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Abstract This paper presents Tuple MapReduce, a new foundational model extending
MapReduce with the notion of tuples. Tuple MapReduce allows to bridge the gap between
the low-level constructs provided by MapReduce and higher-level needs required by pro-
grammers, such as compound records, sorting, or joins. This paper shows as well Pangool,
an open-source framework implementing Tuple MapReduce. Pangool eases the design and
implementation of applications based on MapReduce and increases their flexibility, still main-
taining Hadoop’s performance. Additionally, this paper shows: pseudo-codes for relational
joins, rollup, and the PageRank algorithm; a Pangool’s code example; benchmark results
comparing Pangool with existing approaches; reports from users of Pangool in industry; and
the description of a distributed database exploiting Pangool. These results show that Tuple
MapReduce can be used as a direct, better-suited replacement of the MapReduce model in
current implementations without the need of modifying key system fundamentals.

Keywords MapReduce · Hadoop · Big Data · Distributed systems · Scalability

1 Introduction

During the last years, the amount of information handled within different fields (i.e., web,
sensor networks, logs, or social networks) has increased dramatically. Well-established
approaches, such as programming languages, centralized frameworks, or relational databases,
do not cope well with current companies requirements arising from needs for higher-levels of
scalability, adaptability, and fault-tolerance. These requirements are currently demanded by
many companies and organizations that need to extract meaningful information from huge
volumes of data and multiple sources. Even though many new technologies have been recently
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proposed for processing huge amounts of data, there is still room for new technologies that
combine efficiency and easiness in solving real-world problems.

One of the major recent contributions, in the field of parallel and distributed computation,
is MapReduce [10]—a programming model introduced to support distributed computing
on large datasets on clusters of computers. MapReduce has been proposed in 2004 [9] and
is intended to be an easy to use model that even programmers without experience with
parallel and distributed systems can apply. Indeed, the MapReduce programming model hides
parallelization, fault-tolerance, or load balancing details. Additionally, it has been shown that
a large variety of problems can easily be expressed as a MapReduce computation.

MapReduce has been massively used by a wide variety of companies, institutions, and
universities. This booming has been possible, mainly thanks to an open-source implemen-
tation of MapReduce, Hadoop, in 2006 [3]. Since then, many higher-level tools built on
top of Hadoop have been proposed and implemented (e.g., Pig [14], Hive [20], Cascading,1

FlumeJava [5]). Additionally, many companies have engaged in training programmers to
extensively use them (e.g., Cloudera.2) The massive investment in programmers training and
in the development of these tools by the concerned companies would suggest some difficul-
ties in the use of MapReduce for real-world problems and actually involves a sharp learning
curve. Specifically, we have noticed that most common design patterns, such as compound
records, sort, or join, useful when developing MapReduce applications, are not well covered
by MapReduce fundamentals. Therefore, derived with direct experience with our customers,
we found it necessary to formulate a new theoretical model for batch-oriented distributed
computations. Such a model needs to be as flexible as MapReduce, to allow easier direct use,
and to let higher-level abstractions be built on top of it in a straightforward way.

In a previous work [13], we proposed Tuple MapReduce, which targets those applica-
tions that perform batch-oriented distributed computation. Moreover, an implementation of
Tuple MapReduce–Pangool—was provided and compared with existing implementations of
MapReduce, showing that Pangool maintains Hadoop’s performance. In this paper, we extend
our previous work with (1) pseudo-codes for relational joins and the PageRank algorithm;
(2) details about how Pangool was implemented on top of Hadoop; (3) examples of use of
Pangool in the industry; and (4) the role of Pangool in the implementation of the distributed
database Splout SQL.

As a result of this work, we suggest that Tuple MapReduce can be used as a direct, better-
suited replacement of the MapReduce model in current implementations without the need of
modifying key system fundamentals.

This paper is structured as follows: Next section provides a brief overview of MapReduce
and its existing implementations in the literature. Section 3 identifies current problems that
arise when using MapReduce. In order to overcome the problems mentioned previously,
a new theoretical model called Tuple MapReduce is proposed in Sect. 4. Additionally, this
section shows and analyses different design patterns for data analysis, such as joins, relational
joins, and rollup. Section 5 proposes and analyses a Tuple MapReduce implementation called
Pangool, built on top of Hadoop. Moreover, we compare Pangool with existing approaches
and show a Pangool’s code example. Section 6 reports on the use of Pangool in industry
as well as the development of a distributed database with Pangool. Finally, conclusions and
future work are explained in Sect. 7.

1 http://www.cascading.org.
2 http://www.cloudera.com/.
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2 Related work

In this paper, we concentrate on MapReduce, a programming model that was formalized by
Google in 2004 [9] and on Hadoop, its associated de-facto open-source implementation. We
briefly describe the main idea behind MapReduce and its Hadoop implementation, and then,
we review a series of abstraction and tools built on top of Hadoop and mention an alternative
model to MapReduce.

MapReduce can be used for processing information in a distributed, horizontally scalable
fault-tolerant way. Such tasks are often executed as a batch process that converts a set of input
data files into another set of output files whose format and features might have mutated in a
deterministic way. Batch computation allows for simpler applications to be built by imple-
menting idempotent processing data flows. It is commonly used nowadays in a wide range
of fields: data mining [15], machine learning [7], business intelligence [8], bioinformatics
[19], and others.

Applications using MapReduce often implement a Map function, which transforms the
input data into an intermediate dataset made up by key/value records, and a Reduce function
that performs an arbitrary aggregation operation over all registers that belong to the same key.
Data transformation happens commonly by writing the result of the reduced aggregation into
the output files. Despite the fact that MapReduce applications are successfully being used
today for many real-world scenarios, this simple foundational model is not intuitive enough
to easily develop real-world applications with it.

Hadoop is a programming model and software framework allowing to process data fol-
lowing MapReduce concepts. Many abstractions and tools have arisen on top of MapReduce.
An early abstraction is Google’s Sawzall [17]. This abstraction allows for easier MapReduce
development by omitting the Reduce part in certain, common tasks. A Sawzall script runs
within the map phase of a MapReduce and “emits” values to tables. Then, the reduce phase
(which the script writer does not have to be concerned about) aggregates the tables from
multiple runs into a single set of tables. Another example of such abstractions is FlumeJava,
also proposed by Google [6]. FlumeJava allows the user to define and manipulate “parallel
collections”. These collections mutate by applying available operations in a chained fashion.
In the definition of FlumeJava, mechanisms for deferred evaluation and optimization are pre-
sented, leading to optimized MapReduce pipelines that otherwise would be hard to construct
by hand. A private implementation of FlumeJava is used by hundreds of pipeline developers
within Google. There are recent open-source projects that implement FlumeJava although
none of them are mainstream.3

One of the first and most notable higher-level, open-source tools built on top of the
mainstream MapReduce implementation (i.e., Hadoop) has been Pig [14], which offers SQL-
style high-level data manipulation constructs that can be assembled by the user in order to
define a dataflow that is compiled down to a variable number of MapReduce steps. Pig is
currently a mature open-source higher-level tool on top of Hadoop and implements several
optimizations, allowing the user to abstract from MapReduce and the performance tweaks
needed for efficiently executing MapReduce jobs in Hadoop.

