
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/126194

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/20078244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/126194

A Compositional Model to Reason about end-to-end
QoS in Stochastic Reo Connectors

Young-Joo Moona,∗, Alexandra Silvaa, Christian Krausea, Farhad Arbaba

aCentrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Abstract

In this paper we present a compositional semantics for the channel-based co-
ordination language Reo that enables the analysis of quality of service (QoS)
properties of service compositions. For this purpose, we annotate Reo channels
with stochastic delay rates and explicitly model data-arrival rates at the bound-
ary of a connector, to capture its interaction with the services that comprise its
environment. We propose Stochastic Reo Automata as an extension of Reo au-
tomata, in order to compositionally derive a QoS-aware semantics for Reo. We
further present a translation of Stochastic Reo Automata to Continuous-Time
Markov Chains (CTMCs). This translation enables us to use third-party CTMC
verification tools to do an end-to-end performance analysis of service compo-
sitions. As a case study of industrial strength, we consider the ASK system.
Particularly, we present an analysis of the CTMC derived from the Stochastic
Reo model of the ASK system. In addition, we discuss to what extent Inter-
active Markov Chains (IMCs) can serve as an alternative semantic model for
Stochastic Reo. We show that the compositionality of IMCs cannot specify the
behavior of Stochastic Reo.

Keywords: Coordination language, Reo, Continuous-Time Markov Chains,
Quality of Service, Compositional Semantic Model

1. Introduction

In service-oriented computing (SOC), complex distributed applications are
built by composing existing – often third-party – services using additional co-
ordination mechanisms, such as workflow engines, component connectors, or
tailor-made glue code. Due to the high degree of heterogeneity and the fact
that the owner of the application is not necessarily the owner of its building
blocks, issues involving quality of service (QoS) properties become increasingly
entangled. Even if the QoS properties of every individual service and connector

∗Corresponding author
Email addresses: yjm@cwi.nl (Young-Joo Moon), ams@cwi.nl (Alexandra Silva),

c.krause@cwi.nl (Christian Krause), farhad@cwi.nl (Farhad Arbab)

Preprint submitted to Science of Computer Programming November 2, 2010

are known, it is far from trivial to determine and reason about the end-to-
end QoS of a composed system in its application context. Yet, the end-to-end
QoS of a composed service is often as important as its functional properties in
determining its viability in its market.

Reo [1], a channel-based coordination language, supports the composition
of services, and typically, its semantics is given in terms of Constraint Au-
tomata (CA) [2]. However, CA do not account for the QoS properties and can-
not capture the context-dependency [2] of Reo connectors. To capture context-
dependency, Reo Automata were introduced in [3]. However, they also provide
no means for modeling QoS properties. On the other hand, Quantitative In-
tentional Automata (QIA) were proposed in [4] to account for the end-to-end
QoS properties of Reo connectors. Unfortunately, no formal results are readily
available regarding their compositionality.

As our contribution, we present Stochastic Reo Automata to overcome the
shortcomings of CA and QIA, mentioned above, as a compositional seman-
tic model for reasoning about the end-to-end QoS properties, as well as han-
dling the context-dependency of Reo connectors. We show that the compo-
sitionality results of Reo Automata extend to Stochastic Reo Automata. We
present a translation of Stochastic Reo Automata to Continuous-Time Markov
Chains (CTMCs). This enables the use of third-party tools for stochastic anal-
ysis. Therefore, this paper shows a compositional approach for constructing
Markov Chain (MC) models of complex composite systems, using Stochastic
Reo Automata as an intermediate model. Stochastic Reo Automata provide a
compositional framework wherein the corresponding CTMC model of a connec-
tor can be derived. This approach, thus, enables us to model the QoS properties
of system behavior, where our translation derives a CTMC model for complex
systems for subsequent analysis by other tools.

2. Related work

The research in formal specification of system behavior with quantitative
aspects encompasses a variety of developments such as Stochastic Process Al-
gebras (SPAs) [5], Stochastic Automata Networks (SANs) [6, 7], and Stochastic
Petri nets (SPNs) [8, 9]. SPA is a model for both qualitative and quantitative
specification and analysis with a compositional and hierarchical framework. It
has algebraic laws (the so-called static laws) and expansion laws which express
parallel compositions in terms of SPA operators. In SPA the interpretation of
the parallel composition is a vexed one because it allows various interpretations
such as Performance Evaluation Process Algebra (PEPA) [10], and Extended
Markovian Process Algebra (EMPA) [11, 12]. SPA describes ‘how ’ each process
behaves, while (Stochastic) Reo directly describes ‘what ’ communication pro-
tocols connect and coordinate the processes in a system, in terms of primitive
channels and their composition. Therefore, (Stochastic) Reo explicitly models
the pure coordination and communication protocols including the impact of real
communication networks on software systems and their interactions. Compared

2

to SPA, our approach more naturally leads to a formulation using queueing
models.

SPN is widely used for modeling concurrency, synchronization, and prece-
dence, and is conducive to both top-down and bottom-up modeling. Stochastic
Reo shares the same properties with SPN and natively supports composition of
synchrony and exclusion together with asynchrony. The topology of connectors
in (Stochastic) Reo is inherently dynamic, and it accommodates mobility [13].
Moreover, (Stochastic) Reo supports a liberal notion of channels and is more
general than data-flow models and Petri nets, which can be viewed as specialized
channel-based models that incorporate certain built-in primitive coordination
constructs.

SAN consists of a number of stochastic automata each of which acts inde-
pendently. Thus, the state of a SAN at time t is expressed by the states of each
automaton at time t. The concept of a collection of individual automata helps
modeling distributed and parallel systems more easily. The interactions in SANs
are rather limited to patterns like synchronizing events or operating at different
rates. Compared with the SAN approach, the expressiveness of (Stochastic)
Reo makes it possible to model different interaction patterns involving both
asynchronous and synchronous communications.

Interactive Markov Chains (IMCs) [14] are a stochastic model to specify
reactive systems. In IMCs, timing information and actions are represented sep-
arately. Timing information is described by Markovian transitions and actions
are described by interactive transitions. Roughly speaking, IMCs are a combi-
nation of Labeled Transition Systems (LTSs) and CTMCs. Compared to other
stochastic models such as CTMCs, the main strength of IMCs is their composi-
tionality. Thus, one can generate a complex IMC as the composition of relevant
simple IMCs, which enables compositional specification of complex systems.

In our approach, compositionality is handled in a richer semantic model:
Stochastic Reo Automata. This semantic model is then translated into a stochas-
tic model where appropriate tools can be used for stochastic analysis. IMCs are
a compositional stochastic model and can thus be seen as an alternative to the
approach proposed in this paper. We discuss them further in Section 7, and
show that IMCs are not appropriate as a compositional semantic model for
Stochastic Reo.

Continuous-Time Constraint Automata (CCA) [15] are another stochastic
extension of CA which support reasoning about QoS aspects such as expected
response times. CCA are close to IMCs in that they distinguish between inter-
active transitions and Markovian transitions. In CCA, data-arrivals and data-
flows in connectors are represented by interactive transitions, and processing
data in components is represented by Markovian transitions. Processing data
in each component is independent of processing in the others. Thus, interleaving
composition of Markovian transitions is appropriate. The stochastic extension
in CCA focuses on internal behavior of a connector, but it does not take into
account the interaction with the environment, i.e., the arrivals of I/O requests
at the ends of a connector as stochastic processes. Reasoning about the end-to-
end QoS of system behavior requires incorporation of such stochastic processes.

3

In addition, CCA do not capture the context-dependency of a Reo connector,
i.e., it is possible for CCA models to have unintended transitions. Compared to
such CCA, Stochastic Reo Automata not only specify the end-to-end QoS of a
Reo connector, but also capture context-dependent behavior.

3. Overview of Reo

Reo is a channel-based coordination model wherein so-called connectors are
used to coordinate (i.e., control the communication among) components or ser-
vices exogenously (from outside of those components and services). In Reo,
complex connectors are compositionally built out of primitive channels. Chan-
nels are atomic connectors with exactly two ends, which can be either source
or sink ends. Source ends accept data into, and sink ends dispense data out
of their respective channels. Reo allows channels to be undirected, i.e., to have
respectively two source or two sink ends.

a b

Sync

a b

LossySync

a b

FIFO1

a b

SyncDrain

Figure 1: Some basic Reo channels

Figure 1 shows the graphical representations of some basic channel types.
The Sync channel is a directed, unbuffered channel that synchronously reads
data items from its source end and writes them to its sink end. The LossySync
channel behaves similarly, except that it does not block if the party at the sink
end is not ready to receive data. Instead, it just loses the data item. FIFO1
is an asynchronous channel with a buffer of size one. The SyncDrain channel
differs from the other channels in that it has two source ends (and no sink end).
If there is data available at both ends, this channel consumes (and loses) both
data items synchronously.

Channels can be joined together using nodes. A node can have one of three
types: source, sink or mixed node, depending on whether all ends that coincide
on the node are source ends, sink ends or a combination of both. Source and
sink nodes, called boundary nodes, form the boundary of a connector, allowing
interaction with its environment. Source nodes act as synchronous replicators,
and sink nodes as mergers. A mixed node combines both behaviors by atomically
consuming a data item from one sink end and replicating it to all of its source
ends.

An example connector is depicted in Figure 2. It reads a data item from a,
buffers it in a FIFO1 and writes it to d. The connector loses data items from a
if and only if the FIFO1 buffer is already full. This construct, therefore, behaves
as a connector called (overflow) LossyFIFO1.

