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A B S T R A C T

Atrophy of the medial temporal lobe of the brain is key to memory function and memory complaints in old age.
While age and some morbidities are major risk factors for medial temporal lobe atrophy, individual differences
remain, and mechanisms are insufficiently known. The largest combined neuroimaging and whole genome study
to date indicates that medial temporal lobe volume is most associated with common polymorphisms in the
GRIN2B gene that encodes for the 2B subunit (NR2B) of the NMDA receptor. Because sleep disruption induces a
selective loss of NR2B from hippocampal synaptic membranes in rodents, and because of several other reports on
medial temporal lobe sensitivity to sleep disruption, we hypothesized a contribution of the typical age-related
increase in sleep-wake rhythm fragmentation to medial temporal lobe atrophy. Magnetic resonance imaging and
actigraphy in 138 aged individuals showed that individual differences in sleep-wake rhythm fragmentation
accounted for more (19%) of the variance in medial temporal lobe atrophy than age did (15%), or any of a list of
health and brain structural indicators. The findings suggest a role of sleep-wake rhythm fragmentation in age-
related medial temporal lobe atrophy, that might in part be prevented or reversible.

1. Introduction

Human aging is associated with volume reduction of the medial
temporal lobe (MTL) of the brain. The underlying causes of medial
temporal lobe atrophy (MTA) are insufficiently known, yet of major
importance given its essential association with the declarative memory
problems that confront elderly people, and its predictive value for the
development of Alzheimer’s disease (De Toledo-Morrell, Goncharova,
Dickerson, Wilson, & Bennett, 2000; Golomb et al., 1994; Scheltens
et al., 1992). It is thus important to pursue factors involved, because
they may give clues on mechanisms and intervention strategies. Marked
individual differences in the degree of the characteristic age-related
atrophy (Vandenbroucke et al., 2004) suggest involvement of en-
vironmental and genetic risk factors. With respect to environmental risk

factors, several medical conditions of which the risk increases with age
are predictive for MTA (den Heijer et al., 2003, 2005; Hedden and
Gabrieli, 2005). With respect to genetic risk factors, the largest com-
bined neuroimaging and whole genome study to date indicates that
MTL volume is most associated with common variants in the GRIN2B
gene that encodes for the 2B subunit (NR2B) of the NMDA receptor
(Stein et al., 2010). Because these environmental and genetic risk fac-
tors account for only a part of the variance in MTA, the presence of
other, as yet unrecognized, factors is likely, and important to pursue.

Several findings suggest that it could be of value to evaluate a
possible contribution to MTA of the 24-hr sleep-wake rhythm frag-
mentation towards shorter periods of rest and activity, that we showed
to be a most characteristic aspect of aging (Hu, Van Someren, Shea, &
Scheer, 2009; Huang et al., 2002). An increasing difficulty to stay
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asleep at night and awake during the day is not only a significant
problem for older people, but has also been demonstrated in aged mice
(Wimmer et al., 2013). Chronic experimental sleep fragmentation in
mice leads to a loss of select neurons and pro-inflammatory and pro-
oxidative mitochondrial stress responses consistent with neurodegen-
eration (Zhu, Fenik, Zhan, Xin, & Veasey, 2015). In humans, we de-
monstrated a specific hippocampal sensitivity to experimentally in-
duced fragmentation of slow wave sleep (Van Der Werf et al., 2009),
and suggested that fragmentation of periods of sleep and wakefulness,
e.g. induced by chronic sleep restriction (Leemburg et al., 2010;
Vyazovskiy et al., 2011), may interfere with state-dependent neuro-
biological processes that require a critical minimum duration (Van
Someren, 2010). It has moreover been shown that sleep disruption in-
duces a selective loss of NR2B from hippocampal synaptic membranes
(Kim, Grover, Bertolotti, & Green, 2010). This finding is of particular
interest given the role of NR2B in MTA (Stein et al., 2010). Whereas the
sleep deprivation-induced loss of NR2B from hippocampal synaptic
membranes can be rescued by exogenous growth hormone (Kim et al.,
2010), fragmented sleep has an adverse effect on endogenous growth
hormone secretion in humans as well (van Liempt, Vermetten, Lentjes,
Arends, & Westenberg, 2011). Sleep-wake rhythm fragmentation may
thus both directly interfere with synaptic membrane maintenance as
well as indirectly with rescuing processes. Indeed, several other reports
suggest sensitivity of the medial temporal lobe to disrupted sleep.