Also, worth mentioning is Hive [20], which implements a SQL-like Domain Specific
Language (DSL) that allows the user to execute SQL queries against data stored in Hadoop
filesystem. These SQL queries are then translated to a variable-length MapReduce job chain
that is further executed into Hadoop. Hive approach is specially convenient for developers
approaching MapReduce from the relational databases world.

3 https://github.com/cloudera/crunch.
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Jaql [2] is a declarative scripting language for analyzing large semistructured datasets built
on top of MapReduce. With a data model based on JSON, Jaql offers a high-level abstraction
for common operations (e.g., join) that are compiled into a sequence of MapReduce jobs.

Other abstractions exist, for instance, Cascading,4 which is a Java-based API that exposes
to the user an easily extendable set of primitives and operations from which complex dataflows
can be defined and further executed into Hadoop. These primitives add an abstraction layer on
top of MapReduce that remarkably simplify Hadoop application development, job creation,
and job execution.

The existence of all these tools and the fact that they are popular, sustain the idea that
MapReduce is a too low-level paradigm that does not map well to real-world problems.
Depending on the use case, some abstractions may fit better than others. Each of them has
its own particularities, and there is also literature on the performance discrepancies among
them [4,12,18].

While some of these benchmarks may be more rigorous than others, it is expected that
higher-level tools built on top of MapReduce perform poorly compared to hand-optimized
MapReduce. Even though there exists many options, some people still use MapReduce
directly. The reasons may vary, but they are often related to performance concerns or con-
venience. For instance, Java programmers may find it more convenient to directly use the
Java MapReduce API of Hadoop rather than building a system that interconnects a DSL to
pieces of custom business logic written in Java. In spite of these cases, MapReduce is still the
foundational model from which any other parallel computation model on top of MapReduce
must be written.

MapReduce limitations for dealing with relational data have been studied by Yang et
al. [21]. The authors illustrate MapReduce lack of direct support for processing multiple
related heterogeneous datasets and for performing relational operations like joins. These
authors propose to add a new phase to MapReduce, called Merge, in order to overcome these
deficiencies. This implies changes in the distributed architecture of MapReduce.

Although we share the same concerns about MapReduce weaknesses, the solution we
propose in this paper beats these problems but without the need of a change in MapReduce
distributed architecture and in a simpler way.

3 The problems of MapReduce

Although MapReduce has been shown useful in facilitating the parallel implementation of
many problems, there are some many common tasks, recurring when developing distributed
applications, that are not well covered by MapReduce. Indeed, we have noticed that most
of the common design patterns that arise with typical Big Data applications, although sim-
ple (e.g., joins and secondary sorting), are not directly provided by MapReduce, or, even
worst, they are complex to implement with it. In this section, we analyze and summarise
the main existing problems arising when using MapReduce for solving common distributed
computation problems:

1. Compound records: In real-world problems, data are not only made up of single fields
records. But MapReduce abstraction forces to split the records in a key/value pair. MapRe-
duce programs, processing multi-field records (e.g., classes in object-oriented program-
ming terminology), have to deal with the additional complexity of either concatenating
or splitting their fields in order to compose the key and the value that are required by the

4 http://www.cascading.org.
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MapReduce abstraction. To overcome this complexity, it has become common practice to
create custom datatypes, whose scope and usefulness are confined to a single MapReduce
job. Frameworks for the automatic generation of datatypes have then been developed, such
as Thrift [1] and Protocol Buffers [11], but this only alleviates the problem partially.

2. Sorting: There is no inherent sorting in the MapReduce abstraction. The model specifies
the way in which records need to be grouped by the implementation, but does not specify
the way in which the records need to be ordered within a group. It is often desirable that
records of a reduce group follow a certain ordering; an example of such a need is the
calculation of moving averages where records are sorted by a time variable. This ordering
is often referred to as “secondary sort” within the scope of Hadoop programs, and it is
widely accepted as a hard to implement, advanced pattern in this community.

3. Joins: Joining multiple related heterogeneous datasets is a quite common need in parallel
data processing; however, it is not something that can be directly derived from the MapRe-
duce abstraction. MapReduce implementations such as Hadoop offer the possibility of
implementing joins as a higher-level operation on top of MapReduce; however, a signif-
icant amount of work is needed for efficiently implementing a join operation problems
such as (1) and (2) are strongly related to this.

In this paper, we propose a new theoretical model called Tuple MapReduce aimed at
overcoming these limitations. We state that Tuple MapReduce can even be implemented on
top of MapReduce so no key changes in the distributed architecture are needed in current
MapReduce implementations to support it. Additionally, we present an open-source Java
implementation of Tuple MapReduce on top of Hadoop called Pangool5 that is compared
against well-known approaches.

4 Tuple MapReduce

In order to overcome the common problems that arise when using MapReduce, we introduce
Tuple MapReduce. Tuple MapReduce is a theoretical model that extends MapReduce to
improve parallel data processing tasks using compound-records, optional in-reduce ordering,
or inter-source datatype joins. In this section, we explain the foundational model of Tuple
MapReduce and show how it overcomes the existing limitations reported above.

4.1 Original MapReduce

The original MapReduce paper proposes units of execution named jobs. Each job processes
an input file and generates an output file. Each MapReduce job is composed of two consec-
utive steps: the map phase and the reduce phase. The developer’s unique responsibility is
developing two functions: the map function and the reduce function. The rest of the process
is done by the MapReduce implementation. The map phase converts each input key/value
pair into zero, one or more key/value pairs by applying the provided map function. There is
exactly one call to the map function for each input pair. The set of pairs generated by the
application of the map function to every single input pair is the intermediate dataset. At the
reduce phase, MapReduce makes a partition of the intermediate dataset. Each partition is
formed by all the pairs that share the same key. This is the starting point of the reduce phase.
At this point, exactly one call to the reduce function is done for each individual partition.
The reduce function receives as input a list of key/value pairs, all of them sharing the same

5 http://pangool.net.
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key, and converts them into zero, one or more key/value pairs. The set of pairs generated by
the application of the reduce function to every partition is the final output.

Equations (1a) and (1b) summarize the behavior map and reduce functions. Remember
that the particular implementation of these functions must be provided by the developer for
each individual job.

map (k1, v1) → list (k2, v2) (1a)

reduce (k2, list (v2)) → list (k3, v3) (1b)

The map function receives a pair of key/value of types (k1, v1) that it must convert into
a list of other data pairs list (k2, v2). The reduce function receives a key data type k2 and a
list of values list (v2) that it must convert into a list of pairs list (k3, v3). Subscripts refer to
datatypes. In other words,

– All key and value items received by the map function have the same datatypes k1 and v1,
respectively.

