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Abstract Endosomal and cytosolic nucleic acid receptors are
important immune sensors required for the detection of infect-
ing or replicating viruses. The intracellular location of these
receptors allows viral recognition and, at the same time,
avoids unnecessary immune activation to self-nucleic acids
that are continuously released by dying host cells. Recent
evidence, however, indicates that endogenous factors such as
anti-microbial peptides have the ability to break this protective
mechanism. Here, we discuss these factors and illustrate how
they drive inflammatory responses by promoting immune
recognition of self-nucleic acids in skin wounds and inflam-
matory skin diseases such as psoriasis and lupus.

Introduction

The skin is the largest organ of the human body. One of its
main functions is the protection of internal organs from exter-
nal insults. In addition to providing mechanical and chemical
protection, the skin contains numerous resident immune cells
that patrol the tissue under steady state conditions and recruit
additional cells from the blood in the context of injury or
infection. A first line of immune defense of the skin is pro-
vided by cells of the innate immune system. These innate
immune cells express germ-line-encoded pathogen recogni-
tion receptors (PRRs) specialized in the detection of patho-
gens. Activation of PRRs triggers dendritic cell activation and
maturation as well as cytokine production leading to inflam-
matory responses in the skin that clear infections and restore

homeostasis. PRRs recognize pathogen-associated molecular
patterns (PAMPs) which are of lipid, protein, or nucleic acid
origin. Whereas lipid and protein PAMPs are highly specific
for pathogens, the discrimination of pathogen-derived from
host-derived (self) nucleic acids is less clear. Indeed, there is
increasing evidence that, under certain circumstances, nucleic
acid receptors can be activated by host-derived self-DNA and
self-RNA. Such recognition appears to be involved in skin
inflammation in response to wounding but may also be central
in the initiation and maintenance of chronic inflammatory skin
diseases such as psoriasis and lupus.

Nucleic acid receptors

During evolution, the immune system has developed an
efficient machinery to detect infections. Nucleic acid re-
ceptors that sense viral genomes (viral DNA and RNA,
single- or double-stranded) represent a main component
of this system. Nucleic acid receptors are commonly di-
vided in two subgroups based on their endosomal or
cytosolic distribution. In the endosomes, nucleic acid re-
ceptors include Toll-like receptor (TLR) 3, TLR7, TLR8,
and TLR9. Viral nucleic acids can access endosomal
compartments through scavenger receptor-mediated endo-
cytosis and phagocytosis or Fc receptor-mediated uptake
of the infecting viruses. In addition, viral nucleic acids
can be re-directed from the cytosol to endosomes by the
process of autophagy, a mechanism that allows TLR rec-
ognition of replicating viruses. In the cytosol, nucleic acid
receptors include the retinoic acid-inducible gene I (RIG-
I)-like receptors, the cytosolic DNA sensors and receptors
involved in inflammasome formation. Cytosolic receptors
typically detect viral nucleic acids that accumulate in the
cytoplasm during viral replication.
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Endosomal Toll-like receptors

The expression pattern of endosomal TLRs is different among
immune cells allowing a specialization of each cell type at
recognizing various endocytosed microbes. In humans, TLR7
and TLR9 expression is restricted to plasmacytoid dendritic
cells (pDCs) and B cells, TLR8 expression is found in mono-
cytes and conventional dendritic cells (cDCs), and TLR3 is
expressed by cDCs [1].

TLR9

TLR9 senses unmethylated CpG-containing DNA motifs
which are abundant in microbial DNA [2]. TLR9 activation
leads to the formation of a multiprotein signaling complex
composed of the adaptor molecule myeloid differentiation
primary response protein 88 (MyD88) adaptor molecule. Ac-
tivation of the MyD88 complex leads to the activation of IκB
kinase (IKK) complex/nuclear factor-κB (NF-κB) and
mitogen-activated kinases (MAPKs)/activator protein 1
(AP1) pathways to induce proinflammatory responses.
TLR9 triggering also induces the nuclear translocation of
interferon regulatory factor 7 (IRF7) that leads to the produc-
tion of type I interferons (IFNs). To note, human pDCs, the
main type I IFN producers of the human body, harbor a unique
and original spatiotemporal regulation of the MyD88-IRF7
pathway that allows retention of TLR9 and TLR7 ligands in
endosomes and subsequent robust type I IFN induction [3] [4]
(Fig. 1). Synthetic oligodeoxynucleotides (ODN) have been
designed to specifically stimulate TLR9, including monomer-
ic CpG ODN type B (CpG-B) and multimeric CpG ODN type
A (CpG-A).

TLR7 and TLR8

TLR7 and TLR8 sense single-stranded RNA [5, 6]. Similarly
to TLR9, they signal through MyD88 to activate the NF-κB
and IRF7 pathways leading to the production of proinflam-
matory cytokines and type I IFN, respectively. Synthetic li-
gands for TLR7 and TLR8 have been designed, among which
imiquimod is a selective agonist of TLR7.

