown to be incomplete [111]. Indeed, when it was proven
that in this case the transition is first order (discontinuous) [114], the predictions
of Kosterlitz seemed to be obsolete. But recent simulations [115] show that there
are indeed continuously varying critical exponents (in the supercritical phase), and
that the correlation length diverges exponentially. Related to this is a model by
Boettcher et al. [116], where long range links are not established in a completely
random fashion. Rather, in the Boettcher et al. model all long range bonds must
have length 2k, k = 1, 2, 3, . . . , bonds with length 2k connect only to sites with
coordinates i ≡ 0 mod 2k, and they are all established with the same probability
p. This leads to the same average density of long range links as in the random
model with P (r) ∼ 1/r2, and both models show very similar behavior. How similar
they are in details remains to be seen.

2. In two dimensions, there is no similarity with the Kosterlitz–Thouless transition,
but there is a long-standing controversy. When increasing the power in the con-
tact probability ∼ 1/rσ, there comes a point where the critical behavior changes
from a regime with σ-dependent critical exponents to ordinary (short-range) per-
colation. The controversy deals with the question when this happens. Different
field theoretical arguments suggest that it either happens when also the scaling
of the supercritical process changes, or already for smaller σ. Extensive simula-
tions (both for percolation and for the Ising model, see [117,118]) seemed to have
settled this in favor of the latter option, but very recent simulations suggest that
neither is right and things might be more complicated [119–121].
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3. Bridges can be established in a not entirely random way. In particular, when
establishing a new bridge, one may take two random (and not yet established)
“candidates,” and establish that candidate that leads to less long range connec-
tivity (i.e., to a smaller cluster). This was proposed by Achlioptas et al. [48], who
termed it “explosive percolation” and claimed it to have a discontinuous transi-
tion, where the transition is delayed so long that it finally takes place in a sudden,
“explosive” way. This paper has led to several similar models, some of which ac-
tually do have first-order transitions (see e.g. [122,123]) – although the original
Achlioptas model does not [124–126]. Notice that the choice between the two
candidates introduces a severe non-locality which goes far beyond anything that
can be described by a local field theory. It is presumably for this reason that the
Achlioptas model seems to show (there is not yet any analytic proof) finite size
scaling that is qualitatively different from that expected from the renormalization
group [126]. This family of models is discussed in detail in Sect. 5.

4. Bridges can be established in a partly synchronized way. In ordinary bond
percolation, links in a graph are randomly selected one after the other. In “ag-
glomerative percolation” [127–129] this is replaced by the rule that a cluster is
selected randomly, and then all links connected to it are established immediately.
On non-bipartite lattices in two and three dimensions this is in the universality
class of ordinary percolation, but not in one-dimensional lattices [128], on a class
of trees [127], and on Erdős–Rényi graphs [130]. Notice that this model also in-
troduces some non-locality (albeit much weaker than in the Achlioptas model), if
very large clusters are chosen during late stages of the process. A special feature
happens on bipartite lattices like the square and simple cubic lattice [129,131].
There, at the critical point also a Z2 symmetry is spontaneously broken, which
leads at least in two dimensions to a new universality class.

5. In the standard scenario, bridges are newly established in a pre-existing “virtual”
network e.g., in bond percolation all nodes and all possible links are already de-
fined, while in site percolation the new sites are chosen from a pre-existing set and
all links are already established. In contrast to this, Callaway et al. [132] consid-
ered the case where links are established in a growing network. More precisely,
each time a node is added to the existing network, also a link is added with prob-
ability δ < 1. In contrast to the Barabási–Albert model [133], where the new links
are added so that nodes with higher degree get attached preferentially, new links
are added completely at random. Again this leads to a Kosterlitz–Thouless type
transition when δ passes through a critical value, but now the transition is (as the
original KT transition) of infinite order instead of being discontinuous.

6. The establishment of bridges can be a cooperative effect. This seems to be
the most interesting case. Models of this type have been studied as bootstrap
percolation (or as the closely related k-core percolation) since the 1970’s [134,135],
while co-epidemics (see below) are a major health hazard.
– In bootstrap percolation with index m one considers a connected cluster
on some graph, and removes recursively all nodes which have less than m
neighbors in the cluster. For m = 1 nothing is done, as a connected graph has
always at least one neighbor. For m = 2 all leaves are removed in a first step.
This might turn some nodes, which originally had ≥ 2 neighbors, into leaves.
They are removed in a second step. If this again turns nodes into leaves, they
are removed again, etc. In this way one ends up either with an empty cluster,
or with a cluster where all nodes have ≥ 2 neighbors. In k-core percolation one
starts with the cluster which contains all nodes and keeps at the end only the
largest connected component, i.e. one ends up finally with the largest connected
subgraph in which all nodes have degree at least k. Bootstrap percolation can
show either continuous or discontinuous transitions, depending on the type of



Dynamic Systems: From Statistical Mechanics to Engineering Applications 2313

networks (lattice or random), and on the dimensionality when the network is
a regular lattice. For details see [135].