4

a b c d

Figure 2: Example connector: LossyFIFO1

q

ab|ab

q

ab|ab
ab|a

q

ab|ab
e f

a|a

b|b

Sync LossySync SyncDrain FIFO1

Figure 3: Automata for basic Reo channels

3.1. Semantics: Reo Automata
In this section, we recall Reo Automata [3], an automata model that provides

a compositional operational semantics for Reo connectors. Intuitively, a Reo
Automaton is a non-deterministic automaton whose transitions have labels of
the form g|f , where g is a guard (boolean condition) and f a set of nodes that
fire synchronously. A transition can be taken only when its guard g is true.

We recall some facts about Boolean algebras. Let Σ = {σ1, . . . , σk} be a set
of symbols that denote names of connector ports, σ be the negation of σ, and
BΣ be the free Boolean algebra generated by the following grammar:

g ::= σ ∈ Σ | > | ⊥ | g ∨ g | g ∧ g | g

We refer to the elements of the above grammar as guards and in its representa-
tion we frequently omit ∧ and write g1g2 instead of g1 ∧ g2. Given two guards
g1, g2 ∈ BΣ, we define a (natural) order ≤ as g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1. The
intended interpretation of ≤ is logical implication: g1 implies g2. An atom of
BΣ is a guard a1 . . . ak such that ai ∈ Σ ∪ Σ with Σ = {σi | σi ∈ Σ}, 1 ≤ i ≤ k.
We can think of an atom as a truth assignment. We denote atoms by Greek
letters α, β, . . . and the set of all atoms of BΣ by AtΣ. Given S ⊆ Σ, we define
Ŝ ∈ BΣ as the conjunction of all elements of S. For instance, for S = {a, b, c}
we have Ŝ = abc.

Definition 3.1. (Reo Automaton) [3] A Reo Automaton is a triple (Σ, Q, δ)
where Σ is the set of nodes, Q is the set of states, δ ⊆ Q× BΣ × 2Σ ×Q is the

transition relation such that for each q
g|f−−→ q′ ∈ δ:

(i) g ≤ f̂ (reactivity)

(ii) ∀g ≤ g′ ≤ f̂ · ∀α ≤ g′ · ∃q g′′|f−−−→ q′ ∈ δ · α ≤ g′′ (uniformity)

In Reo Automata, for simplicity we abstract data constraints [2] and assume

they are true. We use arrows q
g|f−−→ q′ for 〈q, g, f, q′〉 ∈ δ. If there is more than

one transition from a state q to the same state q′ we often just draw one arrow

5

and separate their labels by commas. In Figure 3 we depict the Reo Automata
for the basic channel types listed in Figure 1.

Intuitively, a transition q
g|f−−→ q′ in an automaton corresponding to a Reo

connector conveys the following notion: if the connector is in state q and the
boundary requests present at the moment, encoded by an atom α, are such
that α ≤ g, then the nodes f fires and the connector evolves to state q′. Each
transition labeled by g|f satisfies two criteria: (i) reactivity — data flow only
through those nodes where a request is pending, capturing Reo’s interaction
model; and (ii) uniformity — which captures two properties: (a) the request
set corresponding precisely to the firing set is sufficient to cause firing, and (b)
removing additional unfired requests from a transition will not affect the (firing)
behavior of the connector [3].

3.1.1. Composing Reo connectors
We now model at the automata level the composition of Reo connectors.

We define two operations: product, which puts two connectors in parallel, and
synchronization, which models the plugging of two nodes. Thus, the product
and synchronization operations can be used to obtain the automaton of a Reo
connector by composing the automata of its primitive connectors. Later in this
section we formally show the compositionality of these operations.

We first define the product operation for Reo Automata. This definition
differs from the classical definition of (synchronous) product for automata: our
automata have disjoint alphabets and they can either take steps together or
independently. In the latter case the composite transition in the product au-
tomaton explicitly encodes that one of the two automata cannot perform a step
in the current state, using the following notion:

Definition 3.2. [3] Given a Reo Automaton A = (Σ, Q, δ) and q ∈ Q we define

q] = ¬
∨
{ g | q g|f−−→ q′ ∈ δ }.

This captures precisely the condition under which A cannot fire in state q.

Definition 3.3. (Product) [3] Given two Reo Automata A1 = (Σ1, Q1, δ1)
and A2 = (Σ2, Q2, δ2) such that Σ1 ∩ Σ2 = ∅, we define the product of A1 and
A2 as A1 ×A2 = (Σ1 ∪ Σ2, Q1 ×Q2, δ) where δ consists of:

{(q, p) gg′|ff ′−−−−→ (q′, p′) | q g|f−−→ q′ ∈ δ1 ∧ p
g′|f ′−−−→ p′ ∈ δ2}

∪ {(q, p) gp]|f−−−→ (q′, p) | q g|f−−→ q′ ∈ δ1 ∧ p ∈ Q2}

∪ {(q, p) gq]|f−−−→ (q, p′) | p g|f−−→ p′ ∈ δ2 ∧ q ∈ Q1}

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. The first term in
the union, above, applies when both automata fire in parallel. The other terms
apply when one automaton fires and the other is unable to (indicated by p] and
q], respectively). Note that the product operation is closed for Reo Automata,

6

q × e f = (q, e) (q, f)

ab|ab
ab|a

c|c

d|d

abc|abc
abc|ac
ac|c

abd|abd
abd|ad
ad|d

abc|ab
abc|a

abd|ab
abd|a

∂b,c
(q, e) (q, f)

a|a

ad|ad
ad|d

ad|a

Figure 4: Product of LossySync and FIFO1 and the synchronization of nodes b and c

since it preserves reactivity and uniformity [3]. Figure 4 shows an example of
the product of two automata.

We now define a synchronization operation that corresponds to joining two
nodes in a Reo connector. In order for this operation to be well-defined we
need that every guard in a transition label in the automata is a conjunction of
literals. Note that in the automata presented in Figure 3 for basic Reo channels
this is already the case, and moreover, it is always possible to transform any
guard g into this form, by taking its disjunctive normal form (DNF) g1∨ . . .∨gk
and splitting the transition g|f into the several gi|f , for i = 1, . . . , k. Given a
transition relation δ we call norm(δ) the normalized transition relation obtained
from δ by putting all of its guards in DNF and splitting the transitions as
explained above.

When synchronizing two nodes a and b (which are then made internal),
in the resulting automaton, only the transitions where either both a and b or
neither a nor b fire are kept — this is what it means for a and b to synchronize.
In order to propagate context information (pending requests), we require that
every guard contains either a or b, expressed by the condition g 6≤ ab below.
This condition roughly corresponds to the notion of an internal node acting like
a self-contained pumping station [1], which implies that an internal node cannot
store data nor actively block behavior.

Definition 3.4. (Synchronization) [3] Given a Reo AutomatonA = (Σ, Q, δ),
we define the synchronization for a, b ∈ Σ as ∂a,bA = (Σ, Q, δ′) where

δ′ = {q g\ab|f\{a,b}−−−−−−−−→ q′ | q g|f−−→ q′ ∈ norm(δ) s.t. g 6≤ ab and a ∈ f ⇔ b ∈ f}

Here and throughout, g\ab is the guard obtained from g by deleting all occur-
rences of a and b. It is worth noting that synchronization preserves reactivity
and uniformity.

Figure 41 depicts the product of LossySync and FIFO1, together with the

1For simplicity, we abstract away data-constrains on firings by assuming them true. Thus,

7

result of synchronizing nodes b and c. This synchronized result provides the
semantics for the LossyFIFO1 example in Figure 2.

3.1.2. Compositionality
Given two Reo Automata A1 and A2 over the disjoint alphabets Σ1 and Σ2,

{a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2 we construct ∂a1,b1∂a2,b2 · · · ∂ak,bk(A1×
A2) as the automaton corresponding to a connector where node ai of the first
connector is connected to node bi of the second connector, for all i ∈ {1, . . . , k}.
Note that the ‘plugging’ order does not matter because ∂ is commutative and
it interacts well with product. These properties are captured in the following
lemma.

Lemma 3.5. [3] For the Reo Automata A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2):

1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2. (∂a,bA1)×A2 ∼ ∂a,b(A1 ×A2), if a, b /∈ Σ2

The notion of equivalence ∼ used above is bisimulation, defined as follows.

Definition 3.6. (Bisimulation) [3] Given the Reo Automata A1 = (Σ, Q1, δ1)
and A2 = (Σ, Q2, δ2), we call R ⊆ Q1×Q2 a bisimulation iff for all (q1, q2) ∈ R:

If q1
g|f−−→ q′1 ∈ δ1 and α ∈ AtΣ, α ≤ g, then there exists a transition

q2
g′|f−−→ q′2 ∈ δ2 such that α ≤ g′ and (q′1, q

′
2) ∈ R and vice-versa.

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are bisimilar if there exists a
bisimulation relation containing the pair (q1, q2) and we write q1 ∼ q2. Two au-
tomata A1 and A2 are bisimilar, written A1 ∼ A2, if there exists a bisimulation
relation such that every state of one automaton is related to some state of the
other automaton.

4. Stochastic Reo

Stochastic Reo is an extension of Reo where channel ends and channels are
annotated with stochastic values for data arrival rates at channel ends and
processing delay rates at channels. Such rates are non-negative real values and
describe how the probability that an event occurs varies with time. Figure 5
shows the stochastic versions of the primitive Reo channels in Figure 1. Here and
throughout, for simplicity, we omit the node names, since they can be inferred
from the names of their respective arrival rates: for instance, γa is the arrival
rate of node a.