TLR3

TLR3 recognizes viral double-stranded RNA [7], an interme-
diate product of viral replication. TLR3 signals through the
TIR-domain-containing adaptor protein inducing IFN-β
(TRIF) that in turn activates the TANK-binding kinase 1
(TBK1)/interferon regulatory factor 3 (IRF3) pathway to pro-
duce type I IFN and also activates IKK complex/NF-κB to
induce the production of proinflammatory cytokines [8].
Polyinosine-polycytidylic acid (poly(I:C)), a synthetic analog

of double-stranded RNA (dsRNA), is used as a ligand for
TLR3.

Cytosolic DNA sensors

Several cytosolic DNA sensors have been recently identified.
These include IFI16, DAI, cyclic GMP-AMP synthase
(cGAS), and RNA polymerase III, which all signal through
stimulator of interferon gene (STING) and TBK1-IRF3.
Others, such as Ku70, DHX9/DHX36, and AIM2, induce
different signaling pathways. STING is a transmembrane
protein of the endoplasmic reticulum, which upon activation
triggers TBK1-dependent phosphorylation of IRF3 to initiate
type I IFN production [9] [10] [11]. STING-deficient mice
have been shown to present altered type I IFN production
upon bacterial, viral, and mammalian DNA challenge [9]. In
addition, STING can directly interact with bacterial cyclic
dinucleotides c-di-AMP and c-di-GMP, suggesting that it
can be considered a bona fide cytosolic DNA sensor [12].

IFI16

IFI16 belongs to the PYHIN protein family called HIN-200 in
human and IFI200 in mice. IFI16 binds both ssDNA and
double-stranded DNA (dsDNA) [13] and utilizes two distinct
signaling pathways. On one hand, IFI16 can recruit ASC to
form an inflammasome that triggers maturation and secretion
of IL-1β and IL-18 [14]. On the other hand, IFI16 can pro-
mote STING recruitment and subsequent activation of the
TBK1-IRF3 signaling pathway to produce type I IFNs [13].

DAI

The DNA-dependent activator of IFN-regulatory factors
(DAI) recognizes cytosolic dsDNA and induces type I IFN
in a TBK1-IRF3-dependent manner [15]. It also activates
NF-κB via the receptor-interacting proteins 1 and 3 (RIP1,
RIP3) [16]. Most probably, DAI transmits the signal through
STING although this has not been formally demonstrated
[18].

cGAS

Cyclic GMP-AMP synthase (cGAS) is a nucleotidyltransferase
that forms an oligomeric complex with cytosolic DNA [17–19].
Upon dsDNA ligation, cGAS can generate the secondmessenger
cGAMP fromGTP andATP [20], which physically interacts and
activates STING [21–23], leading to type I IFN production via
TBK1/IRF3 activation [24]. Cells deficient in cGAS do not
produce type I IFN after infection by HIV, murine leukemia
virus, or simian immunodeficiency virus [25]. In addition,
cGAS-deficient mice are more susceptible to herpes simplex
virus-1 (HSV-1) infection in comparison with WT mice [26].
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DDX41 is another sensor that recognizes cyclic nucleotides.
DDX41 contains a DEAD (Asp-Glu-Ala-ASP) box domain,
which has been identified as a receptor for the bacterial second
messengers cyclic-di-GMP or cyclic-di-AMP [27].

Ku70

Ku70 belongs to the heterodimeric Ku complexmade of Ku70
and Ku80. Ku complex is involved in nuclear processes such
as in non-homologous end-joining pathway of DNA repair
[28], V(D)J recombination, and telomerase maintenance but
can also function as a receptor for DNA sensing by inducing

the production of type III IFN via the activation and nuclear
translocation of IRF1 and IRF7 [29].

