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Abstract In a market with one safe and one risky asset, an investor with a long hori-
zon, constant investment opportunities and constant relative risk aversion trades with
small proportional transaction costs. We derive explicit formulas for the optimal in-
vestment policy, its implied welfare, liquidity premium, and trading volume. At the
first order, the liquidity premium equals the spread, times share turnover, times a uni-
versal constant. The results are robust to consumption and finite horizons. We exploit
the equivalence of the transaction cost market to another frictionless market, with
a shadow risky asset, in which investment opportunities are stochastic. The shadow
price is also found explicitly.
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1 Introduction

If risk aversion and investment opportunities are constant—and frictions are absent—
investors should hold a constant mix of safe and risky assets [30–32]. Transaction
costs substantially change this statement, casting some doubt on its far-reaching im-
plications.1 Even the small spreads that are present in the most liquid markets entail
wide oscillations in portfolio weights, which imply variable risk premia.

This paper studies a tractable benchmark of portfolio choice under transaction
costs, with constant investment opportunities, summarized by a safe rate r , and a
risky asset with volatility σ and expected excess return μ > 0, which trades at a
bid (selling) price (1 − ε)St equal to a constant fraction (1 − ε) of the ask (buying)
price St . Our analysis is based on the model of Dumas and Luciano [12], which con-
centrates on long-run asymptotics to gain in tractability. In their framework, we find
explicit solutions for the optimal policy, welfare, liquidity premium2 and trading vol-
ume, in terms of model parameters, and of an additional quantity, the gap, identified
as the solution to a scalar equation. For all these quantities, we derive closed-form
asymptotics, in terms of model parameters only, for small transaction costs.

We uncover novel relations among the liquidity premium, trading volume, and
transaction costs. First, we show that share turnover (ShTu), the liquidity premium
(LiPr), and the bid-ask spread ε satisfy the asymptotic relation

LiPr ≈ 3

4
ε ShTu .

This relation is universal, as it involves neither market nor preference parameters.
Also, because it links the liquidity premium, which is unobservable, with spreads
and share turnover, which are observable, this relation can help estimate the liquidity
premium using data on trading volume.

Second, we find that the liquidity premium behaves very differently in the pres-
ence of leverage. In the no-leverage regime, the liquidity premium is an order of
magnitude smaller than the spread [7], as unlevered investors respond to transac-
tion costs by trading infrequently. With leverage, however, the liquidity premium in-
creases quickly, because rebalancing a levered position entails high transaction costs,
even under the optimal trading policy.

1Constantinides [7] finds that “transaction costs have a first-order effect on the assets’ demand”. Liu and
Loewenstein [25] note that “even small transaction costs lead to dramatic changes in the optimal behavior
for an investor: from continuous trading to virtually buy-and-hold strategies”. Luttmer [27] shows how
small transaction costs help resolve asset pricing puzzles.
2That is, the amount of excess return the investor is ready to forgo to trade the risky asset without transac-
tion costs.
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Third, we obtain the first continuous-time benchmark for trading volume, with
explicit formulas for share and wealth turnover. Trading volume is an elusive quantity
for frictionless models, in which turnover is typically infinite in any time interval.3 In
the absence of leverage, our results imply low trading volume compared to the levels
observed in the market. Of course, our model can only explain trading generated by
portfolio rebalancing, and not by other motives such as market timing, hedging, and
life-cycle investing.

Moreover, welfare, the liquidity premium, and trading volume depend on the mar-
ket parameters (μ,σ ) only through the mean-variance ratio μ/σ 2 if measured in busi-
ness time, that is, using a clock that ticks at the speed of the market’s variance σ 2. In
usual calendar time, all these quantities are in turn multiplied by the variance σ 2.

Our main implication for portfolio choice is that a symmetric, stationary policy
is optimal for a long horizon, and it is robust, at the first order, both to intermedi-
ate consumption, and to a finite horizon. Indeed, we show that the no-trade region
is perfectly symmetric with respect to the Merton proportion π∗ = μ/γσ 2, if trad-
ing boundaries are expressed with trading prices, that is, if the buy boundary π− is
computed from the ask price, and the sell boundary π+ from the bid price.

Since the optimal policy in a frictionless market is independent both of intermedi-
ate consumption and of the horizon (cf. Merton [31]), our results entail that these two
features are robust to small frictions. However plausible these conclusions may seem,
the literature so far has offered diverse views on these issues (cf. Davis and Norman
[9], Dumas and Luciano [12], as well as Liu and Loewenstein [25]). More impor-
tantly, robustness to the horizon implies that the long-horizon approximation, made
for the sake of tractability, is reasonable and relevant. For typical parameter values,
we see that our optimal strategy is nearly optimal already for horizons as short as two
years.

A key idea for our results—and for their proof—is the equivalence between a mar-
ket with transaction costs and constant investment opportunities, and another shadow
market, without transaction costs, but with stochastic investment opportunities driven
by a state variable. This state variable is the ratio between the investor’s risky and
safe weights, which tracks the location of the portfolio within the trading boundaries,
and affects both the volatility and the expected return of the shadow risky asset.

In this paper, using a shadow price has two related advantages over alternative
methods: first, it allows us to tackle the issue of verification with duality methods
developed for frictionless markets. These duality methods in turn yield the finite-
horizon bounds in Theorem 3.1 below, which measure the performance of long-run
policies over a given horizon—an issue that is especially important when an asymp-
totic objective function is used. The shadow price method was applied successfully
by Kallsen and Muhle-Karbe [24] as well as Gerhold et al. [16, 17] for logarithmic
utility, and this paper brings this approach to power utility, which allows to under-
stand how optimal policies, welfare, liquidity premia and trading volume depend on

3The empirical literature has long been aware of this theoretical vacuum: Gallant et al. [15] reckon that
“The intrinsic difficulties of specifying plausible, rigorous, and implementable models of volume and
prices are the reasons for the informal modeling approaches commonly used”. Lo and Wang [26] note that
“although most models of asset markets have focused on the behavior of returns [. . . ] their implications
for trading volume have received far less attention”.
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risk aversion. The recent papers of Herzegh and Prokaj [22] as well as Choi et al. [6]
consider power utility from consumption over an infinite horizon.

The paper is organized as follows. Section 2 introduces the portfolio choice prob-
lem and states the main results. The model’s main implications are discussed in
Sect. 3, and the main results are derived heuristically in Sect. 4. Section 5 concludes,
and all proofs are in the Appendices A, B and C.

2 Model and main result

Consider a market with a safe asset earning an interest rate r , i.e., S0
t = ert , and a

risky asset trading at ask (buying) price St following geometric Brownian motion,

dSt/St = (μ + r) dt + σdWt .

Here, W is a standard Brownian motion, μ > 0 is the expected excess return,4 and
σ > 0 is the volatility. The corresponding bid (selling) price is (1 − ε)St , where
ε ∈ (0,1) represents the relative bid-ask spread.

A self-financing trading strategy is a two-dimensional, predictable process (ϕ0, ϕ)

of finite variation, such that ϕ0
t and ϕt represent the number of units in the safe and

risky asset at time t , and the initial number of units is (ϕ0
0−, ϕ0−)=(ξ0, ξ)∈R

2+\{0,0}.
Writing ϕt = ϕ

↑
t − ϕ

↓
t as the difference between the cumulative number of shares

bought (ϕ↑
t ) and sold (ϕ↓

t ) by time t , the self-financing condition relates the dynamics
of ϕ0

t and ϕt via

dϕ0
t = − St

S0
t

dϕ
↑
t + (1 − ε)

St

S0
t

dϕ
↓
t . (2.1)

As in Dumas and Luciano [12], the investor maximizes the equivalent safe rate of
power utility, an optimization objective that also proved useful with constraints on
leverage (cf. Grossman and Vila [18]) and drawdowns (see Grossman and Zhou [19]).

Definition 2.1 A trading strategy (ϕ0
t , ϕt ) is admissible if its liquidation value is

positive, in the sense that

Ξ
ϕ
t = ϕ0

t S
0
t + (1 − ε)Stϕ

+
t − ϕ−

t St ≥ 0, a.s. for all t ≥ 0.

An admissible strategy (ϕ0
t , ϕt ) is long-run optimal if it maximizes the equivalent

safe rate

lim inf
T →∞

1

T
logE

[
(Ξ

ϕ
T )1−γ

] 1
1−γ (2.2)

over all admissible strategies, where 1 
= γ > 0 denotes the investor’s relative risk
aversion.5

4A negative excess return leads to a similar treatment, but entails buying as prices rise, rather than fall. For
the sake of clarity, the rest of the paper concentrates on the more relevant case of a positive μ.
5The limiting case γ → 1 corresponds to logarithmic utility, studied by Taksar et al. [37], Akian et al. [1],
as well as Gerhold et al. [17]. Theorem 2.2 remains valid for logarithmic utility by setting γ = 1.
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Our main result is the following:

Theorem 2.2 Suppose an investor with constant relative risk aversion γ > 0 trades
to maximize (2.2). Then, for small transaction costs ε > 0:

(i) (Equivalent safe rate)
For the investor, trading the risky asset with transaction costs is equivalent to

leaving all wealth in a hypothetical safe asset, which pays the higher equivalent
safe rate

ESR = r + μ2 − λ2

2γ σ 2
,

where the gap λ is defined in (iv) below.
(ii) (Liquidity premium)

Trading the risky asset with transaction costs is equivalent to trading a hypo-
thetical asset, at no transaction costs, with the same volatility σ , but with lower
expected excess return

√
μ2 − λ2. Thus, the liquidity premium is

LiPr = μ −
√

μ2 − λ2.

(iii) (Trading policy)
It is optimal to keep the fraction of wealth held in the risky asset within the

buy and sell boundaries

π− = μ − λ

γ σ 2
, π+ = μ + λ

γ σ 2
, (2.3)

where the risky weights π− and π+ are computed with ask and bid prices, re-
spectively.6

(iv) (Gap)
For μ/γσ 2 
= 1, the constant λ ≥ 0 is the unique value for which the solution

of the initial value problem

w′(x) + (1 − γ )w(x)2 +
(

2μ

σ 2
− 1

)
w(x) − γ

μ − λ

γ σ 2

μ + λ

γ σ 2
= 0,

w(0) = μ − λ

γ σ 2
,

also satisfies the terminal condition

w

(
log

u(λ)


(λ)

)
= μ + λ

γ σ 2
, where

u(λ)


(λ)
= 1

1 − ε

(μ + λ)(μ − λ − γ σ 2)

(μ − λ)(μ + λ − γ σ 2)
.

6This optimal policy is not necessarily unique, in that its long-run performance is also attained by trading
arbitrarily for a finite time, and then switching to the above policy. However, in related frictionless models,
as the horizon increases, the optimal (finite-horizon) policy converges to a stationary policy, such as the
one considered here (see e.g. Dybvig et al. [13]). Dai and Yi [8] obtain similar results in a model with
proportional transaction costs, formally passing to a stationary version of their control problem PDE.
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In view of the explicit formula for w(x,λ) in Lemma A.1 below, this is a scalar
equation for λ. For μ/γσ 2 = 1, the gap λ vanishes.

