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Abstract: Prediction models are only sparsely available for metastatic oesophagogastric cancer.
Because treatment in this setting is often preference-based, decision-making with the aid of a
prediction model is wanted. The aim of this study is to construct a prediction model, called SOURCE,
for the overall survival in patients with metastatic oesophagogastric cancer. Data from patients with
metastatic oesophageal (n = 8010) or gastric (n = 4763) cancer diagnosed during 2005–2015 were
retrieved from the nationwide Netherlands cancer registry. A multivariate Cox regression model was
created to predict overall survival for various treatments. Predictor selection was performed via the
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Akaike Information Criterion and a Delphi consensus among experts in palliative oesophagogastric
cancer. Validation was performed according to a temporal internal-external scheme. The predictive
quality was assessed with the concordance-index (c-index) and calibration. The model c-indices
showed consistent discriminative ability during validation: 0.71 for oesophageal cancer and 0.68
for gastric cancer. The calibration showed an average slope of 1.0 and intercept of 0.0 for both
tumour locations, indicating a close agreement between predicted and observed survival. With a
fair c-index and good calibration, SOURCE provides a solid foundation for further investigation in
clinical practice to determine its added value in shared decision making.

Keywords: prediction model; oesophageal cancer; gastric cancer; metastasis; Cox regression;
Delphi consensus

1. Introduction

Patients with oesophageal or gastric cancer have a relatively poor prognosis. One of the main
contributors to the low survival rates is the high prevalence of metastases [1]. Metastatic disease
is reported to be present at diagnosis in around 20–30% of oesophageal and in 30–40% of gastric
cancer patients [2,3]. Although treatments with curative intent are often not an option when a patient
presents with metastatic disease, treatments such as systemic therapy may still prolong life and/or
offer symptom relief [4]. Treatment guidelines show, however, that in certain cases best supportive
care should be considered in patients with metastatic oesophagogastric cancer [5,6]. As treatment is
not always associated with improvement of increased health-related quality of life, the best treatment
choice for a particular patient may not be obvious [7].

Informing patients about their treatment options and the associated risks and benefits can therefore
be difficult due to complexity of the patients’ disease and heterogeneity of outcomes [8]. Prediction
models, however, can aid in this process and allow individualized decision making [9]. Over the
years various prediction models have been developed to support this process, by predicting outcomes
such as survival and recurrence in cancer patients. The Adjuvant! Online prediction model, for
example, predicts survival in breast cancer patients on the basis of various demographic and clinical
variables [10]. An important feature is the comparison of various treatments by displaying the added
survival benefit. Recently a review of the prediction models for oesophageal and gastric cancer showing
that nearly all prediction models available for oesophagogastric cancer are aimed at predicting survival
after curative treatment [11]. Only two prediction models are available that are intended for patients
with metastatic disease. The model by Jung et al. predicts overall survival based on a dataset of
239 South Korean patients with oesophageal squamous cell carcinoma. All patients were treated
with either fluorouracil/cisplatin or capecitabine/cisplatin in a first-line setting [12]. The model was
presented as a nomogram and predicts the one-year survival probability. For the model by Shiozaki
et al., 64 patients with metastatic adenocarcinomas were included and all received chemotherapy
followed by chemoradiation [13]. The model, intended for patients with favourable outcomes, was
also presented as a nomogram and predicts the median overall survival time.

Given the restrictive inclusion criteria and small sample sizes, the generalisability of these models
is likely to be limited which possibly hampers implementation in clinical practice. A model is needed
that focuses on patients with metastatic disease and informs on the various treatment options which
the patient is facing.

It is therefore the aim of this study to create and evaluate a prediction model based on a
large nationwide dataset for use in clinical practice, called SOURCE (Stimulating evidence based,
personalized and tailored information provision to improve decision making after Oesophagogastric
Cancer diagnosis). SOURCE is intended to predict overall survival for a variety of treatment options
in a heterogeneous group of patients with metastatic oesophageal or gastric cancer.
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2. Results

An overview of the metastatic oesophageal (n = 8010) and gastric cancer (n = 4763) patients whose
data were used to create the prediction model, is given in Table 1. Additional characteristics of this
cohort are available in Table S2.

