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RESEARCH ARTICLE Open Access

Status quo of annotation of human disease
variants
Hanka Venselaar1,2, Franscesca Camilli1, Shima Gholizadeh1, Marlou Snelleman1, Han G Brunner2 and Gert Vriend1*

Abstract

Background: The ever on-going technical developments in Next Generation Sequencing have led to an increase in
detected disease related mutations. Many bioinformatics approaches exist to analyse these variants, and of those
the methods that use 3D structure information generally outperform those that do not use this information. 3D
structure information today is available for about twenty percent of the human exome, and homology modelling
can double that fraction. This percentage is rapidly increasing so that we can expect to analyse the majority of all
human exome variants in the near future using protein structure information.

Results: We collected a test dataset of well-described mutations in proteins for which 3D-structure information is
available. This test dataset was used to analyse the possibilities and the limitations of methods based on sequence
information alone, hybrid methods, machine learning based methods, and structure based methods.

Conclusions: Our analysis shows that the use of structural features improves the classification of mutations. This
study suggests strategies for future analyses of disease causing mutations, and it suggests which bioinformatics
approaches should be developed to make progress in this field.

Background
Recent years have seen an amazing improvement in Next
Generation Sequencing (NGS) techniques. As a result, an
increasing number of variations in the human genome,
being either benign variants or disease causing mutations,
have been found and have been stored in publicly access-
ible databases. dbSNP [1] is the primary database of
genetic variation in the complete human genome whereas
many Locus Specific Databases (LSDBs) [2] exist that are
established for the collection, analysis, and distribution of
disease related information. The Leiden Open-source
Variation Database (LOVD)-system enables everyone to
easily set up their own LSDB according to recommenda-
tions by the Human Genome Variation Society (HGVS)
[3]. Currently (November 2012), LOVD hosts more than
476,000 variants, of which more than 110,000 are unique,
in 5013 genes in 86 public LOVD installations. Other
initiatives such as the 1,000 Genomes Project [4], the
International HapMap project [5], PHENCODE [6], and
the Human Variome Project [7] collect the information

from these databases and combine it with information
from other sources, such as the UCSC Genome Browser
[8] or phenotypic information. Together, they aim to
create a comprehensive overview of variation in the hu-
man genome. dbSNP contains over 52 million SNPs,
(build 135, October 2011) and, as it has been estimated
that SNPs occur about every 200-300 base-pairs [9], this
number will continue to grow to ~15 million SNPs in any
individual genome.
More than 60% of the ~6000 well understood genetic

disorders that are related to DNA mutations in coding
regions are caused by point mutations [9], so that it
doesn’t come as a surprise that most bioinformatics
efforts in the human genetics field have been directed
towards them. Point mutations in proteins are the result
of mutations in the DNA, and they are the main engine
for evolution to arrive at novel functionalities. Most
mutations are unfavorable for the species and thus
weeded out over the eons. In a series of seminal articles
Dayhoff and co-workers [10] determined the likelihood
of each possible residue exchange and converted these
data into a log odd matrix that became the basis of
today’s popular programs such as Clustal [11] or BLAST
[12]. Dayhoff reasoned that residue exchanges that are
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seen more often in a large set of aligned sequences are
in general more likely to be observed as the result of
evolution. In 1974, Grantham [13], reasoned that the
likelihood that a mutation can be accepted in a protein
is related to the similarity between the wild-type and the
mutant residue type. He used three scores for important
amino acid features (c, p, v for composition, polarity,
and volume) to arrive at what is now commonly known
as the Grantham matrix from which one can obtain the
Grantham score for a mutation observed in a protein.
The use of a scorings matrix has a series of limitations
as was already hinted at in Grantham’s 1974 paper. One
problem is that matrix values are an average of all
possible mutation outcomes. A serine - > threonine
mutation generally is not likely to be catastrophic, unless
the serine is accidentally located in the active site of a
serine protease. Many mutations that are highly accept-
able at the surface of a protein can be devastating in its
core. And finally, Grantham and Dayhoff determined
their matrices based solely on information extracted
from water soluble proteins, which makes them less
applicable to mutations observed in membrane embed-
ded (parts of ) proteins. Asparagine, for example, is the
least conserved residue in many Dayhoff-type matrices,
but tends to be the most conserved amino acid in many
transmembrane (parts of ) proteins. The problems asso-
ciated with the use of scorings matrices were first
addressed by Ng and Henikoff who designed the SIFT
software [14] that uses a multiple sequence alignment
(MSA). SIFT is an improvement over the use of simple
scorings matrices because the multiple sequence align-
ment implicitly contains information about the location
of the studied mutation in the protein. The PANTHER
software is also based on a MSA, but uses position-
specific evolutionary conservation scores to predict
mutation severity [15]. Similarly, the SVM-profile method
in PhD-SNP uses MSA’s to obtain the frequencies of the
wild-type and mutant residue in order to classify the
variant [16]. Recently, methods that are species-specific
have been developed, which shows that there is still room
for improvement in the field of multiple sequence
alignments [17].
To go back to the serine - > threonine mutation