(v) (Trading volume)
Let μ 
= σ 2/2.7 Then share turnover, which is here defined as shares traded

d‖ϕ‖t = dϕ
↑
t + dϕ

↓
t divided by shares held |ϕt |, has the long-term average

ShTu = lim
T →∞

1

T

∫ T

0

d‖ϕ‖t

|ϕt |

= σ 2

2

(
2μ

σ 2
− 1

)⎛

⎝ 1 − π−

(u(λ)/
(λ))
2μ

σ2 −1 − 1
− 1 − π+

(u(λ)/
(λ))
1− 2μ

σ2 − 1

⎞

⎠ .

Wealth turnover, defined as wealth traded divided by wealth held, has the long-
term average8

WeTu = lim
T →∞

1

T

(∫ T

0

(1 − ε)St dϕ
↓
t

ϕ0
t S0

t + ϕt (1 − ε)St

+
∫ T

0

St dϕ
↑
t

ϕ0
t S

0
t + ϕtSt

)

= σ 2

2

(
2μ

σ 2
− 1

)⎛

⎝ π− (1 − π−)

(u(λ)/
(λ))
2μ

σ2 −1 − 1
− π+ (1 − π+)

(u(λ)/
(λ))
1− 2μ

σ2 − 1

⎞

⎠ .

(vi) (Asymptotics)
Setting π∗ = μ/γσ 2, the following expansions in terms of the bid-ask spread

ε hold:9

λ = γ σ 2
(

3

4γ
π2∗ (1 − π∗)2

)1/3

ε1/3 + O(ε),

ESR = r + μ2

2γ σ 2
− γ σ 2

2

(
3

4γ
π2∗ (1 − π∗)2

)2/3

ε2/3 + O(ε4/3),

LiPr = μ

2π2∗

(
3

4γ
π2∗ (1 − π∗)2

)2/3

ε2/3 + O(ε4/3),

π± = π∗ ±
(

3

4γ
π2∗ (1 − π∗)2

)1/3

ε1/3 + O(ε),

ShTu = σ 2

2
(1 − π∗)2π∗

(
3

4γ
π2∗ (1 − π∗)2

)−1/3

ε−1/3 + O(ε1/3),

WeTu = 2γ σ 2

3

(
3

4γ
π2∗ (1 − π∗)2

)2/3

ε−1/3 + O(ε1/3).

(2.4)

7The corresponding formulas for μ = σ 2/2 are similar but simpler; cf. Corollary C.3 and Lemma C.2.
8The number of shares is written as the difference ϕt = ϕ

↑
t − ϕ

↓
t of the cumulative shares bought (resp.

sold), and wealth is evaluated at trading prices, i.e., at the bid price (1 − ε)St when selling, and at the ask
price St when buying.
9Algorithmic calculations can deliver terms of arbitrarily high order.
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In summary, our optimal trading policy and its resulting welfare, liquidity pre-
mium and trading volume are all simple functions of investment opportunities (r , μ

and σ ), preferences (γ ) and the gap λ. The gap does not admit an explicit formula in
terms of the transaction cost parameter ε, but is determined through the implicit rela-
tion in (iv), and has the asymptotic expansion in (vi), from which all other asymptotic
expansions follow through the explicit formulas.

The frictionless markets with constant investment opportunities in (i) and (ii) of
Theorem 2.2 are equivalent to the market with transaction costs in terms of equivalent
safe rates. Nevertheless, the corresponding optimal policies are very different, requir-
ing no or incessant rebalancing in the frictionless markets of (i) and (ii), respectively,
whereas there is finite positive trading volume in the market with transaction costs.

By contrast, the shadow price, which is key in the derivation of our results, is
a fictitious risky asset, with price evolving within the bid-ask spread, for which the
corresponding frictionless market is equivalent to the transaction cost market in terms
of both welfare and the optimal policy.

Theorem 2.3 The policy in Theorem 2.2(iii) and the equivalent safe rate in Theo-
rem 2.2(i) are also optimal for a frictionless asset with shadow price S̃t , which always
lies within the bid-ask spread and coincides with the trading price at times of trading
for the optimal policy. The shadow price satisfies

dS̃t /S̃t = (
μ̃(Υt ) + r

)
dt + σ̃ (Υt ) dWt ,

for the deterministic functions μ̃(·) and σ̃ (·) given explicitly in Lemma B.2. The state
variable Υt = log(ϕtSt/(
(λ)ϕ0

t S
0
t )) represents the logarithm of the ratio of risky and

safe positions, which follows a Brownian motion with drift, reflected to remain in the
interval [0, log(u(λ)/
(λ))], i.e.,

dΥt = (μ − σ 2/2) dt + σ dWt + dLt − dUt .

Here, Lt and Ut are increasing processes, proportional to the cumulative purchases
and sales, respectively (cf. (B.9) below). In the interior of the no-trade region, that is,
when Υt lies in (0, log(u(λ)/
(λ))), the numbers of units of the safe and risky asset
are constant, and the state variable Υt follows Brownian motion with drift. As Υt

reaches the boundary of the no-trade region, buying or selling takes place so as to
keep it within [0, log(u(λ)/
(λ))].

In view of Theorem 2.3, trading with constant investment opportunities and pro-
portional transaction costs is equivalent to trading in a fictitious frictionless mar-
ket with stochastic investment opportunities, which vary with the location of the in-
vestor’s portfolio in the no-trade region.

3 Implications

3.1 Trading strategies

Equation (2.3) implies that trading boundaries are symmetric around the frictionless
Merton proportion π∗ = μ/γσ 2. At first glance, this seems to contradict previous
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studies (e.g. Liu and Loewenstein [25], Shreve and Soner [35]), which emphasize
how these boundaries are asymmetric, and may even fail to include the Merton pro-
portion. These papers employ a common reference price (the average of the bid and
ask prices) to evaluate both boundaries. By contrast, we express trading boundaries
using trading prices (i.e., the ask price for the buy boundary, and the bid price for
the sell boundary). This simple convention unveils the natural symmetry of the opti-
mal policy, and explains asymmetries as figments of notation—even in their models.
To see this, denote by π ′− and π ′+ the buy and sell boundaries in terms of the ask
price. These papers prove the bounds (Shreve and Soner [35, (11.4) and (11.6)] in an
infinite-horizon model with consumption, resp. Liu and Loewenstein [25, (22), (23)]
in a finite-horizon model)

π ′− <
μ

γσ 2
and

μ

γσ 2(1 − ε) + εμ
< π ′+ <

μ

1
2γ σ 2(1 − ε) + εμ

. (3.1)

With trading prices (i.e., substituting π− = π ′− and π+ = 1−ε
1−επ ′+

π ′+), these bounds

become

π− <
μ

γσ 2
< π+ < 2

μ

γσ 2
, (3.2)

whence the Merton proportion always lies between π− and π+.
To understand the robustness of our optimal policy to intermediate consumption,

we compare our trading boundaries with those obtained by Davis and Norman [9] as
well as Shreve and Soner [35] in the consumption model of Magill and Constantinides
[29]. The asymptotic expansions of Janeček and Shreve [23] make this comparison
straightforward.

With or without consumption, the trading boundaries coincide at the first order.
This fact has a clear economic interpretation: The separation between consumption
and investment, which holds in a frictionless model with constant investment op-
portunities, is a robust feature of frictionless models, because it still holds, at the
first order, even with transaction costs. Put differently, if investment opportunities
are constant, consumption has only a second order effect for investment decisions, in
spite of the large no-trade region implied by transaction costs. Figure 1 shows that
our bounds are very close to those obtained in the model of Davis and Norman [9]
for bid-ask spreads below 1 %, but start diverging for larger values.

3.2 Business time and mean-variance ratio

In a frictionless market, the equivalent safe rate and the optimal policy are

ESR = r + 1

2γ

(μ

σ

)2
and π∗ = μ

γσ 2
.

This rate depends only on the safe rate r and the Sharpe ratio μ/σ . Investors are
indifferent between two markets with identical safe rates and Sharpe ratios, because
both markets lead to the same set of payoffs, even though a payoff is generated by
different portfolios in the two markets. By contrast, the optimal portfolio depends
only on the mean-variance ratio μ/σ 2.
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Fig. 1 Buy (lower) and sell
(upper) boundaries (vertical
axis, as risky weights) as
functions of the spread ε, in
linear scale (upper panel) and
cubic scale (lower panel). The
plot compares the approximate
weights from the first term of
the expansion (dotted), the exact
optimal weights (solid), and the
boundaries found by Davis and
Norman [9] in the presence of
consumption (dashed).
Parameters are μ = 8 %,
σ = 16 %, γ = 5, and a zero
discount rate for consumption
(for the dashed curve)

With transaction costs, (2.4) shows that the asymptotic expansion of the gap per
unit of variance λ/σ 2 only depends on the mean-variance ratio μ/σ 2. Put differently,
holding the mean-variance ratio μ/σ 2 constant, the expansion of λ is linear in σ 2. In
fact, not only the expansion but also the exact quantity has this property, since λ/σ 2

in (iv) only depends on μ/σ 2.
Consequently, the optimal policy in (iii) only depends on the mean-variance ratio

μ/σ 2, as in the frictionless case. The equivalent safe rate, however, no longer solely
depends on the Sharpe ratio μ/σ : Investors are not indifferent between two markets
with the same Sharpe ratio, because one market is more attractive than the other if it
entails lower trading costs. As an extreme case, in one market it may be optimal to
leave all wealth in the risky asset, eliminating any need to trade. Instead, the formulas
in (i), (ii) and (v) show that like the gap per variance λ/σ 2, the equivalent safe rate,
the liquidity premium, and both share and wealth turnover only depend on μ/σ 2,
when measured per unit of variance. The interpretation is that these quantities are
proportional to business time σ 2t (compare Ané and Geman [2]), and the factor of
σ 2 arises from measuring them in calendar time.

In the frictionless limit, the linearity in σ 2 and the dependence on μ/σ 2 cancel,
and the result depends on the Sharpe ratio alone. For example, the equivalent safe
rate becomes10

r + σ 2

2γ

( μ

σ 2

)2 = r + 1

2γ

(μ

σ

)2
.

10The other quantities are trivial: the gap and the liquidity premium become zero, while share and wealth
turnover explode to infinity.
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Fig. 2 Upper panel: liquidity
premium (vertical axis) against
the spread ε, for risk aversion γ

equal to 5 (solid), 1 (long
dashed), and 0.5 (short dashed).
Lower panel: liquidity premium
(vertical axis) against risk
aversion γ , for spread
ε = 0.01 % (solid), 0.1 % (long
dashed), 1 % (short dashed),
and 10 % (dotted). Parameters
are μ = 8 % and σ = 16 %

3.3 Liquidity premium

The liquidity premium [7] is the amount of expected excess return the investor is
ready to forgo to trade the risky asset without transaction costs, so as to achieve the
same equivalent safe rate. Figure 2 plots the liquidity premium against the spread ε

(upper panel) and risk aversion γ (lower panel).
The liquidity premium is exactly zero when the Merton proportion π∗ is either zero

or one. In these two limit cases, it is optimal not to trade at all, hence no compensation
is required for the costs of trading. The liquidity premium is relatively low in the
regime of no leverage (0 < π∗ < 1), corresponding to γ > μ/σ 2, confirming the
results of Constantinides [7], who reports liquidity premia one order of magnitude
smaller than trading costs.

