
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/126245

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/20078295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/126245

An Operational and Axiomatic Semantics for
Non-determinism and Sequence Points in C

Robbert Krebbers ∗

ICIS, Radboud University Nijmegen, The Netherlands
mail@robbertkrebbers.nl

Abstract
The C11 standard of the C programming language does not specify
the execution order of expressions. Besides, to make more effective
optimizations possible (e.g. delaying of side-effects and interleav-
ing), it gives compilers in certain cases the freedom to use even
more behaviors than just those of all execution orders.

Widely used C compilers actually exploit this freedom given by
the C standard for optimizations, so it should be taken seriously
in formal verification. This paper presents an operational and ax-
iomatic semantics (based on separation logic) for non-determinism
and sequence points in C. We prove soundness of our axiomatic se-
mantics with respect to our operational semantics. This proof has
been fully formalized using the Coq proof assistant.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Operational Semantics, Separation Logic, C Verifica-
tion, Interactive Theorem Proving, Coq

1. Introduction
The C programming language [16, 17] is not only among the most
popular programming languages in the world, but it is also among
the most dangerous programming languages. Due to weak static
typing and the absence of runtime checks, it is extremely easy for
C programs to have bugs that make the program crash or behave
badly in other ways. NULL-pointers can be dereferenced, arrays
can be accessed outside their bounds, memory can be used after it
is freed, etc. Furthermore, C programs can be developed with a too
specific interpretation of the language in mind, giving portability
and maintenance problems later.

Instead of forcing compilers to use a predefined execution order
for expressions (e.g. left to right), the C standard does not specify
it. This is a common cause of portability and maintenance prob-
lems, as a compiler may use an arbitrary execution order for each

∗ Part of this research has been done while the author was visiting INRIA-
Paris Rocquencourt, France.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2544-8/14/01.
http://dx.doi.org/10.1145/2535838.2535878

expression. Hence, to prove the correctness of a C program with
respect to an arbitrary compiler, one has to verify that each possi-
ble execution order is legal and gives the correct result. To make
more effective optimizations possible (e.g. delaying of side-effects
and interleaving), the C standard requires the programmer to ensure
that all execution orders satisfy certain conditions. If these condi-
tions are not met, the program may do anything. Let us take a look
at an example where one of those conditions is not met.

int main() {
int x; int y = (x = 3) + (x = 4);
printf("%d %d\n", x, y);

}

By considering all possible execution orders, one would naively
expect this program to print 4 7 or 3 7, depending on whether
the assignment x = 3 or x = 4 is executed first. However, the
sequence point restriction does not allow an object to be modified
more than once (or being read after being modified) between two
sequence points [16, 6.5p2]. A sequence point occurs for example
at the end ; of a full expression, before a function call, and after the
first operand of the conditional ? : operator [16, Annex C]. Hence,
both execution orders lead to a sequence point violation, and are
thus illegal. As a result, the execution of this program exhibits
undefined behavior, meaning it may do literally anything.

The C standard uses a “garbage in, garbage out” principle for
undefined behavior so that compilers do not have to generate (pos-
sibly expensive) runtime checks to handle corner cases. A com-
piler therefore does not have to generate code to test whether a se-
quence point violation occurs, but instead is allowed to assume no
sequence point violations will occur and can use this information to
perform more effective optimizations. Indeed, when compiled with
gcc -O1 (version 4.7.2), the above program prints 4 8, which does
not correspond to any of the execution orders.

Non-determinism in C is even more unrestrained than some may
think. That the execution order in e1 + e2 is unspecified, does not
mean that either e1 or e2 will be executed entirely before the other.
Instead, it means that execution can be interleaved; first a part of
e1, then a part of e2, then another part of e1, and so on. . . Hence,
the following expression is also allowed to print bac.

printf("a") + (printf("b") + printf("c"));

Many existing tools for C verification determinize the target
program in one of their first phases, and let the user verify the
correctness of the determinized version. When targeting a specific
compiler for which the execution order is known, and which does
not perform optimizations based on the sequence point restriction,
this approach works. But to prove the correctness of a program with
respect to an arbitrary compiler, this approach is insufficient even
if all possible execution orders are considered (see the counterex-
ample in gcc above).

Some verification tools perform syntactical checks to exclude
sequence points violations. However, as it is undecidable whether
a sequence point violation may occur [12], determinization com-
bined with such checks is either unsound (slides 13 and 15 of El-
lison and Rosu’s POPL 2012 talk [13] present some examples in
existing tools), or will exclude valid C programs.

Approach. As a step towards taking non-determinism and the se-
quence point restriction seriously in C verification, we extend the
small step operational and separation logic for non-local control
flow by Krebbers and Wiedijk [21] with non-deterministic expres-
sions with side-effects and the sequence point restriction. Sound-
ness of the axiomatic semantics is proved with respect to the oper-
ational semantics using the Coq proof assistant.

The straightforward approach to verification of programs with
non-determinism is to consider all possible execution orders. How-
ever, naively this may result in a combinatorial explosion, and also
it is not entirely clear how to use this approach in an axiomatic se-
mantics that also handles the sequence point restriction. Hence, we
take a different approach: we extend the axiomatic semantics with
a Hoare judgment {P} e {Q} for expressions. As usual, P is an
assertion called the precondition. Like Von Oheimb [29], we let the
postcondition Q be a function from values to assertions, because
expressions not only have side-effects but primarily yield a value.
Intuitively, the judgment {P} e {Q} means that if P holds for the
memory beforehand, and execution of e yields a value v, then Qv
holds for the resulting memory afterwards.

Besides partial program correctness, the judgment {P} e {Q}
ensures that e exhibits no undefined behavior due to the sequence
point restriction. To deal with the unrestrained non-determinism in
C, we observe that non-determinism in expressions corresponds to
a form of concurrency, which separation logic is well capable of
dealing with. Inspired by the rule for the parallel composition of
separation logic (see [27]), we propose the following kind of rules
for each operator }.

{Pl} el {Ql} {Pr} er {Qr}
{Pl ∗ Ql} el } er {Pr ∗ Qr}

The idea is that, if the memory can be split up into two disjoint parts
(using the separating conjunction ∗), in which the subexpressions
el respectively er can be executed safely, then the full expression
el } er can be executed safely in the whole memory.

The actual rules of the axiomatic semantics (see Section 5)
are more complicated. We have to deal with the return value, and
have to account for undefined behavior due to integer overflow. To
ensure no sequence point violations occur, we use separation logic
with permission accounting. Like in ordinary separation logic with
permissions [6], the singleton assertion becomes e1

γ7→ e2 where γ
is the permission of the object e2 at address e1, but we introduce a
special class of locked permissions.

The inference rules of our axiomatic semantics are set up in such
a way that reads and writes are only allowed for objects that are not
locked, and moreover such that objects become locked after they
have been written to. At constructs that contain a sequence point,
the inference rules ensure that these locks are released. Fractional
permissions [7] are used to allow memory that will not be written
to be shared by multiple subexpressions.

Our approach to handling non-determinism and sequence points
at the level of the operational semantics is inspired by Ellison and
Rosu [12] and Norrish [25]. We annotate each object in memory
with a permission, that is changed into a locked variant whenever
a write occurs. This permission is changed back into the unlocked
variant at the subsequent sequence point. Furthermore, we have a
special state undef for undefined behavior that is used for example
whenever a write to a locked object occurs.

To bring the operational semantics closer to our axiomatic se-
mantics, we make locks local to the subexpression where they were
created. That means, at a sequence point we only unlock objects
that have been locked by that particular subexpression, instead of
unlocking all objects. This modification lets some artificial pro-
grams that were legal by the C standard exhibit undefined behavior
(see page 5), but is not unsound for program verification.

An important part of both the operational and axiomatic seman-
tics is the underlying permission system. We give an abstract spec-
ification of it (as an extension of permission algebras [8]), and give
various instances of this abstraction.

Related work. Non-determinism, side-effects in expressions, and
sequence points have been treated numerous times in formal treat-
ments of C, but to our surprise, there is little evidence of work on
program verification and program logics for these concepts.

The first formalization of a significant part of C is due to Nor-
rish [25] using the proof assistant HOL4. An important part of his
work was to accurately formalize non-determinism and sequence
points as described by the C89 standard. He proved various Hoare
rules for statements to facilitate reasoning about C programs. To
reason about non-deterministic expressions, he proved that execu-
tion of sequence point free expressions is confluent [26]. This re-
sult is also useful for more efficient symbolic execution. Reasoning
about arbitrary C expressions was left as an open problem.

Papaspyrou [30] has given a denotational semantics for a part
of C89, including non-determinism and sequence points. He has
implemented his semantics in Haskell to obtain a tool that can be
used to explore all behaviors of a C program. Papaspyrou did not
consider an axiomatic semantics.

More recently, Ellison and Rosu [12] have defined an executable
semantics of the C11 standard using the K-framework. Their se-
mantics is very comprehensive and also describes non-determinism
and the sequence point restriction. Moreover, since their semantics
is effectively executable, it can be used as a debugger and an in-
terpreter to explore all behaviors of a C program. It has been thor-
oughly tested against C test suites, and has been used by Regehr et
al. to find bugs in widely used C compilers [31].

CompCert, a verified compiler C compiler by Leroy et al. writ-
ten in Coq [23], supports non-determinism in expressions in the
semantics of its source language. The interpreter by Campbell [9]
can be used to explore this non-determinism. Krebbers [18] has
extended CompCert’s source language and interpreter with the se-
quence point restriction in the style of Ellison and Rosu [12].

