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Daniëlle R. J. Verboogen1, Natalia H. Revelo1, Martin ter Beest1, and Geert van den Bogaart1,2,*
1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
2 Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG

Groningen, The Netherlands

* Correspondence to: Geert van den Bogaart, E-mail: g.van.den.bogaart@rug.nl

Edited by Bing Su

Cells producing cytokines often express the receptor for the same cytokine, which makes them prone to autocrine signaling. How

cytokine release and signaling are regulated in the same cell is not understood. In this study, we demonstrate that signaling by

exogenous and self-synthesized inflammatory cytokine interleukin-6 (IL-6) within endosomal compartments acts as a cellular

brake that limits the synthesis of IL-6. Our data show that IL-6 is internalized by dendritic cells and signals from endosomal com-

partments containing the IL-6 receptor. Newly synthesized IL-6 also traffics via these endosomal compartments and signals in

transit to the plasma membrane. This allows activation of STAT3 which in turn limits toll-like receptor 4 stimulant lipopolysac-

charide (LPS) triggered transcription of IL-6. Long-term exposure to LPS removes this brake via inhibition of STAT3 by increased

expression of suppressor of cytokine signaling 3 and results in fully fledged IL-6 production. This transient regulation could pre-

vent excessive IL-6 production during early infections.
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Introduction

Interleukin-6 (IL-6) is the most pleiotropic cytokine known in

mammals (Ernst and Jenkins, 2004). It has both pro- and anti-

inflammatory properties and is involved in the pathogenesis of

all inflammatory diseases (Wolf et al., 2014; Garbers et al.,

2015; Tanaka et al., 2016). IL-6 can promote the activation,

growth, proliferation, and survival of many different cell types

(Hunter and Jones, 2015). IL-6 production by immune phago-

cytes is triggered by a wide range of stimuli, such as stress hor-

mones, cytokines, and pathogen recognition by toll-like

receptors (TLRs) (Dittrich et al., 1994). In healthy individuals,

blood levels of free IL-6 (i.e. not in complex with soluble IL-6

receptor) are in the low pg/ml range, depending on the assays

used because not every assay can distinguish between free and

complexed IL-6 (Helfgott et al., 1989; May et al., 1992, 1994;

Ndubuisi et al., 1998). In contrast, blood levels of IL-6 can

increase to ng/ml range in autoimmune diseases and to μg/ml

range during septic shock (Grossman et al., 1989; Waage et al.,

1989; Damas et al., 1992; Robak et al., 1998; Nowell et al.,

2003; Chaudhry et al., 2013; Shimamoto et al., 2013). In add-

ition, IL-6 levels correlate with tumor progression in many can-

cer types (Salgado et al., 2003; Yu et al., 2007; Xu et al., 2016).

IL-6 induces the development of Th17 cells while inhibiting dif-

ferentiation of regulatory T cells. These T cell subsets have key

functions in immune regulation: IL-17-producing Th17 cells pro-

tect against microbial infections but also contribute to the

pathogenesis of many autoimmune diseases, including multiple

sclerosis and rheumatoid arthritis, whereas regulatory T cells

limit excessive effector T cell responses (Kimura and Kishimoto,

2010). Differentiation of pathogenic Th17 cells mainly occurs by

presentation of IL-6 loaded onto the IL-6 receptor on the surface

of dendritic cells, in a process called trans-presentation (Heink

et al., 2017).

The IL-6 receptor consists of IL-6 receptor alpha (IL-6RA,

CD126, gp80) and the signal transducing subunit glycoprotein

130 (gp130, CD130) (Schaper and Rose-John, 2015). IL-6 first

binds to IL-6RA with a low affinity dissociation constant of

∼10 nM (Yamasaki et al., 1988; Dittrich et al., 1994). This com-

plex of IL-6 with IL-6RA in turn binds to two molecules of gp130

with two orders of magnitude higher affinity, resulting in a net
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dissociation constant in the pM to nM range (Zohlnhöfer et al.,

1992; Dittrich et al., 1994; Hammacher et al., 1994). Following

oligomerization, Janus tyrosine kinases (JAK) phosphorylate the

intracellular tails of gp130 which in turn recruit and activate sig-

nal transducer and activator of transcription (STAT) and

mitogen-activated protein kinase (MAPK) signaling systems

(Ernst and Jenkins, 2004; Silver and Hunter, 2010). In addition

to the activation of STAT3 by phosphorylation of tyrosine 705,

its activity is further promoted by phosphorylation at serine 727

(Wen et al., 1995; Galdiero et al., 2006; Moravcová et al., 2016)

by the mammalian target of rapamycin (mTOR) (Yokogami et al.,

2000) or protein kinase C delta (PKCδ) (Bhattacharjee et al.,

2006). In contrast to IL-6RA, which is specific for IL-6, gp130 is

shared by all cytokines of the IL-6 family: IL-11, leukemia inhibi-

tory factor (LIF), oncostatin M (OsM), cardiotrophin-1 (CT-1), cil-

iary neurotrophic factor (CNTF), and cardiotrophin-like cytokine

(CLC) (Ernst and Jenkins, 2004). Whereas gp130 is ubiquitously

expressed in hematopoietic and non-hematopoietic cells, IL-6RA

is expressed only by a limited number of cell types, such as

hepatocytes and immune cells (Larregina et al., 1997;

McFarland-Mancini et al., 2010; Silver and Hunter, 2010; Wolf

et al., 2014; Garbers et al., 2015).