– All key and value items emitted by the map function have the same datatypes k2 and v2,
respectively.

– Reduce input key and values datatypes are k2 and v2, respectively. Map output and reduce
input must then share the same types.

– All key and value pairs emitted by the reducer have the same types k3 and v3, respectively.

The summary of the process is the following: the map function emits pairs. Those pairs are
grouped by their key, and thus, those pairs sharing the same key belong to the same group. For
each group, a reduce function is applied. The pairs emitted by applying the reduce function
to every single group constitute the final output. This process is executed transparently in a
distributed way by the MapReduce implementation.

4.2 Tuple MapReduce

The fundamental idea introduced by Tuple MapReduce is the usage of tuples within its for-
malization. Tuples have been widely used in higher-level abstractions on top of MapReduce
(e.g., FlumeJava [5], Pig [14], Cascading6). Nonetheless, the innovation of Tuple MapRe-
duce lies in revisiting the foundational theoretical MapReduce model by using as a basis a
tuple-based mathematical model, namely we substitute key/value records as they are used in
traditional MapReduce by a raw n-sized tuple. The user of a Tuple MapReduce implementa-
tion, instead of emitting key and value datatypes in the map stage, emits a tuple. For executing
a particular MapReduce job, the Tuple MapReduce implementation has to be provided with
an additional group-by clause declaring the fields on which tuples must be grouped on before
reaching the reduce stage. In other words, the group-by clause specifies which field tuples
emitted by the map function should be grouped on. By eliminating the distinction between
key and value and by allowing the user to specify one or more fields in the group-by clause,
the underlying Tuple MapReduce implementation easily overcomes the difficulties imposed
by the original MapReduce constraint that forces to use just pairs of values.

Equations (2a) and (2b) summarize the new map and reduce functions contract and the
datatypes for each tuple field.

map(i1, . . . , im) → list ((v1, . . . , vn)) (2a)

reduce((v1, . . . , vg), list ((v1, . . . , vn))sorted By(v1,...,vs ))

→ list ((k1, . . . , kl)) g ≤ s ≤ n (2b)

6 http://www.cascading.org.
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Fig. 1 Group-by and sort-by
fields v1, v2, v3, v4, v5, v6,v7

Group by

Sort by

In Tuple MapReduce, the map function processes a tuple as input of types (i1, . . . , im)

and emits a list of other tuples as output list ((v1, . . . , vn)). The output tuples are all made
up of n fields out of which the first g fields are used to group-by and the first s fields are used
to sort the fields (see Fig. 1). For clarity, group-by fields and sort-by fields are defined to be
a prefix of the emitted tuple, group-by being a subset of the sort-by ones. It is important to
note that the underlying implementations are free to relax this restriction, but for simplifying
the explanation, we are going to consider that fields order in tuples is important. As for
MapReduce, subscripts refer to datatypes.

The reduce function then takes as input a tuple of size g, (v1, . . . , vg) and a list of tuples
list ((v1, . . . , vn)). All tuples in the provided list share the same prefix, which correspond
exactly to the provided tuple of size g. In other words, each call to the reduce function is
responsible to process a group of tuples that share the same first g fields. Additionally, tuples
in the input list are sorted by their prefixes of size s. The responsibility of the reduce function
is to emit a list of tuples list ((k1, . . . , kl)) as result.

Therefore, the developer is responsible for providing:

– The map function implementation.
– The reduce function implementation.
– g, s with g ≤ s ≤ n.

Let us say that tuple A has the same schema as tuple B if A and B have the same number
of field n, and the type of field i of tuple A is the same as the type of field i of the tuple B
for every i in [1 . . . n]. The main schemas relations in Tuple MapReduce are the following:

– All map input tuples must share the same schema.
– All map output tuples and reduce input tuples in the list must share the same schema.
– All reduce output tuples must share the same schema.

By using tuples as a foundation, we enable underlying implementations to easily imple-
ment intra-reduce sorting (the so-called secondary sort in Hadoop terminology). The user of
a Tuple MapReduce implementation may specify an optional sorting by specifying which
fields of the tuple will be used for sorting (v1, v2, . . . , vs). Sorting by more fields than those
which are used for group-by (v1, v2, . . . , vg) will naturally produce an intra-reduce sorting.
Intra-reduce sorting is important because the list of tuples received as input in the reducer
can be so long that it does not fit on memory. Since this is not scalable, the input list is often
provided by the implementations as a stream of tuples. In that context, the order in which
tuples are retrieved can be crucial if we want some problems such as calculating moving
averages for very long time series to be solved in a scalable way.

As MapReduce, Tuple MapReduce supports the use of a combiner function in order to
reduce the amount of data sent by network between mappers and reducers.

4.3 Example: cumulative visits

As mentioned above, many real-world problems are difficult to realize in traditional MapRe-
duce. An example of such a problem is having a register of daily unique visits for each URL in
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the form of compound records with fields (url, date, visits) from which we want to calculate
the cumulative number of visits up to each single date.

For example, if we have the following input:

yes.com, 2012-03-24, 2
no.com, 2012-04-24, 4
yes.com, 2012-03-23, 1
no.com, 2012-04-23, 3
no.com, 2012-04-25, 5

Then, we should obtain the following output:

no.com, 2012-04-23, 3
no.com, 2012-04-24, 7
no.com, 2012-04-25, 12
yes.com, 2012-03-23, 1
yes.com, 2012-03-24, 3

The pseudo-code in Algorithm 1 shows the map and reduce function needed for calculating
the cumulative visits using Tuple MapReduce.

Algorithm 1: Cumulative visits

map(tuple):
emit(tuple)

reduce(groupTuple, tuples):
count = 0
foreach tuple ∈ tuples do

count += tuple.get(“visits”)
emit(Tuple(tuple.get(“url”),tuple.get(“date”),
count))

end

groupBy(“url”)
sortBy(“url”, “date”)

The map function is the identity function: it just emits the input tuple. The reduce function
receives groups of tuples with the same URL sorted by date and keeps a variable for calculating
the cumulative counting. Group-by is set to “url,” and sort-by is set to “url” and “date” in
order to receive the proper groups and with the proper sorting at the reduce function.

Tuple MapReduce will call 5 times the map function (one per each input tuple) and twice
the reduce function (one per each group: no.com and yes.com)

For performing the above problem, we used some of Tuple MapReduce key characteristics:
on one side, we used the ability of working with compound records (tuples), and on the other
side, we used the possibility of sorting the intermediate outputs by more fields than those
that are needed for grouping.

4.4 Joins with Tuple MapReduce

Finally, we incorporate to the foundational model the possibility of specifying heterogeneous
data source joins. The user of a Tuple MapReduce implementation needs only to specify the
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list of sources— together with a data source id—and the fields in common among those
data source tuples in order to combine them into a single job. The user will then receive
tuples from each of the data sources in the reduce groups, sorted by their data source id . This
predictive, intra-reduce sorting enables any type of relational join to be implemented on top
of a Tuple MapReduce join.