A processing delay rate represents how long it takes for a channel to per-
form a certain activity, such as data-flow. For instance, a LossySync has two

the composition result of a LossySync and a FIFO1 channels, i.e., an overflow LossyFIFO1
circuit, becomes indistinguishable from the automaton for a shift LossyFIFO1 [2] circuit. How-
ever, by reviving data-constraints we can distinguish the automata for these two circuits.

8

γa γb

γab

γa γb

γab

γaL γa γb

γab

γa

γaF

γb

γFb

Figure 5: Basic Stochastic Reo channels

associated rates γab and γaL for, respectively, successful data-flow from node
a to node b, and losing the data item from node a. In a FIFO1 γaF represents
the delay for data-flow from its source a into the buffer, and γFb for sending
the data from the buffer to the sink b.

Arrival rates describe the time between consecutive arrivals of I/O requests
at the source and sink nodes of Reo connectors. For instance, γa and γb in
Figure 5 are the associated arrival rates of write/take requests at the nodes a
and b.

Since arrival rates on nodes model their interaction with the environment
only, mixed nodes have no associated arrival rates. This is justified by the fact
that a mixed node delivers data items instantaneously to the source end(s) of
its connected channel(s). Hence, when joining a source with a sink node into a
mixed node, their arrival rates are discarded2.

A stochastic version of the LossyFIFO1 is depicted in Figure 6, including its
arrival and processing delay rates.

γa

γcF

γd

γFdγab

γaL

Figure 6: Stochastic LossyFIFO1

As a more complex Stochastic Reo connector, Figure 7 shows a discriminator
which takes the first arriving input value and produces it as its output; it also
ensures that an input value arrives on every other input port before the next
round.

4.1. Semantics: Stochastic Reo Automata
In this section, we provide a compositional semantics for Stochastic Reo con-

nectors, as an extension of Reo Automata with functions that assign stochastic
values for data-flows and I/O request arrivals.

Definition 4.1. (Stochastic Reo Automaton) A Stochastic Reo Automaton
is a triple (A, r, t) where A = (Σ, Q, δA) is a Reo Automaton and

2For simplicity, we assume ideal nodes whose activity incurs no delay. Any real implemen-
tation of a node, of course, induces some processing delay rate. A real node can be modeled
as a composition of an ideal node with a Sync channel that manifests the processing delay
rate. Thus, we can associate delay distributions with Stochastic Reo nodes and automatically
translate them into such “Sync plus ideal node” constructs.

9

w

x

i

γaF γFb

γtF γFu

γoF γFp

γiF γFj

γcd

γef

γgh

γnF

γFm

γkl

γvr,
γvL

γsq,
γsL

Figure 7: Stochastic Discriminator with two inputs

• r : Σ→ R+ is a function that associates with each node its arrival rate.

• t : δA → 2Θ is a function that associates with a transition a subset of
Θ ⊆ 2Σ× 2Σ×R+ such that each (I,O, r) ∈ Θ corresponds to a data-flow
where I is a set of input and/or mixed nodes; O is a set of output and/or
mixed nodes and r is a processing delay rate for the data-flow described
by I and O.

The Stochastic Reo Automata corresponding to the primitive Stochastic Reo
channels in Figure 5 are defined by the functions r and t shown in Table 1.
Note that the function t is depicted in the transitions, and function r is shown
inside the tables.

An element of θ ∈ Θ is accessed by projection functions i : Θ → 2Σ, o :
Θ→ 2Σ and v : Θ→ R+; i(θ) and o(θ) return the respective input and output
nodes of a data-flow, and v(θ) returns the delay rate of the data-flow through
the nodes in i(θ) and o(θ).

Definition 4.2. (Product) Given two Stochastic Reo Automata (A1, r1, t1)
and (A2, r2, t2), their product is defined as (A1, r1, t1) × (A2, r2, t2) = (A1 ×
A2, r1 ∪ r2, t) where

t((q, p)
gg′|ff ′−−−−→ (q′, p′)) = t1(q

g|f−−→ q′) ∪ t2(p
g′|f ′−−−→ p′)

t((q, p)
g|f−−→ (q′, p)) = t1(q

g|f−−→ q′)

t((q, p)
g′|f ′−−−→ (q, p′)) = t2(p

g′|f ′−−−→ p′)

Note that we use × to denote both the product of Reo Automata and the
product of Stochastic Reo Automata.

10

Synchronous Channels

γa γb

γab

q

ab|ab, {({a}, {b}, γab)} r
a γa
b γb

γa γb

γab

γaL

q

ab|ab, {({a}, {b}, γab)}
ab|a, {({a}, ∅, γaL)} r

a γa
b γb

γa γb

γab

q

ab|ab, {({a}, {b}, γab)} r
a γa
b γb

Asynchronous Channel

γc

γcF

γd

γFd

e f

c|c, {({c}, ∅, γcF)}

d|d, {(∅, {d}, γFd)}

r
c γc
d γd

Table 1: Stochastic Reo Automaton for basic Stochastic Reo channels

The set of 3-tuples that t associates with a transition m represents the
composition of the delay rates involved in all data-flows synchronized by the
transition m. In order to keep Stochastic Reo Automata generally useful and
compositional, and their product commutative, we avoid fixing the precise for-
mal meaning of distribution rates of synchronized transitions composed in a
product; instead, we represent the “delay rate” of their composite transition
in the product automaton as the union of the delay rates of the synchroniz-
ing transitions of the two automata. How exactly these rates combine to yield
the composite rate of the transition depends on the different properties of the
distributions and their time ranges. For example, in the continuous-time case,
no two events can occur at the same time; and the exponential distributions
are not closed under taking maximum. In Section 5, we show how to translate
a Stochastic Reo Automaton to a CTMC using the union of the rates of the
exponential distributions in the continuous-time case.

Definition 4.3. (Synchronization) Given a Stochastic Reo Automaton (A, r, t),
the synchronization operation on nodes a and b is defined as ∂a,b(A, r, t) =
(∂a,bA, r′, t′) where

• r′ is r restricted to the domain Σ \ {a, b}.

• t′ is defined as:

t′(q
g\ab|f\{a,b}−−−−−−−−→ q′) = {(A′, B′, r) | (A,B, r) ∈ t(q

g|f−−→ q′),
A′ = sync(A, {a, b}) ∧ B′ = sync(B, {a, b}) }

11

• sync : 2Σ × 2Σ → 2Σ gathers nodes joined by synchronization, and is
defined as:

sync(A,B) =
{
A ∪B if A ∩B 6= ∅
A otherwise

Note that we use the symbol ∂a,b to denote both the synchronization of Reo
Automata and the synchronization of Stochastic Reo Automata.

We now revisit the LossyFIFO1 example. Its semantics is given by the
triple (ALossyFIFO1, r, t), where ALossyFIFO1 is the automaton depicted in
Figure 4 and r is defined as r = {a 7→ γa, d 7→ γd}. For t, we first com-
pute tLossySync×FIFO1:

(q, e) (q, f)

abc|abc, Θ3

abc|ac, Θ4

ca|c, Θ5

abd|abd, Θ6

abd|ad, Θ7

da|d, Θ8

abc|ab, Θ1

abc|a, Θ2

abd|ab, Θ1

abd|a, Θ2 Θ1 : {({a}, {b}, γab)}
Θ2 : {({a}, ∅, γaL)}
Θ3 : {({a}, {b}, γab), ({c}, ∅, γcF)}
Θ4 : {({a}, ∅, γaL), ({c}, ∅, γcF)}
Θ5 : {({c}, ∅, γcF)}
Θ6 : {({a}, {b}, γab), (∅, {d}, γFd)}
Θ7 : {({a}, ∅, γaL), (∅, {d}, γFd)}
Θ8 : {(∅, {d}, γFd)}

Above, the labels that correspond to the transitions that will be kept after
synchronization appear in bold. Thus, the result of joining nodes by synchro-
nization, is shown in Figure 8 as:

(q, e) (q, f)

a|a
{({a}, {b, c}, γab), ({b, c}, ∅, γcF)}

ad|ad, {({a}, ∅, γaL), (∅, {d}, γFd)}
da|d, {(∅, {d}, γFd)}

ad|a, {({a}, ∅, γaL)}

Figure 8: Stochastic Reo Automaton for LossyFIFO1

Note that the port names that appear in bold represent the synchronization of
nodes b and c.

In this way, we can carry in the semantic model of Reo circuits, given as Reo
automata, stochastic information, i.e., arrival rates and processing delay rates
that pertain to its QoS.

As a more complex example of such composition, Figure 9 shows a Stochastic
Reo Automaton for the discriminator in Figure 7.