Table 1. Overview of patient characteristics stratified per tumour location. NOS: Not otherwise
specified. CI: 95% confidence interval, IQR: Inter-quarter range, SD: Standard deviation. cT stage,
cN stage and differentiation grade defined are according to the TNM staging system, 7th edition. *:
Conditional variable imputation (see Section 4. Materials and Methods), these patients had non-missing
TNM 6th variables which were transformed to the indicated TNM 7th edition stages.

Variable Oesophagus Gastric

N (deaths) 8,010 (7,825) 4,763 (4,673)

Median overall survival in months (IQR) 5.1 (2.2–10.1) 3.9 (1.7–8.4)

Age (mean (sd)) 66.80 (10.91) 68.58 (12.34)

Sex (%)
Male 6,284 (78.5) 2,858 (60.0)
Female 1,726 (21.5) 1,905 (40.0)

cT stage (%)
Missing 1 (0.0) 1 (0.0)
cT1 108 (1.3) 58 (1.2)
cT2 1,388 (17.3) 659 (13.8)*
cT3 1,822 (22.7) 672 (14.1)*
cT4 694 (8.7) 802 (16.8)
cTX 3,997 (49.9) 2,571 (54.0)

cN stage (%)
Missing 1 (0.0) 0 (0.0)
cN0 2,127 (26.6) 2,366 (49.7)
cN1 2,502 (31.2)* 1,012 (21.7)*
cN2 2,391 (29.9)* 1,264 (27.0)*
cN3 989 (12.3)* 121 (2.5)

Primary oespohageal tumour topography (%)
Cervical 44 (0.5)
Upper thoracic 205 (2.6)
Mid-thoracic 713 (8.9)
Lower thoracic 4,461 (55.7)
Overlapping lesion 315 (3.9)
Junction 2,112 (26.4)
NOS 160 (2.0)

Primary gastric tumour topography (%)
Fundus 162 (3.4)
Corpus 954 (20.0)
Antrum Pylori 1,075 (22.6)
Pylorus 239 (5.0)
Lesser curvature NOS 181 (3.8)
Greater curvature NOS 106 (2.2)
Overlapping lesion 1,645 (34.5)
NOS 401 (8.4)

2.1. Selected Predictors

Of the corresponding authors of 41 phase III trials who were invited, eight agreed to participate
in the Delphi consensus and completed both rounds [14]. In round one, fourteen of the 56 predictors
were retained and twenty-five were excluded. Additionally, seventeen predictors were selected by
20–50% of the experts, and eight new predictors were proposed by the experts. These 25 predictors
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were considered during the second consensus round. Finally, three predictors were included during
the second consensus round. The total number of included predictors of the first and second round
therefore is seventeen. The outcomes of the Delphi procedure are displayed in more detail in Table S1
and the final selection of the predictors determined by the consensus are displayed in Table 2 alongside
the selected SOURCE predictors. The Delphi consensus procedure selected ten predictors which were
unavailable in the NCR dataset and could therefore not be included in the list of pre-selected variables.
Seven predictors selected in the Delphi consensus were available in the NCR, all of which were selected
as predictors in the final SOURCE models.

Table 2. List of the prediction model predictors. The variables selected by the experts are shown in
the left column and variables selected for the final prediction models in the middle and right columns.
Predictors indicated in bold were available in the Netherlands Cancer Registry (NCR) dataset and
could be used for the creation of the SOURCE prediction model.