The leverage regime (γ < μ/σ 2), however, shows a very different picture. As risk
aversion decreases below the full-investment level γ = μ/σ 2, the liquidity premium
increases rapidly towards the expected excess return μ, as lower levels of risk aver-
sion prescribe increasingly high leverage. The costs of rebalancing a levered position
are high, and so are the corresponding liquidity premia.

The liquidity premium increases in spite of the increasing width of the no-trade
region for larger leverage ratios. In other words, even as a less risk averse investor tol-
erates wider oscillations in the risky weight, this increased flexibility is not enough
to compensate for the higher costs required to rebalance a more volatile portfo-
lio.
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Fig. 3 Trading volume (vertical
axis, annual fractions traded), as
share turnover (upper panel) and
wealth turnover (lower panel),
against risk aversion (horizontal
axis), for spread ε = 0.01 %
(solid), 0.1 % (long dashed),
1 % (short dashed), and 10 %
(dotted). Parameters are
μ = 8 % and σ = 16 %

3.4 Trading volume

In the empirical literature (cf. Lo and Wang [26] and the references therein), the most
common measure of trading volume is share turnover, defined as number of shares
traded divided by shares held or, equivalently, as the value of shares traded divided
by the value of shares held. In our model, turnover is positive only at the trading
boundaries, while it is null inside the no-trade region. Since turnover, on average,
grows linearly over time, we consider the long-term average of share turnover per unit
of time, plotted in Fig. 3 against risk aversion. Turnover is null at the full-investment
level γ = μ/σ 2, as no trading takes place in this case. Lower levels of risk aversion
generate leverage, and trading volume increases rapidly, like the liquidity premium.

Share turnover does not decrease to zero as the risky weight decreases to zero for
increasing risk aversion γ . On the contrary, the first term in the asymptotic formula
converges to a finite level. This phenomenon arises because more risk averse investors
hold less risky assets (reducing volume), but also rebalance more frequently (increas-
ing volume). As risk aversion increases, neither of these effects prevails, and turnover
converges to a finite limit.

To better understand these properties, consider wealth turnover, defined as the
value of shares traded, divided by total wealth (not by the value of shares held).11

11Technically, wealth is valued at the ask price at the buying boundary, and at the bid price at the selling
boundary.
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Share and wealth turnover are qualitatively similar for low risk aversion, as the risky
weight of wealth is larger, but they diverge as risk aversion increases and the risky
weight declines to zero. Then, wealth turnover decreases to zero, whereas share
turnover does not.

The levels of trading volume observed empirically imply very low values of risk
aversion in our model. For example, Lo and Wang [26] report in the NYSE-AMEX
an average weekly turnover of 0.78 % between 1962 and 1996, which corresponds to
an approximate annual turnover above 40 %. As Fig. 3 shows, such a high level of
turnover requires a risk aversion below 2, even for a very small spread of ε = 0.01 %.
Such a value cannot be interpreted as risk aversion of a representative investor, be-
cause it would imply a leveraged position in the stock market, which is inconsistent
with equilibrium. This phenomenon intensifies in the last two decades. As shown by
Fig. 4, turnover increases substantially from 1993 to 2010, with monthly averages of
20 % typical from 2007 on, corresponding to an annual turnover of over 240 %.

The overall implication is that portfolio rebalancing can generate substantial trad-
ing volume, but the model explains the trading volume observed empirically only
with low risk aversion and high leverage. In a numerical study with risk aversion of 6
and spreads of 2 %, Lynch and Tan [28] also find that the resulting trading volume is
too low, even allowing for labor income and predictable returns, and obtain a condi-
tion on the wealth-income ratio under which the trading volume has the same order
of magnitude as reported by empirical studies. Our analytical results are consistent
with their findings, but indicate that substantially higher volume can be explained
with lower risk aversion, even in the absence of labor income.

3.5 Volume, spreads and the liquidity premium

The analogies between the comparative statics of the liquidity premium and trading
volume suggest a close connection between these quantities. An inspection of the
asymptotic formulas unveils the relations

LiPr = 3

4
εShTu + O(ε4/3) and

(
r + μ2

2γ σ 2

)
− ESR = 3

4
εWeTu + O(ε4/3).

(3.3)
These two relations have the same meaning: The welfare effect of small transaction
costs is proportional to trading volume times the spread. The constant of proportion-
ality 3/4 is universal, that is, independent of both investment opportunities (r , μ, σ )
and preferences (γ ).

In the first formula, the welfare effect is measured by the liquidity premium, that
is, in terms of the risky asset. Likewise, trading volume is expressed as share turnover,
which also focuses on the risky asset alone. By contrast, the second formula consid-
ers the decrease in the equivalent safe rate and wealth turnover, two quantities that
treat both assets equally. In summary, if both welfare and volume are measured con-
sistently with each other, the welfare effect approximately equals volume times the
spread, up to the universal factor 3/4.

Figure 4 plots the spread, share turnover, and the liquidity premium implied by
the first equation in (3.3). As in Lo and Wang [26], the spread and share turnover are
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Fig. 4 Upper panel: share
turnover (top), spread (center),
and implied liquidity premium
(bottom) in logarithmic scale,
from 1992 to 2010. Lower
panel: monthly averages for
share turnover, spread, and
implied liquidity premium over
subperiods. Spread and turnover
are capitalization-weighted
averages across securities in the
monthly CRSP database with
share codes 10, 11 that have
non-zero bid, ask, volume and
shares outstanding

capitalization-weighted averages of all securities in the Center for Research on Se-
curity Prices (CRSP) monthly stocks database with share codes 10 and 11, and with
non-zero bid, ask, volume and share outstanding. While turnover figures are avail-
able before 1992, separate bid and ask prices were not recorded until then, thereby
preventing a reliable estimation of spreads for earlier periods.

Spreads steadily decline in the observation period, dropping by almost an order
of magnitude after stock market decimalization of 2001. At the same time, trading
volume substantially increases from a typical monthly turnover of 6 % in the early
1990s to over 20 % in the late 2000s. The implied liquidity premium also declines
with spreads after decimalization, but less than the spread, in view of the increase in
turnover. During the months of the financial crisis in late 2008, the implied liquidity
premium rises sharply, not because of higher volumes, but because spreads widen
substantially. Thus, although this implied liquidity premium is only a coarse estimate,
it has advantages over other proxies, because it combines information on both prices
and quantities, and is supported by a model.

3.6 Finite horizons

The trading boundaries in this paper are optimal for a long investment horizon, but
are also approximately optimal for finite horizons. The following theorem, which
complements the main result, makes this point precise.
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Theorem 3.1 Fix a time horizon T > 0. Then the finite-horizon equivalent safe rate
of any strategy (φ0

t , φt ) satisfies the upper bound

1

T
logE

[
(Ξ

φ
T )1−γ

] 1
1−γ ≤ r + μ2 − λ2

2γ σ 2
+ 1

T
log(φ0

0− + φ0−S0) + π∗
ε

T
+ O(ε4/3),

(3.4)

and the finite-horizon equivalent safe rate of our long-run optimal strategy (ϕ0
t , ϕt )

satisfies the lower bound

1

T
logE

[
(Ξ

ϕ
T )1−γ

] 1
1−γ ≥ r + μ2 − λ2

2γ σ 2
+ log(ϕ0

0− + ϕ0−S0)

T

−
(

2π∗ + ϕ0−S0

ϕ0
0− + ϕ0−S0

)
ε

T
+ O(ε4/3). (3.5)

For the same unlevered initial position (φ0− = ϕ0− ≥ 0, φ0
0− = ϕ0

0− ≥ 0), the equiva-
lent safe rates of (φ0

t , φt ) and of the optimal policy (ϕ0
t , ϕt ) for horizon T therefore

differ by at most

1

T

(
logE

[
(Ξ

φ
T )1−γ

] 1
1−γ − logE

[
(Ξ

ϕ
T )1−γ

] 1
1−γ

)
≤ (3π∗ + 1)

ε

T
+ O(ε4/3). (3.6)

This result implies that the horizon, like consumption, only has a second order ef-
fect on portfolio choice with transaction costs, because the finite-horizon equivalent
safe rate matches, at the leading order ε2/3, the equivalent safe rate of the stationary
long-run optimal policy. This result recovers in particular the first-order asymptotics
for the finite-horizon value function obtained by Bichuch [4, Theorem 4.1]. In ad-
dition, Theorem 3.1 provides explicit estimates for the correction terms of order ε

arising from liquidation costs. Indeed, r + μ2−λ2

2γ σ 2 is the maximum rate achieved by
trading optimally. The remaining terms arise due to the transient influence of the ini-
tial endowment, as well as the costs of the initial transaction, which takes place if
the initial position lies outside the no-trade region, and of the final portfolio liquida-
tion. These costs are of order ε/T because they are incurred only once, and hence
defrayed by a longer trading period. By contrast, portfolio rebalancing generates re-
curring costs, proportional to the horizon, and their impact on the equivalent safe rate
does not decline as the horizon increases.

Even after accounting for all such costs in the worst-case scenario, the bound in
(3.6) shows that their combined effect on the equivalent safe rate is lower than the
spread ε, as soon as the horizon exceeds 3π∗ + 1, that is, four years in the absence
of leverage. Yet, this bound holds only up to a term of order ε4/3, so it is worth
comparing it with the exact bounds in (B.16), (B.17), from which (3.4) and (3.5) are
obtained.

The exact bounds in Fig. 5 show that for typical parameter values, the loss in
equivalent safe rate of the long-run optimal strategy is lower than the spread ε even
for horizons as short as 18 months, and quickly declines to become ten times smaller,
for horizons close to ten years. In summary, the long-run approximation is a useful
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Fig. 5 Upper bound on the
difference between the long-run
and finite-horizon equivalent
safe rates (vertical axis), against
the horizon (horizontal axis), for
spread ε = 0.01 % (solid),
0.1 % (long dashed), 1 % (short
dashed), and 10 % (dotted).
Parameters are μ = 8 %,
σ = 16 %, γ = 5

modeling device that makes the model tractable, and the resulting optimal policies
are also nearly optimal even for horizons of a few years.

4 Heuristic solution

This section contains an informal derivation of the main results. Here, formal argu-
ments of stochastic control are used to obtain the optimal policy, its welfare, and their
asymptotic expansions.

4.1 Transaction costs market

For a trading strategy (ϕ0
t , ϕt ), again write the number of risky shares ϕt = ϕ

↑
t − ϕ

↓
t

as the difference of the cumulated units purchased and sold, and denote by

Xt = ϕ0
t S0

t , Yt = ϕtSt ,

the values of the safe and risky positions in terms of the ask price St . Then the self-
financing condition (2.1) and the dynamics of S0

t and St imply

dXt = rXt dt − St dϕ
↑
t + (1 − ε)St dϕ

↓
t ,

dYt = (μ + r)Yt dt + σYt dWt + St dϕ
↑
t − St dϕ↓.