12

wx|w, φ1

wx|x, φ2

wx|wx, φ3
wx|wx, φ4

wx|x, φ6

l|l, φ7

lxw|lx, φ8

wx|w, φ5

l|l, φ12

lwx|lw, φ11

wx|x, φ9

wx|w, φ13

l|l, φ10

>|∅, φ14

φ1 = { ({w}, {a, v}, γavw), ({a, v}, {r}, γvr), ({r}, {n, o}, γnor),
({n, o}, ∅, γoF), ({n, o}, ∅, γnF), ({a, v}, ∅, γaF) }

φ2 = { ({x}, {s, t}, γstx), ({s, t}, ∅, γtF), ({s, t}, {q}, γqs),
({q}, {n, o}, γnoq), ({n, o}, ∅, γoF), ({n, o}, ∅, γnF) }

φ3 = φ2 ∪ φ5

φ4 = φ1 ∪ φ6

φ5 = { ({w}, {a, v}, γavw), ({a, v}, ∅, γvL), ({a, v}, ∅, γaF) }
φ6 = { ({x}, {s, t}, γstx) , ({s, t}, ∅, γtF), ({s, t}, ∅, γsL) }
φ7 = { (∅, {m}, γFm), ({m}, {i, k}, γikm), ({i, k}, {l}, γkl),

({i, k}, ∅, γiF) }
φ8 = φ7 ∪ φ6

φ9 = φ6

φ10 = φ12 = φ7

φ11 = φ7 ∪ φ5

φ13 = φ5

φ14 = { (∅, {b, c}, γFb), ({b, c, d, e}, ∅, γcd), (∅, {u}, γFu)
({u}, {d, e}, γdeu), (∅, {p}, γFp), ({d, e, f, g}, ∅, γef),
({p}, {f, g}, γfgp), ({f, g, h, j}, ∅, γgh), (∅, {h, j}, γFj) }

Figure 9: Stochastic Reo Automaton for discriminator in Figure 7

Definition 4.1 shows that our extension of Reo Automata deals with such
stochastic information separately, apart from the underlying Reo Automaton.
Thus, our extended model retains the properties of Reo Automata, i.e., the
compositionality result presented in Section 3.1.2 can be extended to Stochastic
Reo Automata:

Lemma 4.4. (Compositionality) Given two disjoint Stochastic Reo Automata

13

(A1, r1, t1) and (A2, r2, t2) with A1 = (Σ, Q1, δ1) and A2 = (Σ, Q2, δ2),

1. ∂a,b∂c,d(A1, r1, t1) = ∂c,d∂a,b(A1, r1, t1), if a, b, c, d ∈ Σ1

2. (∂a,b(A1, r1, t1))×(A2, r2, t2) ∼ ∂a,b((A1, r1, t1)×(A2, r2, t2)), if a, b /∈ Σ2

Here (A1, r1, t1) ∼ (A2, r2, t2) if and only if A1 ∼ A2, r1 = r2 and t1 = t2.

Proof. Let

• ∂a,b∂c,d(A1, r1, t1) = (∂a,b∂c,dA1, r′1, t
′
1) and

• ∂c,d∂a,b(A1, r1, t1) = (∂c,d∂a,bA, r′′1 , t′′1)

By Lemma 4.13 in [17] which is the analogue result for Reo Automata, we know
that ∂a,b∂c,dA1 = ∂c,d∂a,bA1. Using basic set theory, we also have that

r′1 = r | (Σ \ {a, b}) \ {c, d}
= r | (Σ \ {c, d}) \ {a, b}
= r′′1

where for v ⊆ Σ, r|v is the restriction of r to v.
Before moving to the fact that t′1 = t′′1 , we show that the order of applying

the synchronization is irrelevant to the synchronization result, i.e., given three
node sets A, {a, b}, and {c, d},

sync(sync(A, {a, b}), {c, d}) = sync(sync(A, {c, d}), {a, b})

because, given three node sets A, B, and C,

sync(sync(A,B), C) =

A ∪B ∪ C if A ∩B 6= ∅ ∧ A ∩ C 6= ∅
A ∪B if A ∩B 6= ∅ ∧ A ∩ C = ∅
A ∪ C if A ∩B = ∅ ∧ A ∩ C 6= ∅
A otherwise

and the set union operation ∪ is commutative.

t′1(q
g\abcd | (f\{a,b})\{c,d}−−−−−−−−−−−−−−−−→ q′)

= {(A′, B′, r) | (A,B, r) ∈ t1(q
g|f−−→ q′),

A1 = sync(A, {a, b}) ∧ B1 = sync(B, {a, b}) ∧
A′ = sync(A1, {c, d}) ∧ B′ = sync(B1, {c, d})}

= {(A′, B′, r) | (A,B, r) ∈ t1(q
g|f−−→ q′),

A1 = sync(A, {c, d}) ∧ B1 = sync(B, {c, d}) ∧
A′ = sync(A1, {a, b}) ∧ B′ = sync(B1, {a, b})}

= t′′(q
g\cdab | (f\{c,d})\{a,b}−−−−−−−−−−−−−−−−→ q′)

14

5. Translation to CTMC

In this section, we show how to translate a Stochastic Reo Automaton into a
homogeneous CTMC model. A homogeneous CTMC is a stochastic process with
1) homogeneity, 2) memoryless/Markov property, and 3) discrete state space in
the continuous-time domain [14]. These properties yield efficient methodologies
for numerical analysis.

In the continuous-time domain, the exponential distribution is the only one
that satisfies the memoryless property. Therefore, for the translation, we assume
that the rates of data-arrivals and data-flows are exponentially distributed.

A CTMC model derived from a Stochastic Reo Automaton (A, r, t) withA =
(Σ, Q, δA) is a pair (S, δ) where S = SA ∪SM is the set of states. SA represents
the configurations of the system derived from its Stochastic Reo Automaton and
the pending status of I/O requests; SM is the set of states that result from the
micro-step division of synchronous actions (see below). δ = δArr ∪ δProc ⊆ S ×
R+×S, explained below, is the set of transitions, each labeled with a stochastic
value specifying the arrival or the processing delay rate of the transition. δArr
and δProc are defined in Section 5.3.

A state in S models a configuration of the connector, including the presence
of the I/O requests pending on its boundary nodes, if any. Data-arrivals change
system configuration only by changing the pending status of their respective
boundary nodes. Data-flows corresponding to a transition of a Reo Automaton
change the system configuration, and release the pending I/O requests on their
involved boundary nodes.

In a CTMC model, the probability that two events (e.g., the arrival of an
I/O request, the transfer of a data item, a processing step, etc.) happen at the
same time is zero: only a single event occurs at a time. In compliance with
this requirement, for a Stochastic Reo Automaton (A, r, t) with A = (Σ, Q, δA)
and a set of boundary nodes Σ′ ⊆ Σ, the set SA and the preliminary set of
data-arrival transitions of the CTMC derived for (A, r, t) are defined as:

SA = {(q,R) | q ∈ Q, R ⊆ Σ′}
δ′Arr = {(q,R)

r(c)−−→ (q,R ∪ {c}) | (q,R), (q,R ∪ {c}) ∈ SA, c /∈ R}

The set δ′Arr is used in Section 5.3 to define δArr.

5.1. Micro-step transitions
The CTMC transitions associated with data-flows are more complicated

since groups of synchronized data-flows are modeled as a single transition in
a Reo Automaton, abstracting away their precise occurrence order. There-
fore, we need to divide such synchronized data-flows into so-called micro-step
transitions3, respecting the connection information, i.e., the topology of a Reo
connector, through which the data-flow occurs.

3This division delineates multiple synchronized data-flows, not each data-flow itself.

15

The connection information can be recovered from the 3-tuples associated
with each transition in a Reo Automaton, since the first and the second elements
of a 3-tuple describe the input and the output nodes, respectively, involved in
the data-flow of its transition, and the data-flow in the transition occurs from
its input to its output nodes.

For example, the transition (q, e)
a|a−−→ (q, f) in the Reo Automaton of the

LossyFIFO1 example in Figure 8 has {({a}, {b, c}, γab), ({b, c}, ∅, γcF)} as a set of
the 3-tuples. The connection information inferred from this set states that data-
flow occurs from a to the buffer through b and c. The transition is thus divided
into two consecutive micro-step transitions ({a}, {b, c}, γab) and ({b, c}, ∅, γcF).

Such data-flow information on each transition in a Stochastic Reo Automa-
ton is formalized by a delay-sequence defined by the following grammar:

Λ 3 λ ::= ε | θ | λ|λ | λ;λ

where ε is the empty sequence and θ is a 3-tuple (I,O, r) for a primitive Reo
channel. λ|λ denotes parallel composition, and λ;λ denotes sequential composi-
tion. The empty sequence ε is an identity element for ; and |, | is commutative,
associative, and idempotent, ; is associative and distributes over |.

5.2. Extracting delay-sequences
The delay-sequence corresponding to a set of 3-tuples associated with a tran-

sition in a Stochastic Reo Automaton is obtained by Algorithm 5.2.1. Note that
if the parameter of the function Ext is a singleton, then Ext({θ}) = θ since
i(θ) ∩ o(θ) = ∅.

Algorithm 5.2.1 Extraction of a delay-sequence out of a set Θ of 3-tuples

Ext(Θ) where Θ = t(p
g|f−−→ q)

S = ε, toGo = Θ, Init := {θ ∈ Θ | i(θ) ∩ o(θ′) = ∅ for all θ′ ∈ Θ}
for θ ∈ Init do
λθ := θ
Pre := {θ}
toGo := toGo \ Pre
Post = {θ ∈ toGo | ∃θ′ ∈ Pre s.t. o(θ′) ∩ i(θ) 6= ∅}
while Post 6= ∅ do
λ′ := (θ1| · · · |θk) where Post = {θ1, · · · , θk}
λθ := λθ;λ′

Pre := Post
toGo := toGo \ Pre
Post := {θ ∈ toGo | ∃θ′ ∈ Pre s.t. o(θ′) ∩ i(θ) 6= ∅}

end while
S := S|λθ

end for
return S

16

Intuitively, the Ext function delineates the set of activities that – at the
level of a Stochastic Reo Automaton – must happen synchronously/atomically,
into its corresponding delay-sequences. If a certain data-flow associated with a
3-tuple θ1 explicitly precedes another one θ2, then θ1 is sequenced before θ2, i.e.,
encoded as θ1; θ2. Otherwise, they can occur in any order, encoded as θ1|θ2.