Firstly, a number of studies in humans reported lower hippocampal
volume in association with sleep fragmentation (Noh, Joo, & Bong,
2012; Winkelman et al., 2010), short sleep (Hall, Soreca, Matthews,
Kuller, & Gianaros, 2009) and a late bedtime (Kuperczkó et al., 2015). A
recent study in rats supports a causal role of chronic sleep restriction in
reducing hippocampal volume (Novati, Hulshof, Koolhaas, Lucassen, &
Meerlo, 2011). Secondly, we demonstrated that the enforcement of 24-
hour rhythms induces a long-term enhancement of cognitive perfor-
mance in elderly residents of group care facilities (Riemersma-van der
Lek et al., 2008). Thirdly, the reverse, an enforcement of non-24-hour
rhythms disrupts MTL-dependent memory tasks and induces MTA (Cho,
2001; Devan et al., 2001; Tapp and Holloway, 1981). Fourthly, a pro-
spective study in 838 middle aged and older adults showed that sleep
complaints at baseline predicted cognitive decline over a period of
3 years (Jelicic et al., 2002). Fifthly, not only our (Van Der Werf et al.,
2009) but also other’s studies applying functional magnetic resonance
imaging and magnetic resonance spectroscopy demonstrated functional
deficits in the hippocampus after experimental prolonged total sleep
deprivation (Yoo, Hu, Gujar, Jolesz, & Walker, 2007) and in relation to
chronic sleep fragmentation due to the obstructive sleep apnea syn-
drome (Halbower et al., 2006). Finally, support for the sensitivity of the
medial temporal lobe is furthermore given by animal studies showing
that the experimental prevention of an uninterrupted period of sleep
reduced hippocampal cell proliferation (Guzman-Marin et al., 2003)
and induced several alterations at the molecular and cellular level that
could inhibit hippocampal function (McDermott et al., 2003). Mouse
studies have moreover shown that even a brief period of sleep depri-
vation induces a pronounced loss of dendritic spines in the hippo-
campus (Havekes et al., 2016), and that a more chronic sleep disruption
reduces hippocampal volume (Kreutzmann, Havekes, Abel, & Meerlo,
2015).

A possible association of sleep-wake rhythm fragmentation with
medial temporal lobe atrophy, both very characteristic of the aging
process, has however not previously been investigated. Given all
mentioned findings that directly or indirectly suggest affected MTL
functionality in association with disrupted sleep, we here investigated
the hypothesis that individual differences in the severity of MTA in
elderly people may be predicted by individual differences in the se-
verity of the sleep-wake rhythm fragmentation that is so typical of
aging.

2. Materials and methods

Data were obtained from 138 participants older than 50 years of age
(69.1 ± 8.5 mean ± standard deviation, 85 males and 53 females),
selected from medical records of the departments of cardiology and
internal medicine of the St. Lucas-Andreas Hospital, Amsterdam, The
Netherlands. In order to ensure a large range of variability in MTA
scores and promote generalizability to common comorbidity at ad-
vanced age (Barnett et al., 2012), we recruited such that 79% of the
participants scored positive for at least one risk factor for enhanced
MTA (including type 2 diabetes, hypertension, hypercholesterolemia
and cardiovascular disease) (den Heijer et al., 2003, 2005). Medical
records and interviews indicated that none of the participants had been
diagnosed with neurodegenerative disease, stroke, psychiatric illness
and abuse of alcohol or other substances. No participant showed cog-
nitive impairment on the Mini Mental State Examination (MMSE,
Folstein, Folstein, & McHugh, 1975). In spite of the lack of a diagnosis
of neurodegenerative disease and cognitive impairment, preclinical
neurodegenerative processes cannot be excluded. Table 1 shows a de-
scription of the population characteristics including age, sex, education
(Verhage, 1964), MMSE, the 15 Words Test (Saan and Deelman, 1986),
the Symptoms Check List (SCL) – Depression (Derogatis, Lipman, &
Covi, 1973), use of sleep medication and pain medication, risk factors
for enhanced MTA (type 2 diabetes, hypertension, hypercholester-
olemia and cardiovascular disease) and the Framingham cardiovascular
risk profile (D’Agostino et al., 2008). Approval for the study was ob-
tained from the medical ethics committee. All subjects signed an in-
formed consent.