Interestingly, many leukocytes (monocytes, dendritic cells,

macrophages, B cells) that produce IL-6 also express IL-6RA

(Hwang et al., 2010), enabling autocrine signaling. Although

IL-6 was originally believed to promote activation and matur-

ation of dendritic cells (Jonuleit et al., 1997), it is increasingly

clear that IL-6 inhibits these processes via STAT3 activation

(Park et al., 2004; Yu et al., 2007; Melillo et al., 2010). In line

with this previously described inhibitory role, IL-6 knockout

mice show enhanced activation compared to wild-type (Wang

et al., 2004; Melillo et al., 2010). IL-6 also influences activation

of other immune cells as it, for instance, blocks the proliferation

of proinflammatory M1 macrophages in mice (Luig et al., 2015).

STAT3 activation interferes with TLR signaling, as pre-treatment

of dendritic cells with IL-6 reduces maturation triggered by lipo-

polysaccharide (LPS), a bacterial TLR4 stimulus, and leads to

decreased expression of the maturation markers CD86 and MHC

class II (Park et al., 2004). LPS in turn is well known to inhibit

tyrosine phosphorylation of STAT3 (pY-STAT3) (Meley et al.,

2017) and promote IL-6 synthesis by dendritic cells (van Bon

et al., 2010; Kumolosasi et al., 2014), raising the question of

how this cross-talk between STAT3 and TLR4 signaling would

affect cellular responses to IL-6 and LPS.

In this study, we investigated how signaling of self-

synthesized IL-6 affects the production of IL-6 by dendritic cells.

By microscopy, we show that newly synthesized IL-6 traffics

from the Golgi network to the plasma membrane via recycling

endosomes, a network of tubulovesicular compartments that

interconnects endocytic and exocytic trafficking pathways, as

previously shown for macrophages (Manderson et al., 2007)

and dendritic cells (Verboogen et al., 2018). We hypothesized

that newly synthesized IL-6 in transit to the plasma membrane

could signal from these recycling endosomal compartments,

since IL-6 has been described to signal from endosomes in

hepatocytes (Shah et al., 2006; Xu et al., 2007; German et al.,

2011). Indeed, we found that in dendritic cells pY-STAT3 signal-

ing is initiated by binding of both internalized IL-6 and newly

synthesized IL-6 to IL-6RA within intracellular compartments. This

signaling results in a negative feedback loop and acts as a brake

limiting IL-6 synthesis. However, long-term exposure to LPS

releases this brake, as pY-STAT3 is inhibited by a LPS-induced

increase of expression of suppressor of cytokine signaling 3

(SOCS3), a previously described suppressor of STAT3 signaling

(Croker et al., 2003, 2012; Lang et al., 2003), and this allows full

IL-6 production. Thus, our data show that self-signaling by newly

synthesized IL-6 limits the production of IL-6 during short-term

exposure to the inflammatory stimulus LPS. This mechanism

might serve to restrain IL-6 responses during early infection and

sepsis.

Results

Cross-inhibition of IL-6 and LPS signaling in dendritic cells

We first confirmed that the IL-6 receptor is expressed by den-

dritic cells. Reverse transcription (RT)-PCR, western blot,

and flow cytometry showed that IL-6RA is expressed by human

CD1c+ myeloid and BDCA4+ plasmacytoid dendritic cells (mDC

and pDC) isolated from the blood of healthy donors (Figure 1A

and Supplementary Figure S1A–E). IL-6RA is also expressed by

dendritic cells differentiated from human blood-isolated mono-

cytes (moDCs) by granulocyte macrophage colony-stimulating

factor (GM-CSF) and IL-4, as reported previously (Meley et al.,

2017). Moreover, mouse bone marrow-derived dendritic cells

(BMDCs) differentiated by either GM-CSF or fms-related tyrosine

kinase 3 ligand (FLT3L) expressed IL-6RA, as reported previously

(Hwang et al., 2010), as well as the murine macrophage cell line

RAW264.7. IL-6RA can be expressed as a long transmembrane iso-

form and as a short soluble isoform lacking its transmembrane

helix and cytoplasmic domain (Wolf et al., 2014; Garbers et al.,

2015). Soluble IL-6RA can also be produced by shedding of

the long isoform of IL-6RA from the cell membrane (Müllberg

et al., 1993, 1994) by metalloproteases ADAM10 and ADAM17

(Matthews et al., 2003; Yan et al., 2016; Zunke and Rose-John,

2017). For western blot, we used an antibody recognizing the cyto-

plasmic C-terminal tail of IL-6RA, meaning that only the full-length

membrane bound form of IL-6RA was detected. However, tran-

scription of the short isoform was also detected by RT-PCR with

isoform-specific primers (Horiuchi et al., 1994) (Supplementary

Figure S1C). Moreover, the short soluble isoform of IL-6RA was

detected in the supernatant of moDCs by ELISA, as recently shown

(Meley et al., 2017), and this was independent of the presence of

LPS (Supplementary Figure S1F).

Although the expression levels of IL-6RA varied widely among

donors/mice, repeats and conditions, western blot experiments

showed that IL-6RA expression did not change significantly after

stimulation with LPS up to 24 h in GM-CSF and FLT3L-differentiated

BMDCs and RAW264.7 macrophages (Figure 1A and Supplementary

Figure S1A). Similarly, western blot and flow cytometry experiments

revealed that IL-6RA expression did not change significantly in pri-

mary mDCs after overnight stimulation with LPS or with a
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combination of the TLR3 agonist polyinosinic:polycytidylic acid

(poly(I:C)) and the TLR7/8 agonist R848, nor in plasmacytoid den-

dritic cells stimulated with the TLR9 agonist CpG-C (Figure 1A;

Supplementary Figure S1A and D).