DHX9 and DHX36

DHX9 and DHX36 are helicases containing a DExD/H
domain-like RIG-I-like receptors (RLRs) that can sense
CpG-containing DNA sequences in pDCs. DHX9 binds to
CpG-B and induces the production of proinflammatory cyto-
kines through MyD88-dependent NF-κB activation. DHX36
recognizes CpG-A and is associated with type I IFN produc-
tion viaMyD88-dependent nuclear translocation of IRF7 [30].
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Fig. 1 Nucleic acids and their immune sensors. Multiple receptors allow
the cell to sense the presence of microbial nucleic acids and to induce the
production of proinflammatory cytokines. In endosomes, TLR9 senses
the presence of CpG-containing DNA whereas TLR7 and TLR8 recog-
nize ssRNA, leading to activation of the IKK complex via the MyD88
adaptor molecule and the subsequent activation of the NF-κB pathway,
inducing the transcription of proinflammatory cytokines like TNF-α or
IL6. TLR9 and TLR7 triggering also induces the translocation of IRF7
into the nucleus to initiate the expression of IFN-α. The endosomal TLR3
recognizes dsRNA and uses the adaptor molecule TRIF to induce the
TBK1-dependent activation of IRF3 and the subsequent transcription of
the type I IFN-β. In addition to endosomal recognition, cytosolic recep-
tors can sense the presence of nucleic acids in the cytoplasm. IFI16 and
AIM2 sense dsDNA and recruit the adaptor protein ASC to form an
inflammasome complex that activates the caspase 1 enzyme, leading to
the processing and release of IL1β and IL18. Similarly to the dsDNA
sensor DAI, IFI16 also activates the ER-associated adaptor molecule
STING that induces the nuclear translocation of IRF3 via TBK1 and
the transcription of IFN-β. LRRFIP1 potentiates IRF3 activity by acti-
vating β-catenin upon dsDNA sensing. Recently, dsDNA-activated
cGAS was shown to catalyze cGAMP synthesis from GTP and ATP to
induce STING-TBK1-IRF3-dependent IFN-β expression. Other cyclic
nucleotides (i.d. c-di-GMP and c-di-AMP) produced by bacteria were

described to activate the STING signaling pathway following recognition
by the DDX41 helicase. The RNA polymerase III converts dsDNA into
dsRNA to permit its recognition by MDA-5 and RIG-I. Both sensors
signal through the mitochondria-associated IPS-1 that leads to the acti-
vation of the NF-κB and TBK1-IRF3 pathways and the expression of
proinflammatory cytokines and IFN-β, respectively. The LGP2 RNA
helicase is thought to compete with MDA-5 and RIG-I and inhibit their
downstream signaling. Furthermore, new DNA helicases have been
added to the cytosolic nucleic acids sensing machinery. Ku70 recognizes
the presence of plasmid DNA and activates IRF1 to induce IFNλ1
expression, and DHX9 and DHX36 are able to sense CpG DNA in the
cytosol to induce the transcription of IFN-α via the MyD88-IRF7 path-
way. TLR Toll-like receptor, MyD88 myeloid differentiation primary
response gene 88, IRF IFN-regulatory factor, TRIF TIR-domain-contain-
ing adaptor-inducing interferon-β, TBK1 TANK-binding kinase 1, IFI16
IFN-γ-inducible protein 16, AIM2 absent in melanoma 2, DAI DNA-
dependent activator of IRF, LRRFIP1 leucine-rich repeat (in FLII)
interacting protein 1, cGAS cyclic GMP-AMP synthase, cGAMP cyclic
guanosine monophosphate-adenosine monophosphate, DDX DEAD-box
protein, DHX DEAH-box protein, MDA-5 melanoma differentiation-as-
sociated protein 5, RIG-I retinoic acid-inducible gene 1, LGP2 laboratory
of genetics and physiology 2
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DHX9 has also been shown to participate in type I IFN
production after dsRNA activation in myeloid DC in an IPS-
1-dependent manner [31].

AIM2

AIM2 preferentially binds dsDNA due to conserved motifs
facilitating DNA binding [32] [33, 34]. Similarly to IFI16,
after binding cytosolic dsDNA, AIM2 forms an
inflammasome by recruiting ASC and caspase 1 to induce
IL-1β and IL-18 maturation and secretion [33, 34].

Cytosolic RNA sensors

RIG-like receptors RLRs are cytosolic pattern recognition
receptors broadly expressed by immune and non-immune
cells and specialized in sensing RNA viruses. They belong
to the DExD/H-box helicase superfamily comprising RIG-
I, melanoma differentiation-associated protein 5 (MDA-
5), and laboratory of genetics and physiology 2 (LGP2).
RIG-I recognizes viral dsRNA [35] with a preference for
the 5′-triphosphate part of the viral RNA [36]. In-vivo
RIG-I is essential for the detection of several viruses such
as Sendai virus and vesicular stomatitis virus. MDA-5
preferentially senses long dsRNA molecules [37] and is
needed to detect picornavirus [38] and measles virus.
However, RIG-I and MDA-5 may also allow detection
of small host-derived self-RNA generated by the cytosolic
ribonuclease RNAse L [39]. The exact contribution of
LGP2 to cytosolic RNA sensing remains unclear, but
crystal structure and NMR studies predict that LGP2 is
likely to interact with a variety of RNA species [40–42].
Upon activation, RLRs signal through their caspase acti-
vation and recruitment domain (CARD) by binding to the
IFN-β-promoter stimulator 1 (IPS1, aka MAVS) [8], an
adaptor molecule that in turn activates IRFs and NF-κB
transcription factors leading to the production of type I
IFNs and proinflammatory cytokines. LGP2 lacks CARDs
and thus is also considered as a negative regulator of RIG-
I and MDA-5.