Delphi Consensus SOURCE Oesophagus Model SOURCE Gastric Model

Age X X X

Sex X

cT stage X X

cN stage X X

Topography of primary tumour X X

Histological type X X

Tumour differentiation grade X X

Lymph node metastasis in head/neck area X

Intra-thoracic lymph node metastasis X

Intra-abdominal lymph node metastasis X X

Only distant lymph node metastasis X X

Liver metastases X X

Peritoneal metastases X X

Number of metastatic sites X X

Initial treatment X X X

Peritoneal metastases with ascites X

Performance status X

Histology (lauren) X

Weight loss X

Tumour Microsatellite Instability
(MSI) status X

Region/country X

HER status X

Disease status(unresectable vs recurrent) X

Bilirubin X

2.2. Final Model Parameters

The model parameters of the resulting SOURCE model for overall survival in metastatic
oesophageal cancer and metastatic gastric cancer are presented in Table 3; Table 4, respectively.
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Table 3. Prediction model for overall survival in patients with metastatic oesophageal cancer. Initial
treatment interactions terms are given in italics. NOS: Not otherwise specified. CI: 95% confidence
interval. IT: Initial treatment.

Metastatic Oesophageal Cancer Prediction Model

Covariate Hazard Ratio (CI)

Age 1.001 (0.996–1.005)

cT stage
cT1 1
cT2 1.204 (0.983–1.474)
cT3 1.103 (0.901–1.349)
cT4 1.459 (1.182–1.800)
cTX 1.459 (1.197–1.777)

cN stage
cN0 1
cN1 0.974 (0.918–1.034)
cN2 1.030 (0.969–1.096)
cN3 1.154 (1.061–1.255)

Tumour topography
Cervical 1
Upper thoracic 1.039 (0.744–1.450)
Mid-thoracic 0.989 (0.723–1.351)
Lower thoracic 1.062 (0.779–1.447)
Overlapping lesion 1.226 (0.886–1.697)
Junction 0.999 (0.730–1.367)
NOS 1.181 (0.837–1.665)

Histological type
Adenocarcinoma 1
Squamous cell 1.011 (0.942–1.085)
Other 1.168 (1.005–1.358)

Differentiation grade
G1 1
G2 0.949 (0.825–1.090)
G3 1.124 (0.981–1.288)
G4 1.396 (1.051–1.854)

Lymph node metastasis in head/neck area
No 1
Yes 0.868 (0.790–0.954)

Intra-thoracic lymph node metastasis
No 1
Yes 0.548 (0.430–0.698)

Intra-abdominal lymph node metastasis
No 1
Yes 0.834 (0.742–0.938)

Only distant lymph node metastasis
No 1
Yes 0.788 (0.732–0.849)

Liver metastasis
No 1
Yes 1.222 (1.156–1.292)

Peritoneal metastasis
No 1
Yes 1.274 (1.158–1.401)

Number of metastatic sites 1.347 (1.270–1.429)
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Table 3. Cont.

Metastatic Oesophageal Cancer Prediction Model

Covariate Hazard Ratio (CI)

Initial treatment (IT)
None 1
Chemotherapy 0.237 (0.151–0.372)
Radiotherapy (primary tumour) 0.238 (0.151–0.375)
Radiotherapy (metastasis) 0.386 (0.169–0.884)
Chemoradiation 0.246 (0.042–1.455)
Chemotherapy + short-term radiation 0.280 (0.110–0.715)
Resection (metastasis) 0.029 (0.004–0.227)
Stent 0.881 (0.313–2.478)
Other 0.121 (0.058–0.250)

IT = Chemotherapy
Intra-thoracic lymph node metastasis 1.798 (1.255–2.577)
Intra-abdominal lymph node metastasis 1.091 (0.935–1.275)
Age 1.005 (0.999–1.011)
Number of metastatic sites 0.825 (0.760–0.895)

IT = Radiotherapy (primary tumour)
Intra-thoracic lymph node metastasis 1.481 (1.080–2.031)
Intra-abdominal lymph node metastasis 1.266 (1.086–1.476)
Age 1.009 (1.003–1.015)
Number of metastatic sites 0.910 (0.836–0.990)

IT = Radiotherapy (metastasis)
Intra-thoracic lymph node metastasis 0.972 (0.354–2.668)
Intra-abdominal lymph node metastasis 1.432 (0.963–2.130)
Age 1.009 (0.997–1.020)
Number of metastatic sites 0.901 (0.790–1.028)