example, MSA-based programs like SIFT will see that
the active site serine is fully conserved while many other
serines in the molecule will be much more variable and
thus less likely to be deleterious if mutated. The main
reasoning behind the use of multiple sequence align-
ments is that if a residue is important in a protein, it is
also likely to be important in the homologous proteins
in many other species, and if something is important it
remains conserved. The corollary is that if it is con-
served, it must also be important and have a deleterious
effect if mutated.

Obviously, there must be more information that can
be extracted from multiple sequence alignments than
just the degree of conservation and many groups have
used machine learning techniques on data about known
mutations and SNPs to obtain better methods to predict
the severity of mutations. These methods indeed tend to
work better than MSA based methods [16,18,19] but
most machine learning methods have as disadvantage
that the way in which they reach their conclusion remains
unclear to the user.
SNPS&GO [20] combines support vector machine

derived information from PANTHER, sequence and
profile data, and GO terms. SNAP [19] predicts the func-
tional effects of a mutation using biophysical characte-
ristics of the mutated residue, evolutionary information
obtained from PSI-BLAST and SIFT, Pfam profiles, pre-
dicted structural features, and annotations when available.
MutPred [21] classifies mutations based on evolutionary
information and transition frequencies obtained from
SIFT and PSI-BLAST, Pfam profiles, and a series of
structural descriptors that can be predicted from the
sequence. SNPs3D [22,23] consists of two methods. The
structure-based method analyzes a series of structural
effects using the solved protein structure where possible.
The sequence-based method uses a MSA generated by
PSI-BLAST to build a sequence profile. Results are pre-
calculated for known variants. For newly submitted vari-
ants only the sequence-method is used. nsSNPanalyzer
[24] uses MSA’s from SIFT to obtain evolutionary infor-
mation and combines this with structural information for
the mutated residue and its environment as obtained from
the structure in the ASTRAL database.
It is common practice in bioinformatics to compare

methods when multiple methods exist that claim to
solve the same question, and human mutation analyses
are no exception. Thusberg et al. [18] evaluated nine
different mutation analysis methods using a test-set of
more than 40.000 pathogenic and neutral variants. Their
results indicated that performance of the prediction
methods can be affected by residue location, CATH
secondary structure classification of the protein, and
physicochemical properties of the wild-type and mutant
residue, such as hydrophobicity and accessibility. They
found that even though combining data from structure
and MSA does not always improve performance, two of
the best performing methods used a combination of
structural, functional, and MSA-derived information for
their predictions. However, there is no single method
that could be rated as the best by all parameters that
were used in this study.
Karchin [25] performed a test of 22 SNP annotation

servers using a small set of mutations that were reported
to be associated with disease in recently published articles.
The results reveal that many of the servers nowadays
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disagree with each other, provide results that are difficult
to understand, are biased towards nsSNPs, and do not
always use the most up-to-date version of the data.
Karchin concluded that a golden standard to train new
methods is required and new methods should focus on
users without bioinformatics background.
Ng and Henikoff [26] provide an overview of amino