Equation (3a–3c) summarizes the functions contract and the datatypes for each tuple field
in a two data sources join. The mapA and mapB functions are map functions of Tuple
MapReduce that map tuples from two different sources A and B. The reduce function in the
case of multiple data sources receives an input tuple of types (v1, v2, . . . , vg), representing
the common fields in both data sources on which we want to group-by, and two lists of
tuples, the first with tuples emitted by mapA and the second with tuples emitted by mapB .
The output of the reduce function is a list of tuples.

mapA(i1, i2, . . . , io) → list ((v1, v2, . . . , vn)A) (3a)

mapB( j1, j2, . . . , jp) → list ((v1, v2, . . . , vm)B) (3b)

reduce(v1, v2, . . . , vg), list ((v1, v2, . . . , vn)A),

list ((v1, v2, . . . , vm)B) →
list ((k1, k2, . . . , kq)) (3c)

(g ≤ n)(g ≤ m)

It is easy to extend this abstraction to support multiple input sources, not just two.
For simplicity reasons, the above model only contemplates the possibility to perform intra-

reduce sorting by source id A or B. But it would be possible to set a different intra-reduce
sorting, including using source id at different positions. For example, it would be possible to
perform a sort-by (v1, v2, id) with a group-by clause of (v1).

4.5 Join example: clients and payments

Algorithm 2 shows an example of inner join between two datasets: clients (client I d,

client Name) and payments (payment I d, client I d, amount). For example, if we have
client records like:

1, luis
2, pedro

And payment records like:

1, 1, 10
2, 1, 20
3, 3, 25

Then, we want to obtain the following output:

luis, 10
luis, 20

Because we want to join by client I d , then we group-by client I d . Each client can have
several payments, but each payment belongs to just one client. In other words, we have
a 1-to-n relation between clients and payments. Because of that, we are sure that in each
reduce call, we will receive as input at most 1 client and at least one tuple (reduce groups
with zero tuples are impossible by definition). By assigning the sourceI d 0 to clients and
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Algorithm 2: Client-payments inner join example

map(client):
client.setSourceId(0)
emit(client)

map(payment):
payment.setSourceId(1)
emit(payment)

reduce(groupTuple, tuples):
client = first (tuples)
if client.getSourceId() != 0 then return
foreach payment ∈ rest(tuples) do

emit(Tuple(client.get(“clientName”),
payment.get(“amount”)))

groupBy(“clientId”)
sortBy(“clientId”, “sourceId”)

1 to payments and configuring an inner-sorting by sourceI d , we ensure that clients will
be processed before payments in each reducer call. This is very convenient to reduce the
memory consumption; otherwise, we would have to keep every payment in memory until
we retrieve the client tuple, then perform the join with the in memory payments and then
continue with the rest of payments already not consumed (remember that reduce input
tuples are provided as a stream). This would not be scalable when there are a lot of pay-
ments per client so that they do not fit in memory. Tuple MapReduce allows for reduce-side
inner, left, right, and outer joins without memory consumption in the case of a 1-to-n join,
and minimal memory consumption for n-to-n relational joins, as we will see in the next
section.

4.6 Implementing relational joins in Tuple MapReduce

Relational joins are widely used in data analysis systems, and it is common to use abstractions
that implement them. In fact, such abstractions have already been implemented on top of
MapReduce, but the cost of implementing them is much higher than that of formalizing them
on top of Tuple MapReduce. As an illustrative example, we show how generic relational
joins are implemented on top of Tuple MapReduce. In Algorithm 3, we see the pseudo-code
of an inner join between two sets of tuples (named left and right after traditional join name
conventions). Hereafter, we refer to those sets as tables for convenience.

In the reduce method, we use a memory buffer for tuples belonging to the left side of
the join in order to perform the cross-product with the right side afterward. In this case,
intra-reduce sorting allows us to use only one buffer because, after we have gathered all left
tuples, we are sure that the remaining tuples are going to belong only to the right side of
the join. Moreover, when using this abstraction, we could leverage the fact that the left table
tuples are saved in a buffer to perform the join in the most memory-efficient way: that is,
using the smallest table on the left and the biggest one on the right.

On the other hand, the joinTuple method receives both tuples from left and right tables
in order to be able to return a compound, joint tuple. The semantics of this method are not
fixed by this pseudo-code and can be implemented in various ways.
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In Algorithm 4, we change the reduce method so that it implements a left join instead of
an inner join. The code becomes somewhat more complex. Indeed, we need to handle the
case where a group of tuples have no corresponding set of tuples in the right side of the join.
In this case, we use a state boolean variable (rightTuples) and call joinTuple with a null value
as right tuple, meaning that the method will return the compound tuple with the appropriate
fields set to null. So we are assuming that this method is aware of both left and right schemas.

Algorithm 5 shows the pseudo-code of a right join reducer. Compared to the inner join,
we just need to cover the case where the left tuple buffer is empty, in which we will emit joint
tuples with nulls corresponding to the left part of the join. Finally, Algorithm 6 implements
an outer join, which indeed covers both left and right join cases at the same time.

Algorithm 3: Relational inner join

map(left):
left.setSourceId(0)
emit(left)

map(right):
right.setSourceId(1)
emit(right)

reduce(groupTuple, tuples):
leftTuples = []
foreach tuple ∈ tuples do

if tuple.getSourceId()==0 then
addToArray(tuple,leftTuples)

else
foreach leftTuple ∈ leftTuples do

emit(joinTuple(leftTuple, tuple))
end

end
end

4.7 Rollup

Dealing with tuples adds some opportunities for providing a richer API. That is the case of the
rollup feature of Tuple MapReduce, which is an advanced feature that can be derived from
the Tuple MapReduce formalization. By leveraging secondary sorting, it allows to perform
computations at different levels of aggregation within the same Tuple MapReduce job. In
this section, we will explain this in more detail.

Let us first see the case of an example involving tweets data. Imagine we have a dataset
containing (hashtag, location, date, count) and we want to calculate the total number of
tweets belonging to a particular hashtag per location and per location and date by aggregating
the partial counts. For example, with the following data:

#news, Texas, 2012-03-23, 1
#news, Arizona, 2012-03-23, 2
#news, Arizona, 2012-03-24, 4
#news, Texas, 2012-03-23, 5
#news, Arizona, 2012-03-24, 3

123



542 P. Ferrera et al.

Algorithm 4: Relational left join

reduce(groupTuple, tuples):
leftTuples = []
rightTuples = false
foreach tuple ∈ tuples do

if tuple.getSourceId() == 0 then
addToArray(tuple, leftTuples)

else
rightTuples = true
foreach leftTuple ∈ leftTuples do

emit(joinTuple(leftTuple, tuple))
end

end
end
if rightTuples == false then

foreach leftTuple ∈ leftTuples do
emit(joinTuple(leftTuple, null))

end
end

Algorithm 5: Relational right join

reduce(groupTuple, tuples):
leftTuples = []
foreach tuple ∈ tuples do

if tuple.getSourceId() == 0 then
addToArray(tuple, leftTuples)

else
if leftTuples.size > 0 then

foreach leftTuple ∈ leftTuples do
emit(joinTuple(leftTuple, tuple))

end
else

emit(joinTuple(null, tuple))
end

end
end

We would like to obtain the totals per hashtag per location (that is, how many tweets have
occurred in a certain location having a certain hashtag):