RNA polymerase III

The DNA-dependent RNA polymerase III has been described
as a B-form dsDNA sensor. It can transcribe AT-rich DNA
sequence in a promoter-independent manner into 5′pppRNA
that in turn can activate RIG-I-dependent pathway and induce
type I IFN production [43, 44]. RNA polymerase III is re-
quired for IFN-β induction by intracellular bacteria and DNA
viruses such as Legionella pneumophila, adenovirus, HSV-1,
or Epstein-Barr virus (EBV) [44].

LRRFIP1

Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1)
directly binds to exogenous dsRNA and B- or Z-form dsDNA
to enhance IFN-β gene expression. LRRFIP1 uses a unique
signaling pathway since it binds β-catenin to promote its
activation. Subsequently, β-catenin activates IRF3 that facil-
itates the recruitment of p300 acetyltransferase to the IFN-β1
promoter. p300 acetyltransferase increases hyperacetylation
of histones H3 and H4 and thus enhances IFN-β expression
[45]. LLRFIP1 has been shown to participate in the nucleic
acid sensing of vesicular stomatitis virus and Listeria
monocytogenes by macrophages [45].

Discrimination between microbial and self-nucleic acids

Despite the efficient recognition of microbial nucleic acids by
intracellular nucleic acid receptors, self-nucleic acids (self-
DNA and self-RNA) released into the extracellular environ-
ment by dying host cells typically remain immunologically
inert. Three distinct mechanisms are in place to ensure re-
sponses to microbial nucleic acids and, at the same time, avoid
unnecessary sensing of self-nucleic acids:

1. Chemical differences between pathogen and self-nucleic
acids. TLR9 recognizes preferentially unmethylated CpG
motifs, which are abundant in pathogen-derived DNA.
However, it has become clear that self-DNA also contains
a certain degree of unmethylated CpG islets that could
activate TLR9. Furthermore, the phosphodiesteric back-
bone present in both pathogen-derived and host-derived
self-DNAwas shown to be a direct ligand for TLR9 [46].
RIG-I recognizes 5′-triphosphates present in viral RNA,
which are usually masked or absent in self-RNA [36].
However, cytosolic DNA sensors recognize B-form
DNA, which is common to both pathogen-derived and
self-DNA independently of its sequence or methylation
status. It becomes clear, therefore, that other mechanisms
must be in place to avoid a continuous and unnecessary
sensing of extracellular self-nucleic acids.

2. Rapid extracellular degradation of free nucleic acids by
nucleases. Nucleic acids released into the extracellular
environment by dying cells are rapidly eliminated via
degradation by tissue nucleases. As a result, extracellular
self-nucleic acids fail to gain access to immune cells that
express nucleic acid sensors. Accordingly, deficiency of
the DNA exonuclease Trex1 allows internalization and
cytosolic accumulation of DNA, leading to uncontrolled
STING activation [47–49]. Furthermore, mice lacking
DNAse II develop an inflammatory syndrome due to
uncontrolled STING activation [50, 51].
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3. Intracellular sequestration of nucleic acid receptors. The
intracellular (endosomal or cytosolic) location of nucleic
acid receptors allows sensing of microbial nucleic acids
transported into intracellular compartments during the
infectious process. By contrast, self-nucleic acids released
in the extracellular environment by dying cells fail to
spontaneously enter cells. An elegant study has demon-
strated that enforced cell surface expression of TLR9
triggers uncontrolled sensing of self-nucleic acids with
development of autoimmunity [52].

Breaking innate tolerance to self-nucleic acids

In the past few years, it has become clear that under certain
circumstances, these protective mechanisms can be
circumvented resulting in the conversion of otherwise non-
stimulatory self-nucleic acids into potent activators of innate
immunity. These circumstances are associated with the devel-
opment of autoimmunity in psoriasis and lupus erythematosus
and are linked to the expression of several endogenous factors
including anti-microbial peptides, high-mobility group box 1
(HMGB1)/RAGE, autoantibodies, and amyloid precursors.

Cationic anti-microbial peptides

Cationic anti-microbial peptides (AMPs) belong to the first
line of defense of the skin against bacterial, viral, and fungal
invasion [53]. There are many different AMPs including the
cathelicidins and the defensins, but they are all amphiphatic,
containing a patch of positive charge clustered on one side of
the molecule. This unique feature of AMPs confers them with
antibiotic activity through binding of negatively charged
phospholipids leading to the disruption of the microbial mem-
brane. This feature also allows AMPs to form complexes with
extracellular human nucleic acid fragments (DNA and RNA)
and to form aggregated particles that are protected from ex-
tracellular degradation. In addition, exposed cationic residues
in these particles allow the attachment of the nucleic acid
complexes to heparin sulfate proteoglycans on the cell mem-
brane leading to endocytosis of the complexes. Finally, the
nucleic acid complexes gain access to endosomal compart-
ments where they trigger activation of TLR7 and TLR9 in
pDCs and TLR8 in myeloid dendritic cells (mDCs) [54, 55].
In addition, AMP-nucleic acid complexes can also be
transported into the cytosol to activate STING/TBK1-
dependent cytosolic DNA sensors in monocytes [56]. Recent
evidence suggests that the unique structural features of nucleic
acid-AMP complexes permit interdigitation of endosomal
TLRs, contributing to the strong efficiency of innate activation
to self-nucleic acids.