For the rest of the experiments, we focused on moDCs, a

widely used model system for immune cell function capable of

producing large amounts of IL-6 (van Bon et al., 2010;

Verboogen et al., 2018). MoDCs do not only express IL-6RA but

also the signaling co-receptor gp130 (Figure 1A; Supplementary

Figure S1A, E–G). The soluble form of gp130, which is produced

by shedding of full-length gp130 from the cell membrane, could

also be detected in the supernatant by ELISA after 24 h incuba-

tion with LPS (Supplementary Figure S1H). For some donors, LPS

resulted in lower levels of IL-6RA and gp130, but this was not

consistent as no changes were observed for other donors, and,

although there was a trend towards overall lower IL-6RA and

gp130 levels, the donor-averaged cellular levels of gp130 and

IL-6RA did not significantly change upon LPS stimulation

(Figure 1A; Supplementary Figure S1A, D–H). In line with this,

comparison of the profiles of the IL-6RA bands of the western

blots suggested that the glycosylation states of IL-6RA did not

significantly change upon LPS treatment (Supplementary

Figure S1I). These results contrast the observations by Meley

et al. (2017) that short-term (up to 8 h) LPS treatment resulted in

a slight decrease of IL-6RA levels whereas longer incubations

result in higher levels of IL-6RA, and gp130 levels decreased

Figure 1 LPS induces STAT3 tyrosine phosphorylation but inhibits IL-6-mediated STAT3 tyrosine phosphorylation in dendritic cells. (A) IL-

6RA expression by western blot for mDC with or without overnight stimulation with LPS or a combination of Poly(I:C) and R848, for pDC, and

for moDCs, RAW264.7, and murine GM-CSF, and FLT3L-differentiated BMDCs stimulated with LPS for the indicated times. GAPDH is loading

control. Quantification for multiple donors is shown in Supplementary Figure S1A. (B) STAT3 tyrosine 705 phosphorylation (pY-STAT3) by

western blot. MoDCs were incubated with the indicated IL-6 concentrations for 20 min with or without 4 h LPS pre-incubation. α-tubulin is

loading control. Results from the other three donors are shown in Supplementary Figure S2A. (C) Quantification of pY-STAT3/STAT3 in B

(error bars represent SEM for four donors; see Supplementary Figure S2A). Data were normalized to the highest ratio of pY-STAT3 over

STAT3 per donor. (D) pY-STAT3 by western blot. moDCs were incubated with LPS for 4, 8, or 24 h (data from individual donors are shown).

(E) pY-STAT3 of moDCs incubated with the indicated LPS concentrations for 4 h by western blot. (F) IL-6 concentration in the medium col-

lected from the cells in E by ELISA.
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strongly upon LPS treatment, possibly because of the large donor

variation or the source of LPS used. IL-6RA and gp130 are capable

of forming a signaling-competent complex, as culturing in the pres-

ence of IL-6 concentrations above 0.15 ng/ml resulted in tyrosine

phosphorylation of STAT3 (pY-STAT3, Tyr705) in a concentration-

dependent manner (Figure 1B and C; Supplementary Figure S2A

and B). In contrast, serine phosphorylation of STAT3 (pS-STAT3,

Ser727) was already observed in the absence of IL-6 and only

increased at the highest concentration of IL-6 tested (15 ng/ml;

Supplementary Figure S2B).

Next, we tested whether LPS stimulation of the moDCs would

block STAT3 activation, as has been described (Niemand et al.,

2003; Bode et al., 2012; Meley et al., 2017). Indeed, LPS par-

tially blocked STAT3 activation, as levels of pY-STAT3 by IL-6

were reduced when we pre-cultured the cells for 4 h with LPS

prior to the addition of IL-6 (∼90% reduction for 15 ng/ml IL-6

compared to without LPS) (Figure 1B and C; Supplementary

Figure S2A and B). In contrast, LPS did not affect serine phos-

phorylation for all concentrations of IL-6 tested, except for the

highest concentration of 15 ng/ml IL-6, where we observed a

slight reduction of serine phosphorylation (Supplementary

Figure S2B). Tyrosine phosphorylation of STAT3 in the presence

of LPS was no longer dependent on the concentration of IL-6,

but already 10 ng/ml LPS (i.e. the lowest concentration of LPS

tested) without IL-6 resulted in tyrosine phosphorylation of

STAT3 in a time-dependent fashion, albeit with slower kinetics

than IL-6-mediated pY-STAT3 phosphorylation (Figure 1D and E),

and as previously shown (Meley et al., 2017). This increase was

likely caused by autocrine signaling, as LPS promoted transcrip-

tion of IL-6 (Supplementary Figure S2C) resulting in IL-6 produc-

tion to a final concentration of approximately 3 ng/ml

(Figure 1F). These results demonstrate that already low concen-

trations of LPS partially, but not completely, block activation of

pY-STAT3 by IL-6. In order to further investigate the molecular

basis for this LPS block of pY-STAT3 signaling, we looked into

SOCS3 activation, a well-known negative regulator of STAT3

(Croker et al., 2003, 2012; Lang et al., 2003). Our data show

that LPS stimulation resulted in higher transcription and protein

levels of SOCS3 (Figure 2A–C), suggesting a role of this protein

at the intersection between TLR4 and IL-6RA signaling. Moreover,

pY-STAT3 levels were clearly reduced by culturing in the pres-

ence of MG132, a proteasome inhibitor that prevents degrad-

ation of SOCS3 (Figure 2D and E).

We then investigated cross-talk in the reverse direction, thus

whether STAT3 activation would inhibit TLR responses, because IL-6

is known to inhibit dendritic cell maturation via STAT3 (Schindler

et al., 1990; Park et al., 2004; Yu et al., 2007). Since TLR signaling

promotes IL-6 synthesis (Supplementary Figure S2C), autocrine

activation of STAT3 by IL-6 might lead to a negative feedback loop

limiting cellular IL-6 production. To address this possibility, we per-

formed siRNA gene silencing of IL-6RA (siIL-6RA) in moDCs and

used non-targeting siRNA as a negative control (siCntrl). The levels

of IL-6RA knockdown were sufficient (>95% by western blot,

flow cytometry, and immunofluorescence microscopy) (Figure 2F;

Supplementary Figure S3A and B) to attain ∼80% blockage of

IL-6 induced pY-STAT3 signaling (Figure 2G and H). Culturing

IL-6RA-silenced moDCs in the presence of LPS for 4 h (i.e. the

time after which we observed pY-STAT3 signaling; Figure 1D)

increased both IL-6 transcription (by qPCR) and protein production

(by ELISA) by ∼2–3 folds compared to siCntrl (Figure 2I and J).