Applying Algorithm 5.2.1 to the LossyFIFO1 example of Figure 8 yields the
following result:

(q, e) (q, f)

a|a, λ1

ad|ad, λ3

ad|d, λ4

ad|a, λ2 λ1 : ({a}, {b, c}, γab) ; ({b, c}, ∅, γcF)
λ2 : ({a}, ∅, γaL)
λ3 : ({a}, ∅, γaL) | (∅, {d}, γFd)
λ4 : (∅, {d}, γFd)

The parameter Θ of Algorithm 5.2.1 is a finite set of 3-tuples, and Init ,
Post and toGo, subsets of Θ, are also finite. Moreover, Post becomes eventu-
ally ∅ since toGo decreases during the procedure. Thus, we can conclude that
Algorithm 5.2.1 always terminates.

5.3. Deriving the CTMC
We now show how to derive the transitions in the CTMC model from the

transitions in a Stochastic Reo Automaton. We do this in two steps:

1. For each transition p
g|f−−→ q ∈ δA, we derive transitions (p,R) λ−→ (q,R \f)

for every set of pending requests R that suffices to activate the guard g

(R̂ ≤ g \ Σ̂), where λ is the delay-sequence associated with the set of

3-tuples t(p
g|f−−→ q). This set of derived transitions is defined below as

δMacro.
2. We divide a transition in δMacro labeled by λ into a combination of micro-

step transitions, each of which corresponds to a single event.

The following figure briefly illustrates the procedure mentioned above, for two

transitions p
λ1;λ2−−−→ q and p

λ1|λ2−−−→ q where λ1 = θ1;λ′1 and λ2 = θ2;λ′2:

p
λ1;λ2−−−→ q p

λ1|λ2−−−→ q

p s1 si sk q
θ1 θ2

λ′1 λ′2 p
s1

s2

si

sj

sk

sl

s3 q
θ1

θ2

θ2

θ1

θ2

θ1

λ′1
λ′2

λ′2
λ′1

A sequential delay-sequence λ1;λ2 allows for the events corresponding to λ1 to
occur before the ones corresponding to λ2. For a parallel delay-sequence λ1|λ2,
events corresponding to λ1 and λ2 occur interleaving each other, while they

17

preserve their respective order of occurrence in λ1 and λ2. All indexed states
sn are included in SM which consists of the states derived from the division of
the synchronized data-flows into micro-step transitions.

Given a Stochastic Reo Automaton (A, r, t) with A = (Σ, Q, δA) and a set
of boundary nodes Σ′, a macro-step transition relation for the synchronized
data-flows is defined as:

δMacro = {(p,R) λ−→ (q,R \ f) | p g|f−−→ q ∈ δA, R ⊆ Σ′, R̂ ≤ g \ Σ̂,

λ = Ext(t(p
g|f−−→ q))}

We explicate a macro-step transition with a number of micro-step transi-
tions, each of which corresponds to a single data-flow. This refinement yields
auxiliary states between the source and the target states of the macro-step tran-
sition. Let (p,R) be a source state for a data-flow corresponding to a 3-tuple θ.
Then the generated auxiliary states are defined as (pθ, R \ nodes(θ)) where pθ
is just a label denoting that data-flows corresponding to θ have occurred, and
the function nodes : Λ→ 2Σ is defined as:

nodes(λ) =
{
i(θ) ∪ o(θ) if λ = θ
nodes(λ1) ∪ nodes(λ2) if λ = λ1;λ2 ∨ λ = λ1|λ2

The set of such auxiliary states is obtained as SM = states((p,R) λ−→ (q,R′))
where

states((p,R) λ−→ (q,R′)) ={
{(p,R), (q,R′)} if λ = θ⋃

states(m) ∀m ∈ div((p,R) λ−→ (q,R′)) otherwise

The function div : δMacro → 2δMacro is defined as:

div((p,R) λ−→ (q,R′)) =

{(p,R) θ−→ (q,R′)} if λ = θ ∧ @(p,R) θ−→ (p′, R′) ∈ δMacro

div((p,R) λ1−→ (pλ1 , R
′′)) ∪ div((pλ1 , R

′′) λ2−→ (q,R′))
if λ = λ1;λ2 where R′′ = R \ nodes(λ1)

{m1 ./ m2 | mi ∈ div((p,R) λi−→ (pλi , R
′′)), i ∈ {1, 2}}

if λ = λ1|λ2 where R′′ = R \ nodes(λi)
∅ otherwise

where the function ./ computes all interleaving compositions of the two transi-
tions as follows. For every (p,R1) ∈ states(s2

θ2−→ s′2) and (p,R2) ∈ states(s1
θ1−→

s′1)

s1
θ1−→ s′1 ./ s2

θ2−→ s′2

(p,R1) θ1−→ (pθ1 , R1 \ nodes(θ1))

s1
θ1−→ s′1 ./ s2

θ2−→ s′2

(p,R2) θ2−→ (pθ2 , R2 \ nodes(θ2))

18

The following example shows the application of the function div to a non-trivial
delay-sequence, which contains a combination of sequential and parallel compo-
sitions.

Example 5.1. Consider the Stochastic Reo connector shown below. Every
indexed θ is a rate for its respective processing activity, e.g., θ2 is the rate at
which the top-left FIFO1 dispenses data through its sink end; θ3 is the rate at
which the node replicates its incoming data, etc. Data-flows contained in boxed
regions marked as P1 and P2 appear in δMacro, derived from the Stochastic Reo
Automaton of this circuit, as two transitions with the delay-sequences of λ1 and
λ2 where:

• from P1: λ1 = ((θ2; θ3)|(θ8; θ9)) ; (θ4|θ10|θ11)

• from P2: λ2 = (θ5; θ6) | (θ12; θ13)

θ1 θ2

θ3

θ4 θ5

θ7 θ8 θ11

θ9

θ12

θ6

θ13

θ10

P1 P2

To derive a CTMC, λ1 and λ2 must be divided into micro-step transitions.
We exemplify a few of these divisions. For λ1, the division of (θ4|θ10|θ11) is
trivial since it contains only simple parallel composition. This division result
is then appended to the division result of (θ2; θ3)|(θ8; θ9), which has the same
structure as that of λ2. Thus, we show below the division result of λ2 only.

In the following CTMC fragment, to depict which events have occurred up
to a current state, the name of each state consists of the delays of all the events
that have occurred up to that state. The delay for a newly occurring event is
appended at the end of its respective segment in the current state name.

ε | ε

ε | θ12

θ5 | ε

θ5 | θ12

(θ5; θ6) | ε

ε | (θ12; θ13)

θ5 | (θ12; θ13)

(θ5; θ6) | θ12

(θ5; θ6) | (θ12; θ13)

This example shows that when a delay-sequence λ is generated by parallel
composition, the events in one of the sub-delay-sequences of λ occur indepen-

19

dently of the events in other sub-delay-sequences. Still events preserve their
occurrence order within the sub-delay-sequence that they belong to. �

The division into micro-step transitions ensures that each transition has a
single 3-tuple in its label. Thus, the micro-step transitions can be extracted as:

δProc = {(p,R)
v(θ)−−→ (p′, R′) | (p,R) θ−→ (p′, R′) ∈ div(t) for all t ∈ δMacro}

Synchronized data-flows in Stochastic Reo Automata are considered atomic,
hence other events cannot interfere with them. However, splitting these data-
flows allows non-interfering events to interleave with their micro-steps, disre-
garding the strict sense of their atomicity. For example, a certain boundary
node unrelated to a group of synchronized data-flows can accept a data item
between any two micro-steps. Since we want to allow such interleaving, we must
explicitly add such data-arrivals. For a Stochastic Reo Automaton (A, r, t) with
A = (Σ, Q, δA) and a set of micro-step states SM , its full set of data-arrival tran-
sitions, including its preliminary data-arrival set δ′Arr, is defined as:

δArr = δ′Arr∪{(p,R)
r(d)−−→ (p,R∪{d}) | (p,R), (p,R∪{d}) ∈ SM , d ∈ Σ, d /∈ R}

The derived CTMC model can be used for stochastic analysis. For instance,
Figure 11 is obtained from PRISM [18] using the CTMC model (see Figure 10)
derived from the Stochastic Reo circuit of the LossyFIFO1 example in Figure 6.
Figure 11 shows how the probability of data loss varies as the arrival rate at
node a increases.

e, ∅ e, {a} e′, ∅ f, ∅ f, {a}

e, {d} e, {a, d} e′, {d} f, {d} f, {a, d}

γa γab γcF γa

γa γab γcF γa

γd γd γd γd γd

γFd γFd

γaL

γaL

Figure 10: Derived CTMC of LossyFIFO1

6. Case study

In this section, we describe the application of our approach to a case study
involving an industrial software, called the ASK system [19]. The ASK system
has been developed by Almende [20], and it is marketed by ASK Community
Systems [21]. The ASK system provides a service that matches the requirements
of users in an efficient manner.

The top-level architecture of the ASK System is shown in Figure 12. Ev-
ery component in this architecture has its own internal architecture, with sev-
eral levels of hierarchical nesting. At its top-level, the ASK system consists of

20

Figure 11: Probability of data lost at node a

three parts: a web front-end, a database, and a contact engine as shown be-
low. The web front-end deals with typical domain data such as user names,
phone numbers, mail address, and so on. The database stores this domain data.
The contact engine handles communication between the system and the outside
world (e.g., by responding to or initiating telephone calls, SMS, email, etc.) and
provides appropriate matching and scheduling functionality.