HMGB1 and RAGE

HMGB1 is an important DNA binding protein that is present
in the nucleus of cells where it regulates DNA accessibility to
transcription factors [57]. HMGB1 is released into the extra-
cellular environment during cell necrosis [58], where it may
bind to free DNA through two DNA binding HMG box
domains. HMGB1-DNA complexes were shown to induce
type I IFN production by pDCs and to activate autoreactive B
cells via TLR9 [59]. The receptor for advanced glycation end
products (RAGE) is a receptor for HMGB1, although its role
as a scavenger for DNA-HMGB1 complexes has not been
demonstrated [60]. Interestingly, there is evidence that RAGE
can directly bind nucleic acids, raising the possibility that it
functions as a transporter itself [61].

Amyloid fibrils

Amyloid fibrils are stable insoluble aggregates of misfolded
protein products with extensive β-sheet structures [62], in-
volved in the pathogenesis of human diseases like
Alzheimer’s disease. Interestingly, these amyloid precursors
are able to interact with nucleic acids [63] and to form com-
plexes that protect DNA or RNA from degradation. Similarly
to anti-microbial-nucleic acid complexes, complexes of amy-
loid precursors with DNA can be taken up by immune cells
such as pDCs to trigger endosomal TLR9, leading to the
production of type I IFN [64]. Although the link between
the production of amyloid precursors and nucleic acid-
mediated innate immune responses needs to be fully elucidat-
ed, an interesting study has demonstrated that beta amyloid in
Alzheimer’s disease can trigger inflammasome activation
[65], potentially via AIM2.

Autoantibodies to DNA or RNA complexes

In certain human autoimmune diseases, autoantibodies direct-
ed against nucleic acids and associated proteins like histones
or ribonucleoproteins (RNPs) are being produced. These au-
toantibodies bind nucleic acids released by dying cells or
released in the context of NETosis. On B cells, DNA or
RNA containing immune complexes can bind to their specific
BCR and be internalized to reach endosomal compartments
where they can activate TLR7 or TLR9 signaling to induce
autoreactive B cell proliferation [66, 67]. On antigen-
presenting cells, DNA or RNA containing immune complexes
can also bind to low affinity FcγRs that recognize the Fc
fragment of antibodies and be engulfed within cells by endo-
cytosis or phagocytosis to activate TLR7, TLR8, or TLR9.
Such mechanisms have been demonstrated in mDCs [68] and
pDCs [69–72]. In addition, the presence of AMPs such as
LL37 in autoantibody complexes enhances immunogenicity
of self-DNA [71, 72]. It is likely that aggregation and
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protection of self-nucleic acids induced by AMPs (described
earlier) promote nucleic acid stability and cell internalization
via the process of receptor-mediated endocytosis.

Role of nucleic acid sensing in skin inflammation
and autoimmunity

Skin wounds

Following skin injury, an inflammatory response is mounted
to prevent infection and to initiate the re-epithelialization
process. Wounded human skin was found to contain large
numbers of activated pDCs, which specifically express
TLR7 and TLR9 [1, 73–75]. A mouse model of skin injury
indeed demonstrated that pDCs infiltrate injured skin and are
activated to produce type I IFNs via TLR7 and TLR9. pDC-
derived type I IFNs were found to be crucial in driving the
inflammatory response and the re-epithelialization process in
wounded skin [73], although the link between type I IFNs and
wound healing remains to be fully elucidated. Thus, sterile
skin injury triggers TLR7 and TLR9 activation of pDCs,
suggesting that this process is mediated via sensing of self-
nucleic acids. But how are pDCs activated in the context of
skin injury? One possibility is that AMPs produced by injured
keratinocytes break innate tolerance to self-nucleic acids re-
leased into the wounds by dying cells. In accordance with this,
AMPs are rapidly and transiently expressed in wounded skin,
and their expression appears to parallel the IFN-expression by
pDCs [73]. Another possibility is that neutrophils, which
infiltrate injured skin along with pDCs, activate pDCs via
the release of neutrophil extracellular traps (NETs) containing
AMP-nucleic acid complexes (Fig. 2). This is in accordance
with the finding that neutrophils in injured skin are activated
to produce NETs and that NETs contain AMP-DNA com-
plexes that activate pDCs.