IT = Chemoradiation
Intra-thoracic lymph node metastasis 4.522 (0.594–34.393)
Intra-abdominal lymph node metastasis 4.407 (0.588–33.038)
Age 1.005 (0.981–1.031)
Number of metastatic sites 0.746 (0.459–1.212)

IT = Chemotherapy + short-term radiation
Intra-thoracic lymph node metastasis 0.940 (0.495–1.784)
Intra-abdominal lymph node metastasis 0.921 (0.689–1.231)
Age 1.004 (0.991–1.018)
Number of metastatic sites 0.819 (0.706–0.949)

IT = Resection (metastasis)
Intra-thoracic lymph node metastasis 7.155 (0.947–53.490)
Intra-abdominal lymph node metastasis 1.089 (0.385–3.084)
Age 1.038 (1.005–1.071)
Number of metastatic sites 0.810 (0.541–1.213)

IT = Stent
Intra-thoracic lymph node metastasis 2.640 (1.175–5.931)
Intra-abdominal lymph node metastasis 1.027 (0.737–1.430)
Age 1.001 (0.988–1.014)
Number of metastatic sites 1.025 (0.871–1.206)

IT = Other
Intra-thoracic lymph node metastasis 1.195 (0.623–2.291)
Intra-abdominal lymph node metastasis 0.889 (0.685–1.153)
Age 1.019 (1.009–1.029)
Number of metastatic sites 1.229 (1.056–1.431)
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Table 4. Prediction model for overall survival in patients with metastatic gastric cancer. Initial treatment
interactions terms are given in italics. NOS: Not otherwise specified. CI: 95% confidence interval. IT:
Initial treatment.

Metastatic Gastric Cancer Prediction Model

Covariate Hazard Ration (CI)

Age 1.003 (0.999–1.007)
Sex
Male 1
Female 0.953 (0.898–1.012)

cT stage
cT1 1
cT2 0.928 (0.704–1.223)
cT3 0.856 (0.650–1.128)
cT4 0.995 (0.756–1.309)
cTX 1.013 (0.775–1.324)

cN stage
cN0 1
cN1 0.900 (0.834–0.971)
cN2 0.996 (0.927–1.071)
cN3 0.957 (0.793–1.156)

Differentiation grade
G1 1
G2 1.294 (1.049–1.596)
G3 1.524 (1.245–1.865)
G4 1.734 (1.223–2.459)

Intra-thoracic lymph node metastasis
No 1
Yes 0.739 (0.628–0.870)

Intra-abdominal lymph node metastasis
No 1
Yes 0.902 (0.811–1.003)

Only distant lymph node metastasis
No 1
Yes 0.771 (0.694–0.856)

Number of metastatic sites 1.335 (1.247–1.430)

Initial treatment (IT)
None 1
Chemotherapy 0.436 (0.287–0.664)
Radiotherapy (primary tumour) 1.428 (0.363–5.619)
Radiotherapy (metastasis) 8.419 (1.754–40.411)
Chemotherapy + short-term radiation 1.268 (0.138–11.611)
Resection (primary tumour) 0.427 (0.169–1.080)
Resection (metastasis) 0.092 (0.027–0.313)
Stent 1.441 (0.132–15.795)
Other 0.422 (0.143–1.250)
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Table 4. Cont.

Metastatic Gastric Cancer Prediction Model

Covariate Hazard Ration (CI)

IT = Chemotherapy
Age 1.000 (0.994–1.006)
Number of metastatic sites 0.864 (0.786–0.949)

IT = Radiotherapy (primary tumour)
Age 0.990 (0.974–1.007)
Number of metastatic sites 0.918 (0.681–1.239)

IT = Radiotherapy (metastasis)
Age 0.976 (0.958–0.995)
Number of metastatic sites 0.706 (0.516–0.965)

IT = Chemotherapy + short-term radiation
Age 0.990 (0.962–1.020)
Number of metastatic sites 0.717 (0.507–1.015)

IT = Resection (primary)
Age 0.999 (0.987–1.011)
Number of metastatic sites 0.955 (0.717–1.271)

IT = Resection (metastasis)
Age 1.025 (1.009–1.042)
Number of metastatic sites 0.879 (0.668–1.156)