– Instead of deleting “poor” nodes, let us now consider the opposite process of
complex contagion [136,137]. Here nodes are attached to a growing cluster
and nodes with more neighbors in the cluster are more likely to be attached.
A possible application is political opinion spreading. We assume that no per-
son is so eloquent that (s)he alone is able to convince his or her neighbor.
But if there is already a small group of early adapters, then the combined
argumentation of several of them is able to convince others with probabil-
ity q. When people get convinced if and only if they have ≥ m convinced
neighbors, this leads exactly to bootstrap percolation. More interesting, how-
ever, is the case where the chance qm to be finally convinced (or infected, or
attached to the cluster, depending on the application) depends non-trivially
on m, the number of neighbors in the attacking cluster. Take e.g. site per-
colation on a square lattice, where any site is incorporated with probability
p into a growing cluster, if it has at least one infected neighbor. In this case
qm = p for all m ≥ 1. In bond percolation, on the other hand, each site has
the same chance p to convince (or infect) any not yet convinced (or healthy)
neighbor. A site with m infected neighbors succumbs then with probability
qm = p+ (1− p)p+ . . . (1 − p)m−1p = 1− (1− p)m. In general we expect qm
(the probability that m neighbors together will lead to infection) to grow with
m. If this growth is moderate (as e.g. in bond percolation) we expect the tran-
sition to be continuous and in the universality class of ordinary percolation.
This is no longer true if qm grows too fast. In that case one finds first-order
transitions, where the epidemic (political opinion, fashion, computer virus, ...)
either does not take off at all or takes off explosively. In between the first
and second order regimes there is a tricritical point whose properties on finite-
dimensional lattices where studied by Jansen et al. by field theoretic methods
[138].

– For random sparse (e.g. Erdős-Rényi) networks the tricritical point is particu-
larly easy to find [136,139]: If q1 > 0, the transition from second to first order
happens exactly when q2 = 2q1, independent of its degree distribution.

– One important physical application of this model is to critically pinned driven
interfaces in isotropic random media [140]. It is well known that such interfaces
are often self-affine (i.e., show nontrivial scaling), while the bulk behind them
is not fractal (as it would be for critical percolation). Thus in this problem
the phase transition is actually hybrid, i.e. it combines a jump in the order
parameter (the density of the infected phase) with non-trivial scaling related
to the interface. The fact that any first order transition in k-core percolation
is actually hybrid was stressed in particular in [141].

– Notice that interfaces in the present model have in general overhangs (as in
real isotropic media, but in contrast to the standard model [140,142] used to
describe them). This has important consequences. First of all, such interfaces in
1+1 dimension are always in the ordinary percolation universality class [139],
as conjectured already in [143] (see, however, [144,145]). This is related to
the proof of [146] that there cannot be first-order transitions in 2-dimensional
random media. Secondly, it means that there will always be some holes left in
a growing cluster, and these holes in general will show non-trivial scaling at
the pinning point (as required by its hybrid nature). Finally, it might imply
that the point where the zero temperature random field Ising model changes
from being hysteresis-free to having hysteresis is not, as claimed in [147], a
critical point with upper critical dimension dc = 6, but a tricritical point with
dc = 5. The field theoretical predictions of [138] for this tricritical point were
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not well confirmed by the simulations of [139] for d = 3, but they were very
well confirmed for d = 4, where they are supposed to be much more precise.

– Instead of cooperativity between attacking neighbors, we can also have co-
operativity between different modes of attack. This refers in particular to
cooperative co-epidemics or syndemics [148]. Take e.g. the examples of
the 1918 Spanish flu and TB [149,150], or of HIV and a host of other diseases
like diabetes, hepatitis, TB and others [151,152]. In these cases one disease
weakens the victim so much that the victim falls prey to the other one. A
simple SIR type model for this with permanently increased susceptibility for
the other disease was developed in [153]. Simulations of this model on ran-
dom graphs and on lattices [154] show a host of different behaviors, depending
on the topology of the graph but also on the detailed of the implementation
(and, in one case, even on the initial conditions). But whenever a first-order
transition is found, it is in general hybrid.