There have been various efforts to verify programs in CompCert
C. Appel and Blazy’s axiomatic semantics for CompCert [2] oper-
ates on an intermediate language in which expressions have been
determinized and side-effects have been removed. Their axiomatic
semantics is thus limited to verification of programs compiled with
CompCert, and will not work for arbitrary compilers. Herms [15]
has formalized a verification condition generator based on the Why
platform in Coq that can be used as a standalone tool via Coq’s ex-
traction mechanism. He proved the tool’s soundness with respect to
an intermediate language of CompCert, and it thus suffers from the
same limitations as Appel and Blazy’s work.

Black and Windley [5] have developed an axiomatic semantics
for C. They define inference rules to factor out side-effects of ex-
pressions by translating these into semantically equivalent versions.
Their axiomatic semantics seems rather limited, and soundness has
not been proven with respect to an operational semantics.

Extending an axiomatic semantics with a judgment for expres-
sions is not new, and has been done for example by Von Ohe-
imb [29] for Java in the proof assistant Isabelle. His judgments for
expressions are quite similar to ours, but his inference rules are not.
Since he considered Java, he was able to use that the execution or-
der of expressions is fully defined, which is not the case for C.

Contribution. Our contribution is fourfold:

• We define an abstract interface for permissions on top of which
the memory model is defined, and present an algebraic method
to reason about disjoint memories (Section 2).
• We define a small step operational semantics that handles non-

determinism and sequence points (Section 3 and 4).
• We give an axiomatic semantics that allows reasoning about

programs with non-determinism. This axiomatic semantics en-
sures that no undefined behavior (e.g. sequence point violations
and integer overflow) occurs (Section 5).
• We prove the soundness of our axiomatic semantics (Section 6).

This proof, together with some extensions (Section 7), has been
fully formalized using Coq (Section 8).

As this paper describes a large formalization effort, we often omit
details and proofs. The interested reader can find all details online
as part of our Coq formalization.

2. The memory and permissions
We model memories as finite partial functions from some count-
able set of memory indices (b ∈ index) to pairs of values and per-
missions. A value is either indet (which is used for uninitialized
memory and the return value of functions without explicit return),
a bounded integer, a pointer, or a NULL-pointer. Values are un-
typed (apart from integer values) and intentionally kept simple to
focus on the issues of the paper.

DEFINITION 2.1. A partial function from A to B is a (total) func-
tion from A to Bopt, where Bopt is the option type, defined as con-
taining either ⊥ or x for some x ∈ B. A partial function is called
finite if its domain is finite. The operation f [x := y] stores the value
y at index x, and f [x := ⊥] deletes the value at index x.

DEFINITION 2.2. Integer types and values are defined as:

τ ∈ inttype ::= signed char | unsigned char | signed int | . . .
v ∈ val ::= indet | intτ n | ptr b | NULL

For an integer value intτ n, the mathematical integer n ∈ Z should
be within the bounds of τ . A value v is true, notation istrue v, if it
is of the shape intτ n with n 6= 0, or ptr b. It is false, notation
isfalse v, if it is of the shape intτ 0 or NULL.

Notice that indet is neither true nor false, because at an actual
machine uninitialized memory has arbitrary contents.

In order to abstract from a concrete choice for a permission sys-
tem (no permissions, simple read/write/free permissions, fractional
permissions, etc.) in the definition of the memory, we define an
abstract interface for permissions. We organize permissions using
four different permission kinds (pkind):

• Free, which allows all operations (read, write, free),
• Write, which allows just reading and writing,
• Read, which allows solely reading, and
• Locked, which is temporarily used to lock an object between a

write to it and a subsequent sequence point.

This organization is inspired by Leroy et al. [24], but differs by
the fact that we abstract away from a concrete implementation and
allow much more complex permission systems (e.g. those based on
fractional permissions). These are needed for our separation logic.

We define a partial order on permission kinds as the reflexive-
transitive closure of Read ⊆Write, Locked ⊆Write and Write ⊆
Free. Since read-only memory cannot be used for writing, and
therefore cannot be locked, the kinds Locked and Read are incom-
parable on purpose.

DEFINITION 2.3. A permission system consists of a set P , binary
relations ⊆ and ⊥, binary operations ∪ and \, and functions
kind : P → pkind and lock, unlock : P → P , satisfying:

1. (P,⊆) is a partial order
2. ⊥ is symmetric
3. (P,∪) is a commutative semigroup
4. If x ⊆ y, then kind x ⊆ kind y
5. If x ⊥ y, then kind x = Read
6. If Write ⊆ kind x, then unlock (lock x) = x
7. If kind x 6= Locked, then unlock x = x
8. kind (unlock x) 6= Locked
9. If x ⊥ y and x′ ⊆ x, then x′ ⊥ y

10. If x ∪ y ⊥ z, then x ⊥ z and x ⊥ y ∪ z
11. If x ⊥ y, then x ⊂ x ∪ y
12. If x ⊆ y, then z ∪ x ⊆ z ∪ y
13. If z ⊥ x, z ⊥ y, and z ∪ x ⊆ z ∪ y, then x ⊆ y
14. If x ⊂ y, then x ⊥ y \ x and x ∪ y \ x = y

Permission systems extend permission algebras by Calcagno et
al. [8] by organizing permissions using kinds, and by having opera-
tions for locking and unlocking. Whereas∪ is a partial function in a
permission algebra, we require it to be a total function, and account
for partiality using a relation⊥ to describe that two permissions are
disjoint and may be joined. For permissions that are not disjoint, the
result of ∪ is not specified in the definition of a permission system.
This relieves us from dealing with partial functions in Coq. Lastly,
we require \ to be a primitive so we can lift it to an operation on
memories (see Definition 2.9) that is an actual Coq function.

Dockins et al. [11] remedy the issue of partially by defining ∪
as a relation instead of a function. But as for the operation \, we
prefer to use functions to ease reasoning about memories.

Rule 5 ensures that only permissions whose kind is Read are
disjoint. This is to ensure that only readable parts of disjoint mem-
ories may overlap.

Before we define memories, we define three instances of per-
mission systems. We begin with fractional permissions [7].

DEFINITION 2.4. Fractional permissions (z ∈ frac) are rational
numbers within (0, 1]. We let z1 ⊆ z2 iff z1 ≤ z2, and z1 ⊥ z2 iff
z1 + z2 ≤ 1. The operations are defined as:

z1 ∪ z2 :=

{
z1 + z2 if z1 + z2 ≤ 1

1 otherwise

z1 \ z2 :=

{
z1 − z2 if 0 < z1 − z2
1 otherwise

kind z :=

{
Write if z = 1

Read otherwise

lock z := unlock z := z

Notice that in the above definition we yield the dummy value 1
for z1 ∪ z2 if z1 6⊥ z2, and z1 \ z2 if z2 6⊆ z1.

To account for locks due to the sequence point restriction, we
extend fractional permissions with a special permission Seq.

DEFINITION 2.5. Sequenceable permissions are defined as:

γs ∈ seqfrac ::= Seq | UnSeq z

Disjointness ⊥ is inductively defined as:

1. if z1 ⊥ z2 then UnSeq z1 ⊥ UnSeq z2

The order ⊆ is inductively defined as:

1. Seq ⊆ Seq
2. if z1 ⊆ z2, then UnSeq z1 ⊆ UnSeq z2

The operations ∪ and \ are defined point-wise, and:

kind Seq := Locked

lock Seq := Seq

unlock Seq := UnSeq 1

kind (UnSeq z) := kind z

lock (UnSeq z) := Seq

unlock (UnSeq z) := UnSeq z

We extend sequenceable permissions to account for some sub-
tleties of C. First of all, we need to deal with objects that are de-
clared using the const qualifier (those are read-only). Secondly,
whereas dynamically allocated memory obtained via alloc can be
freed manually using free, memory of block scope variables can-
not be freed using free. Freeing it should therefore be prohibited
by the permission system.

DEFINITION 2.6. Full permissions are defined as:

γ ∈ perm ::= Freeable γs |Writable γs | ReadOnly z

Here, all relations and operations are defined point-wise by lifting
those on fractional and sequenceable permissions. We use the ab-
breviations F, W and R for the permissions Freeable (UnSeq 1),
Writable (UnSeq 1) and ReadOnly 1, respectively.

Given an arbitrary permission system with carrier P , the defini-
tion of the memory is now straightforward.

DEFINITION 2.7. Memories (m ∈ mem) are finite partial func-
tions from memory indices to pairs (v, x) with v ∈ val and x ∈ P .

First we define the operations that are used by the operational
semantics (Section 4) to interact with the memory.

DEFINITION 2.8. The memory operations are defined as:

perm b m :=

{
x if mb = (v, x)

⊥ otherwise

m !! b :=

{
v if mb = (v, x) and kind x 6= Locked

⊥ otherwise

m[b := v] :=

{
m[b := (v, x)] if mb = (v′, x)

m otherwise

alloc b v x m := m[b := (v, x)]

free b m := m[b := ⊥]

locks m := {b | mb = (v, x) ∧ kind x = Locked}

lock b m :=

{
m[b := (v, lock x)] if mb = (v, x)

m otherwise

unlock Ω m := {(b, (v, unlock x)) | b ∈ Ω ∧mb = (v, x)}
∪ {(b, (v, x)) | b /∈ Ω ∧mb = (v, x)}

Here, we have Ω ⊆fin index.

The function perm is used to obtain the permission of an object.
Allocation alloc b v x m of an object with value v and permis-
sion x should only be used with unused indices b in m (i.e. with
perm b m = ⊥). Likewise, a store [:=] and deallocation
using free, should only be used when the permissions are appropri-
ate. We will take care of these side-conditionals in the rules of the
operational semantics. Next, we define the memory operations that
are used by the axiomatic semantics (Section 5).

DEFINITION 2.9. The separation memory relations are defined as:

• We let m1 ⊥ m2 iff for all b, v1, x1, v2 and x2 with m1 b =
(v1, x2) and m2 b = (v2, x2) we have v1 = v2 and x1 ⊥ x2.
• We let m1 ⊆ m2 iff for all b, v1 and x1 with m1 b = (v, x1)

there exists an x2 ⊆ x1 with m2 b = (v, x2).