acid substitution (AAS) prediction methods available on
the internet and their performances as reported in the
original articles. The authors mention that the perform-
ance of a method strongly depends on the data sets in
which the method was tested. Additionally, while com-
paring AAS methods one should also take the per-
centage of substitutions that can be predicted by the
method, the coverage, into account. Methods that are
purely based on 3D-structural features provide fewer
predictions than sequence-based methods because for
many proteins an experimentally solved structure is not
available yet. Ng and Henikoff [26] propose a CASP-like
experiment [27] to evaluate the performances of the
available AAS prediction methods.
Mooney [28] recognised that the quality of the method

will depend on the quality of the input data. Better char-
acterized genes will result in better quality predictions. If
only sequence data is available, SIFT is likely to provide
the best predictions, but in case a structure is available
PolyPhen will improve the analysis. According to Mooney,
better training sets will be required to improve the predic-
tion methods in the future.
In an extensive review Wang et al. compared 22 differ-

ent methods, including a few that were not developed
into freely-accessible webservers [29]. The authors sug-
gest strategies to improve future methods and emphasize
the fact that methods should be user-friendly and should
provide an interpretation of the prediction results. The
latter is what we focus on with HOPE.
A comparison of articles that compare methods

reveals that most methods predict 70-85% of all mutations
correctly, albeit that in most studies emphasis was on the
analysis of true and false positives while true and false
negatives did not in all studies get the attention they
deserved. It is also clear that the outcome of any compari-
son depends critically on the selected test dataset.
Sunyaev et al. [30,31] reasoned that the more know-

ledge one has about a protein’s sequence, structure, and
function, the more precise it should be possible to pre-
dict the effect of any mutation on that protein’s function.
Their PolyPhen [31] web server was the first of a new
generation of servers that can collect and combine infor-
mation from many sources to draw a conclusion about
the effect of a mutation. PolyPhen (and also the new
PolyPhen-2 server [32]) uses structural features obtained
from the 3D-structure (if available), sequence based
features such as the location of active sites, transmembrane

domains, and PSIC scores to classify a mutation as either
benign, possibly damaging, or probably damaging [30,32].
Along this line, other methods have been developed that
use predictions by other methods and combine them with
their own selection of features. FunSAV, for example, uses
machine-learning techniques to analyse mutations using a
wide selection of features [33]. In a second step the pre-
diction is combined with that of other well-known
methods such as SIFT [14] and SNAP [19]. Similarly,
SVM-3D is an extension of SNP&GO [20]. SVM-3D uses
PANTHER [15] to predict conservation scores and
combines them with structural features. The authors of
both FunSAV and SVM-3D compared their method to
other well-known tools that are either structure-based or
sequence-based and show that using structural informa-
tion improves the prediction of disease-related mutations.
Wainreb et al. [34] argued that incorporating 3D-features
is not always advantageous due to errors in the PDB, such
as crystallization artifacts or incorrect oligomers. Their
MuD-method elegantly solves this problem by allowing
the user to interact with the program, for example to
choose the correct multimer. A major disadvantage of the
aforementioned methods is that they all require the
availability of a solved protein structure.
We made the HOPE [35] software along similar lines,

with as an extension that HOPE automatically builds
homology models when no structure is available for the
disease causing protein while the structure has been
solved for any homolog. HOPE uses 3D-information
when possible, but can also use sequence-based predic-
tors in cases where no solved structure or modelling
template is available. Obviously, when PolyPhen and
HOPE are included in method comparisons then the
choice of test dataset is even more critical than already
mentioned in most of the aforementioned method com-
parison articles.
We wanted to know how well structure based mutation

analysis methods perform in those cases where structure
information is available. The rationale behind this ques-
tion is that the number of human proteins for which 3D
structure information is available, or can be obtained
through homology modelling is growing rapidly. It there-
fore seems highly likely that the methods of choice in the
near future will all be structure based. So by testing the
strengths of today’s structure based methods we can get a
glimpse of the options available to us soon, and by study-
ing their weaknesses we can find out which research is
needed to optimally analyse variants when -in the near
future- 3D structure information will be available for the
vast majority of the human exome.