Consider the maximization of expected power utility U(x) = x1−γ /(1 −γ ) from ter-
minal wealth at time T ,12 and denote by V (t, x, y) its value function, which depends

12For a fixed horizon T , one would need to specify whether terminal wealth is valued at bid, ask, or at
liquidation prices, as in Definition 2.1. In fact, since these prices are within a constant positive multiple
of each other, which price is used is inconsequential for a long-run objective. For the same reason, the
terminal condition for the finite-horizon value function does not have to be satisfied by the stationary value
function, because its effect is negligible.
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on time and the value of the safe and risky positions. Itô’s formula yields

dV (t,Xt , Yt ) = Vt dt + Vx dXt + Vy dYt + 1

2
Vyy d〈Y,Y 〉t

=
(

Vt + rXtVx + (μ + r)YtVy + σ 2

2
Y 2

t Vyy

)
dt

+ St (Vy − Vx)dϕ
↑
t + St

(
(1 − ε)Vx − Vy

)
dϕ

↓
t + σYtVy dWt ,

where the arguments of the functions are omitted for brevity. By the martingale
optimality principle of stochastic control (cf. Davis and Varaiya [10]), the process
V (t,Xt , Yt ) must be a supermartingale for any choice of the cumulative purchases
and sales ϕ

↑
t , ϕ

↓
t . Since these are increasing processes, it follows that Vy − Vx ≤ 0

and (1 − ε)Vx − Vy ≤ 0, that is,

1 ≤ Vx

Vy

≤ 1

1 − ε
.

In the interior of this “no-trade region”, where the number of risky shares remains
constant, the drift of V (t,Xt , Yt ) cannot be positive, and must become zero for the
optimal policy,13 so that

Vt + rxVx + (μ + r)yVy + σ 2

2
y2Vyy = 0 if 1 <

Vx

Vy

<
1

1 − ε
.

To simplify further, note that the value function must be homogeneous with respect
to wealth, and that—in the long run—it should grow exponentially with the horizon
at a constant rate. These arguments lead one to guess14 that

V (t, x, y) = x1−γ v(y/x)e−(1−γ )(r+β)t

for some β to be found. Setting z = y/x, the above equation reduces to

σ 2

2
z2v′′(z) + μzv′(z) − (1 − γ )βv(z) = 0 if 1 + z <

(1 − γ )v(z)

v′(z)
<

1

1 − ε
+ z.

(4.1)
Assuming that the no-trade region {z : 1 + z ≤ (1−γ )v(z)

v′(z) ≤ 1
1−ε

+ z} coincides with
some interval 
 ≤ z ≤ u to be determined, and noting that at 
 the left inequality
in (4.1) holds as equality, while at u the right inequality holds as equality, the follow-
ing free boundary problem arises:

σ 2

2
z2v′′(z) + μzv′(z) − (1 − γ )βv(z) = 0 if 
 < z < u, (4.2)

13Alternatively, this equation can be obtained from standard arguments of singular control; cf. Fleming
and Soner [14, Chap. VIII].
14This guess assumes that the cash position is strictly positive, Xt > 0, which excludes leverage. With

leverage, factoring out (−Xt )
1−γ leads to analogous calculations. In either case, under the optimal policy,

the ratio Yt /Xt always remains either strictly positive, or strictly negative, never to pass through zero.
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(1 + 
)v′(
) − (1 − γ )v(
) = 0, (4.3)
(
1/(1 − ε) + u

)
v′(u) − (1 − γ )v(u) = 0. (4.4)

These conditions are not enough to identify the solution, because they can be matched
for any choice of the trading boundaries 
,u. The optimal boundaries are the ones that
also satisfy the smooth-pasting conditions (cf. Beneš et al. [3], Dumas [11]), formally
obtained by differentiating (4.3) and (4.4) with respect to 
 and u, respectively. This
gives

(1 + 
)v′′(
) + γ v′(
) = 0,
(
1/(1 − ε) + u

)
v′′(u) + γ v′(u) = 0.

(4.5)

In addition to the reduced value function v, this system requires to solve for the excess
equivalent safe rate β and the trading boundaries 
 and u. Substituting (4.5) and (4.3)
into (4.2) yields (cf. Dumas and Luciano [12])

−σ 2

2
(1 − γ )γ


2

(1 + 
)2
v + μ(1 − γ )




1 + 

v − (1 − γ )βv = 0.

Setting π− = 
/(1 + 
), and factoring out (1 − γ )v, it follows that

−γ σ 2

2
π2− + μπ− − β = 0.

Note that π− is the risky weight when it is time to buy, and hence the risky position
is valued at the ask price. The same argument for u shows that the other solution of
the quadratic equation is π+ = u(1 − ε)/(1 + u(1 − ε)), which is the risky weight
when it is time to sell, and hence the risky position is valued at the bid price. Thus,
the optimal policy is to buy when the “ask” fraction falls below π−, sell when the
“bid” fraction rises above π+, and do nothing in between. Since π− and π+ solve the
same quadratic equation, they are related to β via

π± = μ

γσ 2
±
√

μ2 − 2βγ σ 2

γ σ 2
.

It is convenient to set β = (μ2 − λ2)/2γ σ 2, because β = μ2/2γ σ 2 without transac-
tion costs. We call λ the gap, since λ = 0 in a frictionless market, and, as λ increases,
all variables diverge from their frictionless values. Put differently, to compensate for
transaction costs, the investor would require another asset, with expected return λ and
volatility σ , which trades without frictions and is uncorrelated with the risky asset.15

With this notation, the buy and sell boundaries are just

π± = μ ± λ

γ σ 2
.

15Recall that in a frictionless market with two uncorrelated assets with returns μ1 and μ2, both with

volatility σ , the maximum Sharpe ratio is (μ2
1 +μ2

2)/σ 2. That is, squared Sharpe ratios add across orthog-
onal shocks.
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In other words, the buy and sell boundaries are symmetric around the classical fric-
tionless solution μ/γσ 2. Since 
(λ),u(λ) are identified by π± in terms of λ, it
now remains to find λ. After deriving 
(λ) and u(λ), the boundaries in the problem
(4.2)–(4.4) are no longer free, but fixed. With the substitution

v(z) = e(1−γ )
∫ log(z/
(λ))

0 w(y)dy, i.e., w(y) = 
(λ)eyv′(
(λ)ey)

(1 − γ )v(
(λ)ey)
,

the boundary problem (4.2)–(4.4) reduces to a Riccati ODE,

w′(y) + (1 − γ )w(y)2 +
(

2μ

σ 2
− 1

)
w(y) − γ

μ − λ

γ σ 2

μ + λ

γ σ 2
= 0, (4.6)

w(0) = μ − λ

γ σ 2
, (4.7)

w
(

log
(
u(λ)/
(λ)

))= μ + λ

γ σ 2
, (4.8)

where y ∈ [0, logu(λ)/
(λ)] and

u(λ)


(λ)
= 1

1 − ε

π+(1 − π−)

π−(1 − π+)
= 1

1 − ε

(μ + λ)(μ − λ − γ σ 2)

(μ − λ)(μ + λ − γ σ 2)
.

For each λ, the initial value problem (4.6), (4.7) has a solution w(λ, ·), and the correct
value of λ is identified by the second boundary condition (4.8).

4.2 Asymptotics

Equation (4.8) does not have an explicit solution, but it is possible to obtain an asymp-
totic expansion for small transaction costs (ε ∼ 0) using the implicit function theo-
rem. To this end, write the boundary condition (4.8) as f (λ, ε) = 0, where

f (λ, ε) = w
(
λ, log

(
u(λ)/
(λ)

))− μ + λ

γ σ 2
.

Of course, f (0,0) = 0 corresponds to the frictionless case. The implicit function the-
orem then suggests that around zero, λ(ε) follows the asymptotics λ(ε) ∼ −εfε/fλ,
but the difficulty is that fλ = 0, because λ is not of order ε. Heuristic arguments (cf.
Shreve and Soner [35, Remark B.3], Rogers [34]) suggest that λ is of order ε1/3.16

Thus, setting λ = δ1/3 and f̂ (δ, ε) = f (δ1/3, ε), and computing the derivatives of the

16Since λ is proportional to the width δ of the no-trade region, the question is why the latter is of order

ε1/3. The intuition is that a no-trade region of width δ around the frictionless optimum leads to transaction
costs of order ε/δ (because the time spent near the boundaries is approximately inversely proportional to
the length of the interval), and to a welfare cost of the order δ2 (because the region is centered around the
frictionless optimum, hence the linear welfare cost is zero). Hence, the total cost is of the order ε/δ + δ2,
and attains its minimum for δ = O(ε1/3).
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explicit formula for w(λ,x) (cf. Lemma A.1) shows that

f̂ε(0,0) = −μ(μ − γ σ 2)

γ 2σ 4
, f̂δ(0,0) = 4

3μ2σ 2 − 3γμσ 4
.

As a result, we obtain

δ(ε) ∼ −fε

fδ

ε = 3μ2(μ − γ σ 2)2

4γ 2σ 2
ε whence λ(ε) ∼

(
3μ2

(
μ − γ σ 2

)2

4γ 2σ 2

)1/3

ε1/3.

The asymptotic expansions of all other quantities then follow by Taylor expansion.

5 Conclusion

In a tractable model of transaction costs with one safe and one risky asset and constant
investment opportunities, we have computed explicitly the optimal trading policy, its
welfare, liquidity premium, and trading volume, for an investor with constant relative
risk aversion and a long horizon.

The trading boundaries are symmetric around the Merton proportion, if each
boundary is computed with the corresponding trading price. Both the liquidity pre-
mium and the trading volume are small in the unlevered regime, but become substan-
tial in the presence of leverage. For a small bid-ask spread, the liquidity premium
is approximately equal to share turnover times the spread, times the universal con-
stant 3/4.

Trading boundaries depend on investment opportunities only through the mean-
variance ratio. The equivalent safe rate, the liquidity premium, and the trading volume
also depend only on the mean-variance ratio if measured in business time.
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Černý, Mark Davis, Ioannis Karatzas, Ren Liu, Marcel Nutz, Scott Robertson, Johannes Ruf, Mihai Sirbu,
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Appendix A: Explicit formulas and their properties

We now show that the candidate w for the reduced value function and the quantity λ

are indeed well defined for sufficiently small spreads. The first step is to determine,
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for a given small λ > 0, an explicit expression for the solution w of the ODE (4.6),
complemented by the initial condition (4.7).