The separation memory operations are defined as:
m1 ∪ m2 := {(b, (v1, x1 ∪ x2)) | m1 b = (v1, x1) ∧

m2 b = (v2, x2)}
∪ {(b, (v1, x1)) | m1 b = (v1, x1) ∧m2 b = ⊥}
∪ {(b, (v2, x2)) | m1 b = ⊥ ∧m2 b = (v2, x2)}

m1 \ m2 := {(b, (v1, x1 \ x2)) | m1 b = (v1, x1) ∧
m2 b = (v2, x2) ∧ x2 ⊂ x1}

∪ {(b, (v1, x1)) | m1 b = (v1, x1) ∧m2 b = ⊥}

The union ∪ and empty memory ∅ form a monoid that is com-
mutative and cancellative for disjoint memories.

For the soundness proof of our axiomatic semantics (Section 6)
we often need to reason about preservation of disjointness under
memory operations. To ease that kind of reasoning, we define a
relation ~m1 ≡⊥ ~m2 that describes that the memories ~m1 and ~m2

behave equivalently with respect to disjointness.

DEFINITION 2.10. Disjointness of a list of memories ~m, notation
⊥ ~m, is inductively defined as:

1.⊥ []
2. If m ⊥

⋃
~m and⊥ ~m, then⊥ (m :: ~m)

Notice that⊥ ~m is stronger than merely having mi ⊥ mj for
each i 6= j. For example, using fractional permissions, we do not
have ⊥ [{(b, (v, 0.5))}, {(b, (v, 0.5))}, {(b, (v, 0.5))}], whereas
we clearly do have {(b, (v, 0.5))} ⊥ {(b, (v, 0.5))}.

DEFINITION 2.11. Equivalence of ~m1 and ~m2 with respect to
disjointness, notation ~m1 ≡⊥ ~m2, is defined as:

~m1 ≤⊥ ~m2 := ∀m.⊥ (m :: ~m1)→⊥ (m :: ~m2)

~m1 ≡⊥ ~m2 := ~m1 ≤⊥ ~m2 ∧ ~m2 ≤⊥ ~m1

It is straightforward to show that ≤⊥ is reflexive and transitive,
being respected by concatenation of sequences, and is being pre-
served by list containment. Hence, ≡⊥ is an equivalence relation,
a congruence with respect to concatenation of sequences, and also
being preserved by permutations. The following results allow us to
reason algebraically about disjoint memories.

FACT 2.12. If ~m1 ≤⊥ ~m2 and⊥ ~m1, then⊥ ~m2.

THEOREM 2.13. We have the following algebraic properties:

1. ∅ :: ~m ≡⊥ ~m
2. (m1 ∪ m2) :: ~m ≡⊥ m1 :: m2 :: ~m provided that m1 ⊥ m2

3.
⋃
~m1 :: ~m2 ≡⊥ ~m1 ++ ~m2 provided that⊥ ~m1

4. m[b := v] :: ~m ≡⊥ m :: ~m provided that perm b m = x for
some x that is not a fragment

5. {(b, (v1, x))} :: ~m ≡⊥ {(b, (v2, x))} :: ~m provided x is not a
fragment

6. m2 :: ~m ≡⊥ m1 :: (m2 \ m1) :: ~m provided that m1 ⊆ m2

7. m :: ~m ≤⊥ lock b m :: ~m provided that perm b m = x for
some x that is not a fragment

8. m :: ~m ≤⊥ unlock Ω m :: ~m

Here, a permission x is a fragment if there is a y such that x ⊥ y.

3. The language
In this section we define the syntax of expressions and statements.

DEFINITION 3.1. Expressions are defined as:

} ∈ binop ::= == | <= | + | - | * | / | % | . . .
e ∈ expr ::= xi | [v]Ω | e1 := e2 | f(~e) | load e | alloc

| free e | e1 } e2 | e1 ? e2 : e3 | (τ) e

Instead of [v]∅, we just write v.

Expressions may contain side-effects: assignments e1 := e2,
function calls f(~e), and allocation alloc and deallocation free e
of dynamic memory. Unary operators, prefix and postfix increment

and decrement, assignment operators, and the comma operator, are
omitted in this paper, but are included in the Coq formalization.
The logical operators are defined in terms of the conditional.

Values [v]Ω are annotated with a finite set Ω of locked memory
indices. This set is initially empty, but whenever a write is per-
formed, the written object is locked in memory and its memory
index is added to Ω (see Section 4). Whenever a sequence point
occurs, the locked objects in Ω will be unlocked in memory. The
operation locks e collects the annotated locks in e.

Stacks (ρ ∈ stack) are lists of memory indices. Variables are
De Bruijn indices, i.e. the variable xi refers to the ith memory
index on the stack. De Bruijn indices avoid us from having to
deal with shadowing due to block scope variables. Especially in
the axiomatic semantics this is useful, as we do not want to lose
information by a local variable shadowing an already existing one.
The stack contains references to the value of each variable instead
of the values itself so as to treat pointers to both local and allocated
storage in a uniform way. Execution of a variable xi thus consists
of looking up its address b at position i in the stack, and returning
a pointer ptr b to that address. Execution of load e consists of
evaluating e to ptr b and looking up b in the memory.

DEFINITION 3.2. Statements are defined as:

s ∈ stmt ::= e | skip | goto l | return e | block c s | s1 ; s2

| l : s | while(e) s | if (e) s1 else s2

The statement syntax is adapted from Krebbers and Wiedijk [21],
but we treat assignments and function calls as expression constructs
instead of statements constructs. Hence, assignments and function
calls can be nested, and can occur in the expressions of a return,
while, and conditional statement.

The construct block c s opens a block scope with one local
variable, where the boolean c specifies whether the variable is
const-qualified or not. The permission blockperm c is defined as:
blockperm True := R and blockperm False := W. Since we use
De Bruijn indices, the construct block c s is nameless.

4. Operational semantics
We define the semantics of expressions and statements by a small
step operational semantics. That means, computation is defined by
the reflexive transitive closure of a reduction relation _ on pro-
gram states. To define this reduction, we first define head reduction
of expressions, and then use evaluation contexts (as introduced by
Felleisen et al. [14]) to define reduction of whole programs. In the
remainder of this paper, we will use a memory instantiated with full
permissions (Definition 2.6).

DEFINITION 4.1. Given a stack ρ, head reduction of expressions
(e1,m1)_h (e2,m2) is inductively defined as:

1. (xi,m)_h (ptr b,m), in case ρ i = b
2. ([ptr b]Ω1 :=[v]Ω2 ,m)_h ([v]{b}∪Ω1∪Ω2

, lock b (m[b :=v])),
in case perm b m = γ and Write ⊆ kind γ

3. (load [ptr b]Ω,m)_h ([v]Ω,m), for any v with m !! b = v
4. (alloc,m)_h (ptr b, alloc b indet F m),

for any b with perm b m = ⊥
5. (free [ptr b]Ω,m)_h ([indet]Ω, free b m),

in case perm b m = γ and kind γ = Free
6. ([v1]Ω1}[v2]Ω2 ,m)_h ([v′]Ω1∪Ω2 ,m), in case v1 } v2 = v′

7. ([v]Ω ? e2 : e3,m)_h (e2, unlock Ω m), in case istrue v
8. ([v]Ω ? e2 : e3,m)_h (e3, unlock Ω m), in case isfalse v
9. ((τ) [v]Ω,m)_h ([v′]Ω,m), in case (τ) v = v′

If the stack ρ is not clear from the context, we write ρ ` (e1,m1)_h

(e2,m2). Note that picking an unused index for allocation in Rule 4
is non-deterministic.

In Rules 6 and 9, v1 } v2 and (τ) v are partial functions that
evaluate a binary operation on values and integer cast on values
respectively. These functions fail in case of integer overflow, or if
an operation is used wrongly (e.g. division by zero).

An assignment [ptr b]Ω1 := [v]Ω2 (Rule 2) not only stores the
value v at index b, but also locks b in the memory. Locking b
enforces the sequence point restriction, because consecutive reads
and writes to b will fail (as ensured by the side-condition of the
assignment rule, and Definition 2.8 of the !! operation). In
order to keep track of the lock of b, we add b to the set {b}∪Ω1∪Ω2.
Rules 7 and 8 for the conditional [v]Ω ? e2 : e3 model a sequence
point by unlocking the indices Ω in the memory, making future
reads and writes possible again. Other constructs with a sequence
point will be given a similar semantics (see Definition 4.10).

Like Ellison and Rosu [12], we implicitly use non-determinism
to capture undefined behavior due to sequence point violations. For
example, in x + (x = 10) only one execution order (performing
the read after the assignment) leads to a sequence point violation. In
Norrish’s semantics [25] both execution orders lead to a sequence
point violation as he also keeps track of reads.

Our treatment of sequence points assigns undefined behavior
to more programs than the C standard, and Ellison and Rosu do.
Ellison and Rosu release the locks of all objects at a sequence point,
whereas we just release the locks that have been created by the
subexpression where the sequence point occurred. For example, we
assign undefined behavior to the following program of Ellison.

int x, y, *p = &y;
int f() { if (x) { p = &x; } return 0; }
int main() {
return (x = 1) + (*p = 2) + f();

}

The execution order that leads to undefined behavior is (a) x = 1,
(b) call f which changes p to &x, (c) *p = 2. Here, the lock of
&x survives the function call. In the semantics of Ellison and Rosu,
this program has defined behavior, as the sequence point before the
function call releases all locks, so also the lock of &x.

