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REPORT

Deleterious Variation in BRSK2 Associates with
a Neurodevelopmental Disorder

Susan M. Hiatt,1 Michelle L. Thompson,1 Jeremy W. Prokop,2 James M.J. Lawlor,1 David E. Gray,1

E. Martina Bebin,3 Tuula Rinne,4 Marlies Kempers,4 Rolph Pfundt,4 Bregje W. van Bon,4

Cyril Mignot,5,6,7 Caroline Nava,5,8 Christel Depienne,8,9 Louisa Kalsner,10 Anita Rauch,11,12

Pascal Joset,11 Ruxandra Bachmann-Gagescu,11 Ingrid M. Wentzensen,13 Kirsty McWalter,13

and Gregory M. Cooper1,*

Developmental delay and intellectual disability (DD and ID) are heterogeneous phenotypes that arise inmany raremonogenic disorders.

Because of this rarity, developing cohorts with enough individuals to robustly identify disease-associated genes is challenging. Social-

media platforms that facilitate data sharing among sequencing labs can help to address this challenge. Through one such tool,

GeneMatcher, we identified nine DD- and/or ID-affected probands with a rare, heterozygous variant in the gene encoding the serine/

threonine-protein kinase BRSK2. All probands have a speech delay, andmost present with intellectual disability, motor delay, behavioral

issues, and autism. Six of the nine variants are predicted to result in loss of function, and computational modeling predicts that the re-

maining threemissense variants are damaging to BRSK2 structure and function. All nine variants are absent from large variant databases,

and BRSK2 is, in general, relatively intolerant to protein-altering variation among humans. In all six probands for whom parents were

available, the mutations were found to have arisen de novo. Five of these de novo variants were from cohorts with at least 400 sequenced

probands; collectively, the cohorts span 3,429 probands, and the observed rate of de novo variation in these cohorts is significantly higher

than the estimated background-mutation rate (p ¼ 2.46 3 10�6). We also find that exome sequencing provides lower coverage and ap-

pears less sensitive to rare variation in BRSK2 than does genome sequencing; this fact most likely reduces BRSK2’s visibility in many clin-

ical and research sequencing efforts. Altogether, our results implicate damaging variation in BRSK2 as a source of neurodevelopmental

disease.

Developmental delay and intellectual disability (DD and

ID), attention-deficient/hyperactivity disorder (ADHD),

schizophrenia, language communication disorders, autism

spectrum disorders (ASDs), and motor and tic disorders lie

under a more general umbrella of neurodevelopmental dis-

orders (NDDs).1,2 Although these are traditionally catego-

rized into discrete disease entities, many symptoms are

not unique to a single NDD. Furthermore, many genes

have been associated with multiple NDDs,3 and new ge-

netic associations continue to be discovered. This is partic-

ularly true given the recent acceleration in large-scale

sequencing and cross-site genotype-phenotype ‘‘match-

making’’ efforts.4,5

Through a Clinical Sequencing Exploratory Research

(CSER) project focused on sequence-driven diagnoses for

probands with unexplained DD and/or ID,6 we identified

variation likely to be deleterious in BRSK2 (MIM: 609236)

in four unrelated probands. BRSK2 encodes a serine/threo-

nine-protein kinase, which is involved in axonogenesis

and the polarization of cortical neurons.7 BRSK2 is pre-

dicted to be relatively intolerant to protein-altering varia-

tion in the general population (%ExAC v2 residual

variation intolerance score [RVIS] ¼ 4.9462%,8 pLI score

(probability that a gene is intolerant to a loss of function

mutation) ¼ 0.789). In each proband, the BRSK2 variant

was prioritized, after filtering and manual curation, as the

most compelling disease-candidate variant of interest (see

details by Bowling and colleagues for additional informa-

tion about the cohort and analytical methods6). Although

these observations suggest BRKS2 as a strong candidate

NDD-associated gene, we sought additional cases via

GeneMatcher5 to support pathogenicity. GeneMatcher is

a database developed as part of the MatchMaker Exchange

and has been shown to facilitate rare-disease-gene

discovery.10 Information about five additional affected

probands who were found by research or diagnostic

sequencing (Table 1) and who had variants likely to be

deleterious in BRSK2 was independently submitted to

GeneMatcher. Informed consent to publish de-identified

data was obtained from all affected individuals and/or fam-

ilies (see Supplemental Material and Methods). Altogether,

the affected probands ranged in age from 3 years and
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9months old to 19 years old and had amean age of just un-

der 8 years (Table 2). All probands described here display ID

except for one. All probands present with developmental

delays, including speech delay (9/9) and motor delay

(7/9). Eight of nine probands, one of whom (proband 9)

was considered borderline, present with autism, and seven

were reported to have behavioral abnormalities, including

stereotypies (4/7), temper tantrums (3/7), and/or ADHD

(3/7). Two probands reported sleep issues that were treat-

able with melatonin. Although most probands were re-

ported to have facial dysmorphism, we did not observe a

consistent set of features (see Supplemental Note). Addi-

tional details of each case are provided in the supplement

(See Table S1 and Supplemental Note).