A Reo model of the ASK System was developed as a case study [22] within
the context of the EU project Credo [23] for verification of its functional proper-
ties. We refined and augmented this Reo model with stochastic delays to derive
a Stochastic Reo model for the ASK System. Together with Almende, we use
this model to analyze and study the QoS properties of the ASK system in var-
ious settings. For instance, using Stochastic Reo Automata as an intermediate
model, we can derive Continuous Time Markov Chain (CTMC) models from
the Stochastic Reo model of the interesting parts of the ASK System, and feed
them into CTMC analysis tools. It is not the intention of this section to cover
the entire model of the ASK System or its analysis. To illustrate our approach,
we use here a very simple example of a generic task queue, which can be used
in various settings.

One main feature of the ASK system is the Request loop which allows in-
coming requests to loop through the system repeatedly as (sub-)tasks, until
they are completely fulfilled. This Request loop is represented by thick arrows
in Figure 12. Each component in the contact engine has a task/request queue
that takes part in the realization of the Request loop. A request that arrives
at a full queue is dropped (similar to the LossyFIFO1 connector in Figure 6).
The following figure shows the Stochastic Reo circuit for such a queue with a
maximum capacity of 2:

γa

γcF γFd γeF

γf

γFfγab

γaL

The Stochastic Reo Automaton corresponding to this Stochastic Reo circuit
is given below. In Stochastic Reo Automata, the nodes joined by synchroniza-
tion disappear, but, to facilitate the understanding of the behavior of the queue,

21

Figure 12: Overview of the ASK system

we keep the joined nodes in the labels of their respective firing transitions and
highlight them in bold. An indexed Θ represents the composite delay informa-
tion relevant for its respective firing transition.

ee fe

ef ff

a|abc,Θ1

a|de,Θ4
a|ade,Θ5

af|afbc,Θ6

af|f,Θ3

af|abc,Θ1

f|f,Θ3

a|a,Θ2

af|a,Θ2

Θ1 : {({a}, {b, c}, γab), ({b, c}, ∅, γcF)}
Θ2 : {({a}, ∅, γaL)} Θ3 : {(∅, {f}, γFf)}
Θ4 : {(∅, {d, e}, γFd), ({d, e}, ∅, γeF)}
Θ5 : Θ2 ∪Θ4 Θ6 : Θ1 ∪Θ3

22

6.1. Stochastic analysis
The CTMC model derived from the Stochastic Reo Automaton correspond-

ing to the Stochastic Reo circuit of the task queue appears in Figure 13. This
figure shows the derived CTMC model as input to the PRISM tool for stochastic
analysis.

Figure 13: CTMC for a task queue in PRISM

In PRISM, properties of models are expressed using operations such as P
and S operators: the P operator is used to reason about the probability of the
occurrence of a certain event; the S operator is used to reason about the steady-
state behavior of a model. In addition, labels are used to concisely express the

23

formulas representing the properties of a model. The following labels are used
to express some properties later.

• Qsize represents how many tasks are in the task queue.

• MaxSize is the capacity of the task queue, i.e., 2 in this example.

• DataLost represents how many tasks are lost in the task queue.

• MaxDataLost is a fixed maximum for losing data items in the task queue.

We have analyzed the derived CTMC model with the following properties
of the queue:

1. S =? [(Qsize/MaxSize) > 0.5]
This formula is a PRISM query asking the steady-state probability that
the queue is more than 50% full (i.e., contains at least one task). As seen
in Figure 14, when the task-arrival rate at the queue is twice the rate at
which tasks are handled, the answer is 0.438.

Figure 14: Analysis result of Property 1

2. S =? [DataLost = MaxDataLost]
Figure 15 shows the variation of the steady-state probability that the
queue loses new incoming tasks because it reached its capacity. Here, we
fix the task-arrival rate and vary the task-handling rate.

This example shows the analysis of the task queue with variable rates. If we
put the actual arrival and processing rates of a real deployed ASK system in this
derived CTMC model, we can determine, e.g., whether or not the number of
available server components is sufficient to process the incoming tasks efficiently.

24

Figure 15: Analysis result of Property 2

7. Interactive Markov Chains

Interactive Markov Chains (IMCs) are a compositional stochastic model [14]
which can be used to provide quantitative semantics to concurrent systems.
Compared to CTMCs, in IMCs, non-exponential distribution can be repre-
sented [24], for example, phase-type distribution [25, 26] which can approximate
general continuous distributions. This enables a more general usage of Stochas-
tic Reo Automata, if IMCs are used instead of CTMCs as the translation target
of Stochastic Reo Automata models.

In this section, we discuss to what extent IMCs are appropriate semantic
model for Stochastic Reo, instead of Stochastic Reo Automata. In addition, we
provide a translation from Stochastic Reo into IMCs, which enables the use of
the latter as an alternative target stochastic model.

An IMC specifies a reactive system and is formally described as a tuple
(S,Act,→,⇒, s0) where S is a finite set of states; Act is a set of actions; s0 is
an initial state in S; → and ⇒ are two types of transition relations:

• →⊆ S ×Act× S for interactive transitions and

• ⇒⊆ S × R+ × S for Markovian transitions.

Thus, an IMC is a Labeled Transition System (LTS) if ⇒= ∅ and →6= ∅, and
is a CTMC if ⇒6= ∅ and →= ∅.

The main strength of IMCs is their compositionality.

Definition 7.1. (Product) [14] Given two IMCs I1 = (S1, Act1,→1,⇒1, s(1,0))
and I2 = (S2, Act2,→2,⇒2, s(2,0)), the composition of I1 and I2 over a set of
actions A is defined as I1×I2 = (S1∪S2, Act1∪Act2,→,⇒, s(1,0)×s(2,0)) where

25

→ and ⇒ are defined as:

→ = {(s1, s2) α−→ (s′1, s
′
2) | α ∈ A, s1

α−→1 s
′
1 ∧ s2

α−→2 s
′
2}

∪ {(s1, s2) α−→ (s′1, s2) | α /∈ A, s2 ∈ S2, s1
α−→1 s

′
1}

∪ {(s1, s2) α−→ (s1, s
′
2) | α /∈ A, s1 ∈ S1, s2

α−→2 s
′
2}

⇒ = {(s1, s2) λ⇒ (s′1, s2) | s2 ∈ S2 , s1
λ⇒1 s

′
1}

∪ {(s1, s2) λ⇒ (s1, s
′
2) | s1 ∈ S1 , s2

λ⇒2 s
′
2}

The product of interactive transitions is similar to ordinary automaton prod-
uct, which includes interleaving and synchronized compositions of interactive
transitions. The product of Markovian transitions consists only of interleaved
transitions.

We now discuss IMCs from two different perspectives:

1. a semantic model for Stochastic Reo: translating primitive Stochastic Reo
channels into IMCs and then composing the derived IMCs using the prod-
uct operation defined above; or

2. an alternative translation target model: composing the Stochastic Reo Au-
tomata of primitive channels and then translating the composed Stochastic
Reo Automaton into an IMC.

We show now that the first case is not adequate since it provides a wrong
semantics for connectors that involve propagation of synchrony. For example,
consider the following connector, denoted as 2sync, that consists of two Sync
channels joined at nodes b and c.

a b c d

The behavior of primitive channels consists of data-arrivals and data-flows
which occur sequentially, i.e., data-flows follow data-arrivals. Both data-arrivals
and data-flows are divided into two phases: an action and the random processing
delay for each action. For instance, a data-arrival at node a consists of the arrival
action at node a and waiting for the acceptance from node a. To reason about
the end-to-end QoS, the IMCs for each Sync channel must have Markovian
transitions for the random processing delays of both data-arrivals and data-
flows. The two phases of channels must be considered sequentially, that is, the
phase of random processing delays follows that of the action. Table 2 shows the
possible IMCs for the Sync channels ab and cd.
Here, we use ‘ˆ’ and ‘˜’ over node names in order to represent data-arrivals
and data-flows, respectively. Rates for each data-arrival and each data-flow are
represented with the prefix γ.

However, the composition of the IMCs for the two Sync channels does not
capture the correct behavior of 2sync as specified by Reo. Figure 16 shows
a fragment of the IMC product result. Note that, for simplicity, here and
throughout, the rest of the product result is omitted and represented as a cloud
shape.

26

a b c d

â

b̂

γa

b̂

â

γb

b̂

γa

γb

â

γb

γa

fabγab

ĉ

d̂

γc

d̂

ĉ

γd

d̂

γc

γd

ĉ

γd

γc

fcdγcd

Table 2: IMCs for each Sync channel

· · ·

b̂, ĉ

â

d̂

γa
(b̂, ĉ)

γb

γc

d̂

γb

d̂

γc

d̂

γc
γb

γd

d̂

γb

γc

γd

γd

γb

γd

γb

γc

ãbcdγab

γcd

γcd

γab

Figure 16: Composed IMC for 2sync

If we apply the assumption that the synchronization by joining nodes is an
immediate action, then transitions with (b̂, ĉ), γb, and γc labels are considered
internal interactive transitions or discarded by certain refinements before or
after the product. The result of the product and certain refinements is depicted
in Figure 17.

(1)

â

d̂

γa

d̂

â

γd

d̂

γa

γd

â

γd

γa

ãbcd

γabγcd

γcdγab

Figure 17: IMC after refinements on 2sync

Consider the diamond shape (1) in Figure 17, formed by the two data-flows

27

from a to b (γab) and from c to d (γcd), which occur interleaved. In the 2sync
circuit, these two data-flows occur sequentially, which means that data-flows do
not occur concurrently. This example illustrates that using the concurrent com-
position of IMCs is not appropriate for specifying the behavior of connectors
because propagation of synchrony is not properly modeled. It is natural and
interesting to consider whether it is possible to adapt the composition operator
of IMCs in order to delete unintended transitions and still remain a composi-
tional model. However, we did not investigate this possibility since it is out of
the scope of this paper.