The sleep-wake rhythm was assessed for seven days continuously
using actigraphy (Actiwatch, Cambridge Neurotechnology, Cambridge,
UK). Actigraphy is the ambulatory recording of wrist movements with a
small wrist-watch like device, and has been validated as a method for
the unobtrusive long-term assessment of sleep, rest-activity rhythms
and tremors (Kushida et al., 2001) (Carvalho-Bos, Riemersma-van der

Table 1
Sample description. *Verhage education classification system with categories
1= did not finish primary school, 2= finished primary school, 3=did not
finish secondary school, 4= finished secondary school, low level, 5= finished
secondary school, medium level, 6= finished secondary school, highest level,
and/or college degree, 7= university degree. †Cardiovascular disease: atrial
fibrillation, myocardial infarction, coronary artery disease, heart failure and left
ventricle hypertrophy.

Demographics
Age (Years, Mean, St. Dev) 69.1 ± 8.5
Sex (M/F) 85/53

Cognition
Education* (Median, Q1-Q3) 5 (3–5)
MMSE (Mean, St. Dev) 27.9 ± 1.7
15 Words Test 39.9 ± 10

Health
Symptoms Checklist Depression (Mean, St. Dev) 24.6 ± 9
Sleep Medication (yes/no) 8/130
Pain Medication (yes/no) 9/129
Type 2 Diabetes (yes/no) 44/94
Hypertension (yes/no) 48/90
Hypercholesterolemia (yes/no) 70/68
Cardiovascular disease† (yes/no) 87/51
Framingham cardiovascular risk profile score (Mean, St. Dev) 9.4 ± 4.6

MRI findings
MTA score 0.69 ± 0.75
Global cortical atrophyy 0.92 ± 0.74
Lacunar/cortical infarct (yes/no) 30/108

Sleep-wake rhythm
Interdaily Stability (Mean, St. Dev) 0.73 ± 0.12
Fragmentation (Intradaily Variablity, IV, Mean, St. Dev) 0.57 ± 0.2
Amplitude (Active minutes/hr, Mean, St. Dev) 40 ± 7.7
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Lek, Waterhouse, Reilly, & Van Someren, 2007; Van Someren et al.,
1993, 2006; Van Someren, Vonk, et al., 1998; Van Someren, 2007). The
activity profile (see examples in Fig. 1) was quantified with three pre-
viously described variables reflecting different aspects of the variability
in the hour-by-hour time spent active (Carvalho-Bos et al., 2007). The
interdaily stability (IS) quantifies the extent to which all recorded 24-
hour activity profiles resemble each other, i.e. the day-by-day regularity
of the sleep-wake pattern. The intradaily variability (IV) quantifies the
fragmentation of the rhythm, i.e. the frequency and extent of transitions
between periods of rest and activity. Finally, a nonparametric measure
of the amplitude of the rhythm (AMP) was calculated by subtracting the
least active 5-hour period (L5) of the average 24-hour profile from its
most active 10-hour period (M10).