These differences in IL-6 transcription and secretion disappeared

after prolonged culturing with LPS (8 h) (Figure 2J and

Supplementary Figure S3C), likely because of the refractory phase

in which pY-STAT3 signaling is disabled by increased cellular

levels of SOCS3 (Figure 2). Thus, LPS inhibits IL-6-induced

pY-STAT3 signaling, whereas IL-6 reduces LPS-induced IL-6 pro-

duction, suggesting that there is a mutual cross-inhibition between

the IL-6 and the LPS signaling pathways in dendritic cells.

IL-6 signals from intracellular compartments

In hepatocytes, IL-6 predominantly signals from intracellular

compartments of endosomal nature (Shah et al., 2006; Xu et al.,

2007; German et al., 2011; Schmidt-Arras et al., 2014). We

determined the subcellular localization of IL-6RA signaling in

dendritic cells. First, we measured the fraction of IL-6RA present

at the cell membrane and at intracellular organelles. MoDCs

were immunostained with a monoclonal antibody recognizing

the extracellular domain of IL-6RA both under permeabilizing

and non-permeabilizing conditions and analyzed these stainings

by flow cytometry. About 35% of IL-6RA was present at the plas-

ma membrane, similar to the transferrin receptor (TfR) which

also cycles via recycling endosomes to the plasma membrane

(Figure 3A and Supplementary Figure S4A). Transmission elec-

tron microscopy experiments with immuno-gold antibody-conju-

gate uptake confirmed the presence of IL-6RA at intracellular

compartments (Figure 3B and Supplementary Figure S4B). We

performed immunofluorescence microscopy experiments to char-

acterize the type of intracellular compartments where IL-6RA

was residing. Because the signal of our IL-6RA antibody was too

weak to resolve intracellular compartments (Supplementary

Figure S3B), we visualized IL-6RA by overexpression of a con-

struct coding for IL-6RA C-terminally fused to the fluorescent

reporter protein mCherry. Fusion constructs of IL-6RA C-termin-

ally conjugated to fluorescent proteins have been used previ-

ously to study IL-6RA trafficking and shedding (Chalaris et al.,

2010). By immunofluorescence labeling, we observed localiza-

tion of IL-6RA-mCherry at the plasma membrane and at an intra-

cellular pool that overlapped with compartments positive for the

early/recycling endosomal SNARE protein VAMP3, the early/late

endosomal SNARE protein VAMP8 (Antonin et al., 2000), the

trans-Golgi marker TGN38 (Murray et al., 2005), the recycling

endosomal marker TfR, and less with the late endosomal/lyso-

somal marker LAMP1 and the early endosomal marker EEA1

(Figure 3C and D). These results indicate that IL-6RA traffics

to the plasma membrane, the Golgi apparatus, recycling endo-

somes, and late endosomes/lysosomes.

Since our data show that the majority of IL-6RA locates at

intracellular compartments in dendritic cells, and since IL-6RA
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signaling in hepatocytes is known to occur from intracellular

compartments (Shah et al., 2006; Xu et al., 2007; German et al.,

2011), we then tested for intracellular signaling of IL-6RA.

Quantitative immunofluorescence experiments showed that

exogenous IL-6 was taken up by the cells in a concentration-

dependent manner (Figure 4A), with a similar concentration

dependency as pY-STAT3 activation (Figure 1C). Although IL-6

exposure resulted in lower cellular levels of IL-6RA (Figures 2G

Figure 2 Cross-inhibition of IL-6 and LPS signaling in dendritic cells. (A) Quantification of SOCS3 mRNA levels in moDCs upon 4 h incubation

in the presence or absence of LPS and/or IL-6. (B and C) moDCs were exposed to 0, 4, or 24 h LPS stimulation. The 0 h exposure to LPS

was a quick wash in LPS-containing culture medium (<10 sec). SOCS3 protein levels (B) and tyrosine phosphorylated (Tyr705) pY-STAT3

over total STAT3 levels (C) were examined by western blot and quantified. For each donor, the relative levels were normalized to that of 0 h

exposure to LPS stimulation. Representative blots (from the same donor) are shown and data from individual donors are shown in the

graph. (D and E) moDCs were exposed to 0, 4, or 24 h LPS stimulation in the presence of the proteasome inhibitor MG132. SOCS3 levels (D)

and pY-STAT3/STAT3 levels (E) were examined by western blot and then quantified. For each donor, the relative levels were normalized to

that of 0 h LPS stimulation from B. Representative blots (from the same donor as shown in B and C) are shown and data from individual

donors are shown in the graph. (F) Western blot showing IL-6RA levels in moDCs upon siRNA silencing of IL-6RA (siIL-6RA) and non-

targeting siRNA (siCntrl). Bar graph: quantification (error bars represent SEM for six donors). (G) pY-STAT3 and IL-6RA levels in moDCs upon

siIL-6RA and siCntrl treatment in the absence or presence of exogenous IL-6 for the indicated times. (H) Quantification of pY-STAT3/STAT3

in G. Data shown were from individual donors, normalized to the maximum pY-STAT3/STAT3 ratio for each donor. (I) IL-6 secretion by 4 h