Psoriasis

Psoriasis is a chronic inflammatory skin disease that affects 2–
3 % of the population worldwide and presents, in its most
prevalent form, with scaly erythematous plaques. Psoriatic
skin lesions are triggered by the aberrant activation of dermal
dendritic cells that stimulate autoreactive Th17 cells. Activat-
ed Th17 cells migrate from the dermis into the epidermis and
produce large amounts of Th17 cytokines, which induce
keratinocyte activation with production of AMPs as well as
the typical epidermal hyperproliferation that is characteristic
of psoriatic plaques. Psoriatic lesions are also characterized by
the presence of large numbers of activated pDCs [76]. In
contrast to the transient infiltration and activation of pDCs in
skin wounds, psoriatic pDCs were found to be chronically

activated and to produce large amounts of type I IFNs that
trigger unabated activation of dermal dendritic cells and
autoreactive Th17 cells, leading to the development of the
psoriatic plaque [76]. But what is the stimulus for pDC acti-
vation in psoriatic skin? Cationic AMPs such as LL37 and β-
defensin, which are overexpressed in psoriatic skin, were
found to constantly activate pDCs as well as conventional
DCs by breaking innate tolerance to host nucleic acids. As
described above, this process involves the complex formation
between AMPs and free self-DNA and self-RNA, leading to
activation of TLR7 and TLR9 in pDCs and TLR8 in conven-
tional DCs [54, 55] (Fig. 2). So, whereas the transient AMP
expression and pDC activation in skin wounds lead to an
adequate inflammatory response that promotes re-
epithelialization of wounds, the constant AMP overexpression
triggers sustained pDC activation and chronic inflammation
that sustain keratinocyte hyperproliferation and development
of the psoriatic plaque. But what are the mechanisms that
stimulate chronic AMP overexpression in psoriatic skin?
Th17 cytokines IL-17 and IL-22 are overexpressed in psoriatic
skin due to an enhanced Th17 differentiation in psoriasis and
can directly stimulate keratinocytes to produce AMPs [77, 78].
A genetic basis for the enhanced Th17 differentiation was
revealed in the finding of IL-23 and IL-23R gene polymor-
phisms [79]. Furthermore, copy number polymorphisms in the
β-defensin gene are directly associated with psoriasis, suggest-
ing an additional link to AMP overexpression in psoriasis [80].

The role of endosomal TLRs in the triggering of psoriasis
was further demonstrated by the observation that topical ap-
plication of the TLR7 agonist imiquimod (Aldara 5 %) to the
skin exacerbates human psoriasis [81] and the finding that
repetitive application of Aldara to mouse skin induces a
psoriasiform epidermal hyperproliferation [82, 83]. This pro-
cess is driven by cDCs since depletion of CD11c-positive cells
abrogates psoriasis development [83] and specific expression
ofMyD88 in dendritic cells of MyD88-deficient mice restores
imiquimod-induced psoriasis [84]. Furthermore, specific de-
pletion of ABIN1, a negative regulator of MyD88 and TLR
signaling in the dendritic cell compartment, exacerbates pso-
riasis induced by imiquimod [85]. Similarly to the human
disease, imiquimod model in mice shows strong involvement
of the IL-23/IL-17 axis [84, 86]. Also, mice deficient in IL-
17a, IL-17F, IL-17c, and IL-22 are somehow protected against
imiquimod-induced psoriasis [82, 87, 88], pointing out the
role of these cytokines in this model. Whereas the source of
Th17 cytokines in mice is gamma delta T cells [83, 86] and
innate lymphoid cells [87], in humans, αβ-T lymphocytes
seem to be the main cell type producing Th17 cytokines.

Lupus erythematosus

Lupus erythematosus (LE) is a complex autoimmune disease
that primarily affects the skin but can become a multiorgan
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disease affecting the joints, heart, lungs, kidneys, and central
nervous and hematologic systems [89]. Systemic LE is char-
acterized by the presence of circulating immune complexes
(ICs) formed by self-nucleic acids complexed with autoanti-
bodies. These ICs are typically deposited in various tissues
leading to detrimental inflammation that initiates and sustains
autoimmunity. In the skin, ICs are deposited along the basal
membrane of the epidermis and trigger a cytotoxic response
leading to vacuolization of the basal keratinocyte layer. A key
question in the pathogenesis of LE is the origin of ICs. In the
skin, self-DNA may be released by dying cells during skin
infection or ultraviolet light irradiation. LE patients were
indeed found to have an intrinsic defect in clearing dying
cells, leading to the accumulation of remnants containing
self-nucleic acids [90]. Another source of self-DNA is neu-
trophil extracellular traps (NETs) released by neutrophils [71,
91]. NETs are filaments of nuclear DNA covered with gran-
ular proteins released by neutrophils during a cell death

process called NETosis [92]. This process is dependent of
the production of reactive oxygen species (ROS) and is due
to the nuclear translocation of elastase, which decondenses
nuclear DNA [93, 94]. The expanding nuclear DNA breaks
into the cytosol, mixes with the granular content of neutrophil,
and is ultimately extruded as NETs into the extracellular space
[94]. Interestingly, LE patients display increased numbers of
NETs due to both enhanced formation [71, 72] as well as
decreased nuclease-mediated degradation [95] (Fig. 2). These
NETs were found to activate TLR9 in pDCs and trigger the
production of type I IFNs [71].