We believe that this is a reasonable trade-off, because dealing
with sequence points locally instead of globally brings the oper-
ational semantics closer to the axiomatic semantics as separation
logic only talks about a local part of the memory. We believe only
artificial programs become illegal, because different function calls
in the same expression can still write to a shared part of the memory
(which is useful for memoization). For example, given

int f(int y) {
static int map[MAP_SIZE];
if (map[y]) { return map[y]; }
return map[y] = expensive_function(y);

}

the expression f(3) + f(3) has defined behavior according to our
semantics of sequence points.

Since the C standard does not allow interleaved execution of
function calls [16, 6.5.2.2p10], these are not described by the head
reduction _h. Instead, a function call changes the whole program
state to a state in which its body is executed. When execution of the
function body is finished, the result will be plugged back into the
whole expression. To describe this behavior, and to select a head
redex in an expression, we define expression contexts.

DEFINITION 4.2. Singular expression contexts are defined as:

Es ∈ ectxs ::= � := e | e := � | f(~e1,�, ~e2) | load � | free �
| �} e2 | e1 }� | � ? e2 : e3 | (τ)�

Expression contexts (E ∈ ectx) are lists of singular contexts. Given
an expression context E and an expression e, the substitution of e
for � in E , notation E [e], is defined as usual.

In the reduction of whole programs (Definition 4.10), we allow
E [e1] to reduce to E [e2] provided that (e1,m1) _h (e2,m2). To
enforce that the first operand of the conditional e1 ? e2 : e3 is
executed entirely before the others, it is essential that we omit the
contexts e1 ? � : e3 and e1 ? e2 : �.

The reduction of whole programs uses a zipper-like data struc-
ture, called a program context [21], to store the location of the sub-
statement that is being executed. Execution of the program occurs
by traversal through the program context in the direction down ↘,
up ↗, jump y, or top ↑↑. When a goto l statement is executed,
the direction is changed to y l, and the semantics performs a small
step traversal through the program context until the label l has been
reached. Program contexts extend the zipper by annotating each
block scope variable with its associated memory index, and fur-
thermore contain the full call stack of the program.

Program contexts can also be seen as a generalization of contin-
uations (as for example being used in CompCert [2, 23]). However,
there are some notable differences.

• Program contexts implicitly contain the stack, whereas a con-
tinuation semantics typically stores the stack separately.
• Program contexts also contain the part of the program that has

been executed, whereas continuations only contain the part that
remains to be done.
• Since the complete program is preserved, looping constructs

like the while statement do not have to duplicate code.

The fact that program contexts do not throw away the parts of the
statement that have been executed is essential for the treatment
of goto. Upon an invocation of a goto, the semantics traverses
through the program context until the corresponding label has been
found. During this traversal it passes all block scope variables that
go out of scope, allowing it to perform required allocations and
deallocations in a natural way. Hence, the point of this traversal is
not so much to search for the label, but much more to incrementally
calculate the required allocations and deallocations.

DEFINITION 4.3. Singular statement contexts are defined as:

Ss ∈ sctxs ::= � ; s2 | s1 ;� | l :� | while(e) �

| if (e) � else s2 | if (e) s1 else �

Given a singular statement context Ss and a statement s, substitu-
tion of s for � in Ss, notation Ss[s], is defined as usual.

A pair (~Ss, s) consisting of a list ~Ss of singular statement
contexts and a statement s forms a zipper for statements without
block scope variables. That means, ~Ss is a statement turned inside-
out that represents a path from the focused substatement s to the
top of the whole statement.

DEFINITION 4.4. Expression statement contexts and singular pro-
gram contexts are defined as:

Se ∈ sctxe ::= � | return � | while(�) s | if (�) s1 else s2

Ps ∈ ctxs ::= Ss | blockb c � | (Se, e) | resume E | params ~b

Program contexts (k ∈ ctx) are lists of singular program contexts.
Given an expression statement context Se and an expression e,
substitution of e for � in Se, notation Se[e], is defined as usual.

The previously defined program contexts will be used as follows
in the operational semantics.

• When entering a block scope block c s, the singular context
blockb c � is appended to the head of the program context. It
associates the block scope with its memory index b.
• When executing a statement construct Se[e] that contains an

expression e, the singular context (Se, e) is appended to the
head of the program context to keep track of the statement. We
need to keep track of the expression e as well so that it can be
restored when execution of the expression is finished.
• When executing a function call E [f(~v)], the singular context

resume E is appended to the head of the program context. When
the function returns with value v, execution of the expression
E [v] with the return value v plugged in, is continued.

• When a function body is entered, the singular context params ~b
is appended to the head of the program context. It contains a list
~b of memory indices of the function parameters.

As program contexts implicitly contain the stack, we define a
function to extract it from them.

DEFINITION 4.5. The corresponding stack getstack k of a pro-
gram context k is defined as:

getstack (Ss :: k) := getstack k

getstack (blockb c � :: k) := b :: getstack k

getstack ((Se, e) :: k) := getstack k

getstack (resume E :: k) := []

getstack (params ~b :: k) := ~b ++ getstack k

We define getstack (resume E :: k) as [] instead of getstack k,
as otherwise it would be possible to refer to the local variables of
the calling function.

DEFINITION 4.6. Directions, focuses and program states are de-
fined as:

d ∈ direction ::= ↘ | ↗ | y l | ↑↑ v
φ ∈ focus ::= (d, s) | e | call f ~v | return v | undef

S ∈ state ::= S(k, φ, m)

A program state S(k, φ, m) consists of a program context k,
the part of the program φ that is focused, and the memory m.
Similar to Leroy’s Cmedium [23], we have five kinds of states:

• (d, s) for execution of a statement s in direction d,
• e for execution of an expression e,

• call f ~v for calling a function f with arguments v,
• return v for returning from a function with return value v, and

• undef to capture undefined behavior.

We have additional states for execution of expressions and un-
defined behavior. The semantics of Leroy’s Cminor [22], and the
semantics of Krebbers and Wiedijk [21], do not have such states,
because their expressions are deterministic and side-effect free.
They capture undefined behavior by letting the reduction get stuck,
whereas that will not work in the presence of non-determinism.

DEFINITION 4.7. The relation allocparams γ m1
~b ~v m2 allo-

cates fresh blocks ~b for function parameters ~v with permission γ
(non-deterministically). It is inductively defined as:

1. allocparams γ m [] [] m

2. If allocparams γ m1
~b ~v m2 and perm b m2 = ⊥, then

allocparams γ m1 (b :: ~b) (v :: ~v) (alloc b v γ m2)

DEFINITION 4.8. An expression is a redex if it is of the following
shape: (a) xi, (b) [v1]Ω1 := [v2]Ω2 , (c) f([v1]Ω1 , . . . , [v2]Ω2),
(d) load [v]Ω, (e) alloc (f) free [v]Ω, (g) [v1]Ω1 } [v2]Ω2 ,
(h) [v]Ω ? e2 : e3, or (i) (τ) [v]Ω.

DEFINITION 4.9. An expression is safe in stack ρ and memory m
if: (a) it is of the shape f(~e), or (b) there is an expression e′ and
memory m′ such that ρ ` (e,m)_h (e′,m′).

DEFINITION 4.10. Given a finite partial function δ mapping func-
tion names to statements, the small step reduction S1 _ S2 is
inductively defined as:

1. For simple statements:
(a) S(k, (↘, skip), m) _ S(k, (↗, skip), m)

(b) S(k, (↘, goto l), m) _ S(k, (y l, goto l), m)

(c) S(k, (↘, Se[e]), m) _ S((Se, e) :: k, e, m)

2. For expressions:
(a) S(k, E[e1], m1) _ S(k, E[e2], m2)

for any e2 and m2 s.t. getstack k ` (e1,m1)_h (e2,m2)

(b) S(k, (↘, E[f([v0]Ω0
, . . . , [vn]Ωn)]), m) _

S(resume E :: k, call f ~v, unlock (
⋃ ~Ω) m)

(c) S(k, (↘, E[e]), m) _ S(k, undef, m),
provided that e is an unsafe redex

3. For finished expressions:
(a) S((�, e) :: k, [v]Ω, m) _ S(k, (↗, e), unlock Ω m)

(b) S((return �, e) :: k, [v]Ω, m) _
S(k, (↑↑ v, return e), unlock Ω m)

(c) S((while(�) s, e) :: k, [v]Ω, m) _
S(while(e) � :: k, (↘, s), unlock Ω m)
provided that istrue v

(d) S((while(�) s, e) :: k, [v]Ω, m) _
S(k, (↗, while(e) s), unlock Ω m)
provided that isfalse v

(e) S((if (�) s1 else s2, e) :: k, [v]Ω, m) _
S(if (e) � else s2 :: k, (↘, s1), unlock Ω m)
provided that istrue v

(f) S((if (�) s1 else s2, e) :: k, [v]Ω, m) _
S(if (e) s1 else � :: k, (↘, s2), unlock Ω m)
provided that isfalse v

4. For compound statements:
(a) S(k, (↘, block c s), m) _

S((blockb c �) :: k, (↘, s), alloc b indet (blockperm c) m)
for any b such that perm b m = ⊥

(b) S(k, (↘, s1 ; s2), m) _ S((� ; s2) :: k, (↘, s1), m)

(c) S(k, (↘, l : s), m) _ S((l :�) :: k, (↘, s), m)

(d) S((blockb c �) :: k, (↗, s), m) _
S(k, (↗, block c s), free b m)

(e) S((� ; s2) :: k, (↗, s1), m) _ S((s1 ;�) :: k, (↘, s2), m)

(f) S((s1 ;�) :: k, (↗, s2), m) _ S(k, (↗, s1 ; s2), m)

(g) S(while(e) � :: k, (↗, s), m) _ S(k, (↘, while(e) s), m)

(h) S((if (e) � else s2) :: k, (↗, s1), m) _
S(k, (↗, if (e) s1 else s2), m)

(i) S((if (e) s1 else �) :: k, (↗, s2), m) _
S(k, (↗, if (e) s1 else s2), m)