IT = Stent
Age 0.997 (0.968–1.027)
Number of metastatic sites 0.957 (0.656–1.396)

IT = Other
Age 1.012 (0.998–1.027)
Number of metastatic sites 0.803 (0.625–1.032)

The performance measures for both the complete SOURCE model and the internal-external
validation are shown in Table 5. The results show that the prediction model has a slightly better
performance in oesophageal cancer than in gastric cancer. The calibration slopes and intercepts lie
close to the optimal values of 1 and 0, respectively. While the performance measures are marginally
lower during validation than in the complete model, the correspondence between both settings remain
high. The calibration plots of the temporal validation cross-validations are shown in Figure 1. The
meta-analyses of the model performance statistics are shown in Figure 2 for oesophageal cancer and in
Figure 3 for gastric cancer. These figures show the performance statistics for each validation cohort.

Table 5. Performance measures for the SOURCE in oesophagus and gastric cancer. The discrimination
index and calibration statistics are shown side-by-side for both the complete SOURCE model as well as
for the internal-external temporal validation. The 95% confidence interval is stated in parentheses for
each outcome.

Oesophageal Cancer Gastric Cancer

Complete Model Internal-External
Validation

Complete Model Internal-External
Validation

c-index 0.713 (0.705–0.720) 0.706 (0.698–0.714) 0.686 (0.677–0.696) 0.676 (0.665–0.686)

calibration slope 1.006 (1.005–1.007) 1.017 (0.962–1.071) 0.987 (0.985–0.989) 1.009 (0.891–1.127)

calibration intercept −0.002 (−0.003–0.002) −0.020 (−0.053–0.013) −0.006 (−0.006—0.005) −0.011 (−0.058–0.036)

calibration deviance 0.002 (0.002–0.002) 0.021 (0.011–0.035) 0.011 (0.011–0.011) 0.031 (0.021–0.042)
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3. Discussion

The SOURCE model presented in this paper is the first prediction model for survival outcome
of metastatic oesophageal and gastric cancer patients that was created with a large (n = 12,773)
nation-wide cohort, and includes treatment as a separate predictor. This allows for a flexible model
enabling the provision of prognoses for various treatments and tumour locations within the upper
gastrointestinal tract. Importantly, the predictors included in the SOURCE model are available in
standard clinical care and do not require additional tests that may be cost prohibitive. The strengths of
SOURCE lie in its clinical applicability, providing a model for all metastatic oesophagogastric cancer
patients and including various treatment options.

In creating SOURCE, various steps were undertaken to increase the quality of the model, its
reproducibility and its robustness. First, the predictors were selected both by the bidirectional Akaike’s
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Information Criterion (AIC) procedure and a Delphi consensus procedure, thereby combining “the
best of both worlds” including data-driven analysis and expert clinician-guided selection. Although
not all proposed predictors were available in the current dataset, future models can be built using
this selection. Secondly, a temporal internal-external cross-validation method was employed based
on the year of diagnosis [15]. With this approach, advances in patient care and treatment are taken
into account. In addition, this approach is comparable to a true external temporal validation where
an existing prediction model is validated on new patients. Lastly, instead of a complete case analysis,
which excludes patients with missing data and thereby could increase bias, we employed the robust
multiple imputation method for handling missing data [16]. This not only has the advantage of dealing
with uncertainty of the imputations, but can also be used for the transformation of specific variables,
such as TNM staging, thus enabling a richer dataset on which the prediction model was based. With
these methods, it is possible to obtain a more precise estimate of the model parameters while keeping
the amount of over-fit small.

Indeed, the SOURCE model showed a fairly discriminative ability, with a c-index of approximately
0.71 for oesophageal cancer and 0.68 for gastric cancer. Although certain other models were able to
discriminate better between patients, it must be noted that our dataset was relatively homogenous,
including patients with metastatic oesophagogastric cancer only [17,18]. Differentiating between
survival outcomes of a rather homogeneous group of patients is more complex than differentiating
between survival outcomes of patients with cancers from various primary origins and known large
differences in survival. The model further shows an overall good average accordance between
predicted and observed survival. These results remain consistent between the full model and the
internal-external temporal cross-validation, thus indicating a lack of over-fit. Additional external
validation with cohorts from other countries and more recent years is needed to further examine the
robustness of the model.