We now show how IMCs can be used as a target stochastic model, instead
of CTMCs. In this approach, the synchronization is considered in Stochastic
Reo Automata, and we do not need to consider the IMC level refinements for
synchronization such as the transitions with (b̂, ĉ), γb, and γc labels in Figure 16.

Since a Stochastic Reo Automaton does not have an initial state, the de-
rived result is precisely an IMC transition system (IMCTS) [14], i.e., an IMC
without an initial state. However, an initial state can be decided by the in-
terpretation of the behavior of a connector. Thus, in this paper, we consider
the IMCTS derived from a Stochastic Reo Automaton as an IMC. An IMC
derived from a Stochastic Reo Automaton (A, r, t) with A = (Σ, Q, δA) is a
tuple (S,Act,→,⇒) where S = SA ∪ SM is the set of states. SA represents the
configurations of the system derived from its Stochastic Reo Automaton and
the pending status of I/O requests; SM is the set of states that represent the
occurrences of synchronized data-flows and result from the micro-step divisions
of the synchronized data-flows. In general, Act is a set of actions of the arrival of
a data item at a boundary node and synchronized data-flows through a connec-
tor. Thus, Act = Σ′∪Frs where Σ′ is a set of boundary nodes, and Frs is a set

of firings, e.g., for f in a label on every transition s
g|f−−→ s′ ∈ δA, f ∈ Frs. The

relation →= δArr ∪ δProc ⊆ S × R+ × S is a set of Markovian transitions, and
⇒= ζArr∪ζProc ⊆ (S×2Σ′×S)∪(S×2Frs×S) is a set of interactive transitions.
The sets indexed with Arr and Proc represent transitions for data-arrivals and
data-flows, respectively.

A state in S ⊆ Q×2Σ′×2Σ′ represents three kinds of configurations: configu-
rations of a connector (Q), the occurrence of actions (first 2Σ′), and the presence
of the I/O requests pending on its boundary nodes (second 2Σ′), if any. The set
of SA and the preliminary sets of data-arrival transitions are defined as:

SA = {(q, A, P) | q ∈ Q, P ⊆ A ⊆ Σ′}
ζ ′Arr = {(q, A, P) ĉ−→ (q, A ∪ {c}, P) | (q, A, P), (q,A ∪ {c}, P) ∈ Σ′, c /∈ A}
δ′Arr = {(q, A, P)

r(c)−−→ (q,A, P ∪ {c}) | (q, A, P), (q, A, P ∪ {c}) ∈ Σ′, c /∈ P}

ζ ′Arr and δ′Arr are used to define ζArr and δArr, respectively, below.
As mentioned in Section 5, synchronized data-flows are described by a single

transition in a Stochastic Reo Automaton. From the interactive transition per-
spective, the synchronized data-flows are also described by a single interactive
transition. However, from the Markovian transition perspective in a continuous

28

time domain, a transition corresponding to multiple synchronized data-flows
needs to be divided into micro-step transitions. For this purpose, we reuse a
delay-sequence which is extracted by Algorithm 5.2.1. We now derive transitions
for synchronized data-flows in two steps:

1. For each transition p
g|f−−→ q ∈ δA, we derive interactive and Markovian

transitions (p,A, P)
ef−→ (p,A \ f, P) and (p,A \ f, P) λ−→ (q, A \ f, P \ f),

respectively, for every set of pending requests P that suffices to activate
the guard g (P̂ ≤ g \ Σ̂), where λ is the delay-sequence extracted by Algo-

rithm 5.2.1, Ext(t(p
g|f−−→ q)). The sets of derived transitions are defined

below as ζMacro and δMacro for interactive and Markovian transitions,
respectively.

2. We divide a transition s
λ−→ s′ ∈ δMacro into a combination of micro-step

transitions, each of which corresponds to a single event.

Given a Stochastic Reo Automaton (A, r, t) with =(Q,Σ, δA) and a set of
boundary nodes Σ′, a macro-step transition for synchronized data-flows is de-
fined as:
ζMacro = {(p,A, P)

ef−→ (p,A \ f, P) | p g|f−−→ q ∈ δA, A ⊆ P ⊆ Σ′, P̂ ≤ g \ Σ̂}
δMacro = {(p,A, P) λ−→ (q, A, P \ f) | p g|f−−→ q ∈ δA, A ∩ f = ∅, A ⊂ P ⊆ Σ′,

P̂ ≤ g \ Σ̂, λ = Ext(t(p
g|f−−→ q))}

To derive an IMC from a Stochastic Reo Automaton, we reuse the function
nodes and modify the definitions of functions states and div in Section 5.3. Then,
SM = state((p,A, P) λ−→ (q, A, P ′)) where

states((p,A, P) λ−→ (q,A, P ′)) ={
{(p,A, P), (q,A, P ′)} if λ = θ⋃

states(m) ∀m ∈ div((p,A, P) λ−→ (q, A, P ′)) otherwise

The function div : δMacro → 2δMacro is defined as:

div((p,A, P) λ−→ (q, A, P ′)) =

{(p,A, P) θ−→ (q, A, P ′)} if λ = θ ∧ @(p,A, P) θ−→ (p′, A, P ′) ∈ δMacro

div((p,A, P) λ1−→ (pλ1 , A, P
′′)) ∪ div((pλ1 , A, P

′′) λ2−→ (q, A, P ′))
if λ = λ1;λ2 where P ′′ = P \ nodes(λ1)

{m1 �m2 | mi ∈ div((p,A, P) λi−→ (pλi , A, P
′′)), i ∈ {1, 2}}

if λ = λ1|λ2 where P ′′ = P \ nodes(λi)
∅ otherwise

where the function � computes all interleaving compositions of the two transi-
tions as:
for every (p,A1, R1) ∈ states(s2

θ2−→ s′2)

s1
θ1−→ s′1 � s2

θ2−→ s′2

(p,A1, R1) θ1−→ (pθ1 , A1, R1 \ nodes(θ1))

29

and for every (p,A2, R2) ∈ states(s1
θ1−→ s′1)

s1
θ1−→ s′1 ./ s2

θ2−→ s′2

(p,A2, R2) θ2−→ (pθ2 , A2, R2 \ nodes(θ2))

The division into micro-step transitions ensures that each transition has a
single 3-tuple in its label. Thus, the micro-step transitions can be extracted as:

δProc = {(p,A, P)
v(θ)−−→ (p′, A, P ′) |

(p,A, P) θ−→ (p′, A, P ′) ∈ div(t) for all t ∈ δMacro}

As mentioned above, interactive transitions in ζMacro do not need to be divided,
thus, ζProc = ζMacro

Splitting synchronized data-flows allows non-interfering events to interleave
with their micro-steps, disregarding the strict sense of their atomicity. In order
to allow such interleaving, we must explicitly add such data-arrivals. For a
Stochastic Reo Automaton (A, r, t) with A = (Σ, Q, δA) and a set of micro-step
states SM , its full sets of data-arrival transitions, including its data-arrivals, are
defined as:
ζArr = ζ ′Arr ∪ {(p,A, P) d̂−→ (p,A ∪ {d}, P) |

(p,A, P), (p,A ∪ {d}, P) ∈ SM , d ∈ Σ, d /∈ A}
δArr = δ′Arr ∪ {(p,A, P)

r(d)−−→ (p,A, P ∪ {d}) |
(p,A, P), (p,A, P ∪ {d}) ∈ SM , d ∈ Σ, d /∈ P}

Applying this method, Figure 18 shows the IMC corresponding to our 2sync
example. The derived result is similar to the IMC for a Sync in Table 2 and
captures the correct behavior of the 2sync connector.

(p, ∅, ∅)

(p, {a}, ∅)

(p, {c}, ∅)

(p, {a}, {a})

(p, {a, d}, ∅)

(p, {b}, {b})

(p, {a, b}, {a})

(p, {a, b}, {b})

(p, {a, b}, {a, b})

(p, ∅, {a, b})

(p, ∅, {d})

â

d̂

γa

d̂

â

γd

d̂

γa

γd

â

γd

γa

ãbcd

γab

γcd

Figure 18: Derived IMC for 2sync

The foregoing illustrates that IMCs can serve as another alternative target
model for the translation from Stochastic Reo Automata, instead of CTMCs.
Although doing so does not use the compositionality of IMCs, translation into
IMCs is still meaningful. The derived IMCs, for instance, can represent not

30

only exponential distributions, but also non-exponential distributions, especially
phase-type distributions. The analysis of IMCs is supported by tools such as
the Caesar/Aldebaran Development Package (CADP) [27]. CADP verifies the
functional correctness of the specification of system behavior and also mini-
mizes IMCs effectively [28]. In addition, a bridging tool has been developed to
use TIPPtool [29] for stochastic analysis on the (minimized) IMCs, generated
by CADP. Moreover, IMCs can be used in various other applications, such as
Dynamic Fault Trees (DFTs) [30, 31, 32], Architectural Analysis and Design
Language (AADL) [33, 34, 35], and so on [36].

8. Conclusions and Future work

We introduced Stochastic Reo Automata by extending Reo Automata with
functions that assign stochastic values of arrival rates and processing delay rates
to boundary nodes and channels in Stochastic Reo. This model is very compact
compared to the existing models, e.g., in [4]. Various formal properties of our
model are obtained, reusing the formal justifications of the various properties
of Reo Automata [3], such as compositionality.