(j) S((l :�) :: k, (↗, s), m) _ S(k, (↗, l : s), m)

5. For function calls:
(a) S(k, call f ~v, m1) _ S(params ~b :: k, (↘, s), m2)

for any s,~b and m2 s.t. δ f = s and allocparams W m1
~b ~v m2

(b) S(params ~b :: k, (↗, s), m) _ S(k, return indet, free ~b m)

(c) S(params ~b :: k, (↑↑ v, s), m) _ S(k, return v, free ~b m)

(d) S(resume E :: k, return v, m) _ S(k, E[v], m)

6. For non-local control flow:

(a) S((blockb c �) :: k, (↑↑ v, s), m) _
S(k, (↑↑ v, block c s), free b m)

(b) S(Ss :: k, (↑↑ v, s), m) _ S(k, (↑↑ v, Ss[s]), m)

(c) S(k, (y l, l : s), m) _ S((l :�) :: k, (↘, s), m)

(d) S(k, (y l, block c s), m) _
S((blockb c �) :: k, (y l, s), alloc b indet (blockperm c) m)
for any b such that perm b m = ⊥, and provided that l ∈ labels s

(e) S(blockb c � :: k, (y l, s), m) _
S(k, (y l, block c s), free b m) provided that l /∈ labels s

(f) S(k, (y l, Ss[s]), m) _ S(Ss :: k, (y l, s), m)
provided that l ∈ labels s

(g) S(Ss :: k, (y l, s), m) _ S(k, (y l, Ss[s]), m)
provided that l /∈ labels s

Note that the selection of redexes in Rule 2a, 2b, and 2c is non-
deterministic. Moreover, note that the rules 6c and 6f overlap, and
that the splitting into Ss and s in rule 6f is non-deterministic.

DEFINITION 4.11. We let _∗ denote the reflexive-transitive clo-
sure of _, and let _n denote paths of ≤ n_-reduction steps.

Execution of a statement S(k, (d, s), m) is performed by
traversing through the program context k and statement s in di-
rection d. The direction down ↘ (respectively up ↗) is used to tra-
verse downwards (respectively upwards) to the next substatement
that has to be executed. When a substatement Se[e] containing
an expression e has been reached (Rule 1c), the location of the
expression Se is stored on the program context, and execution is
continued in S((Se, e) :: k, e, m).

Execution of an expression S(k, e, m) is performed by non-
deterministically decomposing e into E [e′]. Rule 2a allows e′ to
perform a _h-step, and Rule 2b allows e′ to perform a function
call. If the redex e′ is unsafe and thereby cannot be contracted
(e.g. because of a sequence violation or integer overflow), Rule 2c
ensures that the whole program reduces to the undef state. When
execution of an expression has resulted in a value [v]Ω, we model a
sequence point by unlocking Ω in memory (Rule 3a-3f).

For a function call S(k, E [f([v0]Ω0 , . . . , [vn]Ωn)], m), two
reductions occur before the function body will be executed. The
first to S(resume E :: k, call f ~v, unlock (

⋃ ~Ω) m) (Rule 2b)
stores the location of the caller on the program context and takes
care of the sequence point before the function call. The subsequent
reduction to S(params ~b :: resume E :: k, (↘, s), m′) (Rule 5a)
looks up the callee’s body s, allocates the parameters ~v, and then
performs a transition to execute the function body s.

We consider two directions for non-local control flow: jump y l
and top ↑↑ v. After a goto l (Rule 1b), the direction y l is used
to traverse to the substatement labeled l (Rule 6c-6g). Although
this traversal is non-deterministic (in the case of duplicate labels),
there are some side-conditions in order to ensure that the reduction
is not going back and forth between the same locations. This is re-
quired because we may otherwise impose non-terminating behavior
on terminating programs. The non-determinism could be removed
entirely by adding additional side-conditions. However, as we al-
ready have other sources of non-determinism, we omitted doing so
to ease formalization.

When execution of the expression e of a return e statement
has resulted in a value v (Rule 3b), the direction ↑↑ v is used to tra-
verse to the top of the whole statement (Rule 6a and 6b). When this
traversal reaches the top of the statement, there are two reductions
to give the return value v to the caller. The first reduction, from
S(params ~b :: resume E :: k, (↑↑ v, s), m) to S(resume E ::

k, return v, free ~b m) (Rule 5c), deallocates the function parame-
ters, and the second reduction, to S(k, E [v], free ~b m) (Rule 5d),
resumes execution of the expression E [v] at the caller.

5. Axiomatic semantics
Judgments of Hoare logic are triples {P} s {Q}, where s is a state-
ment, and P andQ are assertions called the pre- and postcondition.
The intuitive reading of such a triple is: if P holds for the memory
before executing s, and execution of s terminates, then Q holds af-
terwards. For our language, we have two such judgments: one for
expressions and one for statements.

Our expression judgments are quadruples ∆ ` {P} e {Q}. As
usual, P and Q are the pre- and postcondition of e respectively,
but whereas P is just an assertion, Q is a function from values to
assertions. It ensures that if execution of e yields a value v, then
Qv holds afterwards. The environment ∆ is a finite function from
function names to their pre- and postconditions that is used to cope
with (mutually) recursive functions.

As in Krebbers and Wiedijk [21], our judgments for statements
are sextuples ∆; R; J ` {P} s {Q}, where R is a function from
values to assertions, and J is a function from labels to assertions.
The assertion Rv has to hold when executing a return e (for
each value v obtained by execution of e), and J l is the jumping
condition that has to hold when executing a goto l.

We use a shallow embedding to represent assertions. This treat-
ment is similar to that of Appel and Blazy [2], Von Oheimb [29],
Krebbers and Wiedijk [21], etc. In order to talk about expressions
without side-effects (assignments, allocation and deallocation, and
function calls) in assertions (we need this for various rules of our
axiomatic semantics, see Definition 5.9), we define an evaluation
function for pure expressions.

DEFINITION 5.1. Evaluation [[e]]ρ,m of an expression e in a stack
ρ and memory m is a partial function that is defined as:

[[xi]]ρ,m := ptr b if ρ i = b

[[v]]ρ,m := v

[[load e]]ρ,m := m !! b if [[e]]ρ,m = ptr b

[[e1 } e2]]ρ,m := [[e1]]ρ,m } [[e2]]ρ,m

[[e1 ? e2 : e3]]ρ,m :=

{
[[e2]]ρ,m if [[e1]]ρ,m = v and istrue v

[[e3]]ρ,m if [[e1]]ρ,m = v and isfalse v

[[(τ) e]]ρ,m := (τ) [[e]]ρ,m

DEFINITION 5.2. Assertions are predicates over the the stack and
the memory. We define the following connectives on assertions.
P → Q := λρm .P ρm→ Qρm

P ∧ Q := λρm .P ρm ∧Qρm
P ∨ Q := λρm .P ρm ∨Qρm
¬P := λρm .¬P ρm

∀x . P x := λρm . ∀x . P x ρm
∃x . P x := λρm . ∃x . P x ρm
pPq := λρm .P

e ⇓ v := λρm . [[e]]ρ,m = v

We treat p q as an implicit coercion, e.g. we write True instead
of pTrueq. Also, we often lift these connectives to functions to
assertions, e.g. we write P ∧ Q instead of λv . P v ∧ Qv.

DEFINITION 5.3. We let P � Q denote that for all stacks ρ and
memories m we have P ρm implies Qρm.

DEFINITION 5.4. An assertion P is called stack independent if for
all ρ1, ρ2 ∈ stack and m ∈ mem with P ρ1 m we have P ρ2 m.
Similarly, P is called unlock independent if for all ρ ∈ stack,
m ∈ mem and Ω ⊆ index with P ρm we have P ρ (unlock Ω m).

Next, we define the assertions of separation logic [28]. The
separating conjunction P ∗ Q asserts that the memory can be split
into two disjoint parts such that P holds in the one part, and Q in
the other (due to the use of fractional permissions, these parts may
overlap as long as their permissions are disjoint and their values
agree). Finally, e1

γ7→ e2 asserts that the memory consists of exactly
one object at e1 with contents e2 and permission γ.

DEFINITION 5.5. The connectives of separation logic are:

emp := λρm .m = ∅
P ∗ Q := λρm .∃m1 m2 .m = m1 ∪ m2 ∧

m1 ⊥ m2 ∧ P ρm1 ∧Qρm2

e1
γ7→ e2 := λρm .∃b v . [[e1]]ρ,m = ptr b ∧

[[e2]]ρ,m = v ∧m = {(b, (v, γ))}

e1
γ7→ – := ∃e2 . e1

γ7→ e2

To enforce the sequence point restriction, the rule for assign-
ment changes the permission γ of e1

γ7→ e2 into lock γ. Subsequent
reads and writes are therefore no longer possible. At constructs that
have a sequence point, we use the assertion P B to release these
locks, and to make future reads and writes possible again.

DEFINITION 5.6. The unlocking assertion P B is defined as:

P B := λρm .P ρ (unlock (locks m) m).

We proved properties as P B ∗ QB � (P ∗ Q)B to push the
B-connective through an assertion.

Similar to Krebbers and Wiedijk [21], we need to lift an asser-
tion such that the De Bruijn indices of its variables are increased
so as to deal with block scope variables. The lifting P ↑ of P is
defined semantically, and we prove that it behaves as expected.

DEFINITION 5.7. The lifting assertion P ↑ is defined as:

P ↑ := λρm .P (tail ρ)m.

LEMMA 5.8. The operation () ↑ distributes over the connectives
→, ∧, ∨, ¬, ∀, ∃, and ∗. We have (e ⇓ v) ↑ = (e↑) ⇓ v and
(e1

γ7→ e2) ↑ = (e1 ↑)
γ7→ (e2 ↑), where the operation e↑ replaces

each variable xi in e by xi+1.