Some limitations of this study have to be acknowledged. First of all, ten predictors selected in
the Delphi consensus were not represented in the dataset (see Table 2) and could therefore not be
included in the final prediction model. Inclusion of at least some of these predictors, would likely
have improved the model’s performance. One of the most important predictors of overall survival,
performance status, was reported limitedly in the NCR only for the year 2015 and could therefore not
be included in the analysis [19]. Further, the initial treatment variable lacks detail. Ideally, several
therapies would be subdivided (such as various chemotherapy regimens) to enable a better fit of the
model parameters. However, performance status and more detailed treatment information will be
available more abundantly in future years and could become predictors in the prediction model. This
stresses the need for intermittent updating of predictions models when new data becomes available to
increase the model’s performance and keep up with the development of new treatment options over
time. It can also be noted that the models display in some cases hazard ratio’s below 1 for cT and cN
stages, implying an unexpected slight decrease of hazard compared to the cT1 and cN1 stages. We
hypothesise that this may be caused by aggressive tumour behaviour resulting in a shorter overall
survival in patients who developed metastases despite a low cT or cN stage. Lastly, SOURCE predicts
overall survival at diagnosis. However, due to the nature of the registration process the dataset also
erroneously included patients initially diagnosed as cM0 but whose staging was updated within six
weeks to cM1 due to disease progression or the discovery of metastases during additional diagnostic
testing. Consequently, patients who started treatment with curative intent, such as resections, may
be overrepresented. Unfortunately, these patients could not be identified and excluded. Based on a
detailed analysis of a subset of patients, we estimate this percentage to be small (~6%).

Use of the SOURCE model could be valuable and helpful in clinical practice and stimulate shared
decision making. In shared decision making, well balanced provision of information is key [20].
The possibility to compare different treatment options, e.g., chemotherapy and best supportive care
could stimulate shared decision making. Figure 4 shows how the SOURCE model can be applied to
individual patients in practice, based on specific patient characteristics. The figure shows the model
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predictions as well as the uncertainty at patient level. In practice, it is possible to calculate multiple
survival probabilities for a single patient by selecting various initial treatments. However, one must
take care in selecting the therapies as not all treatment may be relevant for the patient. Additionally,
the survival predictions may have an inherent selection bias that needs to be considered. Patients in
the NCR dataset that received no treatment probably had a worse performance status than patients
that did receive treatment. This may result in an underestimation for the prediction of survival for best
supportive care. Although this effect is partly corrected by other predictors in the model, there may
still be bias in the model predictions.Cancers 2019, 11, x  12 of 18 
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Figure 4. Predicted median survival times for metastatic oesophageal cancer. The figure demonstrates
the practical applicability of the SOURCE model in individual patients. The diagram is based on a
random sample of 20 patients in the dataset. The SOURCE model predicts median survival time with
accompanying 50% confidence interval (bars) and 80% confidence intervals (lines). The dashed line
indicates the observed median survival and confidence interval of all patients in the dataset. On the
right, the patient characteristics are shown on which the predictions were based.

Thus, these statistics and other model outcomes could be used to inform patients and aid the
decision process by showing the relative change in survival for individual patients between treatments.
To allow for implementation in clinical practice, however, a visual format is needed. For this purpose,
we have created an interactive web-interface for SOURCE [21]. Although a nomogram is commonly
used to this end, this presentation format is unsuitable for SOURCE as it contains interaction variables.
The web-interface also contains functionality to highlight viable treatment options on the basis of
patient characteristics. This will aid the selection of relevant treatments for patients in SOURCE. After
extensive testing in clinical practice, this SOURCE web-interface will be made freely available for the
oncological community.