LPS-stimulated moDCs with or without siIL-6RA by ELISA (data from individual donors are shown). (J) IL-6 mRNA transcription in moDCs with

or without siIL-6RA upon 4 or 8 h LPS incubation by qPCR.
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and 4B), as reported previously (Meley et al., 2017), we could

not detect significant breakdown of exogenous IL-6 by the den-

dritic cells by quantitative ELISA (Supplementary Figure S5A–C).
Although this apparent absence of IL-6 degradation might be

caused by a too low sensitivity of the used assay, it at least

shows that under our experimental conditions cellular breakdown

did not have a measurable impact on extracellular IL-6 concentra-

tions. IL-6 uptake by dendritic cells is important for signaling,

because IL-6-dependent activation of pY-STAT3 could be almost

completely blocked with the dynamin inhibitor hydroxy-dynasore

(Figure 4C and Supplementary Figure S5D). Hydroxy-dynasore

treatment increased IL-6RA localization at the plasma membrane

by ∼50% (Figure 4D), indicating that IL-6RA cycles via the plasma

membrane to intracellular compartments. These findings support

the signaling of IL-6 from intracellular compartments in dendritic

cells, in a similar way as in hepatocytes, where IL-6 and IL-6RA

are endocytosed in a dynamin-dependent manner and inhibition

of dynamin results in impaired pY-STAT3 activation (Dittrich

et al., 1994; Thiel et al., 1998; Shah et al., 2006; Xu et al., 2007;

Schmidt-Arras et al., 2014).

The endosomal signaling of IL-6RA was further supported by

live cell fluorescence microscopy experiments of dendritic cells

expressing STAT3 fused to GFP (STAT3-GFP) which is retained at

the nucleus upon activation (Shah et al., 2006; Ng et al., 2014).

STAT3-GFP was co-expressed with a mCherry-tagged variant of

the endocytic cargo adaptor Epsin 2 (Epsin2-mCherry) (Taylor

et al., 2011). Overexpression of Epsin 2 acts as a dominant nega-

tive and blocks clathrin-mediated endocytosis by misguiding epi-

dermal growth factor receptor substrate 15 and adapter protein

2 to overexpression foci (Rosenthal et al., 1999). Supporting a

role for endocytosis in IL-6 signaling, the IL-6-induced transloca-

tion of STAT3-GFP to the nucleus was ∼2-fold reduced in

Figure 3 IL-6RA localizes at the plasma membrane, Golgi, and endosomes in dendritic cells. (A) Flow cytometry of moDCs immunostained

for IL-6RA with (total) or without (surface) permeabilization. Geometric mean fluorescence intensities (gMFI) for individual donors are shown

(isotype subtracted). (B) Transmission electron microscopy image of endocytosed antibody against IL-6RA labeled with Protein A-gold nano-

particles. Pink arrowheads indicate gold nanoparticles. Scale bar, 200 nm. (C and D) Confocal images (C) and quantification by Pearson cor-

relation coefficients (D) of moDCs expressing IL-6RA fused to mCherry (magenta in merge; IL-6RA-mCherry) and immunolabeled for VAMP8,

VAMP3, EEA1, LAMP1, TfR, or TGN38 (green). DAPI is in blue in merge. Graphs: fluorescence cross-sections as indicated. Yellow regions:

overlap of IL-6RA-mCherry with organellar markers. Representative cells from multiple donors are shown (>7 cells/donor). Scale bar, 20 μm.
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dendritic cells expressing Epsin 2-mCherry compared to the con-

trol of mCherry alone (Figure 4E–G; Supplementary Movies S1

and S2). In some cells, we observed punctuated signals of

STAT3-GFP in the cytosolic region (i.e. control condition of

mCherry in Figure 4E), which might be caused by local STAT3

activation at endosomes, as reported in Hep3B cells (Xu et al.,

2007). These results show that IL-6RA signals from intracellular

compartments, and we next addressed whether de novo synthe-

sized IL-6 in transit to the plasma membrane could also signal

from these sites.

Intracellular signaling of newly synthesized IL-6 prior to

secretion

In macrophages and dendritic cells, newly synthesized IL-6

does not traffic directly from the Golgi apparatus to the plasma

membrane, but is instead routed via recycling endosomes that

partially overlap with TfR and VAMP3 (Manderson et al., 2007;

Verboogen et al., 2018). We performed fluorescence microscopy

experiments to characterize the organelles of IL-6 trafficking.

However, we only observed a very low signal of IL-6 in LPS-

stimulated moDCs by immunofluorescence microscopy and flow

Figure 4 Endocytosis of IL-6 is required for paracrine STAT3 signaling. (A) MoDCs incubated with increasing concentrations of IL-6 for

20 min and immunostained for intracellular IL-6 (green) were imaged by confocal microscopy. DAPI is in blue. Yellow arrowheads indicate

IL-6-positive cells. Graph: quantification of IL-6 signals (mean ± SEM from three donors). Scale bar, 10 μm. (B) Quantification of IL-6RA

upon incubation with IL-6 for the indicated times by western blot (see also Figure 2G). Data were normalized to the highest IL-6RA band

intensity per donor. α-tubulin is loading control. (C) STAT3 tyrosine 705 phosphorylation (pY-STAT3) of moDCs incubated with or without

hydroxy-dynasore and/or 15 ng/ml IL-6. Graph: quantification for three different donors (mean ± SEM). Data were normalized to the highest

pY-STAT3/STAT3 ratio per donor. (D) Flow cytometry of moDCs incubated with or without hydroxy-dynasore and immunostained for surface

IL-6RA. gMFI of different donors are shown (isotype subtracted). (E) Fluorescence microscopy images of moDCs transfected with STAT3-GFP

(green in merge) and only mCherry or Epsin2-mCherry (magenta in merge) and stimulated with IL-6 for 20 min. Scale bar, 20 μm (see also

Supplementary Movies S1 and S2). (F) Quantification of STAT3-GFP retention at the nucleus following IL-6 stimulation in E (mean ± SEM for