The specification of a function with parameters ~v consists of an
assertion P ~y ~v called the precondition, and a function Q~y ~v from
(return) values to assertions called the postcondition. We allow
universal quantification over arbitrary logical variables ~y in order
to relate the pre- and postcondition. The pre- and postcondition
should moreover be stack independent because local variables will
have a different meaning at the caller than at callee. We denote such
a specification as ∀~y ∀~v . {P ~y ~v} {Q~y ~v}.

DEFINITION 5.9. Given a finite partial function δ mapping func-
tion names to statements, the expression judgment ∆ ` {P} e {Q}
and statement judgment ∆; R; J ` {P} s {Q} of the axiomatic
semantics are mutually inductively defined as shown in Figure 1.

We have a frame, weaken, and exist rule for both the expression
and statement judgments. The traditional frame rule of separation
logic [28] includes a side-condition modifies s ∩ freeA = ∅. Like
Krebbers and Wiedijk [21], we do not need this side-condition as
our local variables are (immutable) references into the memory.
Since the return and goto statements leave the normal control flow,
the postconditions of the (goto) and (return) rules are arbitrary.

The rules for function calls are based on those by Krebbers and
Wiedijk [21]. The (e-call) rule is used to call a function f(~e) that
is already in ∆. The assertion B~v is used to frame a part of the
memory that is used by ~e but not by the f itself.

The (add funs) rule can be used to add an arbitrary family ∆′

of specifications of (possibly mutually recursive) functions to ∆.
For each function f in ∆′ with precondition P ′ and postcondition
Q′, it has to be verified that the function body δ f is correct for all
instantiations of the logical variables ~y and input values ~v. The pre-
condition Π∗[xi

W7→ vi] ∗ P ′~y ~v, where Π∗[ei
γi7→ e′i] denotes the

∆ ` {P} e {Q}
(e-frame)

∆ ` {A ∗ P} e {A ∗ Q}
∀x . (∆ ` {P x} e {Q})

(e-exists)
∆ ` {∃x . P x} e {Q}

P ′ � P ∆ ` {P} e {Q} (∀v .Q v � Q′ v)
(e-weaken)

∆ ` {P ′} e {Q′}

P � e ⇓ v
(e-base)

∆ ` {P} e {λv′ . v = v′ ∧ P}
(e-alloc)

∆ ` {emp} alloc {λa . a F7→ –}
∆ ` {P} e {λa .Q ∗ a F7→ –}

(e-free)
∆ ` {P} free e {λ .Q}

kind γ 6= Locked ∆ ` {P} e {λa . ∃v .Qa v ∗ a γ7→ v}
(e-load)

∆ ` {P} load e {λv . ∃a .Qa v ∗ a γ7→ v}

Write ⊆ kind γ ∆ ` {P1} e1 {Q1} ∆ ` {P2} e2 {Q2} ∀av . (Q1 a ∗ Q2 v � a
γ7→ – ∗ Rav)

(e-assign)
∆ ` {P1 ∗ P2} e1 := e2 {λv . ∃a . a

γ7→ v ∗ Rav}

∆ ` {P1} e1 {Q1} ∆ ` {P2} e2 {Q2} ∀v1 v2 . (Q1 v1 ∗ Q2 v2 � ∃v .R v v1 v2 ∧ v1 } v2 ⇓ v)
(e-binop)

∆ ` {P1 ∗ P2} e1 } e2 {λv . ∃v1 v2 . R v v1 v2}

∆ f = (∀~z ∀~w . {P ′ ~z ~w} {Q′ ~z ~w}) ∀i . (∆ ` {Pi} ei {Qi}) ∀~v . (Π∗[Qi vi] � P ′ ~y ~v ∗ A~v) ∀~v v . (Q′ ~y ~v v ∗ A~v � Rv)
(e-call)

∆ ` {Π∗[~P]} f(~e) {R}

∆ ` {P} e1 {λv . v 6= indet ∧ P ′vB} ∆ ` {∃v . istrue v ∧ P ′ v} e2 {Q} ∆ ` {∃v . isfalse v ∧ P ′ v} e2 {Q}
(e-if)

∆ ` {P} e1 ? e2 : e3 {Q}

∆; R; J ` {P} s {Q}
(frame)

∆; A ∗ R; A ∗ J ` {A ∗ P} s {A ∗ Q}
∀x . (∆; R; J ` {P x} s {Q})

(exists)
∆; R; J ` {∃x . P x} s {Q}

∀v . (Rv � R′ v) ∀l ∈ labels s . (J ′l � Jl) ∀l /∈ labels s . (Jl � J ′l) P ′ � P ∆; R; J ` {P} s {Q} Q � Q′
(weaken)

∆; R′; J ′ ` {P ′} s {Q′}

∆ ` {P} e {λ .QB}
(expr)

∆; R; J ` {P} e {Q}
(skip)

∆; R; J ` {P} skip {P}
∆; R; J ` {P} s1 {P ′} ∆; R; J ` {P ′} s2 {Q}

(comp)
∆; R; J ` {P} s1 ; s2 {Q}

∆ ` {P} e {RB}
(return)

∆; R; J ` {P} return e {Q}
∆; R; J ` {J l} s {Q}

(label)
∆; R; J ` {J l} l : s {Q}

(goto)
∆; R; J ` {J l} goto l {Q}

γ = blockperm c ∆; x0
γ7→ – ∗ J ↑; x0

γ7→ – ∗ R ↑ ` {x0
γ7→ – ∗ P ↑} s {x0

γ7→ – ∗ Q ↑}
(block)

∆; R; J ` {P} block c s {Q}

∆ ` {P} e {λv . v 6= indet ∧ QvB} ∆; R; J ` {∃v . istrue v ∧ Qv} s {P}
(while)

∆; R; J ` {P} while(e) s {∃v . isfalse v ∧ Qv}

∆ ` {P} e {λv . v 6= indet ∧ P ′vB} ∆; R; J ` {∃v . istrue v ∧ P ′ v} s1 {Q} ∆; R; J ` {∃v . isfalse v ∧ P ′ v} s1 {Q}
(if)

∆; R; J ` {P} if (e) s1 else s2 {Q}

∀f P ′Q′ .∆′f = (∀~z ∀~w . {P ′ ~z ~w} {Q′ ~z ~w})→ ∀~y ~v
(∆′ ∪∆; λl .False; λv .Π∗[xi

W7→ –] ∗ Q′~y ~v v ` {Π∗[xi
W7→ vi] ∗ P ′~y ~v} δ f {Π∗[xi

W7→ –] ∗ Q′~y ~v indet})
∆′ ∪∆; R; J ` {P} s {Q} dom ∆′ ⊆ dom δ

(add funs)
∆; R; J ` {P} s {Q}

Figure 1. The rules of the axiomatic semantics.

assertion e0
γ07→ e′0 ∗ · · · ∗ en

γn7→ e′n, states that the function param-
eters ~x are allocated with values ~v for which the precondition P ′ of
the function holds. The postcondition Π∗[xi

W7→ –] ∗ Q′~y ~v indet

and returning condition λv .Π∗[xi
W7→ –] ∗ Q′~y ~v v ensure that the

parameters have not been deallocated during the execution of the
function and that the postcondition Q′ holds for the return value.
The jumping condition λl .False ensures that all gotos jump to a
label that occurs in the function body.

Our axiomatic semantics is at least as powerful as an ordinary
separation logic for C because not only variants of the ordinary
inference rules can be derived, but also derived rules for more
complex constructs. For example

e1
γ17→ – ∗ e2

γ27→ – ∗ P � e3 ⇓ v
{e1

γ17→ – ∗ e2
γ27→ – ∗ P} e1 := e2 := e3 {e1

γ17→ v ∗ e2
γ27→ v ∗ P}

provided that e1 and e2 are load-free, P is unlock independent and
Write ⊆ kind γ1, kind γ2.

6. Soundness of the axiomatic semantics
We will define judgments ∆ � {P} e {Q} (Definition 6.6) and
∆; J ; R � {P} s {Q} (Definition 6.7) to describe partial program
correctness. The judgment ∆ � {P} e {Q} guaranties that if the
precondition P holds in m and S([], e, m) _∗ S([], [v]Ω, m

′),
then the postcondition Qv holds in m′. Also, it ensures no unde-
fined behavior occurs for each possible execution order. Soundness
of the axiomatic semantics means that ∆ ` {P} e {Q} implies
∆ � {P} e {Q} (and likewise for ∆; J ; R � {P} s {Q}).

We prove soundness (Theorem 6.8) by mutual induction on
the derivations of ∆ ` {P} e {Q} and ∆; J ; R ` {P} s {Q}.
Hence, ∆ � {P} e {Q} and ∆; J ; R � {P} s {Q} should be

sufficiently strong so that we get appropriate induction hypotheses.
The main difficulty is that the subexpressions el and er in el } er
can do interleaved reduction steps. A simple minded definition of
∆ � {P} e {Q} that only talks about the end result of executing
e does not work, because we also need to have information about
states in between. Since the definitions of ∆ � {P} e {Q} and
∆; J ; R � {P} s {Q} have a lot in common, we define a more
general notion to factor out similarities.

Like Krebbers and Wiedijk [21], we have to enforce the reduc-
tion S(k, φ, m) _∗ S(k′, φ′, m′) to remain below a certain pro-
gram context.

DEFINITION 6.1. The k-restricted reduction S1 _k S2 is defined
as S1 _ S2 provided k is a suffix of the program context of S2.