7. The last model we shall discuss here are interdependent networks. Consider
e.g. a country like Italy with towns connected by a network of electric power
lines and another network of computer connections. The latter are needed for
controlling the power stations, while the former are needed to provide power to
the computers. If some node fails, then this can lead to a huge cascade of failures
as happened indeed in Italy on September 28, 2003. As shown by Buldyrev et al.
in a seminal paper [155], this failure would have been a first-order transition,
if it had happened on a locally loopless network like e.g. a sparse Erdős–Rényi
network. But, as shown in [128], it still would be a continuous transition on a
2-dimensional regular lattice. Since Italy is 2-dimensional but not quite regular,
it is unclear what should apply in this case. But in any case, in a series of papers
(see e.g. [156–158]) several other types of interdependencies were studied. In all
cases with first-order transitions, these are indeed again hybrid.

Finally, let us point out a possible connection between interdependent networks and
cooperative co-epidemics. People have livers and lungs, and both can become sick.
Someone with a liver disease will be more likely to get also a lung infection and
vice versa. Let us now assume that liver and lung infections are both lethal. In this
extreme case we are dealing exactly with two interdependent networks as described
in [155]. Details of this correspondence have not yet been worked out.

5 Explosive percolation

Conventionally percolation transitions are known to be continuous. Recently, how-
ever, interest in discontinuous percolation transitions (DPT) has been triggered and
boosted by i) the explosive percolation model [48] and ii) the cascading failure model
in interdependent networks [155]. Actually the subject of DPT was initiated by the
k-core percolation model [134,135,159,160] a long time ago. However, the mechanism
of the DPT arising in the k-core model was unusual, so that further studies of the
DPT had not proceeded very much. The two models i) and ii) were designed for
DPTs; however, the governing processes to the percolation transition and their mech-
anisms are different: cluster coagulation and fragmentation processes for the model
i) and ii), respectively. Moreover, the order parameters are also different. Thus, we
need to discuss the two problems separately, and find common features in a unified
framework.
We first discuss the DPT driven by cluster merging processes. The EP model was

introduced motivated by a mathematical invention, the so-called Achlioptas process:
at each step, we take the one (among multiple options) which is the optimal one for
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the formation of a given target pattern. To generate a DPT in random graph, at each
step, two pairs of nodes that are not connected yet are selected at random, and one
pair of nodes among them is taken and connected by a new link, which is the one
that produces a smaller size of connected cluster than the size of the cluster produced
by the other option. Then, the growth of large clusters is suppressed and clusters
with medium sizes are abundant. As the number of added links is increased, such
medium-sized clusters merge and create a macroscopic-sized cluster, which emerges
drastically at a delayed percolation threshold.
Following this pioneering paper [48], many related models have been intro-

duced [122,161–168]. One of noticeable issues addressed in following works was that
the EP transition in random graph is not indeed discontinuous but continuous in
the thermodynamic limit. Actually, due to extremely slow convergence to asymptotic
behavior as the system size is increased, whether the EP is indeed continuous or dis-
continuous was hard to be determined numerically and became a controversial issue.
This claim was addressed firstly based on numerical results for a specific model [124];
however, since the claim was not firmly supported by analytic solution, the claim had
not been firmly accepted first time. Later, based on the numerically observed fact
that the average size of medium-sized cluster is not sufficiently large [163], a math-
ematical proof [125] was presented, which is the following: the number of clusters
that participate in the merging process to generate a macroscopic-sized cluster is not
sub-extensive to system size in order of magnitude, and thus, it cannot bring out a
DPT, but a continuous percolation transition.
The EP transition in Euclidean space has been also extensively studied [161,169].

However, whether the percolation transition is discontinuous or continuous had not
been clarified, either. In spite of such extensive studies, understanding of the EP tran-
sition in Euclidean space and on random graph in a unified scheme had been absent.
For the continuous percolation transition case, the Erdős and Rényi model on ran-
dom graph was regarded as the mean-field model of the ordinary percolation model.
To resolve this goal for the DPT case, a model called the spanning cluster-avoiding
(SCA) model was introduced [123]. In this model, the target pattern in the Achliop-
tas process is taken as a spanning cluster, which is actually standard in Euclidean
space. This model used previous results, the scaling behavior of the number of bridge
bonds above a percolation threshold. Here the bridge bonds are those that would form
a spanning cluster if occupied [92]. Using the scaling formula for the bridge bonds,
the percolation thresholds of the SCA model were calculated analytically for various
numbers of potential links in the Achlioptas process. This analytic result leads to
the following conclusion: the EP transition can be either continuous or discontinuous,
depending on the number of multiple options, if the spatial dimension is less than the
upper critical dimension, and is always continuous otherwise. Subsequently, it was
concluded that the transition of the ordinary EP model is continuous as a mean-field
solution of the SCA model.
Further intriguing and fundamental questions remain open. For example, the DPT