4. Materials and Methods

This report was written in accordance to the TRIPOD (Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis) guidelines [22]. Data of the prospectively
maintained population-based Netherlands Cancer Registry (NCR) was used in the development and
validation of the prediction model. The records of all 14,422 metastatic oesophageal and gastric cancer
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patients diagnosed between January 2005 and December 2015 were retrieved from the NCR. Patients
with unknown follow-up (n = 4), patients who had T0 tumours (n = 5) and patients with cancer types
other than carcinomas (n = 227) were excluded from further analysis. Additionally, patients who died
within fourteen days after diagnosis (n = 697) were also excluded, because patients in such poor health
would not likely use a prediction model. Patients with multiple primary tumours (n = 9) retained
their initial tumour in the dataset, and subsequent tumours were excluded. Finally, patients whose
only distant metastases were located in lymph nodes in the head or neck region, were excluded from
further analyses (n = 707). These patients could be treated with a curative intent and therefore fall
outside the scope of the prediction model. This left a total of 8010 oesophageal cancer patients and
4763 gastric cancer patients for inclusion in the dataset.

The outcome of the SOURCE prediction model is overall survival as it gives the most complete
survival information for patients. It was measured from the date of diagnosis to the date of death, or
the date of last follow up when the patient was censored.

The development of the SOURCE model consisted of three high-level steps which are explained
below. First, multiple prediction models were built using Cox regression models. The models were
validated in patients diagnosed in a single year and were constructed based on records from previous
years. For example, records from patients diagnosed in 2012 were used to validate a prediction model
based on records from patients diagnosed up to 2012 (i.e., 2005 through 2011). This was repeated for
each validation cohort and therefore a total of ten prediction models were constructed. Second, the
validation results for these ten models were meta-analysed to investigate the model overfit. Third, the
final SOURCE prediction model was created based on the complete dataset.

4.1. Predictor Selection and Delphi Consensus

A set of possible predictors in the NCR dataset was established. Variables with more than 50%
missing values, variables with the same value for all patients (which are therefore non-informative)
and nominal variables with less than 50 cases for each category were discarded from the NCR dataset.
All other variables remained as possible model predictors.

A modified two-round Delphi consensus, similar to the COMM-PACT study in metastatic
pancreatic cancer, was performed to extend this set with possibly important predictors that were
missed [23]. A systematic review on prognostic factors in advanced oesophagogastric cancer served
as a basis for the Delphi consensus procedure [14]. All corresponding authors of 41 phase III trials
included in the systematic review were invited to participate in this study. During the first round, the
experts received a list of 56 possible predictors of overall survival in metastatic oesophagogastric cancer,
obtained from the systematic review [14]. For each predictor the number of studies investigating its
effect and the estimated effect sizes were given. The experts were free to select as many predictors of
overall survival as they deemed necessary, stratified by tumour location and treatment if needed, and
were given the opportunity to include additional predictors.

After the first Delphi round, all predictors that were selected by at least 50% of the experts
were included in the consensus list. Predictors selected by 20% to 50% of the experts and additional
predictors that were suggested by the experts, were presented during the second consensus round
alongside the results of the first round. Again, predictors selected by at least 50% of the experts in the
second round were included in the final consensus list. Subsequently, all selected predictors on the
consensus list were added to the set of possible predictors if available in the NCR dataset or if the
predictors could be derived from other variables.

The set of possible NCR variables and predictors selected by the experts in the Delphi consensus
formed the initial set of predictors. During the model specifications, predictors were selected from this
joint set.
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4.2. Development and Validation of the Prediction Model