#news, Arizona, total, 9
#news, Texas, total, 6

And the totals per hashtag per location and per date (that is, how many tweets have occurred
in a certain location having a certain hashtag within a specific date):

#news, Arizona, 2012-03-23, 2
#news, Arizona, 2012-03-24, 7
#news, Texas, 2012-03-23, 6

The straightforward way of doing it with Tuple MapReduce is creating two jobs:

1. The first one grouping by hashtag and location
2. The second one grouping by hashtag, location, and date
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Algorithm 6: Relational outer join

reduce(groupTuple, tuples):
leftTuples = []
rightTuples = false
foreach tuple ∈ tuples do

if tuple.getSourceId() == 0 then
addToArray(tuple, leftTuples)

else
if leftTuples.size > 0 then

foreach leftTuple ∈ leftTuples do
emit(joinTuple(leftTuple, tuple))

end
else

emit(joinTuple(null, tuple))
end

end
end
if rightTuples == false then

foreach leftTuple ∈ leftTuples do
emit(joinTuple(leftTuple, null))

end
end

Each of those jobs just performs the aggregation over the count field and emits the resultant
tuple. Although this approach is simple, it is not very efficient as we have to launch two jobs
when really only one is needed. By leveraging secondary sorting, both aggregations can
be performed in a job where we only group-by hashtag and location. This is possible by
sorting each group-by date and maintaining a state variable with the count for each date,
detecting consecutive date changes when they occur, and thus resetting the counter.

The idea is then to create a single job that:

– groups by hashtag, location
– sorts by hashtag, location, date.

As previously mentioned, the reduce function should keep a counter for the location total
count and a partial counter used for date counting. As tuples come sorted by date, it is easy
to detect changes when a date has changed with respect to the last tuple. When detected, the
partial count for the date is emitted and the partial counter is cleaned up.

The proposed approach only needs one job, which is more efficient, but at the cost of
messing up the code. In order to better address these cases, we propose an alternative API
for Tuple MapReduce for supporting rollup.

The developer using rollup must provide a rollup-from clause in addition to group-by
and sort-by clauses. When using rollup, the developer must group-by the narrowest possible
group. Every aggregation occurring between rollup-from and group-by will be considered
for rollup. The additional constraint is that all rollup-from clause fields must be also present
in the group-by clause. The developer provides the functions onOpen( f ield, tuple) and
onClose( f ield, tuple). These functions will be called by the implementation on the presence
of an opening or closing of every possible group.

The pseudo-code presented in Algorithm 7 shows the solution with the proposed rollup
API for the counting of tweets hashtags. There is a global counter locationCount used for
counting within a location. Each time a location group is closed, the aggregated location
count is emitted and the locationCount variable is reset. The reduce function updates the
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locationCount and the dateCount with the counts from each tuple, and is responsible for
emitting the counts for dates.

Algorithm 7: Rollup example

locationCount = 0
map(tuple):

emit(tuple)

onOpen(field, tuple):

onClose(field, tuple):
if field == “location” then

locationCount += tuple.get(“count”)
emit(Tuple(tuple.get(“hashtag”),

tuple.get(“location”),
“total”,
locationCount))

locationCount = 0

reduce(groupTuple, tuples):
dateCount = 0
foreach tuple ∈ tuples do

locationCount += tuple.get(“count”)
dateCount += tuple.get(“count”)

emit(Tuple(groupTuple.get(“hashtag”),
groupTuple.get(“location”),
groupTuple.get(“date”),
dateCount))

groupBy(“hashtag”, “location”, “date”)
sortBy(“hashtag”, “location”, “date”)
rollupFrom(“hashtag”)

The rollup API simplifies the implementation of efficient multi-level aggregations by the
automatic detection of group changes.

4.8 PageRank example

PageRank [16] is an algorithm, currently used by Google,7 that analyzes the relevance of
Web pages based on graphs where nodes are Web pages and hyperlinks are edges.

In Algorithm 8, we observe the pseudo-code of a simple implementation of PageRank in
Tuple MapReduce. The code implements the iterative step, which is core to the calculation
and which updates the PageRank value for each authority by adding the contributions of each
of its supporting authorities. In this example, authorities are URLs, and therefore, supporting
authorities are modeled by “outlinks”.

For implementing this step in Tuple MapReduce, we use a tuple with three fields: “url”,
“pagerank”, and “outlink_list”. Because of the nature of the parallel implementation of
PageRank, in the map phase, we do not emit all three fields at once, and thus, we emit
Tuples with some null fields instead. We assume that the associated implementation of Tuple

7 www.google.com.
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MapReduce handles nulls efficiently and serializes the rest of the Tuple as needed. In the
reduce function, we receive all the contributions for the same url and add them up using the
PageRank formula, which takes into account a “damping_ f actor” in order to model the
stochastic nature of the model—in this case, human browsing.

Compared to an implementation on top of plain MapReduce, this PageRank implementa-
tion requires minimal effort in reasoning about the nature of the intermediate data structures,
which are emitted between the map and the reduce phase. In plain MapReduce, we would
need to use a compound record in the value in order to emit both an outlink list and a pagerank
value. Additionally, this compound record must be efficiently serialized in the absence of
one of those two fields for the computation to be efficient.

Algorithm 8: PageRank example
map(tuple):

outlinkList = tuple.get(“outlink_list”)
foreach outlink ∈ outlinkList do

emit(Tuple(outlink, tuple.get(“pagerank”) /
size(outlinkList), null))

end
emit(Tuple(tuple.get(“url”), null, outlinkList))

reduce(groupTuple, tuples):
outlinkList = []
pagerank = 0
foreach tuple ∈ tuples do

if notNull(tuple.get(“outlink_list”)) then
outlinkList = tuple.get(“outlink_list”)

else
pagerank += tuple.get(“pagerank”)

end
end
pagerank = 1 - DAMPING_FACTOR +
(DAMPING_FACTOR * pagerank)
emit(Tuple(tuple.get(“url”), pagerank, outlinkList))

4.9 Tuple MapReduce as a generalization of classic MapReduce

Tuple MapReduce as discussed in this section can be seen as a generalization of the classic
MapReduce. Indeed, the MapReduce formalization is equivalent to a Tuple MapReduce
formalization with tuples constrained to be of size two, group-by being done on the first
field (the so-called key in MapReduce) and an empty set sorting with no inter-source joining
specification. Because MapReduce is contained in Tuple MapReduce, we observe that the
latter is a wider, more general model for parallel data processing.