Type I IFN production by pDCs is directly linked to disease
exacerbation and maintenance of lupus. Indeed, a dominant
type I IFN signature was identified in PBMC of SLE patients
and was shown to correlate with disease activity and severity
[96]. Whether activation of pDCs and their production of type
I IFN can lead to the onset of the disease has been long
debated. Recent work demonstrates that depletion of pDCs
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Fig. 2 TLR activation of pDCs in healthy and diseased skin. Upon skin
injury, neutrophils first infiltrate the wound followed by pDCs. Anti-
microbial peptides (AMPs) that are transiently produced by injured
keratinocytes bind self-DNA and self-RNA released by dying cells and
activate pDCs via TLR7 and TLR9. Neutrophil extracellular traps (NETs)
extruded by neutrophils to prevent the spread of potential infection also
trigger TLR9 in pDCs. Activated pDCs produce type I IFNs that initiate a
transient inflammation leading to the recruitment of additional immune
cells that will participate in the re-epithelialization of the wound. Some
genetic variations are associated with increased susceptibility to develop
autoimmune diseases in response to environmental triggers. Psoriasis
patients have a genetic predisposition that enhances the response to IFN
signaling, reduces the threshold of T cell activation, and favors the
differentiation of Th17 cells. Infiltrating Th17 cells produce cytokines,
namely, IL-17 and IL-22, which increase the proliferation of

keratinocytes and their production of AMPs leading to enhanced stimu-
lation of pDCs that sustain inflammation. Moreover, dermal DCs process
AMPs as autoantigens to generate AMP-specific autoreactive T cells that
perpetuate autoimmunity. Lupus patients have genetic variants that am-
plify IFN signaling and responsiveness of pDCs and B cells, leading to
greater amounts of type I IFN that drive the generation of autoantibodies.
Autoantibodies targeting NET-associated proteins and nucleic acids form
immune complexes (ICs) that further deposit in the basal membrane of
the dermo-epidermal junction of the skin and lead to keratinocyte necrosis
and decreased epidermal thickness. Lupus patients also have a defect in
the clearance of ICs which stimulates neutrophils to undergo NETosis.
Increased NET formation and AMP production by neutrophils coupled to
a defective NET degradation enhance pDC activation via TLR9 and favor
the production of autoantibodies by B cells, sustaining the inflammatory
response that participates in systemic autoimmunity
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or treatment of mice with a bifunctional TLR7/TLR9 inhibitor
prevents the development of skin lesions in lupus-prone mice
[97]. Altogether, these data suggest that pDC activation seems
to be an important step in the pathogenesis of lupus in these
mice.

Several genetic studies that analyzed polymorphisms in
TLR7, TLR8, and TLR9 genes in Caucasian and Asian pop-
ulations revealed that some SNPs could be considered as SLE
susceptibility factors [98, 99]. It was shown that total PBMCs
from SLE patients have higher expression of the TLR7 and
TLR9 mRNAs compared to healthy donors that was positive-
ly correlated with IFN-α expression [100]. Increased expres-
sion of TLR7 in mice harboring duplication of the TLR7 gene
is sufficient to drive the development of lupus, and deletion of
this gene can improve the clinical disease [101]. By contrast,
mouse models of deficiency for TLR9 and TLR8 demonstrat-
ed an exacerbation of the disease because of increased TLR7
response [102, 103]. This was explained by a recent study
showing that TLR8 controls TLR7 function on dendritic cells
and TLR9 restrains TLR7 response on B cells [104]. Thus,
alteration in the expression of TLR7, TLR8, or TLR9 can
favor the loss of tolerance against self-nucleic acids. Impor-
tantly, injection of immunoregulatory sequences (IRSs) that
inhibit both TLR7 and TLR9 signaling in lupus-prone mice
can prevent the production of autoantibodies [105]. This dual
inhibitor, called DV1179, is currently tested in a human clin-
ical trial.

Autoreactive B cells produce antibodies targeting nucleic
acids or associated proteins, including AMPs present in NETs
that can be taken up by pDCs via FcγRII leading to TLR7 and
TLR9 activation [106, 107]. Anti-NETs antibodies such as
anti-LL37 enhance NET formation by neutrophils through yet
unclear mechanism [71]. This process provides an explanation
for the sustained NETosis in SLE patients. Furthermore, anti-
NETs antibodies such as anti-DNA and anti-LL37 antibodies
enhance IC uptake by pDCs, resulting in enhanced type I IFN
production. Type I IFN production facilitates autoantibody
production by autoreactive B cells that recognize ICs via
TLR9 [67, 108]. Thus, autoantibodies targetingNETs enhance
NETosis leading to the generation of autoreactive B cells,
creating a self-sustaining loop that fuels the autoimmune
response (Fig. 2).