Lemma A.1 Let 0 < μ/γσ 2 
= 1. Then for sufficiently small λ > 0, the function

w(λ,y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(λ) tanh[tanh−1(b(λ)/a(λ))−a(λ)y]+(
μ

σ2 − 1
2 )

γ−1 ,

if γ ∈ (0,1) and μ

γσ 2 < 1 or γ > 1 and μ

γσ 2 > 1,

a(λ) tan[tan−1(b(λ)/a(λ))+a(λ)y]+(
μ

σ2 − 1
2 )

γ−1 ,

if γ > 1 and μ

γσ 2 ∈
(

1
2 − 1

2

√
1 − 1

γ
, 1

2 + 1
2

√
1 − 1

γ

)
,

a(λ) coth[coth−1(b(λ)/a(λ))−a(λ)y]+(
μ

σ2 − 1
2 )

γ−1 ,

otherwise,

with

a(λ) =
√
∣∣∣(γ − 1)

μ2 − λ2

γ σ 4
−
(1

2
− μ

σ 2

)2∣∣∣, b(λ) = 1

2
− μ

σ 2
+ (γ − 1)

μ − λ

γ σ 2
,

is a local solution of

w′(y) + (1 − γ )w2(y) +
(

2μ

σ 2
− 1

)
w(y) − μ2 − λ2

γ σ 4
= 0, w(0) = μ − λ

γ σ 2
.

(A.1)
Moreover, y �→ w(λ,y) is increasing (resp. decreasing) for μ/γσ 2 ∈ (0,1) (resp.
μ/γσ 2 > 1).

Proof The first part of the assertion is easily verified by taking derivatives, noticing
that the case distinctions distinguish between the different signs of the discriminant

(γ − 1)
μ2 − λ2

γ σ 4
−
(

1

2
− μ

σ 2

)2

of the Riccati equation (A.1) for sufficiently small λ. Indeed, in the second case the
discriminant is positive for sufficiently small λ. The first and third case correspond to
a negative discriminant, as well as b(λ)/a(λ) < 1 and b(λ)/a(λ) > 1, respectively,
for sufficiently small λ > 0, so that the function w is well defined in each case.

The second part of the assertion follows by inspection of the explicit formulas. �

Next, we establish that the crucial constant λ, which determines both the no-trade
region and the equivalent safe rate, is well defined.

Lemma A.2 Let 0 < μ/γσ 2 
= 1 and w(λ, ·) be defined as in Lemma A.1, and set


(λ) = μ − λ

γ σ 2 − (μ − λ)
, u(λ) = 1

1 − ε

μ + λ

γ σ 2 − (μ + λ)
.
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Then, for sufficiently small ε > 0, there exists a unique solution λ of

w

(
λ, log

u(λ)


(λ)

)
− μ + λ

γ σ 2
= 0. (A.2)

As ε ↓ 0, it has the asymptotics

λ = γ σ 2

(
3

4γ

(
μ

γσ 2

)2(
1 − μ

γσ 2

)2
)1/3

ε1/3

+ σ 2

(
(5 − 2γ )

10

μ

γσ 2

(
1 − μ

γσ 2

)
− 3

20

)

ε + O(ε4/3).

Proof The explicit expression for w in Lemma A.1 implies that w(λ,x) in
Lemma A.1 is analytic in both variables at (0,0). By the initial condition in (A.1), its
power series has the form

w(λ,x) = μ − λ

γ σ 2
+

∞∑

i=1

∞∑

j=0

Wijx
iλj ,

where expressions for the coefficients Wij are computed by expanding the explicit
expression for w. (The leading terms are provided after this proof.) Hence, the left-
hand side of the boundary condition (A.2) is an analytic function of ε and λ. Its power
series expansion shows that the coefficients of ε0λj vanish for j = 0,1,2, so that the
condition (A.2) reduces to

λ3
∑

i≥0

Aiλ
i = ε

∑

i,j≥0

Bij ε
iλj (A.3)

with (computable) coefficients Ai and Bij . This equation has to be solved for λ. Since

A0 = 4

3μσ 2(γ σ 2 − μ)
and B00 = μ(γ σ 2 − μ)

γ 2σ 4

are non-zero, divide (A.3) by
∑

i≥0 Aiλ
i , and take the third root, obtaining that, for

some Cij ,

λ = ε1/3
∑

i,j≥0

Cij ε
iλj = ε1/3

∑

i,j≥0

Cij (ε
1/3)3iλj .

The right-hand side is an analytic function of λ and ε1/3, so that the implicit function
theorem [21, Theorem I.B.4] yields a unique solution λ (for ε sufficiently small),
which is an analytic function of ε1/3. Its power series coefficients can be computed
at any order. �

In the preceding proof, we needed the first coefficients of the series expansion
of the analytic function on the left-hand side of (A.2). Calculating them is elemen-
tary, but rather cumbersome, and can be quickly performed with symbolic computa-
tion software. Following a referee’s suggestion, we present some expressions to aid
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readers who wish to check the calculations by hand, namely the derivatives of w at
(λ, x) = (0,0) that are needed to calculate the Taylor coefficients of (A.2) used in the
proof. Note that they are the same in all three cases of Lemma A.1, and given by

wx(0,0) = − μ2

γ 2σ 4
+ μ

γσ 2
, wλ(0,0) = − 1

γ σ 2
,

wxx(0,0) = 2μ3

γ 3σ 6
− 3μ2

γ 2σ 4
+ μ

γσ 2
, wxλ(0,0) = 2μ

γ 2σ 4
− 1

γ σ 2
,

wλλ(0,0) = 0, wλλλ(0,0) = 0,

wxxx(0,0) = − 6μ4

γ 4σ 8
+ 2μ4

γ 3σ 8
+ 12μ3

γ 3σ 6
− 4μ3

γ 2σ 6
− 7μ2

γ 2σ 4
+ 2μ2

γ σ 4
+ μ

γσ 2
,

wxxλ(0,0) = − 6μ2

γ 3σ 6
+ 2μ2

γ 2σ 6
+ 6μ

γ 2σ 4
− 2μ

γσ 4
− 1

γ σ 2
, wxλλ(0,0) = − 2

γ 2σ 4
.

Henceforth, consider small transaction costs ε > 0, and let λ denote the constant
in Lemma A.2. Moreover, set w(y) = w(λ,y), a = a(λ), b = b(λ), and u = u(λ),

 = 
(λ). In all cases, the function w can be extended smoothly to an open neigh-
borhood of [0, log(u/
)] (resp. [log(u/
),0] if μ/γσ 2 > 1). By continuity, the ODE
(A.1) then also holds at 0 and log(u/
); inserting the boundary conditions for w in
turn readily yields the following counterparts for the derivative w′:

Lemma A.3 Let 0 < μ/γσ 2 
= 1. Then, in all three cases,

w′(0) = μ − λ

γ σ 2
−
(

μ − λ

γ σ 2

)2

, w′
(

log
u




)
= μ + λ

γ σ 2
−
(

μ + λ

γ σ 2

)2

.

Appendix B: Shadow prices and verification

The key to justify the heuristic arguments of Sect. 4 is to reduce the portfolio choice
problem with transaction costs to another portfolio choice problem, without trans-
action costs. Here, the bid and ask prices are replaced by a single shadow price S̃t ,
evolving within the bid-ask spread, which coincides with one of the prices at times
of trading, and yields the same optimal policy and utility. Evidently, any frictionless
market with values in the bid-ask spread leads to more favorable terms of trade than
the original market with transaction costs. To achieve equality, the particularly un-
favorable shadow price must match the trading prices whenever its optimal policy
transacts.

Definition B.1 A shadow price is a frictionless price process S̃, evolving within the
bid-ask spread ((1 − ε)St ≤ S̃t ≤ St a.s.), such that there is an optimal strategy for S̃

which is of finite variation and which entails buying only when the shadow price S̃t

equals the ask price St , and selling only when S̃t equals the bid price (1 − ε)St .
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Once a candidate for such a shadow price is identified, long-run verification results
for frictionless models (cf. Guasoni and Robertson [20]) deliver the optimality of
the guessed policy. Further, this method provides explicit upper and lower bounds
on finite-horizon performance (cf. Lemma B.3 below), thereby allowing to check
whether the long-run optimal strategy is approximately optimal for a horizon T . Put
differently, it shows which horizons are long enough.

B.1 Derivation of a candidate shadow price

With a smooth candidate value function at hand, a candidate shadow price can be
identified as follows. By definition, trading at the shadow price should not allow the
investor to outperform the original market with transaction costs. In particular, if S̃t

is the value of the shadow price at time t , then allowing the investor to carry out at
single trade at time t at this frictionless price should not lead to an increase in utility.
A trade of ν risky shares at the frictionless price S̃t moves the investor’s safe position
Xt to Xt − νS̃t and her risky position (valued at the ask price St ) from Yt to Yt + νSt .
Then, recalling that the second and third arguments of the candidate value function V

from Sect. 4 were precisely the investor’s safe and risky positions, the requirement
that such a trade does not increase the investor’s utility is tantamount to

V (t,Xt − νS̃t , Yt + νSt ) ≤ V (t,Xt , Yt ), ∀ν ∈ R.

A Taylor expansion of the left-hand side for small ν then implies that we should have
−νS̃tVx + νStVy ≤ 0. Since this inequality must hold both for positive and negative
values of ν, it yields

S̃t = Vy

Vx

St . (B.1)

That is, the multiplicative deviation of the shadow price from the ask price should be
the marginal rate of substitution of risky for safe assets. In particular, this argument
immediately yields a candidate shadow price, once a smooth candidate value function
has been identified. For the long-run problem, we have derived in the previous section
the candidate value function

V (t, x, y) = e−(1−γ )(r+β)t x1−γ e(1−γ )
∫ log(y/
x)

0 w(y)dy .

Using this equality to calculate the partial derivatives in (B.1), the candidate shadow
price becomes

S̃t = w(Υt )


eΥt (1 − w(Υt ))
St , (B.2)

where Υt = log(Yt/
Xt ) denotes the logarithm of the risky-safe ratio, centered at its
value at the lower buying boundary 
. If this candidate is indeed the right one, then its
optimal strategy and value should coincide with their frictional counterparts derived
heuristically above. In particular, the optimal risky fraction π̃t should correspond to
the same numbers ϕ0

t and ϕt of safe and risky shares, if measured in terms of S̃t
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instead of the ask price St . As a consequence,

π̃t = ϕt S̃t

ϕ0
t S0

t + ϕt S̃t

=
ϕtSt

w(Υt )


eΥt (1−w(Υt ))

ϕ0
t S0

t + ϕtSt
w(Υt )


eΥt (1−w(Υt ))

=
w(Υt )

1−w(Υt )

1 + w(Υt )
1−w(Υt )

= w(Υt ),

where for the third equality we have used the fact that the risky-safe ratio ϕtSt/ϕ
0
t S0

t

can be written as 
eΥt by the definition of Υt .
We now turn to the corresponding frictionless value function Ṽ . By the definition

of a shadow price, it should coincide with its frictional counterpart V . In the friction-
less case, it is more convenient to factor out the total wealth X̃t = ϕ0

t S0
t + ϕt S̃t (in

terms of the frictionless risky price S̃t ) instead of the safe position Xt = ϕ0
t S

0
t , giving

Ṽ (t, X̃t ,Υt ) = V (t,Xt , Yt ) = e−(1−γ )(r+β)t X̃
1−γ
t

(
Xt

X̃t

)1−γ

e(1−γ )
∫ Υt

0 w(y)dy .