Parents were available for testing for six of the nine pro-

bands, and in all six of these probands, the variants were

found to be de novo (Table 1 and Figure 1). Six of the nine

described variants, including two frameshift variants, one

nonsense variant, and three variants affecting canonical

splice sites, are predicted to result in loss of function. The

remaining three variants were missense. All nine variants

are absent from gnomAD9 and the Bravo TOPMed data-

base. Although gnomAD does contain variant data aggre-

gated from several disease cohorts, there has been an effort

to remove any variants found in individuals with severe

pediatric disease.9 All variants were computationally pre-

dicted to be deleterious and had Combined Annotation

Dependent Depletion (CADD) scores11 ranging from 24.8

to 38; these scores indicate that they rank among the

most highly deleterious variants possible in the human

genome reference assembly, similar to most variants previ-

ously reported to cause Mendelian diseases.11

The canonical protein encoded by the BRSK2 locus

(GenBank: NP_001243556.1, UniProt: Q8IWQ3, 736 aa)

contains several domains, including a protein kinase

domain (aa 19–270), a ubiquitin-associated domain

(UBA; aa 297–339), a proline-rich domain (aa 424–468),

and a kinase-associated domain (KA1; aa 530–653) that

contains a KEN box (a degradation signal, aa 603–605)

(Figure 1B). An analysis of conservation along the protein

identified several regions with elevatedmeasures of conser-

vation (Figure 1C). Two missense variants (c.194G>A

[p.Arg65Gln] and c.635G>A [p.Gly212Glu]) are located

within the protein kinase domain, and one (c.1861C>T

[p.Arg621Cys]) is within the KA1 domain.

We assessed the potential structural effects of the

three missense variants by performing computational

modeling.12 All three missense variants lie within

conserved linear motifs (Figure 1C) and affect residues

that are conserved across many species (Figures 2

and S1). Arg65 lies within the protein kinase domain and

has been found to coordinate intramolecularly with

Glu330 to form a salt bridge.13 Arg65 also lies within

a mitogen-activated protein kinase (MAPK) docking

motif14 (Figure 2). Thus, p.Arg65Gln is predicted to disrupt

both the structure and functional activity of BRSK2.

Gly212 lies in the C-lobe of the protein kinase domain,T
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just at the C terminus of a helix, within a flexible linker;13

thus, p.Gly212Glu might disrupt secondary protein struc-

ture. Arg620 and Arg621 comprise a di-arginine endo-

plasmic-reticulum (ER) retrieval-and-retention motif, and

a recent publication found that Arg620 forms a salt bridge

with Asp305 when the KA1 domain associates with the

UBA domain.13 The authors of this paper also found that

disruption of several key polar residues, including Arg620

and Arg621, in the C terminus of the protein abolishes

phospholipid binding. On the basis of these observations,

it is plausible that p.Arg621Cys disrupts the localization of

this protein to the ER and possibly to other membranes.

Given that the p.Arg621Cys variant is of unknown inher-

itance, it remains a variant of uncertain significance

(VUS),15 and further experimental or computational ana-

lyses are needed if we are to better understand its potential

molecular and disease effects.

We assessed the degree of enrichment of observed

de novo variation in BRSK2 in the sequenced DD- and/or

ID-affected cohorts that underlie this study. Two probands

(1 and 5) were a part of a cohort of 2,418 DD- and/or ID-

affected probands sequenced as trios. An additional pro-

band (2) was sequenced as a trio among a cohort of 550

affected probands, and two others (probands 3 and 4)

were among a cohort of 461. In aggregate, these cohorts

include five de novo variants in 3,429 affected, sequenced

individuals. We compared this observed rate to the ex-

pected rate estimated by Samocha et al.16 (2.973 10�5 var-

iants per chromosome) of de novo missense, nonsense,

splice, and frameshift variation in BRSK2. The observed

rate of de novo variation in the DD- and/or ID-affected co-

horts considered here is significantly greater than the back-

groundmutation rate (five de novo variants observed versus

0.20 expected, p ¼ 2.46 3 10�6), and this observation re-

mained significant even after a Bonferroni correction for

20,000 genes (p ¼ 0.0492). We note that one proband (7)

with a de novo variant was sequenced clinically as a trio,

but a cohort size was not available for this proband;

furthermore, one or both parents were unavailable

for testing for three of the nine observed variants. Thus,

although these four additional variants add to the evidence

supporting a disease role for BRKS2, they are excluded from

the preceding enrichment calculations.