Within a month from the actigraphic assessments, participants un-
derwent a brain MRI scan (1.5 Tesla Signa Horizon LX, General Electric,
Milwaukee, USA) during which coronal FLAIR images were acquired.
The standardized imaging protocol consisting of sagittal T1-weighted
(repetition time TR 300ms, echo time TE 4ms) and axial T2-weighted
(TR 6500ms, TE 105ms) and fluid attenuated inversion recovery
(FLAIR) weighted (TR 10,000ms, TE 160ms) as well as coronal FLAIR
images with a slice thickness of 5mm with a 2mm gap. MTA was
subsequently rated according to validated standard procedures
(Scheltens et al., 1992, 1993). Whereas volumetric analysis of brain
structures on MRI scans would provide a higher resolution in quanti-
fying individual differences, it is time consuming, not routinely avail-
able, and dependent on scan protocol and quality and availability of
expertise with specialized software. Scheltens and Barkhof therefore
developed a visual rating scale as an easy to learn user friendly alter-
native (Scheltens et al., 1992, 1993). The score takes into account the
height of the hippocampus and the enlargement of the surrounding
cerebrospinal fluid space (width of the choroid fissure and temporal
horn) as seen on a coronal T1 weighted scan. The severity of medial
temporal lobe atrophy (MTA) is scored from 0 (no atrophy) to 4 (most
severe atrophy). Several studies compared the rating with quantitative
methods and confirmed that it provided a good estimate of medial
temporal lobe and hippocampal volumes for cross-sectional studies (see
Scheltens and van de Pol, 2012). In our Alzheimer Center, MTA raters
are well-trained and supervised to keep to the instructions of the ori-
ginal description of the method (Scheltens et al., 1992). Given the re-
sulting high inter-rater reliabilities (0.87–0.95, e.g. Claus et al., 2017),
we relied on a single rater who was blinded to any information about
e.g. age and sleep fragmentation. Mean scores of left and right MTA
were used for the analyses. We moreover rated global cortical atrophy

according to Scheltens, Pasquier, Weerts, Barkhof, and Leys (1997). In
brief, the method rates the sulcal width and gyral thinning in the
frontal, parieto-occipital, and temporal lobes on a 4-point scale ranging
from 0 to 3. Finally, we rated presence or absence of cortical and la-
cunar 'silent' infarctions, of which the latter were defined by 3–10mm
signal intensities corresponding to cerebrospinal fluid. Experienced
raters (AAG, AP, and PS) scored all scans blinded to any information
about the participant.

Statistical analyses included Pearson correlation coefficients, t-tests,
and multiple and stepwise regression analyses with MTA as dependent
variable, the sleep-wake rhythm variables as independent variables. A
two-sided p < 0.05 was considered significant.

3. Results

In 138 participants older than 50 years of age, sleep-wake rhythm
fragmentation was quantified using actigraphic recordings (Carvalho-
Bos et al., 2007) and MTA using magnetic resonance imaging (Scheltens
et al., 1992, 1993). Examples of two cases are given in Fig. 1. Table 1
shows sample means and standard deviations of the sleep-wake rhythm
stability (IS), fragmentation (IV) and amplitude (AMP). Simple corre-
lation coefficients (Table 2) revealed strong positive correlations of
MTA with age and with the fragmentation of the sleep-wake rhythm,
and moderate negative correlations with the interdaily stability and
amplitude of the sleep-wake rhythm. Of note, fragmentation accounted
for more of the variance in MTA (19%) than age did (15%). Males and
females did not differ with respect to MTA (t-test, p= 0.28). Given the
likely partial collinearity between the four MTA predictors, a stepwise
regression was performed to exclude redundancy and reveal the most
significant MTA predictors. Age (beta= 0.28) and fragmentation of the
sleep-wake rhythm (beta= 0.35) turned out to be the most salient

Fig. 1. Examples of activity rhythm and MTA in two participants selected to illustrate the relation found. The upper graphs show a participant that has pronounced
24-hour pattern with the characteristic long periods of rest and of activity in his sleep-wake rhythm (upper left, and relatively little MTA (upper right). The lower
graphs show a subject whose sleep-wake rhythm shows pronounced fragmentation, i.e. alternation of periods of rest and of activity (lower left) and more advanced
MTA (lower right).

Table 2
Predictive value of age and three parameters describing the sleep-wake rhythm
for MTA. The first row shows the individual correlations, the second shows the
standardized coefficients that remain in a stepwise regression analysis.

Age Interdaily
stability

Fragmentation Amplitude

Individual correlation
coefficient

0.38 **** −0.20 * 0.43 ***** −0.28 **

Stepwise standardized
coefficient

0.28 ** 0.35 ****

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; *****p < 0.00001.
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predictors of MTA, and were not redundant. Together, the two variables
accounted for 26% of the variance in MTA, indicating that rhythm
fragmentation has an important contribution to MTA on top of the well-
described predictive value of age. In fact, if one had to choose between
the two single predictors, fragmentation would do slightly better. As
visualized in Fig. 2, subjects with a more fragmented activity profile
(IV) thus had more MTA than subjects with activity profiles char-
acterized by prolonged periods of activity and of rest.