DEFINITION 6.2. Given a predicate P̄ ⊆ stack × mem × focus,
the judgment P̄ �nl Ŝ(k, φ, m) is inductively defined as:

1. P̄ �0
l Ŝ(k, φ, m)

2. If P̄ (getstack l)mφ, then P̄ �nl Ŝ(l, φ, m).
3. If for all mf with m ⊥ mf we have

(a) S(k, φ, m ∪ mf) is _l-reducible, and
(b) if S(k, φ, m ∪ mf) _l S2, then the state S2 is of the

shape S(k2, φ2, m2 ∪ mf) with m2 ⊥ mf , φ 6= undef,
locks φ2 ⊆ locks m2, and P̄ �nl Ŝ(k2, φ2, m2),

then P̄ �1+n
l Ŝ(k, φ, m).

The intuitive meaning of P̄ �nl Ŝ(k, φ, m) is that all _l-
reductions paths of at most n steps starting at S(k, φ, m ∪ mf):

• do not get stuck, and do not end up in the undef state,
• always satisfy locks φ ⊆ locks m during the execution, and
• the end-state satisfies P̄ and has program context l.

To handle interleaving of expressions, we allow the framing mem-
ory mf to change at each step during the execution. Hence, instead
of defining P̄ �nl Ŝ(k, φ, m) using the reflexive transitive closure
of _l, we defined it inductively using single steps. The condition
locks φ2 ⊆ locks m2 on the annotated locks with respect to the
locks in the memory is used to separate the locks of subexpressions.
We use a step-indexed approach to handle function calls.

The judgment P̄ �nl Ŝ(k, φ, m) enjoys a nice composition
property, and satisfies an abstract version of the weakening and
frame rule of separation logic.

LEMMA 6.3. Given contexts k1, k2 and k3 with k2 a suffix of k1

and k3 a suffix of k2. If (a) P̄ �nk2 Ŝ(k1, φ, m), and (b) for all m′

and φ′ with P̄ (getstack k2)m′ φ′ we have Q̄ �nk3 Ŝ(k2, φ
′, m′),

then finally we have Q̄ �nk3 Ŝ(k1, φ
′, m).

LEMMA 6.4. Given memories m and m2 such that m ⊥ m2. If
(a) P̄ �nl Ŝ(k, φ, m), and (b) for all m′ and φ′ with m′ ⊥ m2

and P̄ (getstack l)m′ φ′ we have Q̄ (getstack l) (m′ ∪ m2)φ,
then finally we have Q̄ �nl Ŝ(k, φ, m ∪ m2).

DEFINITION 6.5. Validity of the environment ∆, notation �n ∆ is
defined as: for all f with ∆ f = (∀~y . ∀~v . {P ~y ~v} {Q~y ~v}) and
P ~y ~v (getstack k)m we have Q̄~y,~v �nk Ŝ(call f ~v, k, m). Here,
Q̄~y,~v is defined as:
Q̄~y,~v := λρφm′ . ∃v . φ = return v ∧ locks m = ∅ ∧Q~y ~v v ρm′.

DEFINITION 6.6. Partial correctness of an expression e, notation
∆ � {P} e {Q} is defined as: if �n ∆, locks e = locks m = ∅
and P d (getstack k)m, then Q̄ �nk Ŝ(e, k, m). Here Q̄ is defined
as:

Q̄ := λρφm′ . ∃vΩ . φ = [v]Ω ∧ locks m = Ω ∧Qv ρ m′.

Krebbers and Wiedijk [21] noticed that the assertions P , Q, J
and R in ∆; J ; R � {P} s {Q} correspond to the four directions
↘, ↗, y and ↑↑ in which traversal through a statement is performed.
Hence, we treat ∆; J ; R � {P} s {Q} as a triple ∆; ~P � s, where
~P is a function from directions to assertions such that ~P ↘ = P ,
~P ↗ = Q, ~P (y l) = J l and ~P (↑↑ v) = Rv.

DEFINITION 6.7. Partial correctness of a statement s, notation
∆; ~P � s is defined as: if �n ∆, down d s, locks s = locks m = ∅
and ~P d (getstack k)m, then P̄s �nk Ŝ((d, s), k, m). Here,
down holds if down ↘ s′ or down (y l) s′ with l ∈ labels s′,
and P̄s is defined as:
P̄s := λρφm′ .∃d′ s′ .

φ = (d′, s′) ∧ ¬down d′ s′ ∧ locks m = ∅ ∧ ~P d′ ρ m′.

THEOREM 6.8 (Soundness). We have:

1. ∆ ` {P} e {Q} implies ∆ � {P} e {Q}, and
2. ∆; J ; R ` {P} s {Q} implies ∆; J ; R � {P} s {Q}.

This theorem is proven by mutual induction on the derivation
of ∆ ` {P} e {Q} and ∆; J ; R ` {P} s {Q}. Thus, for each
rule of the axiomatic semantics, we have to show that it holds in
the model. In order to prove the (e-base) case, we need to show
that the expression evaluation [[e]]ρ,m is sound with respect to the
operational semantics. To prove the cases of the other expressions
constructs, we use the following generic lemma that deals with the
subtleties of interleaving subexpressions.

LEMMA 6.9. Given a singular expression context E with u holes
and locks E = ∅, memories ~m with ⊥ ~m, expressions ~e with
locks ei ⊆ locks mi for each i < u, and functions of values to
assertions ~P and Q. Now, if

1. P̄i �nk Ŝ(k, ei, mi) for each i < u, and
2. for all ~Ω, ~v and ~m′ with⊥ ~m′,

(a) locks mi = Ωi for each i < u, and
(b) Pi vi k,m′i for each i < u,
we have Q̄ �nk Ŝ(k, E[[v0]Ω0 . . . [vn]Ωn],

⋃
~m′),

then Q̄ �nk Ŝ(k, E[~e],
⋃
~m).

The previous lemma is proven by induction on the number of
steps n. Theorem 2.13 is used to reason about disjoint memories.
The proofs of the cases for the statement judgments are quite
similar to those by Krebbers and Wiedijk [21]; they involve chasing
all possible reduction paths and use Lemma 6.3. We refer to the Coq
formalization for the actual proofs.

7. Extensions
In this section we describe two extensions of our axiomatic se-
mantics that improve handling of function calls. The first exten-
sion makes it easier to deal with pure functions (i.e. functions that
have no side-effects), whereas the second extension enables differ-
ent function calls in the same expression to have access to a shared
writable part of the memory. These extensions do not change the
memory model or the operational semantics.

We make it possible to associate a mathematical function to a
pure function. For example, this can be used to smoothly use Coq’s
gcd function to reason about its counterpart in C. We extend the
environment ∆ to map function names to:

1. Specifications of pure functions by partial Coq functions, or,

2. Specifications of impure functions using their pre- and postcon-
dition ∀~y ∀~v . {P ~y ~v} {Q~y ~v}.

The (add funs) rule is extended so that a pure function f with
corresponding Coq function F : list val → valopt can be added
to ∆ by proving ∀~v . {emp ∧ F ~v 6= ⊥}{λv . emp ∧ F ~v = v}.
Assertions are made parametric with respect to the environment ∆
so that pure functions can be given an interpretation by [[e]]ρ,m.
The (e-base) rule becomes:

P �∆ e ⇓ v
∆ ` {P} e {λv′ . v = v′ ∧ P}

Apart from the parametrization by ∆, most rules of the axiomatic
semantics remain unchanged. To prove soundness of the (e-base)
rule, we now also have to deal with pure function calls.

The rules for expressions of our axiomatic semantics require the
memory to be separated into disjoint parts for the subexpressions
el and er at each operator el } er . Hence, only read-only memory
can be shared by function calls that appear in both el and er . This
is not very satisfactory, as functions (even when used in the same
expression) often need to have access to shared data structures
(e.g. a buffer or hash-table). To that end, we extend the expression
judgment ∆; B ` {P} e {Q} with an assertion B that can be used
to describe the invariant of shared memory by all function calls in
e. The following frame rule can be used to move the memory out
of the pre- and postcondition into the assertion B.

∆; A ∗ B ` {P} e {Q}
∆; B ` {P ∗ A} e {Q ∗ A}

The rule (e-call) for function calls is changed so thatB can be used
to prove the precondition, and so that B has to be reobtained from
the postcondition when the function call is finished.

For the soundness proof, we need to generalize Definition 6.2
so that the memory of B is part of the framing memory mf during
execution of the expression, and so that is will be transferred to the
active memory at a function call. This extension still does not give
completeness of the axiomatic semantics though. Consider:

int x = 0;
int f(int y) { return (x = y); }
int main() { f(3) + f(4); return x; }

Since the invariant B should hold before, after, and in between the
function calls in the expression f(3) + f(4), the best choice for
it is x

W7→ 0 ∨ x
W7→ 3 ∨ x

W7→ 4. Hence, one can only prove that
the program returns 0, 3 or 4 in the end, whereas it actually returns
3 or 4. We believe programs as the above are artificial, and such
non-determinism is not frequent in actual C programs.

8. Formalization in Coq
All proofs in this paper have been fully formalized using the Coq
proof assistant. Formalization has been of great help in order to
develop and debug the semantics. We used Coq’s notation mech-
anism combined with unicode symbols and type classes for over-
loading to let the Coq development correspond as well as possible
to the definitions in this paper. However, in this paper, we presented
the axiomatic semantics as an inference system, and showed that it
has a model. Since we did not consider completeness, we directly
proved all rules to be derivable with respect to the model.

We used Coq’s type classes to provide abstract interfaces for
commonly used structures like finite sets and finite partial func-
tions, so that we were able to prove theory and implement automa-
tion in an abstract way. Our approach is greatly inspired by the un-
bundled approach of Spitters and van der Weegen [33]. However,
whereas their work heavily relies on setoids (types equipped with
an equivalence relation), we tried to avoid that by using Leibniz
equality as much as possible.

In particular, our interface for finite partial functions requires
extensionality with respect to Leibniz equality, i.e. m1 = m2 iff

∀x .m1 x = m2 x. Extensional equality of finite partial functions
is particularly useful for dealing with assertions, which are defined
as predicates on the stack and memory (Definition 5.2). Due to
extensionality, we did not have to equip assertions with a proof that
they respect extensional equality on memories.