Tuple MapReduce comes with an additional advantage. Implementing Tuple MapReduce
in existing MapReduce systems does not involve substantial changes in the distributed archi-
tecture. Indeed, the architecture needed for parallelizing Tuple MapReduce is exactly the same
as the one needed for MapReduce—the only substantial changes needed lay in the serializa-
tion and API parts. Nothing on the distributed nature of the MapReduce architecture has to
be changed. For implementing Tuple MapReduce on top of a classic MapReduce implemen-
tation, it is usually sufficient to support custom serialization mechanisms, custom partitioner
and low-level sort, and group comparators on top of the existing MapReduce implementation.
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A proof of that is Pangool, an open-source implementation of Tuple MapReduce on top of
Hadoop.

5 Pangool: Tuple MapReduce for Hadoop

In March 2012, we released an open-source Java implementation of Tuple MapReduce called
Pangool8 ready to be used in production. We developed Pangool on top of Hadoop without
modifying Hadoop source code. Pangool is a Java library. Developers just need to add it to
their projects in order to start developing with Tuple MapReduce.

Pangool implements the Tuple MapReduce paradigm by allowing the user to specify an
intermediate tuple schema that will be followed by the map output and the reduce input. This
schema defines the tuple data types and fields. Pangool allows to specify group-by and sort-by
clauses per each job. Additionally, several data sources can be added by employing different
intermediate tuple schemas and specifying a common set of fields that will be used for joining
these data sources. Users of Pangool define a map and reduce function similar to how they
would do in Hadoop, but wrapping their data into tuple objects. In addition, Pangool offers
several enhancements to the standard Hadoop API: configuration by instances and native
multiple inputs / outputs. Pangool’s user’s guide9 is the reference for learning how to use it.
Additionally, many examples showing how to use Pangool are provided on-line.10

5.1 Implementing Pangool on top of Hadoop

The cost and complexity of implementing a distributed version of Tuple MapReduce from
scratch would have been prohibitive because of the intrinsic complexity of distributed sys-
tems. However, Tuple MapReduce can be developed on top of existing MapReduce imple-
mentations without the need of important architectural changes, which is an important feature.
Pangool is a fully functional production-ready implementation of Tuple MapReduce built
on top of Hadoop. No architectural changes were needed. Indeed, Pangool is just a library
to plug in Hadoop developments. This library converts Tuple MapReduce jobs into simple
MapReduce jobs by providing some custom classes that overload the default MapReduce
main components: Serialization, Sort Comparator, Group Comparator, and Partitioner.

The main tasks carried out during Pangool’s implementation were as follows:

– Schema definition language for Tuples.
– Nulls fields.
– Intermediate serialization based on the Schema.
– Custom Partitioner based on the group-by clause.
– Custom SortComparator based on the sort-by clause.
– Custom GroupComparator based on the group-by clause.
– New “mapper”, “reducer,” and “combiner” classes ready to deal with Tuples.
– TupleInputFormat and TupleOutputFormat for Tuples’ persistence.

We discuss here some of them, namely schemas, nulls, and serialization.

8 http://pangool.net.
9 http://pangool.net/userguide/schemas.html.
10 https://github.com/datasalt/pangool/tree/master/examples/src/main/java/com/datasalt/pangool/
examples.
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5.1.1 Schemas

By obtaining the control over the intermediate serialization through our own serialization
classes, we have built an API on top of Hadoop, which allows the user to specify Tuple
schemas, which are then obtained by the serialization classes through the use of the Hadoop
Configuration object. The schemas define the datatypes that each Tuple has and the order
in which they are serialized. Because the schema is defined before running the MapReduce
job, we can then serialize the Tuples efficiently, using just as many bytes as needed for
each datatype, and concatenating them according to the order in which they were defined.
If one job uses more than one schema (i.e., a join), then a variable-length integer (VInt) is
added in front of the serialized data, in order to identify the tuple schema. Equation 4 shows
an example declaration of a Pangool schema. The schemas can be formed by primitive
datatypes (INT, LONG, FLOAT, DOUBLE, STRING, BOOLEAN, BYTES), Java enums (ENUM), or
custom objects (OBJECT). Whichever object that can be serialized using one of the registered
serializations in the Hadoop serialization registry is supported as a custom object field. This
makes the system fully backwards-compatible with Hadoop, allowing users to reuse their
own serialization methods inside Pangool Tuples as well as other serialization libraries such
as Avro or Thrift.

client : int, average_salary : double, posi tion : int,

ti tle : string, f ired : boolean (4)

5.1.2 Handling nulls

Initial versions of Pangool did not have support for null values, just as the Key and the Value
of the standard Hadoop MapReduce API cannot be null either. This supported the idea of
Tuple MapReduce being a generalization of MapReduce. However, the convenience of having
nulls in a Tuple becomes obvious when integrating Pangool with other Extract, Transform,
and Load (ETL) systems. The user may frequently import datasets, which naturally contain
“null” values into Pangool Tuples. An example of this process could be importing data from
a relational database for processing them using Tuple MapReduce.

Pangool adds support for “null” values as an optional feature. So it is still possible to use
Pangool in a “non-null values mode,” which will obviously serialize data more efficiently.
But if “nulls” are enabled, then Pangool will serialize them as efficiently as it can, by using
variable-length byte arrays. Each bit in the byte array acts as a “mask” for the values that can
be “null” in a Tuple. So if a Tuple contains 3 fields with possible “null” values, only a single
extra byte is needed for indicating the possible presence of a null in any of those 3 fields.
This optimization can be done because, as explained in the previous subsection, the order of
the datatypes inside the tuple is known beforehand.

Equation 5 shows an example declaration of an augmented Pangool schema, which
declares two possible null fields with the sign “?”.

client : int, average_salary : double, posi tion : int?,

ti tle : string?, f ired : boolean (5)

5.1.3 Serialization and data routing

At the lower level, Pangool data sit on top of “datum wrappers” that are finally serialized as
binary data according to the schemas used, as explained in previous subsections.
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Table 1 Lines of code reduction Hadoop’s code
lines

Pangool’s code
lines

% Reduction

Secondary sort 256 139 45.7

URL resolution (join) 323 158 51

Fig. 2 Secondary sort time (seconds)

In connection with the Hadoop API, the MapReduce “key” are those wrappers, and the
“value” is just null. By wrapping all the data in the key, and because Hadoop sorts and groups
the data by this key, we implemented our own sorting and grouping comparators, which
allows for flexible secondary sorting over the Tuple fields. Obviously, a custom partitioner
was implemented so that tuples are assigned to reducers properly, based on the group-by
clause. We also implemented our own Hadoop “mappers,” “reducers,” and “combiners,”
which unfold the Tuples from the binary data and provide those Tuples to the final API user.

All these systems have been implemented by reusing existing object instances and buffers
when possible in order to keep a high efficiency (i.e., creating a minimum overhead over the
existing MapReduce API).