There was no significant difference (t(1) = −1.57, p= .12) in age
between men (68.3 ± 8.8) and women (70.5 ± 8.1). Simple non-
parametric Mann-Whitney U tests revealed that sex was not associated
with MTA (U=2088.0, Z=−0.88, p= .38) or with IV (U=2432.0,
Z=−0.46, p= .64). It is therefore unlikely that sex was somehow
involved in the association between MTA and IV.

Finally, multiple regression and stepwise regression including all
possibly confounding variables (Table 2) were used to evaluate whether
other variables would contribute stronger than, or in addition to, age
and fragmentation. In a multiple regression model including, age and IV
remained highly significant and only cardiovascular disease ad-
ditionally contributed to MTA (beta= 0.28, p= 0.012). Also in the
stepwise regression model, IV (beta= 0.35, p=0.000) and age
(beta= 0.30, p=0.000) and remained the first and second most sig-
nificant predictors, with smaller additional contributions of type 2
diabetes (beta=−0.20, p=0.011) and silent infarction (beta= 0.16,
p=0.0039). The surprizing negative coefficient for type 2 diabetes
suggests a possible overfitting. Indeed, adjusted R-square values sug-
gested only a marginal improvement in explained variance of the four-
predictor model (R2= 0.32) relative to the model including only IV and
age (R2=0.26). In summary, IV remained the most consistent and
strong regressor of MTA across analyses, surpassing the predictive value
of age.

4. Discussion

The present study found that age-related MTA is strongly associated
with a fragmented sleep-wake rhythm. Our findings are open to mul-
tiple interpretations as to the mechanism involved. First, there could be
a neuropathological process that not only underlies MTA, but also af-
fects other structures involved in arousal regulation, including the basal
forebrain, the locus coeruleus and the hypothalamic suprachiasmatic
nucleus (SCN). The SCN accommodates the biological clock of the brain
which interacts with information about the environmental light-dark
cycle to regulate physiology (e.g. Scheer, van Heijningen, Van Someren,
& Buijs, 2005) and shows functional changes with aging (Swaab, Van
Someren, Zhou, & Hofman, 1996) that are reflected in the actigraphic
readout measures used in the present study (Harper et al., 2008).
Second, it may be that MTA induces dysfunction of the SCN and/or its

downstream effector systems that mediate the SCN-imposed rhythm in
activity. Third, it may be the other way around: that fragmented and
irregular activity rhythms aggravate the neuropathological process re-
sponsible for MTA.

Although the first two possibilities cannot be discarded, previous
work supports the latter. In contrast to the virtual lack of data sup-
porting that manipulation of the MTL system would induce (SCN-
mediated) changes in the sleep-wake rhythm, there is considerable
support for the reverse, much of which has already been mentioned in
the introduction. In mice, an optogenetic hypocretin activation proce-
dure to induce fragmentation of sleep without changing its duration,
disrupts novel object recognition learning (Rolls et al., 2011). The ex-
perimental enforcement of irregular sleep-wake rhythms to rats and
humans induces deficits in MTL-dependent task performance (Cho,
2001; Fekete, van Ree, Niesink, & de Wied, 1985; Tapp and Holloway,
1981). Profession-induced irregularity of the activity rhythm induces
MTA (Cho, 2001). Several suggestions regarding the neuropathological
mechanisms underlying these findings can be mentioned here. Slice
experiments on long term potentiation showed a circadian modulation
of synaptic plasticity in the hippocampus (Chaudhury, Wang, &
Colwell, 2005). The severe restriction and fragmentation of sleep re-
duces hippocampal cell proliferation in rats (Guzman-Marin et al.,
2003). In mice, sleep deprivation impairs hippocampal cAMP signalling
(Vecsey et al., 2009). The lack of a pronounced 24-profile of activity
may also induce the loss of a circadian pattern of peripheral clock gene
expression (van der Veen et al., 2006), while this pattern is presumed to
be essential for the temporal segregation of biochemically incompatible
processes of which the simultaneous occurrence within a single cell
could harm it (Stratmann and Schibler, 2006). Involvement of gluta-
matergic transmission derailment is a most interesting possibility to
further explore given the role of NR2B in MTA (Stein et al., 2010) and
the sensitivity of N2B to sleep disruption (Kim et al., 2010).