occurring in the SCA model is rather trivial in the sense that the order parameter
increases drastically all the way to unity at a trivial percolation threshold, which is
equal to the system size in the thermodynamic limit. This behavior is similar to the
one of the DPT governed by the Smoluchowski coagulation equation with the reaction
kernel kikj ∼ (ij)ω with 0 ≤ ω < 0.5 [170]. Therefore, it would be intriguing to study
a non-trivial DPT model in which the order parameter is increased all the way to a
finite value less than unity at a finite threshold, and gradually beyond that point
[116,171–177]. Investigation of the origin of such a non-trivial DPT would be
also interesting. Moreover, understanding of other discontinuous phase transitions
in non-equilibrium systems such as synchronization transitions [178] and jamming
transitions [179] in the perspective of the DPT under cluster merging processes would
be interesting.
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Next we discuss the DPT occurring in inter-dependent networks. In this DPT, the
order parameter is taken as the fraction of nodes in the mutually connected largest
component, which is not the same as the standard ones. The model associated with
this DPT was introduced to study cascading-failure dynamics in the inter-dependent
systems. Even though the original model was understood analytically, a simpler an-
alytic solution was derived from the viewpoint of epidemic spreading [158]. In this
perspective, the DPT can be understood as the emergence of a mutually connected
giant cluster in cluster merging processes. Thus, it would be interesting to compare
the mechanism of such a DPT with that of the EP model. This investigation would
provide a clue to enhance the robustness of inter-dependent networks.
Percolation transitions have served as a platform for understanding phase tran-

sitions in non-equilibrium systems. Likewise, the theoretical framework developed to
understand the origin of the DPTs occurring in the models i) and ii) is anticipated to
serve as a basis for further researches on drastic phase transitions in non-equilibrium
complex systems.

6 Retention capacity and watersheds of landscapes

Percolation has also been applied to study the properties of real and artificial land-
scapes. A landscape is typically represented as a digital elevation map (DEM), which
consists of a two-dimensional array of regular cells (sites) to which average heights
can be associated. By mapping the DEM to a ranked surface, it is possible to iden-
tify the sequence of flooded sites when water is dripped over the landscape, filling it
from the valleys to the mountains, and letting the water flow out through the open
boundaries [92]. In this spirit, one can ask what the maximum volume of water is that
can be retained by the landscape. This problem can indeed be mapped to standard
percolation [180,181]. For example, consider the simplest case of a two-level random
landscape of L× L sites, with a fraction p sites of unity level and 1− p of level zero.
The water retention of such a landscape is R

(L)
2 = L2(p − P∞), where P∞(p) is the

fraction of sites belonging to the percolation cluster [180]. Since this cluster touches
the borders, the water that falls on its sites flows out of the landscape. In the gen-
eral case of a landscape with equal number of n levels, it was argued [180] that its

retention R
(L)
n can be expressed as,

R(L)n =

n−1∑

i=1

R
(L)
2 (i/n). (1)

This expression was also shown to hold for correlated landscapes [182]. Some exact
expressions have been found for the retention capacity of finite (and very small) lattice
sizes [180,182] but, a general analytic expression is still missing.
In hydrology it is also important to identify the watershed lines dividing the

landscape into different drainage basins. When the landscape is flooded from the
valleys lakes are formed. As the level of water rises, those lakes start to merge and form
even larger lakes. If one merges the lakes under the constraint that no lake percolates,
i.e., no lake connects two predefined opposite boundaries of the landscape, one ends
up with only two lakes separated by the main watershed line [183]. For random
uncorrelated landscapes this line is a fractal of dimension 1.2168 ± 0.0005 [184] and
its statistical properties are consistent with SLEκ, with κ = 1.734 ± 0.005 [185]. For
correlated landscapes, the fractal dimension of the watershed line decreases with the
Hurst exponent [184,186]. The determination of the watershed line can be mapped to
a percolation problem where sites are sequentially occupied (according to their rank
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in the ranked surface) under the constraint that percolation is suppressed [92,187].
Such description reveals a tricritical point at a critical fraction of occupied (flooded)
sites and unveils how several seemingly unrelated physical models (e.g., optimal path,
optimal path cracks, and polymers in strongly disordered media) fall into the same
universality class [92]. The generalization of ranked percolation in three dimensions
provides the framework to determine the effective shares when different companies or
nations extract either oil, gas, or water, from the same porous formation [188].