Results and discussion
We collected a test dataset of 61 proteins in which 181
mutations were observed that were experimentally proven
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to be causally related to a human disease phenotype. We
extracted from the Expasy database [36] 46 (neutral) SNPs
in these same proteins. We assume that a SNP, that
is seen in more than 1% of the human population, is
not causally related to a disease phenotype, so that
we can call these 46 SNPs the negatives. We manually
analysed all mutations, and the conclusions of this study
are available at the HOPE results website [37]. We selec-
ted only mutations in proteins with a known 3D structure
or homolog.
Table 1 shows the results of 11 mutation analysis pro-

grams on 227 mutations (181 damaging + 46 SNPs). It
must be absolutely clear that this is not a comparison
from a consumer report point of view because we only
analyse mutations in proteins for which 3D information
is available, and that clearly aids those methods that
explicitly use this structure data. So, Table 1 is not a
consumer report but merely a glimpse of what can be
expected some years from now when structure informa-
tion is likely to be available for most human proteins. A
dataset of 61 proteins and 227 mutations obviously is
not large enough to be called representative, but today
we cannot do much better because on the one hand
there aren’t that many studies available yet that include
mutations in human proteins with a known structure,
and on the other hand, checking 227 mutations manu-
ally is already an enormous task. Fortunately, the trends
we see in Table 1 agree in general with the average of
the trends we find in a series of articles that all were per-
formed to obtain a statistically significant consumer report
[18,25,28,38], so although our conclusions might be off in
detail, they are most likely valid at a global level.
Table 1 and Figure 1 show a trend that using more infor-

mation leads to better results. The very simple Grantham
score performs poorest while the three methods that dir-
ectly or indirectly use structure information perform best.

Methods that augment MSAs with other information
perform a bit better than SIFT that only uses the MSA. It
is good to see that the two methods that make most use of
the 3D-structures (PolyPhen-2 and HOPE) predict true
positives all with a precision better than 90%. However,
most methods tend to have many false positive predictions
(with PANTHER even predicting 66,7% of the harmless
SNPs as fatal). Again, the small size of the dataset makes
that the methods cannot be compared in detail, but the
trend is clear.
HOPE and PolyPhen are similar in how they obtain

and analyse all data, but HOPE additionally writes a
report about each mutation in layman’s terms. We
compared these HOPE reports with the descriptions
provided by the authors of the corresponding articles
and with our own manual analyses. Among the muta-
tions described in dataset 1 we found 12 cases in which
the use of HOPE would have resulted in explanations of
the mutation effects that are more detailed and/or more
correct than those provided in the original articles. For
sake of brevity we will describe just two, striking exam-
ples that will illustrate the value of a structural analysis.
In both examples, a homology model was built using a
template structure that was available to the authors at
the time of submission of their article.
W177R in opsin: In this case, a mutation of a big and

hydrophobic residue into a charged residue at the
surface of a transmembrane helix is very likely to affect
the protein’s anchoring in the membrane. The authors,
however, state that the mutation will “cause a major
conformational change in the structure of the encoded
protein” [39]. This is probably not correct as the side
chain of the residue is not buried in the core of the
protein, but instead is located at the surface where it
interacts with the membrane lipids; arginine certainly will
not make similarly favorable interactions (see Figure 2).

Table 1 Comparison of 12 different methods for mutation analysis

Method Pathogenic mutants SNPs Based on

Grantham [13] 67,4 65,2 AA differences

PhD-SNP [16] 85,6 73,9 Conservation

Panther [15] 86,5 35,1 Conservation

SIFT [14] 87,8 64,4 Conservation

SNPs&GO [20] 72,5 77,8 Conservation, GO terms

SNAP [19] 83,4 56,5 Conservation, sequence predicted structure information

MutPred [21] 92,8 85,7 Conservation, sequence predicted structure information

nsSNPanalyzer [24] 74,5 67,6 Conservation, 3D structural features from homologs, AA properties

SNPs3D [22] 86,3 62,8 Conservation, structure information (pre-calculated from database)

PolyPhen-2 [32] 95,0 58,6 Conservation, 3D structural features from homologs, SwissProt annotations

HOPE [35] 96,1 76,1 Conservation, structural features from structure and homology models,
SwissProt features, predictions, AA properties

Results of the mutation analysis on 181 pathogenic and 46 neutral variants by 11 different methods. Pathogenic mutants and SNPs are shown in percentage of
correctly predicted cases. The numbers indicate percentages correctly (damaging for the pathogenic variants and benign for the SNPs) predicted mutations.
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The mutation will cause loss of hydrophobic interactions
between tryptophan and lipids and will therefore affect
the insertion or localization of the protein in the mem-
brane. This is in agreement with the fact that the mutated
protein was found to be retained in the ER. Most methods
analyse this mutation correctly, but HOPE additionally
explains that the mutation is located at the surface of a
transmembrane domain where external interactions (in
this case with lipids) are disturbed. PolyPhen-2 classifies
this mutation as probably damaging.