Since Xt/X̃t = 1−w(Υt ) by the definitions of S̃t and Υt , one can rewrite the last two
factors as

(
Xt

X̃t

)1−γ

e(1−γ )
∫ Υt

0 w(y)dy

= exp

(
(1 − γ )

[
log

(
1 − w(Υt )

)+
∫ Υt

0
w(y)dy

])

= (
1 − w(0)

)γ−1 exp

(
(1 − γ )

∫ Υt

0

(
w(y) − w′(y)

1 − w(y)

)
dy

)
.

Then, setting w̃ = w − w′
1−w

, the candidate long-run value function for S̃ becomes

Ṽ (t, x̃, ỹ) = e−(1−γ )(r+β)t x̃1−γ e(1−γ )
∫ ỹ

0 w̃(y) dy
(
1 − w(0)

)γ−1
.

Starting from the candidate value function and optimal policy for S̃, we can now
proceed to verify that they are indeed optimal for S̃, by adapting the argument from
[20]. But before we do that, we have to construct the respective processes.

B.2 Construction of the shadow price

The above heuristic arguments suggest that the optimal ratio Yt/Xt = ϕtSt/ϕ
0
t S0

t

should take values in the interval [
,u]. As a result, Υt = log(Yt/
Xt ) should be
[0, log(u/
)]-valued if the lower trading boundary 
 for the ratio Yt/Xt is positive.
If the investor shorts the safe asset to leverage her risky position, the ratio becomes
negative. In the frictionless case, and also for small transaction costs, this happens if
the risky weight μ/γσ 2 is bigger than 1. Then, the trading boundaries 
 ≤ u are both
negative, so that the centered log-ratio Υt should take values in [log(u/
),0]. In both
cases, trading should only take place when the risky-safe ratio reaches the boundaries
of this region. Hence, the numbers of safe and risky units ϕ0

t and ϕt should remain
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constant, and Υt = log(ϕt/
ϕ
0
t ) + log(St/S

0
t ) should follow a Brownian motion with

drift as long as Υt moves in (0, log(u/
)) (resp. in (log(u/
),0) if μ/γσ 2 > 1). This
argument motivates the definition of the process Υ as reflected Brownian motion, i.e.,

dΥt = (μ − σ 2/2) dt + σ dWt + dLt − dUt , Υ0 ∈ [0, log(u/
)], (B.3)

for continuous, adapted minimal processes L and U which are nondecreasing (resp.
non-increasing if μ/γσ 2 > 1) and increase (resp. decrease if μ/γσ 2 > 1) only on
the sets {Υ = 0} and {Υ = log(u/
)}, respectively. Starting from this process, the
existence of which is a classical result of [36], the process S̃ is defined in accordance
with (B.2).

Lemma B.2 Define

Υ0 =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 
ξ0S0
0 ≥ ξS0,

log(u/
), if uξ0S0
0 ≤ ξS0,

log[(ξS0/ξ
0S0

0)/
], otherwise,

(B.4)

and let Υ be defined as in (B.3), starting at Υ0. Then S̃ = S
w(Υ )


eΥ (1−w(Υ ))
, with w as in

Lemma A.1, has the dynamics

dS̃t /S̃t = (
μ̃(Υt ) + r

)
dt + σ̃ (Υt ) dWt ,

where μ̃(·) and σ̃ (·) are defined as

μ̃(y) = σ 2w′(y)

w(y)(1 − w(y))

(
w′(y)

1 − w(y)
− (1 − γ )w(y)

)
,

σ̃ (y) = σw′ (y)

w(y)(1 − w(y))
.

Moreover, the process S̃ takes values within the bid-ask spread [(1 − ε)S,S].

Note that the first two cases in (B.4) arise if the initial risky-safe ratio ξS0/(ξ
0S0

0)

lies outside of the interval [
,u]. Then we need to jump from the initial position
(ϕ0

0−, ϕ0−) = (ξ0, ξ) to the nearest boundary value of [
,u]. This transfer requires

the purchase resp. sale of the risky asset and hence the initial price S̃0 is defined to
match the buying resp. selling price of the risky asset.

Proof of Lemma B.2 The dynamics of S̃ result from Itô’s formula, the dynamics of
Υ , and the identity

w′′(y) = 2(γ − 1)w′(y)w(y) − (2μ/σ 2 − 1)w′(y), (B.5)

obtained by differentiating the ODE (A.1) for w with respect to y. Therefore it re-
mains to show that S̃t indeed takes values in the bid-ask spread [(1 − ε)St , St ]. To
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this end, notice that in view of the ODE (A.1) for w, the derivative of the function
g(y) := w(y)/
ey(1 − w(y)) is given by

g′(y) = w′(y) − w(y) + w2(y)


ey(1 − w(y))2
=

γ (w2 − 2 μ

γσ 2 w) + (μ2 − λ2)/γ σ 4


ey(1 − w(y))2
.

Due to the boundary conditions for w, the function g′ vanishes at 0 and log(u/
).
Differentiating its numerator gives 2γw′(y)(w(y) − μ

γσ 2 ). For μ

γσ 2 ∈ (0,1) (resp.
μ

γσ 2 > 1), w is increasing from μ−λ

γ σ 2 <
μ

γσ 2 to μ+λ

γ σ 2 >
μ

γσ 2 on [0, log(u/
)] (resp.

decreasing from μ+λ

γ σ 2 to μ−λ

γ σ 2 on [log(u/
),0]); hence, w′ is nonnegative (resp.

non-positive). Moreover, g′ starts at zero for y = 0 (resp. log(u/
)), then de-
creases (resp. increases), and eventually starts increasing (resp. decreasing) again,
until it reaches level zero again for y = log(u/
) (resp. y = 0). In particular, g′
is non-positive (resp. nonnegative), so that g is decreasing on [0, log(u/
)] (resp.
increasing on [log(u/
),0] for μ

γσ 2 > 1). Taking into account that g(0) = 1 and
g(log(u/
)) = 1 − ε, by the boundary conditions for w and the definition of u and 


in Lemma A.2, the proof is now complete. �

B.3 Verification

The long-run optimal portfolio in the frictionless “shadow market” with price process
S̃ can now be determined by adapting the argument in Guasoni and Robertson [20].
The first step is to determine finite-horizon bounds, which provide upper and lower
estimates for the maximal expected utility on any finite horizon T .

Lemma B.3 For a fixed time horizon T > 0, let β = μ2−λ2

2γ σ 2 and let the function w be

defined as in Lemma A.1. Then, for the shadow payoff X̃T corresponding to the risky
fraction π̃ (Υt ) = w(Υt ) and the shadow discount factor M̃T = e−rT E (− ∫ ·

0
μ̃
σ̃

dW)T ,
the following bounds hold true:

E
[
X̃

1−γ

T

]= X̃
1−γ

0 e(1−γ )(r+β)T Ê
[
e(1−γ )(q̃(Υ0)−q̃(ΥT ))

]
,

E
[
M̃

1− 1
γ

T

]γ = e(1−γ )(r+β)T Ê
[
e
( 1

γ
−1)(q̃(Υ0)−q̃(ΥT ))]γ

,

(B.6)

where q̃(y) := ∫ y

0 (w(z) − w′(z)
1−w(z)

)dz and Ê [·] denotes the expectation with respect

to the myopic probability P̂ , defined by

dP̂

dP
= E

(∫ ·

0

(
− μ̃(Υt )

σ̃ (Υt )
+ σ̃ (Υt )π̃(Υt )

)
dWt

)

T

.

Proof First note that μ̃, σ̃ and w are functions of Υt , but the argument is omitted
throughout to ease notation. Now, to prove (B.6), notice that the frictionless shadow
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wealth process X̃ with dynamics dX̃t

X̃t
= w dS̃t

S̃t
+ (1 − w)

dS0
t

S0
t

satisfies

X̃
1−γ

T = X̃
1−γ

0 e(1−γ )
∫ T

0 (r+μ̃w− σ̃2
2 w2) dt+(1−γ )

∫ T
0 σ̃w dWt .

Hence we get

X̃
1−γ

T = X̃
1−γ

0
dP̂

dP
e
∫ T

0 ((1−γ )(r+μ̃w− σ̃2
2 w2)+ 1

2 (− μ̃
σ̃

+σ̃w)2) dt+∫ T
0 ((1−γ )σ̃w−(− μ̃

σ̃
+σ̃w)) dWt .

After inserting the definitions of μ̃ and σ̃ , respectively, the second integrand simpli-
fies to (1 − γ )σ ( w′

1−w
− w). Similarly, the first integrand reduces to

(1 − γ )

(
r + σ 2

2

(
w′

1 − w

)2

− (1 − γ )σ 2 w′w
1 − w

+ (1 − γ )
σ 2

2
w2
)

.

In summary,

X̃
1−γ

T = X̃
1−γ

0
dP̂

dP

×e(1−γ )
∫ T

0 (r+ σ2
2 ( w′

1−w
)2−(1−γ )σ 2 w′w

1−w
+(1−γ ) σ2

2 w2) dt+(1−γ )
∫ T

0 σ( w′
1−w

−w)dWt .

(B.7)

The boundary conditions for w and w′ imply

w(0) − w′(0)

1 − w(0)
= w

(
log(u/
)

)− w′(log(u/
))

1 − w(log(u/
))
= 0;

hence, Itô’s formula yields the result that the minimal nondecreasing terms vanish in
the dynamics of q̃(Υt ), so that

q̃(ΥT ) − q̃(Υ0) =
∫ T

0

(
μ − σ 2

2

)(
w − w′

1−w

)
+ σ 2

2

(
w′ − w′′(1−w)+w′2

(1−w)2

)
dt

+
∫ T

0
σ
(
w − w′

1−w

)
dWt, (B.8)

because w − w′/(1 − w) vanishes on the sets where the processes L and U increase.
Substituting the second derivative w′′ according to the ODE (B.5) and using the re-
sulting identity to replace the stochastic integral in (B.7) yields

X̃
1−γ

T = X̃
1−γ

0
dP̂

dP
e(1−γ )

∫ T
0 (r+ σ2

2 w′+(1−γ ) σ2
2 w2+(μ− σ2

2 )w)dt e(1−γ )(q̃(Υ0)−q̃(ΥT )).

After inserting the ODE (A.1) for w, the first bound thus follows by taking the ex-
pectation.
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The argument for the second bound is similar. Plugging in the definitions of μ̃ and
σ̃ , the shadow discount factor M̃T = e−rT E (− ∫ ·

0
μ̃
σ̃

dW)T and the myopic probability

P̂ yields

M̃
1− 1

γ

T = e
1−γ
γ

∫ T
0

μ̃
σ̃

dWt+ 1−γ
γ

∫ T
0 (r+ μ̃2

2σ̃2 ) dt

= dP̂

dP
e

1−γ
γ

∫ T
0 (

μ̃
σ̃

− γ
1−γ

(− μ̃
σ̃

+σ̃w)) dWt+ 1−γ
γ

∫ T
0 (r+ μ̃2

2σ̃2 + γ
2(1−γ )

(− μ̃
σ̃

+σ̃w)2) dt

= dP̂

dP
e

1−γ
γ

∫ T
0 σ( w′

1−w
−w)dWt+ 1−γ

γ

∫ T
0 (r+ σ2

2 ( w′
1−w

)2−(1−γ )σ 2 w′w
1−w

+(1−γ ) σ2
2 w2) dt

.