For the development of the prediction model, a Cox proportional hazard model with overall
survival as the main outcome was developed using the regression modelling strategy (RMS) package
in the R-studio environment with R version 3.3.4 [24–26]. An overview of the model development
process is shown in Figure 5.Cancers 2019, 11, x  14 of 18 
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Figure 5. Example model creation and validation. The figure shows the construction and validation
of a prediction model. This method was used during temporal cross-validation and construction of
the final model. The image illustrates in this particular case the model construction based on the
2005–2011 patient cohort (shown in blue) and validated in the 2012 patient cohort (shown in green).
An initial predictor set is created with variables from the NCR and extended with predictors from
the Delphi consensus. We used multiple imputation for the handling of missing data after which
predictors were selected by the bidirectional Akaike’s Information Criterion (AIC) procedure. Since the
predictors selected by the AIC procedure may differ in each imputation, the model predictors were
pooled by selecting the predictors occurring in the majority of imputations (in at least three out of five
imputations). For each imputation, a model was created and validated on the 2012 patient cohort. The
model parameters were pooled to establish the model for this cohort, and likewise the performance
measures were pooled. This procedure was employed for all internal-external temporal validations;
the model was validated on a patient cohort diagnosed in a single year and constructed on a patient
cohort of all patients diagnosed in earlier years. For the final SOURCE model, the complete cohort is
used for construction and validation of the model.

To increase model generalisability and robustness, an internal-external temporal cross-validation
was employed [15]. With this scheme, the data were split into so-called folds according to the patient
diagnosis year. For each fold, the model was evaluated on a patient cohort diagnosed in a single year
and the model was constructed on the data of all patients from earlier diagnosis years, thus mimicking
a true temporal external validation. Within each fold, multiple imputation (m = 5) by chained equations
was used to handle missing data [27]. Conditional multiple imputation was employed to transform
TNM-variables from the sixth edition used for patients diagnosed prior to 2010, to the seventh edition
used for patients diagnosed as of 2010 [28,29]. Specifically, these transformations were as follows:
For oesophageal cancer, cN1 was transformed into cN1/cN2/cN3 and cM1A was transformed to
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cN1/cN2/cN3 and cM0. For gastric cancer, cN1 was transformed to cN2/cN3 and cT2 into cT2/cT3.
With these transformations, the meaning of the cTNM variables remained consistent across the entire
dataset, while the uncertainty of the transformations was taken into account by multiple imputation.

For each fold, bidirectional selection was performed using the AIC procedure to select from the
initial predictor set including the predictors suggested during Delphi procedure [30]. Interactions
between the predictor set and ‘initial treatment’ were subsequently added if the AIC statistic improved.
Due to the stochastic nature of multiple imputations, the predictor selections could differ in each of the
five multiple imputation rounds. Predictor pooling therefore took place by including predictors only if
they were selected in at least three out of five multiple imputation rounds.

The Cox regression models were subsequently constructed for each imputation using the selected
predictors. The concordance-index (c-index), calibration slope, intercept and deviance measured
the model’s performance and were obtained for both the development and validation cohorts. The
c-index is a measure of discrimination and ranges from 0.5 (no discrimination at all) to 1 (perfect
discrimination) [31]. Calibration measures the goodness-of-fit and is described by the agreement
between predicted and observed outcomes at the median overall survival time (5.1 months for
oesophageal cancer and 3.9 months for gastric cancer) [32]. A linear model is used to describe
this congruence and has an intercept of 0 and slope of 1 when the predictions are perfect [32]. The
calibration deviance is determined by the average absolute deviance between the predicted and
observed survival [33].

Finally, the performance results were pooled across all five imputations for each fold. The Cox
regression models were combined into a single prediction model with pooled parameter values. The
performance measures were subsequently meta-analysed with a random-effects model across all folds
to obtain the internal-external validation scores. The performance measures were calculated on data in
the validation cohort as well as the full model, thus an estimation of the model overfit can be made.

The construction of the full SOURCE prediction model followed identical steps. However, the
complete dataset was used to construct and validate the model and the data were therefore not split
into folds.

4.3. Research Ethics

According to the Central Committee on Research involving Human Subjects, this type of study
does not require approval from an ethics committee in the Netherlands. However, the study was
approved by the Privacy Review Board of the Netherlands Cancer Registry (project code K17134).

5. Conclusions

In conclusion, the SOURCE prediction model for overall survival in metastatic oesophageal and
gastric cancer was created based on a large nationwide cohort. SOURCE has both a fair discrimination
and indicates a good accordance between predicted and observed survival. SOURCE can be used
in clinical practice to give patients a personalized insight into their prognosis and thereby stimulate
shared decision making.
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