V359M in SPTC2: Valine is a hydrophobic residue that
contributes to the stability of the protein’s core by
making hydrophobic interactions. The homology model
of the protein shows that the residue is buried and that
a methionine will not fit at this position and thus will
disturb the protein core (see Figure 3). The authors state
that “The residue is a conserved amino acid residing in a
conserved domains, possibly indicating functionally
importance, located at the surface of the protein” [40].
HOPE’s use of the accessibility of the residue results in a
hypothesis about the effect of the mutation. In this case,
HOPE provides a highly plausible explanation for the
structural origin of the observed effect. PolyPhen-2 also
correctly predicts the mutation to be damaging.
Besides the two examples described above, we also

found many cases in which the HOPE report provided
extra information that underlined the author’s con-
clusions, simply by providing more details about the
mutation. For example, Bem et al. [41] mention that the
L24Q mutation in Rab18 will affect ligand binding. The
HOPE report adds that this is caused by a change in size
and hydrophobicity in the core of the protein which will
affect ligand-binding residues in the vicinity of the muta-
tion. In another case, Martinelli et al. [42] mention that
that mutation Q376P will disturb the interaction at the
RING-TKB interface. HOPE provides an extensive re-
port that explains why the introduction of a proline in a
helix and the loss of a hydrogen bond will affect the
interface. These examples illustrate that the HOPE
reports can provide more insight into the structural
effects of mutations.
We found a series of possible points of improvement

for all programs, including PolyPhen-2 and HOPE. For
example, HOPE failed to identify the damaging effect for

Figure 1 Performance of the mutation analysis servers grouped
by type. Shown is the average percentage of the correctly
predicted pathogenic mutants and neutral SNPs. The different
servers are divided in groups based on their underlying methods.
G = Grantham scores only, MSA =Multiple Sequence Alignment-
centred methods (PhD-SNP, Panther, and SIFT), ML =Machine
Learning based methods (SNPs&GO, SNAP, MutPred), 3D = structure
based methods (nsSNPanalyzer, SNP3D, PolyPhen-2, and HOPE).

Figure 2 Mutation W177R in opsin. The opsin molecule is shown
in grey, the side chain of wildtype tryptophan and mutant arginine
are shown in green and red, respectively. The picture illustrates that
the tryptophan residue is located at the surface where it can make
hydrophobic interactions with the membrane.

Figure 3 Mutation V359 in SPTC2. The SPTC2 molecule is shown
in grey, the side chain of wildtype valine and mutant methionine
are shown in green and red respectively. Other side chains of
surrounding residues are also shown in grey and indicate that the
residue is buried.
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3 mutations in the PRPS1 protein [43]. In all three cases,
the original residue was not conserved and the mutant
residue was also found at that particular position in the
multiple sequence alignment. E43D and D65N both
occur at the surface of the protein and were therefore
classified by HOPE as neutral mutations. The HOPE
program has an internal decision schedule that chooses
the best structure from the Protein Data Bank for its
analysis. When the PRPS1 sequence was submitted,
HOPE identified a monomeric protein of PRPS1 as the
best corresponding structure. Liu et al. [43] correctly
used the multimeric biological assembly for their
analysis and found that the mutated residues E43D
and D65N are both located at the interface with the
other subunits. Mutation of these residues will dis-
turb this interaction and affect the function of the
protein. The recent work by Wang et al. [44] beauti-
fully illustrated the importance of protein-protein
interactions for the analysis of disease-causing mu-
tations. We added the use of biologically relevant
protein complexes from the PISA-database in a new
version of the HOPE-server.
Another example where HOPE fails is the third muta-

tion in PRPS1. L129I, is predicted by HOPE as benign
because leucine and isoleucine have the same properties
and isoleucine was also observed at position 129 in the
multiple sequence alignment. According to the authors
this residue is located close to an allosteric binding site.
The mutation might disturb this site and therefore
affect the function of the protein. However, the exact
location of this allosteric site is only described in
literature, and not yet stored in any database that is
accessible to HOPE. These examples illustrate the
importance of correctly annotated and freely access-
ible data.