80 cells from four donors). (G) Quantification of STAT3-GFP retention at the nucleus at 20 min after IL-6 stimulation for only mCherry (cntrl)

or Epsin2-mCherry (from F; individual donor averages shown for 20–23 cells/donor).
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cytometry, and this signal was only observable at 4 h after LPS

stimulation (Supplementary Figure S6A–C). As a positive control,

inhibition of ER-Golgi trafficking with Brefeldin A (Bueno et al.,

2001; Manderson et al., 2007) resulted in accumulation of IL-6

within the cells (Supplementary Figure S6A–C). SiRNA silencing

of IL-6RA in moDCs, which blocks pY-STAT3 activation and

results in higher IL-6 production (Figure 2F–J; Supplementary

Figure S6E), also increased the intracellular accumulation of

endogenous IL-6 compared to siCntrl by immunofluorescence

microscopy and flow cytometry (Figure 5A and B). These results

indicate that newly synthesized IL-6 does not accumulate within

the majority of moDCs but is mostly secreted from these cells, as

we reported previously (Verboogen et al., 2018) and has also

been described for peripheral blood mononuclear cells (Schindler

et al., 1990). In order to resolve the organelles involved in IL-6

trafficking, we increased the intracellular presence of IL-6 by

overexpression of a construct coding for human IL-6 fused to GFP

(IL-6-GFP). This strategy of overexpression of GFP-tagged IL-6 has

been used previously to visualize intracellular trafficking of IL-6

(Manderson et al., 2007; Verboogen et al., 2018). We stimulated

IL-6-GFP-transfected moDCs for 4 h with LPS and subsequently

determined the subcellular localization of IL-6-GFP by immuno-

fluorescence labeling with the same panel of organellar markers

as we used previously for IL-6-RA (Figure 3C). Partial overlap of

the IL-6-GFP signal was observed with the Golgi marker TGN38,

the early/recycling endosomal markers EEA1 and VAMP3, the

Figure 5 IL-6 is secreted via the Golgi apparatus and endosomes in dendritic cells. (A) Confocal micrographs of moDCs with siIL-6RA or con-

trol siRNA (siCntrl) and immunostained for IL-6 (green in merge). DAPI is in blue in merge. Yellow arrowheads indicate IL-6-positive cells.

Graph: quantification of IL-6 fluorescence for individual donors. Scale bar, 50 μm. (B) Flow cytometry analysis of intracellular IL-6 accumula-

tion in moDCs after siCntrl or siIL-6RA incubated with LPS for the indicated times (four individual donors; mean ± SEM; normalized to

Brefeldin A-treated samples, see Supplementary Figure S6D). (C and D) Confocal images (C) and quantification by Pearson correlation coeffi-

cients (D) of moDCs expressing IL-6 fused to GFP (green in merge; IL-6-GFP) and immunolabeled for VAMP8, VAMP3, EEA1, LAMP1, TfR, or

TGN38 (magenta). DAPI is in blue in merge. Graphs: fluorescence cross-sections as indicated. Yellow regions: overlap of IL-6-GFP and orga-

nellar markers. Representative cells from multiple donors are shown (>7 cells/donor). Scale bar, 20 μm.
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late endosomal/lysosomal markers VAMP8 and LAMP1, and the

TfR (Figure 5C and D). These results confirm that IL-6-GFP is

secreted via the Golgi network and early/recycling endosomes,

as previously reported for macrophages and dendritic cells

(Manderson et al., 2007; Verboogen et al., 2018).

We then determined whether IL-6 would traffic via the same

intracellular compartments as IL-6RA. Clear overlap of the IL-6-

GFP and IL-6RA-mCherry signals was observed in moDCs co-

transfected with both proteins, both in the absence and presence

of LPS (Figure 6A), and as reported previously for BMDCs (Heink

et al., 2017). Live cell time-lapse total-internal reflection fluores-

cence (TIRF) microscopy experiments confirmed that IL-6-GFP and

IL-6RA-mCherry co-migrated to the plasma membrane (Figure 6B

and Supplementary Movie S3). These experiments suggest that

newly synthesized IL-6 in transit to the plasma membrane could

encounter IL-6RA in intracellular compartments, which would

enable auto-activation of STAT3. We performed flow chamber

experiments to determine whether newly synthesized IL-6, and

possibly other STAT3 activating factors such as IL-10 (Melillo

et al., 2010), in transit to the plasma membrane would suffice for

activation of STAT3. We kept moDCs under a constant flow,

thereby continuously refreshing the LPS-supplemented medium

and flushing away all secreted cytokines (Figure 6C). Under our

experimental conditions, the concentration of IL-6 in the flow

chamber remained well below 0.05 ng/ml which is far too low for

STAT3 activation in the absence of LPS (Figures 1B, C and 6C).

Nevertheless, LPS-induced pY-STAT3 activation could be detected

under flow (Figure 6D), supporting the existence of self-signaling

of newly synthesized IL-6 (and other factors) from intracellular

compartments within the cells. To confirm this self-signaling of

Figure 6 Signaling of newly synthesized IL-6 in transit to the plasma membrane. (A) Confocal images of moDCs co-expressing IL-6 fused to

GFP (green in merge; IL-6-GFP) and IL-6RA fused to mCherry (magenta; IL-6RA-mCh) stimulated without or with LPS for 4 h. DAPI is in blue

in merge. Graphs: fluorescence cross-sections as indicated. Yellow regions: overlap of IL-6-GFP and IL-6RA-mCherry. Bar graph: quantifica-

tion of overlap by Pearson correlation coefficient (four donors; >7 cells/donor). Scale bar, 20 μm. (B) Stills from time-lapse TIRF microscopy

of moDC overexpressing IL-6-GFP (green in merge) and IL-6RA-mCherry (magenta). Details of two exocytosis events indicated by the yellow

arrowheads are shown. Graphs: quantification of the signals over time. Scale bar, 10 μm. Yellow regions: occurrence of exocytosis events