7 Directed percolation

Let us add finally two comments on models related to directed percolation.
One deals with the (in-)famous “pair contact process with diffusion” (PCPD) in

one dimension of space. For a long time this was believed to have continuously varying
critical exponents, and yet two recent simulations, Ref. [189] and Ref. [190], still come
to opposite conclusions. While the former claim that it is in the directed percolation
universality class, the second rules this out.
The second deals with the “parity conserving branching-annihilating random

walk” (pcBARW) [191], which mainly differs from directed percolation and the con-
tact process by preserving the “parity” P (t) = (−1)N(t), where N(t) is the number of
particles at time t. When starting with two initial particles (i.e. in the “even” sector),
simulations (the most recent and careful ones being in [192]) suggest that the expo-
nent η defined by N(t) ∼ tη is exactly equal to zero. This cries out for a theoretical
explanation, but so far none seems in sight.

8 Final remarks

Percolation is a vast subject with more than 80 thousand papers published over the
last 60 years according to the ISI Web of Knowledge, and about one paper posted
per day on the arXiv related to percolation. Thus, instead of a comprehensive review
(which would be an epic journey and impossible in the space available), we decided
to rather give a flavor of this fascinating and active field and offer a glimpse at the
extensive list of still open questions, following our own interests. We foresee many
more years of interesting findings, constantly raising new questions.
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102. P.A. Morais, E.A. Oliveira, N.A.M. Araújo, H.J. Herrmann, J.S. Andrade Jr., Phys.
Rev. E 84, 016102 (2011)

103. A. Weinrib, B.I. Halperin, Phys. Rev. B 27, 413 (1983)
104. W. Janke, M. Weigel, Phys. Rev. B 69, 144208 (2004)
105. I. Mandre, J. Kalda, Eur. Phys. J. B 83, 107 (2011)
106. B. Duplantier, Phys. Rev. Lett. 84, 1363 (2000)
107. P. Grassberger, Math. Boisci. 63, 157 (1983)
108. D. Mollison, J. R. Statist. Soc. 39, 283 (1977)
109. J.D. Murray, Mathematical Biology, 3rd edn. (Springer, Berlin, 2005)
110. F.J. Dyson, Commun. Math. Phys. 91, 212 (1969)
111. P.W. Anderson, G. Yuval, D.R. Hamann, Phys. Rev. B 1, 4464 (1970)
112. D.J. Thouless, Phys. Rev. 187, 732 (1969)
113. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)
114. M. Aizenman, C.M. Newman, Commun. Math. Phys. 107, 611 (1986)
115. P. Grassberger, J. Stat. Mech., P04004 (2013)
116. S. Boettcher, V. Singh, R.M. Ziff, Nat. Commun. 3, 787 (2012)
117. F. Linder, J. Tran-Gia, S.R. Dahmen, H. Hinrichsen, J. Phys. A 41, 185005 (2008)
118. E. Luijten, H.W.J. Blöte, Phys. Rev. Lett. 89, 025703 (2002)
119. P. Grassberger, J. Stat. Phys. 153, 289 (2013)
120. M. Picco [arXiv:1207.1018]
121. T. Blanchard, M. Picco, M.A. Rajabpour, EPL 101, 56003 (2013)
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Conference in Honour of Paul Erdős (Academic Press, New York, 1984)
160. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. Lett. 96, 040601 (2006)
161. R.M. Ziff, Phys. Rev. Lett. 103, 045701 (2009)
162. Y.S. Cho, J.S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009)
163. E.J. Friedman, A.S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009)
164. R.M. D’Souza, M. Mitzenmacher, Phys. Rev. Lett. 104, 195702 (2010)
165. J. Nagler, A. Levina, M. Timme, Nat. Phys. 7, 265 (2011)
166. R.M. Ziff, Science 339, 1159 (2013)
167. R.F.S. Andrade, H.J. Herrmann, Phys. Rev. E 88, 042122 (2013)
168. Y.S. Cho, B. Kahng [arXiv:1404.4470]
169. R.M. Ziff, Phys. Rev. E 82, 051105 (2010)
170. Y.S. Cho, B. Kahng, D. Kim, Phys. Rev. E 81, 030103(R) (2010)
171. T. Bohman, A. Frieze, N.C. Wormald, Random Struct. Algorithms 25, 432 (2004)
172. W. Chen, R.M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011)
173. W. Chen, Z. Zheng, R.M. D’Souza, EPL 100, 66006 (2012)
174. K.J. Schrenk, A. Felder, S. Deflorin, N.A.M. Araújo, R.M. D’Souza, H.J. Herrmann,
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