Conclusions
It was stated recently by Lindblom and Robinson [45]
that “the primary challenge in diagnostics in human
genetics is likely to shift from the mere identification of
human variation to the interpretation of these variants”.
This is underlined by a recent editorial in Nature Genetics
[46] that stresses the importance of “mechanistic inves-
tigation and further value” of disease-causing variants
described in articles submitted for publication. In order to
interpret the mechanistic effects of a disease-causing
mutation one needs to collect from a wide variety of
sources types of information such as conservation scores,
location of coding regions and splice sites, the occurrence
of other SNPs, functional sites in a protein, etc. Mutations
can cause disorders in a variety of ways. For instance, a
mutation that occurs in a regulatory motif could affect the
recognition of that motif by the transcription-complex
and thus affect transcription-regulation. A DNA mutation

can also affect a mRNA splice-site which can lead to
improperly functioning mRNA, change the localization
signals in the pre-peptides, or even affect degradation of
the protein which leads to aggregation of otherwise
correctly functioning proteins. The majority of all known
and characterized human inheritable disorders, however,
are the result of a point mutation in the protein-coding
region that leads to a protein that doesn’t function prop-
erly [47]. In order to fully understand the impact of a
point mutation on the structure and function of a protein
it is necessary to study the mutation in its spatial environ-
ment. Only by studying the 3D conformation of a protein
in detail can we see whether it, for example, disturbs the
structure of the active site, destabilizes a ligand-binding
pocket, changes a dimerization-surface, or disturbs a
disulphide bridge. In each case, the function of the protein
will be affected in a different way and this knowledge can
be beneficial for the development of drugs and therapies,
or otherwise contribute to the aforementioned “mechanis-
tic investigation and further value”. HOPE can meet the
demand for more insight in mutations and their mecha-
nisms as was proposed as a future research direction by
Thusberg et al. [18] and the HOPE reports can form the
starting point for new experiments that eventually lead to
the design of new drugs/therapies, or even the reposi-
tioning of ‘orphan-drugs’ to cure the disease. The HOPE
reports can be used by authors of articles that des-
cribe newly found mutations but also by the referees
of those articles.
In this study we focus on proteins with a known struc-

ture, reasoning that the rapid increase of the PDB will
soon make 3D structure information available for the
majority of the human exome. However, disease related
mutations have also been observed in natively unfolded
(parts) of proteins. Some examples are the Aβ, α-
synuclein and the prion protein that are major players in
Alzheimer’s and Parkinson’s diseases and prion diseases,
respectively. Like Aβ, α-synuclein is completely dis-
ordered, while prion proteins contain long disordered
regions [48]. Three point mutations in α-synuclein
(A30P [49], E49K [50], and A53T [51] are associated
with the early onset of Parkinson’s disease and were
shown to accelerate the α-synuclein aggregation (but not
necessarily fibrillation) in vitro [52]. The ELM database
[53] list a series of diseases related to mutations in so-
called linear motifs. Most of these linear motifs are
known located in NUPs. Examples are the Noonan [54],
Usher [55], Liddle [56,57], and Golabi-Ito-Hall [58,59]
syndrome. Surely, methods that base their variant ana-
lyses on protein structure information will need a special
module to deal with mutations in natively unfolded
(parts of) proteins.
The goal of this study was not to show which method