(see also Supplementary Movie S3). (C) Scheme of the experimental setup for STAT3 activation under constant medium flow with or without

LPS for 4 h. The graph shows the IL-6 concentrations in the supernatant from moDCs cultured in the presence or absence of LPS and with or

without flow by ELISA. (D) Quantification of pY-STAT3 activation from moDCs in C for individual donors (mean ± SEM). Data were normalized

to the highest pY-STAT3/STAT3 ratio per donor. (E) Quantification of VAMP3 after siRNA gene silencing (siV3) or non-targeting siRNA control

(siCntrl) with or without 4 h LPS stimulation (mean ± SEM from 3 donors). GAPDH: loading control. (F) Quantification by western blot of

pY-STAT3 activation after siV3 incubated with or without LPS for 4 h (mean ± SEM from 3 donors). (G) Quantification of pY-STAT3 activation

upon incubation with 1 μg/ml LPS for 4 h or 15 ng/ml IL-6 for 20 min, in the absence or presence of an IL-6-neutralizing antibody (anti-IL-6)

or IgG control (IgG-cntrl) (mean ± SEM from three donors). Representative western blots are shown.
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newly synthesized IL-6, we performed siRNA knockdown of the

SNARE protein VAMP3. VAMP3 mediates secretion of IL-6 and its

knockdown results in impaired IL-6 secretion (Manderson et al.,

2007; Boddul et al., 2014; Verboogen et al., 2017). VAMP3

knockdown also results in increased LPS-induced pY-STAT3 levels

(Figure 6E and F), in line with intracellular self-signaling of newly

synthesized IL-6. Finally, we performed experiments with an IL-6

neutralizing antibody that blocks IL-6 binding to the receptor

(Figure 6G). Whereas this antibody could completely block

pY-STAT3 activation triggered by extracellular IL-6, LPS-induced

pY-STAT3 phosphorylation was not affected compared to condi-

tions without antibody or isotype control (Figure 6G). Together,

these findings support a model where newly synthesized IL-6

activates pY-STAT3 in transit to the plasma membrane from intra-

cellular compartments.

Discussion

Endosomal signaling is emerging as an important principle for

many different receptors, including receptor tyrosine kinases,

insulin G protein-coupled receptors, and TLRs (Murphy et al.,

2009; Platta and Stenmark, 2011). In this study, we show that

although IL-6RA appears at the plasma membrane, IL-6-mediated

tyrosine phosphorylation of STAT3 mainly occurs from intracellu-

lar compartments. This is in line with the finding that IL-6 and

IL-6RA co-localize in intracellular compartments of BMDCs (Heink

et al., 2017). In the hepatocyte cell lines HepG2 and HepB3,

endosomal signaling of IL-6 (Shah et al., 2006; Xu et al., 2007;

German et al., 2011; Schmidt-Arras et al., 2014) is proposed to

promote STAT3-induced transcription by reducing the distance

that STAT3 has to travel to the nucleus (German et al., 2011). A

second potential role of endosomal signaling is that it might

increase control over signaling, as receptors can be readily sorted

to the lysosome for degradation or back to the plasma membrane

for re-sensitization for the corresponding stimulus (Platta and

Stenmark, 2011). In hepatocytes, IL-6 bound to IL-6RA and gp130

is internalized via the constitutive internalization of gp130

(Dittrich et al., 1994; Thiel et al., 1998) and the IL-6 receptor com-

plex is subsequently degraded leading to a downregulation of

the IL-6 receptor (Zohlnhöfer et al., 1992; Wang and Fuller, 1994;

Heinrich et al., 1998; Blanchard et al., 2001). Also in dendritic

cells, our data show that cellular levels of IL-6RA are reduced

upon IL-6 stimulation, in line with previous findings (Meley et al.,

2017), although we did not find evidence that breakdown of IL-6

itself resulted in a measurable reduction of extracellular IL-6

levels at our experimental conditions. Less efficient IL-6 degrad-

ation in dendritic cells compared with hepatocytes might well be

physiological, since dendritic cells are major producers of IL-6

(Daudelin et al., 2013; Heink et al., 2017; Verboogen et al.,

2017), whereas the liver is the major organ for removing IL-6

from circulation (Castell et al., 1990; Sonne et al., 1990).

A third potential role of intracellular interactions between IL-6

and IL-6RA is that it might facilitate organellar trafficking of IL-6.

Our data indicate that these interactions already might occur

within the Golgi and recycling endosomes. In macrophages,

immuno-gold labeled IL-6 appeared consistently in close proximity

to the luminal face of the membrane of recycling endosomes

(Manderson et al., 2007), suggesting membrane association pos-

sibly by interactions with IL-6RA. IL-6RA thereby might act as an

adapter molecule ensuring proper sorting of IL-6 to the correct

target organelles. Such a mechanism would be reminiscent of

the trafficking of newly formed IL-4 by the IL-4 receptor in eosi-

nophils (Spencer et al., 2006). The trafficking of IL-6 by IL-6RA

could explain how IL-6 can traverse through sub-compartments

of recycling endosomes (Murray and Stow, 2014). This compart-

mentalization of recycling endosomes is the key to their sorting

function, as it allows to direct cargo molecules in different direc-

tions, e.g. to the plasma membrane, to the Golgi apparatus, or

to late endosomes/lysosomes (Wall et al., 2015). The trafficking

of IL-6 by IL-6RA could also explain how IL-6 can be readily

secreted after synthesis, with secretory vesicles containing only

a limited number of IL-6 molecules and the majority of IL-6 pro-

ducing cells showing no detectable intracellular pool of IL-6

(Verboogen et al., 2018).