BRSK2 and its homolog BRSK1 (MIM: 609235) encode

kinases required for neuronal polarization.7 These two

kinases, along with 11 other kinases, form the AMPK-

related family of protein kinases.17 Although knockouts

of either Brsk1 or Brsk2 alone in mice were healthy and

fertile, double knockouts of Brsk1 and Brsk2 resulted in

pups that exhibited reduced spontaneous movement and

little response to tactile stimulation and that died within

2 h of birth.7 Expression patterns of BRSK2 also support

its role in neurodevelopment. BRSK2 is most highly ex-

pressed in the brain in humans,18 and Brsk1 and Brsk2

are restricted to the nervous system in mice.7

BRSK2 interacts with several genes that are associated

with NDDs, including autism, tuberous sclerosis, and DDT
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and/or ID. For example, BRSK2 has been shown to phos-

phorylate TSC2 and suppress mTORC1 activity.19 The tu-

berous sclerosis complex (TSC) signaling pathway is one

of the pathways associated with autophagy during early

axonal growth,20 and TSC2, specifically, is a regulator of

cellular size and growth.21,22 BRSK2 has also been shown

to interact with PTEN, which has been associated with

various developmental disorders (see MIM: 60172823,24)

including autism. PTEN-deficient mice display malforma-

tion of neuronal structures and autistic features that result

from aberrant TSC-mTORC1 signaling.25 WDR45, also

known as WIPI4, is a scaffold protein that controls auto-

phagy and has recently been shown to be dependent on

BRSK2 activity.26 Variation in WDR45 is associated with

an X-linked dominant disorder: neurodegeneration with

brain iron accumulation (MIM: 300894). The numerous

genetic and biochemical interactions between BRSK2 and

well-established NDD genes further strengthen the conclu-

sion that damaging variation in BRSK2 underlies an NDD.

Across six recent publications reporting on de novo varia-

tion in large cohorts with DD and/or ID or autism,27–32 two

protein-altering BRSK2 variants were reported: GenBank:

NM_001256627.1 (c.992_994del, [p.Lys331del]) was found

in a cohort of 2,500 probandswith autism,30 andGenBank:

NM_001256627.1 (c.770G>A, [p.Arg257His]) was found in

a cohort of 4,293 DD- and/or ID-affected probands.28 Inter-

estingly, this second variant has been observed as a hetero-

zygote seven times in gnomAD, suggesting it is not a highly

penetrant allele contributing to DD and/or ID. These data

raise an interesting question, namely as to why the fre-

quency of observed BRSK2 variation in this study is mark-

edly higher than that found in previous studies. This is

particularly true for the HudsonAlpha CSER study,6 in

which four variants were found among 581 affected pro-

bands (461 of whom were sequenced as trios). Some of the

discrepancy is probably due to stochastic variability in

observing a small number of rare events. However, one po-

tential systematic explanation is that BRSK2 is less deeply

covered in exomes, and the observed enrichment, in part,

reflects the effects of the genome sequencing that was

used for the HudsonAlpha probands described here. It has

been shown previously that genome sequencing provides

better coverage, in general, over coding exons than exome

sequencing does,27,31,33–36 and that some exons, including

among clinically relevant genes, tend to be more poorly

covered by exomes.36

We find that BRSK2 is less well covered by exomes than

by genomes in gnomAD (Figure 3). For example, when

requiring a minimum depth of 203 among exonic bases

(plus 10 bp on either side of each exon), we found that

76% of gnomAD exome samples, compared to 93% of

genome samples, have half of all BRSK2 bases covered

(Figure 3A). Furthermore, we assessed rare-variant detec-

tion rates, in particular the rate at which singletons (i.e.,

variants for which only one alternative allele is observed

across the combined set of exomes and genomes) are

Figure 1. Exon and Domain Structure, Conservation, and Locations of Observed Variation in BRSK2
(A and B) Variation observed in BRSK2 is shown for (A) the canonical, 20-exon transcript, GenBank: NM_001256627.1 and (B) the 736 aa
protein, GenBank: NP_001243556.1. Protein domains include protein kinase, ubiquitin-associated (UBA), proline-rich (Pro-Rich), and
kinase-associated 1 (KA1) domains. Splice variants are shown below the schematic representation of the canonical transcript, and pro-
tein-altering variants are shown above the schematic representation of BRSK2. De novo variants are shown in green text, and those of
unknown inheritance are shown in black.
(C) Analysis of conservation throughout BRSK2 was performed with amino acid selection scores as previously published12 and used a
21-codon sliding window. The most-selected motifs of a protein are identified as peaks. The three residues found to be affected by
variation here are labeled, along with their respective conservation scores.
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observed. There are 46 singletons detected among 15,708

genomes (0.29%) in gnomAD and 189 singletons detected

among 125,748 exomes (0.15%); this difference is signifi-

cant (p ¼ 1.5 3 10�4, Fisher’s exact test) and suggests

increased rare-variant sensitivity in genomes relative to

in exomes. Additionally, considering only exomes, we

compared coverage of BRSK2 exons to exons in other dis-

ease-associated genes that are annotated in the Develop-

ment Disorder Genotype-Phenotype Database (DDG2P).

Although, again, only 76% of samples have at least half

of BRSK2 bases covered at 203 in gnomAD exomes, 99%

of samples have half or more of the bases in previously

reported DDG2P genes covered in gnomAD exomes

(Figure 3B). Thus, we find it likely that the lower rates of

BRSK2 variation found in other DD and/or ID studies re-

flects, at least in part, reduced variant sensitivity of exome

sequencing in BRSK2.

We have identified nine individuals harboring rare, het-

erozygous BRSK2 variants that are likely to be deleterious,

and we provide detailed clinical descriptions of the

Figure 2. Computational Modeling of BRSK2 Missense Variants
A full model of BRSK2 was created with I-TASSER modeling using PDB: 4YOM, 4YNZ, and 4IW0. This model of BRSK2 was combined
via ConSurf mapping with sequences for BRSK2 from 99 species. Amino acid coloring is as follows: gray ¼ not conserved, yellow ¼
conserved hydrophobic, green ¼ conserved hydrophilic, red ¼ conserved polar acidic, blue ¼ conserved polar basic, and magenta ¼
conserved human variants of interest. Zoomed-in views of the three locations are shown, along with codon usage throughout evolution.
The conservation score is defined as an additive metric of amino acid conservation and codon selection as previously defined.12 For
example, a conservation score of 2 indicates 100% conservation with >2 standard deviations above the mean for codon selection.12

s/n indicates synonymous mutations versus non-synonymous mutations observed at the same position in other species; differences
are indicated. All three sites are under high selection and have multiple synonymous (s) amino acids in 99 open reading frames
(ORFs) of BRSK2 and only a single nonsynonymous (n) change observed at G212. Linear motifs mapped with the Eukaryotic Linear
Motif (ELM) tool are shown below each site.
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phenotypes observed in these individuals, who all present

with varying degrees andmanifestations of developmental

disorders. We believe these observations strongly support

the conclusion that damagingvariation inBRSK2 is causally

related to anNDD.Thekeypoints of evidence are as follows:

(1) we observe a statistically significant enrichment of

de novo variants in affected individuals relative to the esti-

mated background mutation rate (p ¼ 2.46 3 10�6);

(2) although one or both parents were unavailable in three

cases, none of the variants described here were found to be

inherited, and all observed variants are absent from gno-

mAD and TopMed; (3) BRSK2 is relatively intolerant to

protein-altering variation in the general population;8,9 (4)

all variants in affected probands are either predicted to

result in loss of function or are missense variants at highly

conserved residues; (5) all variants are computationally

predicted to be evolutionarily deleterious and have, for

example, CADD11 scores that are typical for mutations pre-

viously reported to underlie Mendelian disease; (6) model

organism evidence suggests a role for BRSK2 in neurodevel-

opment; and (7) BRSK2 is known to genetically and/or

biochemically interact with several genes that are robustly

associated with developmental disease. In summary, these

data collectively implicate BRSK2 as an NDD-related gene.

Accession Numbers

All relevant variant data are supplied within the paper or in sup-
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are available via dbGAP (accession number phs001089.v3.p1).
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