It should be noted that different aspects of sleep may be differen-
tially associated with MTL structure and function. A study in commu-
nity-dwelling middle aged adults found that sleep quality was widely
correlated with longitudinal measures of cortical atrophy, but not hip-
pocampal atrophy (Sexton, Storsve, Walhovd, Johansen-Berg, & Fjell,
2014). The study however assessed only subjective sleep quality using
the Pittsburgh Sleep Quality Index, but no objective measure of the
quality of the sleep-wake rhythm. Especially in elderly people, sub-
jective sleep quality was found not to be significantly associated with
objective accelerometry measures of disturbed sleep-wake rhythms
(Anderson et al., 2014; Most, Aboudan, Scheltens, & Van Someren,
2012). Likewise, there is no strong support for hippocampal atrophy in
people suffering from insomnia disorder. Although some studies re-
ported reduced hippocampal volume in insomnia (Joo, Kim, Suh, &
Hong, 2014; Riemann et al., 2007) or a negative association between
hippocampal volume and subjective sleep quality (Koo, Shin, Lim,
Seong, & Joo, 2017), other studies including one with the largest
sample size to date did not find any volume differences (Leerssen et al.,
2018; Noh, Joo, Kim, et al., 2012; Winkelman et al., 2010).

A few possible limitations of the present study should be considered.
First, our study was performed on a population of whom 79% were
positive for at least one risk factor for MTA. We did so on purpose,
because there may have been negligible variance in MTA if we would
have recruited among the minority of elderly people without any dis-
order. It has in fact been argued that generalizability requires the in-
clusion of cases with morbidity, because over the age of 50 years people
without one or more chronic disorders are an exception rather than the
rule (Barnett et al., 2012). Another limitation is that – even though we
excluded confounding by a several variables (Table 1) – we had no
conclusive information on a few variables that may be considered re-
levant, notably like body mass index (BMI) and sleep disordered
breathing. First, overweight should be considered as a possible con-
founder, because BMI is associated with rhythm fragmentation (Luik,
Zuurbier, Hofman, Van Someren, & Tiemeier, 2013) and inversely

Fig. 2. Increasing average (± s.e.) MTA-score in subjects grouped according to
their sleep-wake rhythm fragmentation score (IV,< 0.45, 0.45–0.55,
0.55–0.65, 0.65–0.75,> 0.75). Both MTA and IV are given in arbitrary units.
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associated with hippocampal volume (Cherbuin, Sargent-Cox, Fraser,
Sachdev, & Anstey, 2015). However, the strength of the association of
rhythm fragmentation with BMI reported by Luik et al. (2013) is small
(Beta= 0.09). Because this association is almost a factor five smaller
than we here found for the association of rhythm fragmentation with
MTA (Beta= 0.43), it is implausible that BMI could have driven the
strong association between rhythm fragmentation and MTA we here
report. A second relevant variable is sleep disordered breathing (SDB).
Medical records mentioned SDB in 6% of our sample, but this number is
most likely underestimates the true proportion, since SDB is under-
diagnosed. SDB is indeed associated with MTA (Daulatzai, 2015).
However, we previously showed in a large epidemiological study
(N=1734) of older people representative of the general population,
that possible apnea was neither related to interdaily stability
(Beta= 0.02, p= 0.51) nor to intradaily variability (Beta= 0.03,
p=0.21) (Luik et al., 2013). It is therefore implausible that SDB could
underlie the strong association between rhythm fragmentation and
MTA we here report.