Again replace the stochastic integral using (B.8) and the ODE (B.5), obtaining

M̃
1− 1

γ

T = dP̂

dP
e

1−γ
γ

∫ T
0 (r+ σ2

2 w′+(1−γ ) σ2
2 w2+(μ− σ2

2 )w)dt
e

1−γ
γ

(q̃(Υ0)−q̃(ΥT ))
.

By inserting the ODE (A.1) for w, taking the expectation, and raising it to power γ ,
the second bound follows. �

With the finite-horizon bounds at hand, it is now straightforward to establish that
the policy π̃ (Υ ) is indeed long-run optimal in the frictionless market with price S̃.

Lemma B.4 Let 0 < μ/γσ 2 
= 1 and let w be defined as in Lemma A.1. Then the
risky weight π̃(Υt ) = w(Υt ) is long-run optimal with equivalent safe rate r + β in
the frictionless market with price process S̃. The corresponding wealth process (in
terms of S̃t ), and the numbers of safe and risky units are given by

X̃t = (ξ0S0
0 + ξ S̃0)E

(∫ ·

0

(
r + w(Υs)μ̃(Υs)

)
ds +

∫ ·

0
w(Υs)σ̃ (Υs) dWs

)

t

,

ϕ0− = ξ, ϕt = w(Υt )X̃t /S̃t for t ≥ 0,

ϕ0
0− = ξ0, ϕ0

t = (
1 − w(Υt )

)
X̃t /S

0
t for t ≥ 0.

Proof The formulas for the wealth process and the corresponding numbers of safe
and risky units follow directly from the standard frictionless definitions. Now let M̃

be the shadow discount factor from Lemma B.3. Then standard duality arguments for
power utility (cf. Lemma 5 in Guasoni and Robertson [20]) imply that the shadow
payoff X̃

φ
T corresponding to any admissible strategy φ satisfies the inequality

E
[
(X̃

φ
T )1−γ

] 1
1−γ ≤ E

[
M̃

γ−1
γ

T

] γ
1−γ

.

This inequality in turn yields for any admissible strategy φ in the frictionless market
with shadow price S̃ the upper bound

lim inf
T →∞

1

(1 − γ )T
logE

[
(X̃

φ
T )1−γ

]≤ lim inf
T →∞

γ

(1 − γ )T
logE

[
M̃

γ−1
γ

T

]
.
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Since the function q̃ is bounded on the compact support of Υt , the second bound in
Lemma B.3 implies that the right-hand side equals r +β . Likewise, the first bound in
the same lemma implies that the shadow payoff X̃T (corresponding to the policy ϕ)
attains this upper bound, concluding the proof. �

The next lemma establishes that the candidate S̃ is indeed a shadow price.

Lemma B.5 Let 0 < μ/γσ 2 
= 1. Then the number of shares ϕt = w(Υt )X̃t /S̃t in
the portfolio π̃ (Υt ) in Lemma B.4 has the dynamics

dϕt

ϕt

=
(

1 − μ − λ

γ σ 2

)
dLt −

(
1 − μ + λ

γ σ 2

)
dUt . (B.9)

Thus ϕt increases only when Υt = 0, that is, when S̃t equals the ask price, and de-
creases only when Υt = log(u/
), that is, when S̃t equals the bid price.

Proof Itô’s formula and the ODE (B.5) yield

dw(Υt ) = −(1 − γ )σ 2w′(Υt )w(Υt ) dt + σw′(Υt ) dWt + w′(Υt )(dLt − dUt ).

Integrating ϕt = w(Υt )X̃t /S̃t by parts twice, inserting the dynamics of w(Υt ), X̃t , S̃t ,
and simplifying yields

dϕt

ϕt

= w′(Υt )

w(Υt )
d(Lt − Ut).

Since Lt and Ut only increase (resp. decrease when μ/γσ 2 > 1) on {Υt = 0} and
{Υt = log(u/
)}, respectively, the assertion now follows from the boundary condi-
tions for w and w′. �

The optimal growth rate for any frictionless price within the bid-ask spread must
be greater than or equal as in the original market with bid-ask process ((1 − ε)S,S),
because the investor trades at more favorable prices. For a shadow price, there is an
optimal strategy that only entails buying (resp. selling) stocks when S̃t coincides with
the ask resp. bid price. Hence, this strategy yields the same payoff when executed at
bid-ask prices, and thus is also optimal in the original model with transaction costs.
The corresponding equivalent safe rate must also be the same, since the difference
due to the liquidation costs vanishes as the horizon grows in (2.2).

Proposition B.6 For a sufficiently small spread ε, the strategy (ϕ0, ϕ) from
Lemma B.4 is also long-run optimal in the original market with transaction costs,
with the same equivalent safe rate.

Proof As ϕt only increases (resp. decreases) when S̃t = St (resp. S̃t = (1 − ε)St ),
the strategy (ϕ0, ϕ) is also self-financing for the bid-ask process ((1 − ε)S,S). Since
St ≥ S̃t ≥ (1 − ε)St and the number ϕt of risky shares is always positive, it follows
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that

ϕ0
t S

0
t + ϕt S̃t ≥ ϕ0

t S0
t + ϕ+

t (1 − ε)St − ϕ−
t St

≥
(

1 − ε

1 − ε
π̃(Yt )

)
(ϕ0

t S0
t + ϕt S̃t ). (B.10)

The shadow risky fraction π̃(Υt ) = w(Υt ) is bounded from above by the term
(μ + λ)/γ σ 2 = μ/γσ 2 + O(ε1/3). For a sufficiently small spread ε, the strategy
(ϕ0, ϕ) is therefore also admissible for ((1 − ε)S,S). Moreover, (B.10) then also
yields

lim inf
T →∞

1

(1 − γ )T
logE

[(
ϕ0

T S0
T + ϕ+

T (1 − ε)ST − ϕ−
T ST

)1−γ ]

= lim inf
T →∞

1

(1 − γ )T
logE

[
(ϕ0

T S0
T + ϕT S̃T )1−γ

]
, (B.11)

that is, (ϕ0, ϕ) has the same growth rate either with S̃ or with ((1 − ε)S,S).
For any admissible strategy (ψ0,ψ) for the bid-ask spread [(1 − ε)S,S], set

ψ̃0
t = ψ0

0− − ∫ t

0 S̃s/S
0
s dψs . Then (ψ̃0,ψ) is a self-financing trading strategy for S̃

with ψ̃0 ≥ ψ0. Together with S̃t ∈ [(1 − ε)St , St ], the long-run optimality of (ϕ0, ϕ)

for S̃ and (B.11), it follows that

lim inf
T →∞

1

T

1

1 − γ
logE

[(
ψ0

T S0
T + ψ+

T (1 − ε)ST − ψ−
T ST

)1−γ ]

≤ lim inf
T →∞

1

T

1

1 − γ
logE

[
(ψ̃0

T S0
T + ψT S̃T )1−γ

]

≤ lim inf
T →∞

1

T

1

1 − γ
logE

[
(ϕ0

T S0
T + ϕT S̃T )1−γ

]

= lim inf
T →∞

1

T

1

1 − γ
logE

[(
ϕ0

T S0
T + ϕ+

T (1 − ε)ST − ϕ−
T ST

)1−γ ]
.

Hence (ϕ0, ϕ) is also long-run optimal for ((1 − ε)S,S). �

The main result now follows by putting together the above statements.

Theorem B.7 For ε > 0 small and 0 < μ/γσ 2 
= 1, the process S̃ in Lemma B.2 is a
shadow price. A long-run optimal policy—both for the frictionless market with price
S̃ and in the market with bid-ask prices (1 − ε)S,S—is to keep the risky weight π̃t

(in terms of S̃t ) in the no-trade region

[π−,π+] =
[
μ − λ

γ σ 2
,
μ + λ

γ σ 2

]
.
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As ε ↓ 0, its boundaries have the asymptotics

π± = μ

γσ 2
±
(

3

4γ

(
μ

γσ 2

)2(
1 − μ

γσ 2

)2
)1/3

ε1/3

±
(

5 − 2γ

10γ

μ

γσ 2

(
1 − μ

γσ 2

)2

− 3

20γ

)

ε + O(ε4/3).

The corresponding equivalent safe rate is

r + β = r + μ2 − λ2

γ σ 2

= r + μ2

2γ σ 2
− γ σ 2

2

(
3

4γ

(
μ

γσ 2

)2(
1 − μ

γσ 2

)2
)2/3

ε2/3 + O(ε4/3).

If μ/γσ 2 = 1, then S̃ = S is a shadow price, and it is optimal to invest all the
wealth in the risky asset at time t = 0 and never to trade afterwards. In this case, the
equivalent safe rate is given by the frictionless value r +β = r +μ2/2γ σ 2 = r +μ/2.

Proof First let 0 < μ/γσ 2 
= 1. Optimality with equivalent safe rate r +β of the strat-
egy (ϕ0, ϕ) associated to π̃(Υ ) for S̃ has been shown in Lemma B.4. The asymptotic
expansions are an immediate consequence of the fractional power series for λ (cf.
Lemma A.2) and Taylor expansion.

Next, Lemma B.5 shows that S̃ is a shadow price process in the sense of Defini-
tion B.1. In view of the asymptotic expansions for π±, Proposition B.6 shows that for
small transaction costs ε, the same policy is also optimal, with the same equivalent
safe rate, in the original market with bid-ask prices (1 − ε)S,S.

Consider now the degenerate case μ/γσ 2 = 1. Then the optimal strategy in the
frictionless model S̃ = S transfers all wealth to the risky asset at time t = 0, never
to trade afterwards (ϕ0

t = 0 and ϕt = ξ + ξ0S0
0/S0 for all t ≥ 0). Hence it is of finite

variation, and the number of shares never decreases, and increases only at time t = 0,
where the shadow price coincides with the ask price. Thus S̃ = S is a shadow price.
For small ε, the remaining assertions then follow as in Proposition B.6 above. �

Next is the proof of Theorem 3.1, which establishes asymptotic finite-horizon
bounds. In fact, the proof yields exact bounds in terms of λ, from which the ex-
pansions in the theorem are obtained.

Proof of Theorem 3.1 Let (φ0, φ) be any admissible strategy starting from the initial
position (ϕ0

0−, ϕ0−). Then as in the proof of Proposition B.6, we have Ξ
φ
T ≤ X̃

φ
T

for the corresponding shadow payoff, that is, the terminal value of the wealth process
X̃φ = φ0

0 +φ0S̃0 +∫ ·
0 φs dS̃s corresponding to trading with φ in the frictionless market

with price process S̃. Hence Lemma 5 in Guasoni and Robertson [20] and the second
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bound in Lemma B.3 imply that

1

(1 − γ )T
logE

[
(Ξ

φ
T )1−γ

]

≤ r + β + 1

T
log(ϕ0

0− + ϕ0−S0) + γ

(1 − γ )T
log Ê

[
e
( 1

γ
−1)(q̃(Υ0)−q̃(ΥT ))]

.