5.2 Benchmark performance

Table 1 shows the differences in number of lines when implementing two different tasks in
both Hadoop and Pangool. The first task involves a secondary sort, while the second task
involves joining two datasets. Both tasks use compound records. These tasks can be seen in
Pangool’s examples11 and benchmark12 projects. In both examples, we notice a reduction of
about 50 % in lines of code when using Pangool as opposed to when using Hadoop.

Figure 2 shows a benchmark comparison between Pangool, Hadoop and two other Java-
based higher-level APIs on top of Pangool (Crunch 0.2.0,13 Cascading 1.2.514). In the graphic,
we show the time in seconds that it takes for each implementation to perform a simple
MapReduce parallel task. This task is the “secondary sort example” whose code lines were

11 https://github.com/datasalt/pangool/tree/master/examples.
12 https://github.com/datasalt/pangool-benchmark.
13 https://github.com/cloudera/.
14 http://www.cascading.org/.
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Fig. 3 URL resolution time (seconds)

compared in Table 1. It involves grouping compound records of four fields grouping by two
of them and performing secondary sort on a third field.

Figure 3 shows the relative performance between different implementations of a reduce-
join on two datasets of URLs. We decided to benchmark Pangool to other higher-level APIs in
spite of the fact that Pangool is still a low-level Tuple MapReduce API, mainly for showing
that the associated implementation of Tuple MapReduce should still be powerful enough
to perform comparably to an associated implementation of MapReduce (Hadoop). In these
graphics, we can see that Pangool’s performance is in the order of 5–8 % worse than Hadoop,
which we think is remarkably good considering that other higher-level APIs perform 50 %
to (sometimes) 200 % worse. We also think that Pangool’s performance is quite close to the
minimum penalty that any API on top of Hadoop would have. In any case, this overhead
would be eliminated with a native Tuple MapReduce implementation for Hadoop, which we
believe would be very convenient as Tuple MapReduce has shown to keep the advantages of
MapReduce but without some of its disadvantages.

The benchmark together with the associated code for reproducing it is available at the
following location.15 The full benchmark consists of a comparison of three tasks, one of
them being the well-known word count task.

6 Pangool in the industry

This section describes the use of Pangool by the industry in the development of applications
as well as the use of Pangool in the development of higher-level systems, such as a distributed
database. Besides, this section intends to show the prevalence of the common design patterns
described in Sect. 4 in real-life problems, highlighting the utility of Tuple MapReduce.

6.1 Reports from the use of Pangool in industry

Pangool is currently being used with success in Datasalt16 projects, simplifying the devel-
opment and making code easier to understand, while still keeping efficiency. Datasalt has
successfully deployed applications in banking, telecommunications, and Internet sectors.

15 http://pangool.net/benchmark.html.
16 http://www.datasalt.com.
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So far, Datasalt implemented a full pipeline with Pangool for analyzing credit card trans-
actions for the BBVA bank.17 It included the computation of statistical analysis over the
credit card transactions over different time periods, including different aggregations. This is
a typical case where compound records are needed because records are not just key/value
pairs but a set of fields instead. A recommender system based on co-occurrences that made
intensive use of intra-reduce sorting and joins was also implemented. The use of Pangool
allowed the development of the system maintaining the highest efficiency without having to
deal with the complexities that classic MapReduce imposes.

Some other use cases have been gathered from the Pangool users community.18 As an
example, a Pangool user reported the migration of an existing log loading pipeline to Pangool
in a telecommunications company. As reported by him, the legacy system was implemented
by the use of plain MapReduce jobs mixed with Pig scripts for joins, aggregations, rollups,
deduplication, etc. Oozie19 was used to put all the pieces together in a flow. The user described
the system as difficult to use and debug. Additionally, he specified that the management of
the flow was cumbersome.

They decided to move the whole pipeline to Pangool because it has some useful features
similar to those in Pig (i.e., joins and compound records), still providing a low-level API that
allows developers to retain full control.

Therefore, testing, developing, and having control became easier by the use of Pangool.

6.2 Splout SQL: a distributed system made on top of Tuple MapReduce

Splout SQL20 is an open-source, distributed, read-only database. It was released in 2012
and developed mainly using Pangool. Its main purpose is that of making large files residing
on the Hadoop Distributed File System (HDFS) easily accessible and queryable through a
low-latency SQL interface that can be used to power websites or mobile applications.

Splout SQL scales through the use of partitioning. Data in tables must be partitioned by
a column or a set of columns. Queries are then routed to the proper partition by the use of
an explicit key that must be provided when submitting queries. Each partition is just binary
data that is used by SQL engines to serve the queries. By default, Splout SQL uses SQLite21

as underlying database engine to serve the partition data but other engines can be plugged as
well.

Data in Splout SQL are stored in tablespaces. Each tablespace is a set of tables all
of them sharing the same partitioning schema. Figure 4 shows the example tablespace
CLIENTS_INFO that is built from two tables, CLIENTS and SALES, and that is partitioned
by the column CID. The resulting tablespace contains two partitions, each of them containing
a subset of the source tables data. Tablespace partitions are generated in Hadoop from HDFS
data.

Once a tablespace has been generated in Hadoop, it can be deployed atomically into the
serving cluster. Figure 5 shows clearly the two main phases of the Splout SQL database:

1. Generation: This phase that runs entirely in Hadoop is responsible for building the
tablespaces from source data, creating different partitions of approximately equal sizes.

17 http://highscalability.com/blog/2013/1/7/analyzing-billions-of-credit-card-transactions-and-serving-l.
html.
18 https://groups.google.com/forum/#!forum/pangool-user.
19 http://oozie.apache.org/.
20 http://sploutsql.com/.
21 http://www.sqlite.org/.
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Fig. 4 Example of a generated partitioned tablespace

Fig. 5 Splout SQL architecture

Each partition is a SQLite database with its tables and indexes. Once this phase is finished,
the tablespace is ready to be deployed into the serving cluster.

2. Serving: The responsibilities of the serving phase are routing user queries to the proper
tablespace and partition, deploying new tablespaces that were previously generated, and
other management tasks such as tablespace versioning and rollback. This phase runs in
its own cluster that is independent from the Hadoop cluster. The cluster is coordinated
by two services: the QNode, responsible for routing the queries to the proper tablespace
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and partition; and the DNode, responsible for running the particular queries over the
partitions.

By isolating the generation of query-optimized data structures from their serving, Splout
SQL can assure almost no impact on query serving when the data are being updated. The
deployment of new tablespace versions is just a copy of files, minimizing the impact on
serving and therefore ensuring stable response times.

Data partitioning ensures scalability for those applications where queries can be restricted
to particular partitions (for example, to a particular client or a particular location). The use
of SQL provides a rich query language and fast query responses with the help of indexes.

Splout SQL is a suitable solution for web or mobile applications that need to serve Big
Data tasks ensuring millisecond response times. It provides what can be thought of “SQL
materialized views over HDFS data”.