Another potential limitation of the current study is that we did not
assess employment status of our participants. As a significant number of
the participants was younger than the typical age of retirement (i.e.
65 years of age in the Netherlands at the time the study was conducted),
it is possible that working influenced the rest-activity rhythm results in
these participants and consequently our study findings. For one,
working likely influences the level of physical activity, depending on
the precise type of employment (e.g., reduced levels in white-collar
workers and increased levels in blue-collar workers, (Fukushima et al.,
2018; Wilke, Ashton, Elis, Biallas, & Frobose, 2015). Moreover, pre-
vious studies have shown that retirement is associated with altered
levels of physical activity (Celidoni and Rebba, 2017; McDonald et al.,
2017), increased time spend asleep (Hagen, Barnet, Hale, & Peppard,
2016) and a decrease in sleep difficulties (e.g., waking up too early in
the morning (Myllyntausta et al., 2018)). To what extent working status
has influenced the association between Intradaily Variability (IV) and
medial temporal lobe atrophy (MTA) is unclear, and needs clarification
in future studies.

It may be considered a limitation that we did not register meno-
pause status or hormone replacement therapy. It has been documented
that post-menopausal hormone therapy is associated with changes in
brain morphology, including increased hippocampal volume (Eberling
et al., 2003). In the Netherlands, the median age at menopause is
50 years and approximately 78% of all females will have their meno-
pause at the age of 54 (Ossewaarde et al., 2005). Although the men-
strual cycle can modulate diurnal rhythms (e.g. Bao et al., 2004; Bao
et al., 2003), in our study sample only 8 women were younger than
60 years, the age at which practically all women will have reached
menopause. Excluding these women did not change our results: IV was
still significantly associated with MTA. It is therefore unlikely that
menopause played a significant role in our reported association be-
tween IV and MTA.

Actigraphy is a valuable tool in the assessment of sleep-wake
rhythm disturbances, as well as their response to a wide range of in-
terventions (e.g. Van Someren, Scherder, & Swaab, 1998). Although
sleep-wake rhythm variables can show stronger associations with dis-
ease severity than actigraphic estimates of within-sleep variables (Hu
et al., 2016; Luik, Zuurbier, Direk, et al., 2015; Luik, Zuurbier, Hofman,
et al., 2015; Zuurbier, Ikram, et al., 2015; Zuurbier, Luik, et al., 2015),
it would be interesting to use polysomnography to investigate differ-
ential contributions of non-REM and REM sleep to MTA (Meerlo,
Mistlberger, Jacobs, Craig Heller, & McGinty, 2009).

A final limitation is our use of a cross-sectional design, so it is un-
known for how long participants have experienced rhythm fragmen-
tation. From a previous repeated measures follow-up study in demented
elderly people (Riemersma-van der Lek et al., 2008), we could derive
that IV can be quite consistent within-subject across years, given the
intraclass correlation coefficient of 0.64. It would require long-term

follow-up studies to better evaluate at what rate a fragmented rhythm
accelerates medial temporal lobe atrophy.

Overall, the picture emerging from our findings that the temporal
organization of periods of sleep and wakefulness across 24 h is more re-
levant to MTL integrity than the subjectively experienced quality of
sleep. Support for this possibility is given by a recent study in which
healthy older adults completed the Pittsburgh Sleep Quality Index
(PSQI) as well as actigraphic assessment of sleep-wake rhythm before
they underwent fMRI while performing an associative memory task
(Sherman, Mumford, & Schnyer, 2015). A mediation analysis on the
data indicated that – independent of sleep quality measures – a more
consistent sleep-wake rhythm facilitated hippocampal activity and
thereby successful memory performance. Whereas this study was ob-
servational, even stronger support for the importance of sleep con-
tinuity could be derived from an fMRI study in middle to old aged
volunteers that likewise found attenuated hippocampal activity after
experimentally induced sleep fragmentation (Van Der Werf et al.,
2009).

Further experimental studies on underlying processes and on their
possible reversibility by promoting regular sleep-wake rhythms with
prolonged periods of rest and activity (e.g. Gasio et al., 2003;
Riemersma-van der Lek et al., 2008) are warranted, especially so be-
cause, as compared to age per se, sleep-wake rhythm fragmentation
appears to have at least as much or even more predictive value for
functionally relevant age-related changes in brain structure and Alz-
heimer pathology (Musiek et al., 2018).
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