(B.12)

For the strategy (ϕ0, ϕ) from Lemma B.5, we have Ξ
ϕ
T ≥ (1 − ε

1−ε
μ+λ

γ σ 2 )X̃
ϕ
T by the

proof of Proposition B.6. Hence the first bound in Lemma B.3 yields

1

(1 − γ )T
logE

[
(Ξ

ϕ
T )1−γ

]

≥ r + β + 1

T
log(ϕ0

0− + ϕ0−S̃0) + 1

(1 − γ )T
log Ê

[
e(1−γ )(q̃(Υ0)−q̃(ΥT ))

]

+ 1

T
log

(
1 − ε

1 − ε

μ + λ

γ σ 2

)
. (B.13)

To determine explicit estimates for these bounds, we first analyze the sign of the
function w̃ = w − w′

1−w
and hence the monotonicity of q̃(y) = ∫ y

0 w̃(z) dz. Whenever
w̃ = 0, i.e., w′ = w(1 − w), the derivative of w̃ is

w̃′ = w′ − w′′(1 − w) + w′2

(1 − w)2

= (1 − 2γ )w′w + 2μ

σ 2 w′

1 − w
−
(

w′

1 − w

)2

= 2γw

(
μ

γσ 2
− w

)
,

where we have used the ODE (B.5) for the second equality. Since w̃ vanishes at 0
and log(u/
) by the boundary conditions for w and w′, this shows that the behavior
of w̃ depends on whether the investor’s position is leveraged or not. In the absence
of leverage, μ/γσ 2 ∈ (0,1), w̃ is defined on [0, log(u/
)]. It vanishes at the left
boundary 0 and then increases since its derivative is initially positive by the initial
condition for w. Once the function w has increased to level μ/γσ 2, the derivative of
w̃ starts to become negative; as a result, w̃ begins to decrease until it reaches level
zero again at log(u/
). In particular, w̃ is nonnegative for μ/γσ 2 ∈ (0,1).

In the leverage case μ/γσ 2 > 1, the situation is reversed. Then, w̃ is defined on
[log(u/
),0] and, by the boundary condition for w at log(u/
), therefore starts to
decrease after starting from zero at log(u/
). Once w has decreased to level μ/γσ 2,
w̃ starts increasing until it reaches level zero again at 0. Hence w̃ is non-positive for
μ/γσ 2 > 1.

Now consider case 2 of Lemma A.1; the calculations for the other cases follow
along the same lines with minor modifications. Then μ/γσ 2 ∈ (0,1) and q̃ is positive
and increasing. Hence,

γ

(1 − γ )T
log Ê

[
e
( 1

γ
−1)(q̃(Υ0)−q̃(ΥT ))]≤ 1

T

∫ log(u/
)

0
w̃(y) dy (B.14)
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and likewise

1

(1 − γ )T
log Ê

[
e(1−γ )(q̃(Υ0)−q̃(ΥT ))

]≥ − 1

T

∫ log(u/
)

0
w̃(y) dy. (B.15)

Since w̃(y) = w(y) − w′/(1 − w), the boundary conditions for w imply

∫ log(u/
)

0
w̃(y) dy =

∫ log(u/
)

0
w(y)dy − log

μ − λ − γ σ 2

μ + λ − γ σ 2
. (B.16)

By elementary integration of the explicit formula in Lemma A.1 and using the bound-
ary conditions from Lemma A.3 for the evaluation of the result at 0 resp. log(u/
),
the integral of w can also be computed in closed form to give

∫ log(u/
)

0
w(y)dy =

μ

σ 2 − 1
2

γ − 1
log

(
1

1 − ε

(μ + λ)(μ − λ − γ σ 2)

(μ − λ)(μ + λ − γ σ 2)

)

+ 1

2(γ − 1)
log

(μ + λ)(μ + λ − γ σ 2)

(μ − λ)(μ − λ − γ σ 2)
. (B.17)

As ε ↓ 0, a Taylor expansion and the power series for λ then yield

∫ log(u/
)

0
w̃(y) dy = μ

γσ 2
ε + O(ε4/3).

Likewise,

log

(
1 − ε

1 − ε

μ − λ

γ σ 2

)
= − μ

γσ 2
ε + O(ε4/3),

as well as

log(ϕ0
0− + ϕ0−S̃0) ≥ log(ϕ0

0− + ϕ0−S0) − ϕ0−S0

ϕ0
0− + ϕ0−S0

ε + O(ε2).

The claimed bounds then follow from (B.12) and (B.14), resp. (B.13) and (B.15). �

Appendix C: Trading volume

As above, let ϕt = ϕ
↑
t − ϕ

↓
t denote the number of risky units at time t , written as

the difference of the cumulated numbers of shares bought resp. sold until t . Relative
share turnover, defined as the measure d‖ϕ‖t /|ϕt | = dϕ

↑
t /|ϕt |+dϕ

↓
t /|ϕt |, is a scale-

invariant indicator of trading volume (cf. Lo and Wang [26]). The long-term average
share turnover is defined as

lim
T →∞

1

T

∫ T

0

d‖ϕ‖t

|ϕt | .
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Similarly, relative wealth turnover is defined as the amount of wealth transacted di-
vided by current wealth,

(1 − ε)St dϕ
↓
t

/(
ϕ0

t S0
t + ϕt (1 − ε)St

)+ St dϕ
↑
t

/
(ϕ0

t S0
t + ϕtSt ),

where both quantities are evaluated in terms of the bid price (1 − ε)St when selling
shares resp. in terms of the ask price St when purchasing them. As above, the long-
term average wealth turnover is then defined as

lim
T →∞

1

T

(∫ T

0

(1 − ε)St dϕ
↓
t

ϕ0
t S0

t + ϕt (1 − ε)St

+
∫ T

0

St dϕ
↑
t

ϕ0
t S0

t + ϕtSt

)

.

Both of these limits admit explicit formulas in terms of the gap, which yield
asymptotic expansions for ε ↓ 0. The analysis starts with a preparatory result (cf.
Janeček and Shreve [23, Remark 4] for the case of driftless Brownian motion).

Lemma C.1 Let Υ be a diffusion on an interval [
,u], 0 < 
 < u, reflected at the
boundaries, i.e.,

dΥt = b(Υt ) dt + a(Υt )
1/2 dWt + dLt − dUt ,

where the mappings a(y) > 0 and b(y) are both continuous, and the continuous,
minimal nondecreasing processes L and U satisfy L0 = U0 = 0 and only increase on
{L = 
} and {U = u}, respectively. Denoting by ν(y) the invariant density of Υ , we
have the almost sure limits

lim
T →∞

LT

T
= a(
)ν(
)

2
, lim

T →∞
UT

T
= a(u)ν(u)

2
.

Proof For f ∈ C2([
,u]), write Lf (y) := b(y)f ′(y) + a(y)f ′′(y)/2. Then, by Itô’s
formula,

f (ΥT ) − f (Υ0)

T
= 1

T

∫ T

0
Lf (Υt ) dt + 1

T

∫ T

0
f ′(Υt )a(Υt )

1/2 dWt

+ f ′(
)LT

T
− f ′(u)

UT

T
.

Now, take f such that f ′(
) = 1 and f ′(u) = 0, and pass to the limit T → ∞. The
left-hand side vanishes because f is bounded; the stochastic integral also vanishes
by the Dambis–Dubins–Schwarz theorem, the law of the iterated logarithm, and the
boundedness of f ′. Thus, the ergodic theorem [5, II.35 and II.36] implies that

lim
T →∞

LT

T
= −

∫ u




Lf (y)ν(y) dy.

Now, the self-adjoint representation [33, VII.3.12] Lf = (af ′ν)′/2ν yields

lim
T →∞

LT

T
= −1

2

∫ u




(af ′ν)′(y) dy = a(
)ν(
)f ′(
)
2

− a(u)ν(u)f ′(u)

2
= a(
)ν(
)

2
.
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The other limit follows from the same argument, using f such that f ′(
) = 0 and
f ′(u) = 1. �

Lemma C.2 Let 0 < μ/γσ 2 
= 1 and, as in (B.3), let

Υt =
(

μ − σ 2

2

)
t + σWt + Lt − Ut

be Brownian motion with drift, reflected at 0 and log(u/
). Then if μ 
= σ 2/2, we
have the almost sure limits

lim
T →∞

LT

T
= σ 2

2

⎛

⎝
2μ

σ 2 − 1

(u/
)
2μ

σ2 −1 − 1

⎞

⎠ and lim
T →∞

UT

T
= σ 2

2

⎛

⎝
1 − 2μ

σ 2

(u/
)
1− 2μ

σ2 − 1

⎞

⎠ .

If μ = σ 2/2, then limT →∞ LT /T = limT →∞ UT /T = σ 2/(2 log(u/
)) a.s.

Proof First let μ 
= σ 2/2. Moreover, suppose that μ/γσ 2 ∈ (0,1). Then the scale
function and the speed measure of the diffusion Υ are

s(y) =
∫ y

0
exp

(
− 2

∫ ξ

0

μ − σ 2

2

σ 2
dζ
)

dξ = 1

1 − 2μ

σ 2

e
(1− 2μ

σ2 )y
,

m(dy) = 1[0,log(u/
)](y)
2dy

s′(y)σ 2
= 1[0,log(u/
)](y)

2

σ 2
e
(

2μ

σ2 −1)y
dy.

The invariant distribution of Υ is the normalized speed measure

ν(dy) = m(dy)

m([0, log(u/
)]) = 1[0,log(u/
)](y)

2μ

σ 2 − 1

(u/
)
2μ

σ2 −1 − 1
e
(

2μ

σ2 −1)y
dy.

For μ/γσ 2 > 1, the endpoints 0 and log(u/
) exchange their roles, and the result is
the same, up to replacing [0, log(u/
)] with [log(u/
),0] and multiplying the formula
by −1. Then the claim follows from Lemma C.1. In the case μ = σ 2/2 of driftless
Brownian motion, Υ has uniform stationary distribution on [0, log(u/
)] (resp. on
[log(u/
),0] if μ/γσ 2 > 1), and the claim again follows by Lemma C.1. �

Lemma C.2 and the formula for ϕt from Lemma B.5 yield the long-term average
trading volumes. The asymptotic expansions then follow from the power series for λ

(cf. Lemma A.2).

Corollary C.3 If μ/γσ 2 
= 1, the long-term average share turnover is

lim
T →∞

1

T

∫ T

0

d‖ϕ‖t

|ϕt | =
(

1 − μ − λ

γ σ 2

)
lim

T →∞
LT

T
+
(

1 − μ + λ

γ σ 2

)
lim

T →∞
UT

T
,
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and the long-term average wealth turnover is

lim
T →∞

1

T

(∫ T

0

(1 − ε)St dϕ
↓
t

ϕ0
t S0

t + ϕt (1 − ε)St

+
∫ T

0

St dϕ
↑
t

ϕ0
t S0

t + ϕtSt

)

= μ − λ

γ σ 2

(
1 − μ − λ

γ σ 2

)
lim

T →∞
LT

T
+ μ + λ

γ σ 2

(
1 − μ + λ

γ σ 2

)
lim

T →∞
UT

T
.

If μ/γσ 2 = 1, the long-term average share and wealth turnover both vanish.
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