Although intensional type theories like Coq do not satisfy exten-
sionality, finite functions indexed by a countable type can still be
implemented in a way that extensionality holds. This is achieved
by representing finite functions as trees in canonical form.

Coq’s support for dependent types has been particularly useful
to formulate Lemma 6.9 where we have to deal with expression
contexts with multiple holes. We represented these expression con-
texts using a type indexed by the number of holes.

Because the semantics described in this paper is rather big, it is
quite cumbersome to prove properties about it without automation.
In particular, the reduction _ (Definition 4.10) is defined as an
inductive type consisting of 33 constructors. To this end, we have
automated many steps of the proofs. For example, we implemented
a tactic do_cstep to automatically perform reduction steps and
to solve the required side-conditions, a tactic inv_cstep to per-
form case analyzes on reductions and to automatically discharge
impossible cases, and a tactic solve_mem_disjoint to automat-
ically prove disjointness of memories using the algebraic method
described in Section 2. Ongoing experiments show that this ap-
proach is successful, as the semantics can be extended easily with-
out having to redo many proofs.

Our Coq code, available at http://robbertkrebbers.nl/
research/ch2o, is about 10 000 lines of code including comments
and white space. Apart from that, our library on general purpose
theory (finite sets, finite functions, lists, etc.) is about 9 000 lines.

9. Conclusions and further research
The further reaching goal of this work is to develop an operational
and axiomatic semantics for a large part of the C11 programming
language [20]. Formal treatment of non-determinism and sequence
points in expressions with side-effects is a necessary step towards
this goal. Our next step is to integrate the work of Krebbers [19] on
the C memory model and type system into our formalization, and
make the language typed. Once integrated, we intend to develop a
verified type checker and interpreter so we can test the semantics
using actual C programs.

Extending our operational semantics to deal with concurrency is
also an interesting topic for future research. For example, it would
be useful to investigate whether our semantics can be extended to
weak memories in the same way as CompCert has been extended
to CompCert TSO [32].

In order to turn the theory presented in this paper into an actual
tool for verification of C programs, we need to develop a verifica-
tion condition generator. A verification condition generator takes
a program with logical annotations and generates a set of verifica-
tion conditions that need to be verified. For ordinary Hoare logic,
the most common approach is to use a variant of Dijkstra’s weak-
est precondition calculus. For separation logic, one typically uses
symbolic execution (see for example Berdine et al. [4]). In case
of our axiomatic semantics, it is not directly clear whether any of
these two approaches can be applied. The problematic part is that in
the rules for binary operations, one has to split the memory in two
parts using the separating conjunction ∗. It would be interesting to
investigate how this can be automated.

Another challenge to use our axiomatic semantics for program
verification is strong automation for separation logic. Specific to
the Coq proof assistant there has been work on this by for example
Appel [1], Chlipala [10], and Bengtson et al. [3].

As shown in Section 7, our axiomatic semantics is not complete
with respect to the operational semantics. Nonetheless, as demon-

http://robbertkrebbers.nl/research/ch2o
http://robbertkrebbers.nl/research/ch2o

strated in Section 5, we can derive the ordinary rules of separation
logic, and rules specifically tailored for certain constructs. It would
be useful to investigate whether it is complete for another variant
of the operational semantics.

Due to our local treatment of locks to model the sequence point
restriction, our operational semantics assigns undefined behavior
to more programs than the C11 standard does (see page 5). We
believe that this is a reasonable trade-off, because it brings the
operational semantics closer to the axiomatic semantics, and only
makes artificial programs illegal. Moreover, this treatment of locks
may enable some useful optimizations that are not allowed by the
C11 standard.

A particular optimization that is not justified by the C11 stan-
dard is CompCert [23]’s passing by reference of struct and union
values through expressions. In CompCert, copies of struct and
union values are made only at function calls and assignments. Let
us take a look at the following example.

struct S { int x; } s1 = { 1 }, s2 = { 2 };
int f() {

if (s1.x == 2) { s2.x = 40; } return 0;
}
int main() { return (s1 = s2).x + f(); }

The execution order where the CompCert semantics deviates from
the C11 standard is: (a) perform the assignment s1 = s2 whose
result is a reference to s2 instead of a copy of s2, (b) call f, which
uses an if (s1.x == 2) to detect that the assignment s1 = s2
has been executed, and finally (c) the field x of the struct that has
been modified by f is taken. The return value for this execution
order is 40, which cannot be obtained from any execution order if
structs were passed by value.

Using a global treatment of sequence points (as in Ellison and
Rosu [12] or Norrish [26]), no execution order of this program leads
to a sequence point violation. However, with our local treatment of
sequence points, the execution order described above will exhibit
a sequence point violation, and hence our treatment would justify
by reference passing of struct values for this program. It would be
interesting to investigate whether our semantics of sequence points
justifies by reference passing of struct and union values through
expressions for arbitrary programs.

Acknowledgments
I thank my advisors Freek Wiedijk and Herman Geuvers, and the
anonymous referees for their helpful suggestions. I am indebted to
Xavier Leroy for many useful discussions. This work is financed
by the Netherlands Organisation for Scientific Research (NWO).

References
[1] A. W. Appel. Tactics for Separation Logic, 2006. Available at http:

//www.cs.princeton.edu/~appel/papers/septacs.pdf.
[2] A. W. Appel and S. Blazy. Separation Logic for Small-Step Cminor.

In TPHOLs, volume 4732 of LNCS, pages 5–21, 2007.
[3] J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! - A Framework

for Higher-Order Separation Logic in Coq. In ITP, volume 7406 of
LNCS, pages 315–331, 2012.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with
Separation Logic. In APLAS, volume 3780 of LNCS, pages 52–68,
2005.

[5] P. E. Black and P. J. Windley. Inference Rules for Programming
Languages with Side Effects in Expressions. In TPHOLs, volume
1125 of LNCS, pages 51–60, 1996.

[6] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Per-
mission Accounting in Separation Logic. In POPL, pages 259–270,
2005.

[7] J. Boyland. Checking Interference with Fractional Permissions. In
SAS, volume 2694 of LNCS, pages 55–72, 2003.

[8] C. Calcagno, P. W. O’Hearn, and H. Yang. Local Action and Abstract
Separation Logic. In LICS, pages 366–378, 2007.

[9] B. Campbell. An Executable Semantics for CompCert C. In CPP,
volume 7679 of LNCS, pages 60–75, 2012.

[10] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI, pages 234–245. ACM, 2011.

[11] R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation
Algebras and Share Accounting. In APLAS, volume 5904 of LNCS,
pages 161–177, 2009.

[12] C. Ellison and G. Rosu. An executable formal semantics of C with
applications. In POPL, pages 533–544, 2012.

[13] C. Ellison and G. Rosu. Slides of [12], 2012. http://fsl.cs.uiuc.
edu/pubs/ellison-rosu-2012-popl-slides.pdf.

[14] M. Felleisen, D. P. Friedman, E. E. Kohlbecker, and B. F. Duba. A
syntactic theory of sequential control. Theoretical Computer Science,
52:205–237, 1987.

[15] P. Herms. Certification of a Tool Chain for Deductive Program
Verification. PhD thesis, l’Université Paris-Sud, 2013.

[16] International Organization for Standardization. ISO/IEC 9899-2011:
Programming languages – C. ISO Working Group 14, 2012.

[17] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[18] R. Krebbers. Non-determinism and sequence points in C (blog
post), 2013. Available at http://gallium.inria.fr/blog/
non-determinism-and-sequence-points-in-c/.

[19] R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP,
volume 8307 of LNCS, 2013.

[20] R. Krebbers and F. Wiedijk. A Formalization of the C99 Standard
in HOL, Isabelle and Coq. In CICM, volume 6824 of LNAI, pages
297–299, 2011.

[21] R. Krebbers and F. Wiedijk. Separation Logic for Non-local Control
Flow and Block Scope Variables. In FoSSaCS, volume 7794 of LNCS,
pages 257–272, 2013.

[22] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[23] X. Leroy. The CompCert verified compiler, software and commented
proof. Available at http://compcert.inria.fr/, 2012.

[24] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert
Memory Model, Version 2. Research report RR-7987, INRIA, 2012.

[25] M. Norrish. C formalised in HOL. PhD thesis, University of Cam-
bridge, 1998.

[26] M. Norrish. Deterministic Expressions in C. In ESOP, volume 1576
of LNCS, pages 147–161, 1999.

[27] P. W. O’Hearn. Resources, Concurrency and Local Reasoning. In
CONCUR, volume 3170 of LNCS, pages 49–67, 2004.

[28] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local Reasoning about
Programs that Alter Data Structures. In CSL, volume 2142 of LNCS,
pages 1–19, 2001.

[29] D. v. Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

[30] N. Papaspyrou. A Formal Semantics for the C Programming Lan-
guage. PhD thesis, National Technical University of Athens, 1998.

[31] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-
case reduction for C compiler bugs. In PLDI, pages 335–346, 2012.

[32] J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A Verified Compiler for Relaxed-Memory Concur-
rency. Journal of the ACM, 60(3):22, 2013.

[33] B. Spitters and E. van der Weegen. Type classes for mathematics in
type theory. Mathematical Structures in Computer Science, 21(4):
795–825, 2011.

http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf
http://fsl.cs.uiuc.edu/pubs/ellison-rosu-2012-popl-slides.pdf
http://gallium.inria.fr/blog/non-determinism-and-sequence-points-in-c/
http://gallium.inria.fr/blog/non-determinism-and-sequence-points-in-c/
http://compcert.inria.fr/

	Introduction
	The memory and permissions
	The language
	Operational semantics
	Axiomatic semantics
	Soundness of the axiomatic semantics
	Extensions
	Formalization in Coq
	Conclusions and further research