A fourth potential role of co-trafficking of a complex of IL-6

with IL-6RA to the plasma membrane is that it may facilitate

trans-signaling. Trans-signaling is the process by which a com-

plex of (soluble) IL-6RA with IL-6 enables signaling of cells that

do not express IL-6RA (but only gp130) (Taga et al., 1989) and

largely underlies the proinflammatory role of IL-6 (Hunter and

Jones, 2015; Schaper and Rose-John, 2015). Trans-presentation

of IL-6 with IL-6RA on the surface of dendritic cells is respon-

sible for the differentiation of pathogenic Th17 cells (Heink

et al., 2017). Soluble gp130 counteracts this trans-signaling, as

it sequesters the IL-6/IL-6RA complex and prevents it binding to

full-length gp130 (Hunter and Jones, 2015; Schaper and Rose-

John, 2015). IL-6RA in complex with IL-6 can also be cleaved

from the membrane (Müllberg et al., 1993, 1994) by the metal-

loproteases ADAM10 and ADAM17 (Matthews et al., 2003; Yan

et al., 2016; Zunke and Rose-John, 2017). As the Koff rate of IL-6

for IL-6RA is relatively low (Weiergräber et al., 1995), IL-6 will

remain bound to IL-6RA for seconds to minutes after cleavage

and this signaling complex could effectively potentiate cells in

the vicinity. Such a release mechanism would be comparable

with the signaling demonstrated for tumor necrosis factor α
(TNFα), IL-15, and IL-11 (Schmid et al., 1995; Bulfone-Paus

et al., 2006; Mortier et al., 2008; Lokau et al., 2016). For TNFα,
ADAM17 cleaves its precursor at the plasma membrane result-

ing in release of TNFα (Black et al., 1997; Murray and Stow,

2014). The IL-11 receptor (IL-11R) is cleaved by ADAM10, mak-

ing all gp130-positive cells sensitive to IL-11 induced STAT sig-

naling, similar to soluble IL-6RA together with IL-6 (Taga et al.,

1989; Lokau et al., 2016). IL-15 is cleaved at the plasma mem-

brane together with IL-15 receptor subunit alpha (IL-15RA)

(Bergamaschi et al., 2008; Duitman et al., 2008, 2011).

However, in contrast to IL-6 with IL-6RA, IL-15RA is believed to

remain associated with IL-15 and free IL-15 without IL-15RA

does not, or only little, exist in circulation (Duitman et al., 2008,

2011; Bergamaschi et al., 2012).

Based on our data, we propose a fifth role of the intracellular

signaling of IL-6. Our data show that self-activation of pY-STAT3
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by newly synthesized IL-6 (and probably by other factors such

as IL-10 (Melillo et al., 2010)) in transit to the plasma membrane

results in a transient auto-inhibition of further IL-6 transcription

(Figure 7). This negative feedback inhibition is caused by an

antagonistic cross-talk between the LPS–TLR4–p38MAPK and

IL-6–STAT3 pathways (Bode et al., 2012; Meley et al., 2017) and

results in a short-term limit of IL-6 production by the dendritic

cells. Our data show that during sustained exposure to LPS, this

brake in IL-6 production is effectively shut off via the increased

transcription and higher protein presence of SOCS3, which inhi-

bits pY-STAT3 activity (Croker et al., 2003, 2012; Lang et al.,

2003). This transient auto-inhibition of IL-6 synthesis by IL-6 sig-

naling supports a new cellular mechanism by which the immune

system might limit production of excessive IL-6 during sepsis or

the invasion of microbial pathogens into the bloodstream.

Following sepsis, an excessive systemic proinflammatory

response can lead to tissue damage and organ failure and this

so-called septic shock is a main cause of death in intensive care

units (Schulte et al., 2013). IL-6 is a key mediator of septic

shock as low serum levels of IL-6 are associated with a better

prognosis and IL-6 levels in patients with septic shock are high-

er than in patients without shock (Hack et al., 1989; Damas

et al., 1992; Spittler et al., 2000; Chaudhry et al., 2013). In vivo

studies in IL-6-knockout mice demonstrated that LPS adminis-

tration leads to higher levels of proinflammatory cytokines

such as TNFα (Xing et al., 1998) and they do not develop the

hypothermia characteristic of early sepsis and show less

weight loss compared to wild-type mice (Remick et al., 2005).

Moreover, the absence of the IL-6 gene in mouse models of

acute infection decreases inflammatory responses and protects

from mortality and organ failure (Cuzzocrea et al., 1999). In

humans, IL-6 was identified as a key mediator of myocardial

depression in septic shock, which leads to impaired tissue per-

fusion, multi-organ failure, and death (Pathan et al., 2004).

Thus, excessive IL-6 secretion following acute infection can be

detrimental (Tanaka et al., 2016), and the transient restraining

of IL-6 production by self-signaling of newly produced IL-6

might be beneficial.

Figure 7 Self-signaling of IL-6RA at intracellular compartments limits IL-6 synthesis by dendritic cells. Model scheme depicting the interplay

of synthesis, trafficking, and intracellular signaling of IL-6. LPS binding to TLR4 promotes the transcription of IL-6 and SOCS3. SOCS3 is rap-

idly degraded by the proteasome. Newly synthesized IL-6 in transit to the plasma membrane self-signals from endosomal compartments

prior to secretion. Extracellular IL-6 is taken up by the cell and also signals from endosomal compartments. This leads to an increased

pY-STAT3 activation (phosphorylation of Tyr705), which represses the transcription of IL-6. pY-STAT3 activation, in turn, is inhibited by the

increased level of SOCS3. ER, endoplasmic reticulum.
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Materials and methods

MoDCs were derived from peripheral blood monocytes from

healthy volunteers (informed consent obtained and according to

institutional and national ethics guidelines) by culturing with

IL-4 and GM-CSF. Experimental details for the cell culture, PCR,

transfection, western blot, microscopy, and statistical analysis

are described in the Supplementary material.

Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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