works better, but rather to find out how much better the
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methods work that use 3D structure information. To
prepare HOPE for the future, we still need to improve it
in many ways. Like most methods, HOPE suffers from a
too large number of false positive predictions. It there-
fore seems important to tune the software such that the
ratio true positives plus negatives over false positives
plus negatives gets optimised. This will undoubtedly
reduce the now very high number of true positives but
nevertheless increase the overall applicability of the
method. During this study we realised the difficulty of
separating loss of function from gain of function muta-
tions. For example, mutations in the N-SH2 domain in
PTPN11 were found to cause Noonan-syndrome. The
N-SH2-domein interacts with the PTP-domain and
thereby regulates the activity of PTPN11. Mutations in
this area disturbed the interaction between the domains
which results in an overall gain-of-function of the
protein. In contrast to loss of function-mutations, the
gain-of-function mutations do not have a detrimental
effect on the protein structure and/or function. These
mutation will remain difficult to classify automatically.
Another difficulty is that most methods can only address
one single point-mutation in one protein at a time while
most complex diseases, such as cancer, can be caused by
the combination of several common variants. Several
methods have been developed for the disease-specific
analysis of variations [60,61]. We expect that the auto-
matic analysis of common variants related to complex
disease will be a challenge for the future. With HOPE
we focus on the 60% [9] of all human genetic disorders
that are caused by one point mutation.
To improve HOPE further we will need to deal

with all the aforementioned problems. We will also
need to write special code for all kinds of (rare)
events, like mutations at regulatory important cleav-
age sites, not yet annotated post-translational modifi-
cation sites, or mutations at transient protein-protein
interaction sites. The rewards of these efforts will be
great because they will increase the percentage of
correctly analyzed mutations. This in turn will even
make HOPE a good tool for use in an emerging field
like personalized medicine.

Methods
Dataset
A test dataset of 115 mutations was extracted from 34
recent articles published in the journals Human Mutation,
Nature Genetics and the American Journal of Human
Genetics that describe the effect of a disease causing muta-
tion on the 3D-structure and/or function of the affected
protein (dataset 1). As a negative control we used the 46
SNPs in the same set of proteins which have been
annotated as non-damaging ‘polymorphisms’ at the
UniProtKB/Swiss-Prot variant pages and which could

be analysed using either the experimentally solved
structure or a homology model. Additionally, we
analysed 66 mutations that were studied manually in
previous, in-house projects (dataset 2). Both datasets
are available in Additional file 1: Table S1 and on the
HOPE results website [37].

Servers
All mutations were submitted to a series of servers.
Many different servers exist and we realized it would
simply be impossible to include them all in this study.
Therefore, we made a selection based on a previous
study by Thusberg et al [18], in which the authors
compared the performance of 9 well-known mutation
classifiers including: MutPred [21], nsSNPanalyzer [24],
Panther [15], PhD-SNP [16], PolyPhen [30], PolyPhen-2
[32], SIFT [14], SNAP [19] and SNPs&GO [20]. The
PolyPhen-server nowadays is offline, so we excluded it
from the list. We added SNPs3D [22] an PMUT [62] to
the list because they were used too in a series of
consumer report articles [14,25]. However, results from
PMUT yielded very low scores and the authors advised
us not to use the software as they see no possibility to
further maintain it. Therefore, we excluded this server
from further analysis. Grantham scores were obtained
using the table published in the original article [13]. The
results of our extensive manual analyses of the structural
and functional effects of the 181 disease causing mutants
and 46 neutral SNPs are available at the HOPE results
website [37].

Automatic analysis and comparison
SIFT, PolyPhen-2, SNPs&GO, SNAP, and PhD-SNP
produce simple to interpret answers that indicate
whether a mutation is pathogenic or not. To interpret
the results generated by SNPs3D, MutPred, Panther,
and the Grantham scores, we used the threshold for
pathogenicity as suggested by the authors in the
corresponding articles. (Grantham: score > 62 = pathogenic,
SNPs3D score > 0 = pathogenic, MutPred score > 0,5 = pa-
thogenic, Panther score < -3 = pathogenic). HOPE was not
designed to serve as a mutation classifier. To compare
HOPE reports with the outcome of the other three
methods the collected information was therefore trans-
lated to fatal/non-fatal. For instance, a report that men-
tions the loss of a salt-bridge at a conserved position
clearly describes a damaging mutation which we therefore
scored ‘pathogenic’ in this study. In contrast, a HOPE
report that mentioned a non-conserved residue at the
surface was scored as ‘benign’. At the HOPE results
website we show the quantitative ‘recipe’ used for
converting the HOPE reports into a binary pathogen-
icity score.
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