The technical core in this paper shows the complexity of the original problem
whence it stems from: derivation of stochastic models for formal analysis of end-
to-end QoS properties of systems composed of services/components supplied by
disparate providers, in their user environments. This complexity highlights the
gross inadequacy of informal, or one-off techniques and emphasizes the impor-
tance of formal approaches and sound models that can serve as the basis for
automated tools.

Stochastic Reo does not impose any restriction on the distribution of its an-
notated rates such as the rates for data-arrivals at channel ends or data-flows
through channels. However, for translation of Stochastic Reo to a homoge-
neous CTMC model, we considered only the exponential distributions for the
rates. For more general usage of Stochastic Reo Automata, we also want to
consider non-exponential distributions by considering phase-type distributions
or using Semi-Markov Processes [37] as target models of our translation. A
simulation engine [38], already integrated into our toolset, Eclipse Coordination
Tools (ECT) [39] environment, supports a wide variety of more general distri-
butions for Stochastic Reo. We discussed why IMCs are not an appropriate
semantic model for Stochastic Reo, and showed the translation from Stochastic
Reo into IMCs via Stochastic Reo Automata. A natural and interesting future
work is to consider whether it is possible to adapt the composition operator
of IMCs in order to delete unintended transitions that it currently produces
in synchrony propagation scenarios, and still remain within a compositional
framework. In addition, we plan to consider rewards of a system along with its
stochastic behavior as well. Our translation result will thus become a CTMC
model with reward information on its transitions and states, which can be fed
into an appropriate stochastic analysis tool, such as PRISM. The translation of
the Stochastic Reo circuit of the ASK system case study into a CTMC model,

31

using Stochastic Reo Automata, reported in this paper was carried out manu-
ally. We have already incorporated tools for this translation using QIA (instead
of Stochastic Reo Automata) within our ECT environment. We are currently
extending and improving these tools to use our Stochastic Reo Automata. The
more compact sizes of the automata models will then allow us to analyze larger
parts and components of the ASK system.

References

[1] F. Arbab, Reo: a channel-based coordination model for component com-
position, Mathematical Structures in Computer Science 14 (3) (2004) 329–
366.

[2] C. Baier, M. Sirjani, F. Arbab, J. J. M. M. Rutten, Modeling component
connectors in Reo by constraint automata, Science Computer Programming
61 (2) (2006) 75–113.

[3] M. Bonsangue, D. Clarke, A. Silva, Automata for Context-Dependent Con-
nectors, in: Coordination Models and Languages, Vol. 5521 of Lecture
Notes in Computer Science, Springer Verlag, 2009, pp. 184–203.

[4] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y.-J. Moon, C. Verhoef,
From Coordination to Stochastic Models of QoS, in: COORDINATION,
Vol. 5521 of Lecture Notes in Computer Science, Springer, 2009, pp. 268–
287.

[5] M. Calzarossa, S. Tucci (Eds.), Performance Evaluation of Complex Sys-
tems: Techniques and Tools, Performance 2002, Tutorial Lectures, Vol.
2459 of Lecture Notes in Computer Science, Springer, 2002.

[6] P. Fernandes, B. Plateau, W. J. Stewart, Efficient Descriptor-Vector Multi-
plications in Stochastic Automata Networks, J. ACM 45 (3) (1998) 381–414.

[7] W. J. Stewart, K. Atif, B. Plateau, The numerical solution of stochastic
automata networks, EOR 86 (3) (1995) 503–525.

[8] B. R. Haverkort, R. Marie, G. Rubino, K. S. Trivedi (Eds.), Performability
Modelling: Techniques and Tools, Wiley, 2001.

[9] R. A. Sahner, K. S. Trivedi, A. Puliafito, Performance and reliability anal-
ysis of computer systems: an example-based approach using the SHARPE
software package, Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[10] J. Hillston, A Compositional Approach to Performance Modelling, Cam-
bridge University Press, 1996.

[11] M. Bernardo, R. Gorrieri, Extended Markovian Process Algebra, in: CON-
CUR, 1996, pp. 315–330.

32

[12] M. Bernardo, R. Gorrieri, A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time, Theo-
retical Computer Science 202 (1-2) (1998) 1–54.

[13] C. Krause, Z. Maraikar, A. Lazovik, F. Arbab, Modeling Dynamic Re-
configurations in Reo using High-Level Replacement Systems, Science of
Computer Programming 76 (1) (2011) 23–36, selected papers from the 6th
International Workshop on the Foundations of Coordination Languages and
Software Architectures - FOCLASA’07.

[14] H. Hermanns, Interactive Markov Chains: The Quest for Quantified Qual-
ity, Vol. 2428 of Lecture Notes in Computer Science, Springer, 2002.

[15] C. Baier, V. Wolf, Stochastic Reasoning About Channel-Based Compo-
nent Connectors, in: COORDINATION, Vol. 4038 of Lecture Notes in
Computer Science, Springer, 2006, pp. 1–15.

[16] D. Clarke, D. Costa, F. Arbab, Connector colouring I: Synchronisation
and context dependency, Science Computer Programming 66 (3) (2007)
205–225.

[17] M. M. Bonsangue, D. Clarke, A. Silva, A Model of Context-Dependent
Component Connectors, Science of Computer Programming. To appear.

[18] Probabilistic model checker, http://www.prismmodelchecker.org/.

[19] A. Stam, The ASK System and the Challenge of Distributed Knowledge
Discovery, in: ISoLA, Vol. 17 of Communications in Computer and Infor-
mation Science, Springer, 2008, pp. 663–668.

[20] Almende website, http://www.almende.com.

[21] Ask community systems website, http://www.ask-cs.com.

[22] F. S. de Boer, I. Grabe, M. M. Jaghoori, A. Stam, W. Yi, Modeling
and Analysis of Thread-Pools in an Industrial Communication Platform,
in: Proc. 11th International Conference on Formal Engineering Methods
(ICFEM’09), Vol. 5885 of Lecture Notes in Computer Science, Springer,
2009, pp. 367–386.

[23] Credo project, http://projects.cwi.nl/credo/.

[24] E. Brinksma, H. Hermanns, Process Algebra and Markov Chains, in: Eu-
ropean Educational Forum: School on Formal Methods and Performance
Analysis, Vol. 2090 of Lecture Notes in Computer Science, Springer, 2000,
pp. 183–231.

[25] C. A. O’Cinneide, Characterization of phase-type distributions, in:
Stochastic Models, Vol. 6, Taylor & Francis, 1990, pp. 1–57.

33

[26] M. F. Neuts, Matrix-geometric Solutions in Stochastic Models: An Algo-
rithmic Approach, The Johns Hopkins University Press, 1981.

[27] H. Garavel, R. Mateescu, F. Lang, W. Serwe, CADP 2006: A Toolbox for
the Construction and Analysis of Distributed Processes, in: CAV, Vol. 4590
of Lecture Notes in Computer Science, Springer, 2007, pp. 158–163.

[28] H. Garavel, H. Hermanns, On Combining Functional Verification and
Performance Evaluation using CADP, Research Report RR-4492, INRIA
(2002).

[29] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle, Composi-
tional performance modelling with the TIPPtool, Performance Evalulation
39 (1-4) (2000) 5–35.

[30] H. Boudali, P. Crouzen, M. Stoelinga, A Compositional Semantics for Dy-
namic Fault Trees in Terms of Interactive Markov Chains, in: ATVA, Vol.
4762 of Lecture Notes in Computer Science, Springer, 2007, pp. 441–456.

[31] H. Boudali, P. Crouzen, M. Stoelinga, Dynamic Fault Tree Analysis Us-
ing Input/Output Interactive Markov Chains, in: DSN, IEEE Computer
Society, 2007, pp. 708–717.

[32] H. Boudali, P. Crouzen, M. Stoelinga, A Rigorous, Compositional, and
Extensible Framework for Dynamic Fault Tree Analysis, IEEE Transactions
on Dependable and Secure Computing 7 (2) (2010) 128–143.

[33] H. Boudali, P. Crouzen, B. R. Haverkort, M. Kuntz, M. Stoelinga, Archi-
tectural dependability evaluation with Arcade, in: DSN, IEEE Computer
Society, 2008, pp. 512–521.

[34] M. Bozzano, A. Cimatti, M. Roveri, J.-P. Katoen, V. Y. Nguyen, T. Noll,
Codesign of dependable systems: a component-based modeling language,
in: MEMOCODE’09: Proceedings of the 7th IEEE/ACM international
conference on Formal Methods and Models for Codesign, IEEE Press, Pis-
cataway, NJ, USA, 2009, pp. 121–130.

[35] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
The COMPASS Approach: Correctness, Modelling and Performability of
Aerospace Systems, in: SAFECOMP, Vol. 5775 of Lecture Notes in Com-
puter Science, Springer, 2009, pp. 173–186.

[36] H. Hermanns, J.-P. Katoen, The How and Why of Interactive Markov
Chains, in: Formal Methods for Components and Objects (FMCO), Vol.
6286 of Lecture Notes in Computer Science, Springer-Verlag, 2010, pp.
311–337.

[37] H. L. S. Younes, R. G. Simmons, Solving Generalized Semi-Markov Deci-
sion Processes Using Continuous Phase-Type Distributions, in: Proceed-
ings of the 19th National Conference on Artificial Intelligence, California
AAAI Press, 2004, pp. 742–748.

34

[38] O. Kanters, QoS analysis by simulation in Reo, Master’s thesis, Vrije Uni-
versiteit, Amsterdam, The Netherlands (2010).

[39] Eclipse Coordination Tools, http://reo.project.cwi.nl/.

35