Splout SQL is nowadays being used in production by client companies of Datasalt for
serving terabytes of statistics from advertising networks.

6.2.1 Splout SQL and Tuple MapReduce

In this section, we will explain how Pangool (an therefore Tuple MapReduce) was a key piece
for the development of Splout SQL. Splout SQL benefited from using Pangool as opposed
to the plain MapReduce API in several ways:

1. Datatypes and parsing: Splout SQL needed to support heterogeneous file types, from
CSV files to arbitrary HCatalog tables. The tuple abstraction offered a clean bridge
between any data source and Splout SQL. Indeed, because Splout SQL generates SQL
tables, these can be seen as a collection of tuples with a predefined schema for each table,
which is exactly the abstraction found in Tuple MapReduce. An alternative would have
been to use an auxiliary serialization library like Thrift on top of classic MapReduce, but
that would have left open other issues we will describe next.

2. Joining and sorting: Because data locality in SQL engines influences query response
times, the order in which SQL “insert” statements are issued is very important. As we
will explain, a special intra-reduce sorting was needed in order to obtain control on data
insertion order. The Tuple MapReduce support for intra-reduce sorting and joins covers
this requirement. Implementing such a requirement in plain MapReduce would have been
quite complex: it would have included the creation of a custom Sort Comparator, Group
Comparator, and Partitioner; none of them are needed if Pangool is used.

3. Code conciseness: The simplicity and expressiveness of the Pangool API allowed the
code of the Tuple MapReduce jobs to be much shorter (and thus easily understandable
and maintainable) to what their Java MapReduce versions would have looked like.

We will now explain the advantages that Pangool offered when implementing the genera-
tion phase of Splout SQL, thus highlighting the relevance of Tuple MapReduce for real-life
applications.

In order to obtain efficiently indexed binary files out of any file, Splout SQL executes
an indexation process as a series of Hadoop jobs, with the desired data files as input to that
process. As explained previously, the output of this process is a set of binary SQLite files
that can be then deployed to the Splout SQL cluster.

The generation process is composed of two jobs, namely (1) the Sampling Job and (2)
the Data Indexation Job. The Sampling Job is in charge of determining how the data are
distributed. The data distribution will then be used by the data indexation job for creating
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evenly distributed partitions. The main responsibilities of the indexation job are parsing the
different input sources, routing data to the proper partition, and parallelizing the generation
of the different partitions.

A more detailed description of each job is given as follows:

1. The Sampling Job. The Sampling Job is a distributed Reservoir Sampling implemen-
tation. Because this job can be implemented using a map-only job (with norReducers),
a special Pangool wrapper called MapOnlyJobBuilder was used. Thanks to Pangool’s
instance-based configuration (which removes the need for defining a separate Java class
for every mapper, reducer, and so forth), the Reservoir Sampling code was shortened and
placed conveniently.

2. The Data Indexation Job. The Indexation Job is a complex MapReduce process, which
encompasses all the features that make programming in plain MapReduce difficult: the
use of compound records, intra-reduce sorting, and joins. With its main part done in barely
200 lines22 using Pangool, it would be quite difficult even for a MapReduce expert to
estimate how its pure plain MapReduce version would have looked like.

This job needs to execute a specific business logic for every input file to the database creation
process, dealing with data which are potentially heterogeneous (multiple data entities may
be merged into the same database and that is achieved by creating a SQL table for each of
them). Here, as mentioned before, the use of tuples was an appropriate choice for abstracting
the codebase from the possible derived complexities arising from dealing with arbitrary
compound datatypes. Even more, a tuple-based metadata service for Hadoop (HCatalog)
was leveraged for making it possible to read data from any standard data source in the
“Hadoop Ecosystem” (namely Hive, Pig, and such).

The overall indexation process looks as follows.

– Firstly, a specific mapper is defined for every input file, which will parse it as needed
and will emit a tuple with the proper schema for each input record. A field with the
proper “partition id” will be injected in each tuple. The partition id is set according to the
distribution of the data computed by the Sampling Job.

– Secondly, all tuples are joined by “partition id”: every reducer receives all tuples belonging
to the same “partition id” and streams them into an embedded SQLite database in the form
of SQL statements. The order in which tuples reach the reducer is crucial for optimizing
query resolution times. Because of that, the order in which records are inserted into the
database can be managed by the end user. It is a well-known fact that this order is crucial
for query performance, as it allows the user to co-locate data close in disk and make scan
queries faster.

– Finally, each reducer executes the creation of database indexes requested by the user,
closes the database, and uploads the resultant SQLite database file to the HDFS.

To sum up, Pangool (and therefore Tuple MapReduce) simplified the development of
such a complex and low-level application without losing performance. In this section, we
have shown that the design patterns described in Sect. 4 (namely compound records, intra-
reduce sorting and joins) arise in many real-life problems. The MapReduce limitations on
this field are covered properly by the proposed Tuple MapReduce paradigm. The associated
implementation, Pangool, shows that Tuple MapReduce has a performance level similar to
that of MapReduce, while providing a richer foundation to the developer.

22 https://github.com/datasalt/splout-db/blob/master/splout-hadoop/src/main/java/com/splout/db/hadoop/
TablespaceGenerator.java.
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7 Conclusions and future work

Our theoretical effort in formulating Tuple MapReduce has shown us that there is a gap
between MapReduce, the nowadays de-facto foundational model for batch-oriented paral-
lel computation—or its associated mainstream implementation (Hadoop)—and mainstream
higher-level tools commonly used for attacking real-world problems such as Pig or Hive.
MapReduce key/value constraint has been shown too strict, making it difficult to implement
simple and common tasks such as joins. Higher-level tools have abstracted the user from
MapReduce at the cost of less flexibility and more performance penalty; however, there is
no abstraction in the middle that retains the best of both worlds: simplicity, easy to use,
flexibility, and performance.

We have shown that Tuple MapReduce keeps all the advantages of MapReduce. Indeed,
as shown, MapReduce is a particular case of Tuple MapReduce. Besides, Tuple MapReduce
has a lot of advantages over MapReduce, such as compound records, direct support for joins,
and intra-reduce sorting. We have implemented Pangool for showing that there can be an
implementation of Tuple MapReduce that performs comparably to an associated implemen-
tation of MapReduce (Hadoop) while simplifying many common tasks that are difficult and
tedious to implement in MapReduce. Pangool also proves that key changes in the distributed
architecture of MapReduce are not needed for implementing Tuple MapReduce. Moreover,
we have shown several real-life uses of Pangool that certify their utility in production sce-
narios. For all these reasons, we believe that Tuple MapReduce should be considered as a
strong candidate abstraction to replace MapReduce as the de-facto foundational model for
batch-oriented parallel computation.

Future work includes the development of new abstractions that simplify the task of chain-
ing MapReduce jobs in a flow. We believe that there is room for improvement in this field.
Concretely, we plan to build an abstraction for easing running flows of many parallel jobs,
incorporating ideas from tools such as Azkaban23 and Cascading.
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