Beyond TLRs, activation of other nucleic acid-sensing
receptors may participate in the development of lupus. Strik-
ingly, loss of STING function could inhibit self-DNA-induced
inflammation in DNase II-deficient mice [51], suggesting that
cytosolic DNA sensor pathways may be involved. Interest-
ingly, an increased expression of HIN-200, the human gene
encoding IFI16, was found in leukocytes of SLE patients and
was correlated with anti-nuclear antibody titers [109]. More-
over, a strong sex bias was observed in the expression of IFI16
that correlates with a prevalence of women developing SLE
[110]. However, the exact mechanism by which IFI16 is

activated in LE is unknown. Furthermore, SLE PBMCs as
well as lupus-prone mice have enhanced expression of DAI
[111].

Genetic studies revealed that variants in MDA-5 are asso-
ciated with autoantibody production in SLE patients [112] and
increased type I IFNs [113]. Furthermore, a variant of IPS-1,
an essential protein regulating MDA-5/RIG-I signaling, was
associated with a subset of SLE patients [114]. Importantly,
mutant mice harboring a constitutive activated MDA-5 spon-
taneously develop lupus-like autoimmune symptoms that can
be ameliorated by intercrossing those mice with IFNAR-
deficient mice [115]. This supports the idea that cytosolic
DNA and RNA recognition are also involved in lupus
pathogenesis.

Furthermore, naïve mice injected with DNA-containing
amyloids develop symptoms resembling lupus in a pDC-
dependent manner [64], indicating that amyloid precursors
may also enhance self-DNA sensing in the course of lupus
disease. Whether SLE patients have circulating amyloid pre-
cursors remains to be investigated. Intriguingly, neutrophil
NETs appear to contain amyloidogenic proteins.

Other diseases with skin involvement related to cytosolic
DNA sensors

Aicardi-Goutières syndrome (AGS) is a genetically deter-
mined inflammatory disease that develops in early childhood
and manifests with inflammatory encephalopathy and SLE-
like skin lesions on the fingers, toes, and ears. Like SLE, AGS
is associated with a strong type I IFN signature in PBMCs
[116]. Mutations in nuclease genes including the exonuclease
TREX1 (AGS1), the ribonucleases RNASEH2 (AGS2,
AGS3, AGS4), and SAMHD1 (AGS5) have been identified
[117, 118]. These mutations lead to deficiency in nucleases
and cellular accumulation of DNA or RNA leading to
overactivation of cytosolic sensors and induction of type I
IFN. As described earlier, mouse studies have shown that
TREX1 deficiency drives STING activation and type I IFN-
induced inflammation. Gain of function mutations in the
MDA-5 gene has also been associated with the AGS, as well
as other, yet undefined neurologic and immunological syn-
dromes [119].

Recently, patients with mutations in the exon 5 of the
TMEM173 gene, coding for the STING molecule, were
identified. These patients presented cutaneous vasculitic
lesions resembling AGS along with pulmonary inflam-
mation. The syndrome was called STING-associated vas-
culopathy with onset in infancy (SAVI) [120]. STING is
principally expressed by immune cells but is also widely
expressed by fibroblast and endothelial cells. The muta-
tion observed in SAVI leads to constitutive STING acti-
vation with spontaneous type I IFN production. As a
major pathogenic event, STING activation of endothelial
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cells drives endothelial cell death and vascular damage
through the excessive production of type I IFN [120].

Conclusion and perspectives

Nucleic acid receptors capable of detecting the presence of
DNA and RNA in endosomes and cytosol have been recently
identified. In addition to their role in anti-viral immunity, these
receptors can, under certain circumstances, detect self-DNA
and self-RNA released by dying host cells. Several endoge-
nous factors enable immune recognition of self-nucleic acids.
These factors include cationic AMPs, HMGB1 and its recep-
tor RAGE, autoantibodies, and amyloid precursors. Dysregu-
lated expression of these factors drives continuous sensing of
self-nucleic acids and chronic nucleic acid receptor activation
leading to autoimmunity and development of diseases like
psoriasis and LE. Several key questions still remain to be
answered: What controls the expression of these factors and
why is there a dysregulated expression in psoriasis and LE?
What is the role of structural cells of the skin in the recognition
of self-nucleic acids? Psoriatic keratinocytes were found to
express high levels of AIM2 and to produce high levels of IL-
1β in response to cytosolic DNA, raising the possibility for
their contribution to the pathogenesis of psoriasis [121]. Fur-
thermore, what is the factor that induces NETosis in both the
injured healthy and diseased skin? As microbes can activate
neutrophils to produce NETs, is there a role for the skin
microbiome? Finally, is there a differential role of distinct
AMPs or factors in targeting cell types or nucleic acid recep-
tors? The answer to these questions will provide us with
therapeutic targets to enhance wound healing or inhibit auto-
immune inflammation of the skin.
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