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Predicting life expectancy with a long
short-term memory recurrent neural
network using electronic medical records
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Abstract

Background: Life expectancy is one of the most important factors in end-of-life decision making. Good
prognostication for example helps to determine the course of treatment and helps to anticipate the procurement
of health care services and facilities, or more broadly: facilitates Advance Care Planning. Advance Care Planning
improves the quality of the final phase of life by stimulating doctors to explore the preferences for end-of-life care
with their patients, and people close to the patients. Physicians, however, tend to overestimate life expectancy, and
miss the window of opportunity to initiate Advance Care Planning. This research tests the potential of using
machine learning and natural language processing techniques for predicting life expectancy from electronic
medical records.

Methods: We approached the task of predicting life expectancy as a supervised machine learning task. We trained
and tested a long short-term memory recurrent neural network on the medical records of deceased patients. We
developed the model with a ten-fold cross-validation procedure, and evaluated its performance on a held-out set
of test data. We compared the performance of a model which does not use text features (baseline model) to the
performance of a model which uses features extracted from the free texts of the medical records (keyword model),
and to doctors’ performance on a similar task as described in scientific literature.

Results: Both doctors and the baseline model were correct in 20% of the cases, taking a margin of 33% around
the actual life expectancy as the target. The keyword model, in comparison, attained an accuracy of 29% with
its prognoses. While doctors overestimated life expectancy in 63% of the incorrect prognoses, which harms
anticipation to appropriate end-of-life care, the keyword model overestimated life expectancy in only 31% of the
incorrect prognoses.

Conclusions: Prognostication of life expectancy is difficult for humans. Our research shows that machine learning
and natural language processing techniques offer a feasible and promising approach to predicting life expectancy.
The research has potential for real-life applications, such as supporting timely recognition of the right moment to
start Advance Care Planning.
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Background
Introduction
Life expectancy plays an important role when decisions
about the final phase of life need to be made. Good
prognostication for example helps to determine the
course of treatment and helps to anticipate the procure-
ment of health care services and facilities, or more
broadly: facilitates Advance Care Planning. Advance
Care Planning (ACP) is the process during which pa-
tients make decisions about the health care they wish to
receive in the future, in case the patient loses the
capacity of making decisions or communicating about
them [1]. Successful ACP enhances the quality of life
and death for palliative patients, by providing timely
palliative care and documenting preferences regarding
resuscitation and euthanasia, among other things [1].
Accurate prognosis of life expectancy is essential for

general practitioners (GPs) to decide when to introduce
the topic of ACP to the patient, and it is a key determin-
ant in end-of-life decisions [2–4]. Increasing the accur-
acy of prognoses has the potential to benefit patients in
various ways by enabling more consistent ACP, earlier
and better anticipation on palliative needs, and prevent-
ing excessive treatment. This study focuses on automatic
life expectancy prediction based on medical records.
Although medical records are increasingly available in

the form of electronic medical records (EMRs), they
remain underutilized for developing clinical decision
support systems, and improving health care in general
[5, 6]. EMRs are characterized by irregularly-sampled
time-series data, missing values, long-term dependencies
involving symptoms, diagnoses and interventions, and
are prone to documentation errors [7]. Moreover, they
contain important information in the form of unstruc-
tured, textual data, from which information cannot be
extracted straightforwardly. These challenges lead to
suboptimal use and even waste of large portions of data
[5], especially when the data is unstructured and noisy.
Free texts make up a significant and important part of
EMR data, but their ambiguous and noisy character and
the and lack of canonical forms for medical concepts
and the relations between them make it difficult to
‘mine’ these texts effectively [8].

Prognostication: A difficult task
Accurate prognosis is notoriously difficult; a systematic
review investigating the accuracy of clinicians’ estimates
of survival of palliative patients shows that there is wide
variation in the accuracy of predictions. Although there
is a variety of tools available for identifying palliative
patients, such as RADPAC [9], SPICT [10], and the
Surprise Question [11, 12], virtually none of them are
widely used, because using them is time-consuming, and
psychological or social factors tend to be marginalized in

these tools, although they are important when making
end-of-life decisions [13]. In practice, the most import-
ant indicators used by GPs when making prognoses tend
to be discharge letters from the hospital, increased need
for medical care, and decreased social contacts [14].
Identification of patients in need of palliative care

depends heavily on the experience of a doctor with
palliative patients [15]. Christakis and Lamont [15] in-
vestigated the accuracy of doctors in a hospice setting:
whenever a new patient was admitted to a participating
hospice, a survey with the referring doctor was executed
in order to obtain their life expectancy prediction for
this patient. Allowing an error margin of 33% before and
after the actual moment of death, the study showed that
20% of the life expectancy prognoses were correct. In
line with the other studies discussed in [16], doctors sys-
tematically overestimated actual life expectancy [16] –
their predictions were too optimistic. Being overoptimis-
tic about life expectancy hinders proper end-of-life care:
it may be the root cause of late hospice referral [15].
While experts agree that terminally ill patients should
ideally receive 3 months of hospice care, patients in
practice usually receive no more than 1 month [15, 17].

Automatically processing clinical data
Machine learning, natural language processing, and data
mining in general have grown to be increasingly popular
methods for processing data within the medical domain.
Given examples, machine learning algorithms can be
trained to learn which pieces of information are import-
ant to execute a task, and which patterns are indicative
for producing correct output. Machine learning and
language processing techniques have been applied to a
broad range of tasks, including medical decision support
and decision making [18–20], automatic disease detec-
tion [21–23], automatic diagnostication [24–28], identi-
fying the role of genes in the onset of diseases [29],
adverse event detection [30], identifying interactions
between drugs [31] and side-effects of drugs [32], and
phenotyping [33].
Artificial neural networks are a special type of machine

learning algorithms. Neural networks consist of inter-
connected layers of simple information processing units.
They are used to model complex and non-transparent
(e.g. mathematically non-linear) relationships between
observational variables and corresponding output vari-
ables. Deep neural networks do not link observational
variables directly to output variables, but introduce one
or more hidden layers between input and output which
are capable of representing complex intermediary
solutions to the input-output mapping problem they are
trained on.
Avati et al. [34] use a deep neural network to predict

one-year mortality of patients during hospital admission,
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based on their EMR data, to identify patients who could
benefit from palliative care. The authors formulate the
task of predicting life expectancy as a binary classifica-
tion problem, and extract only the structured data such
as clinical codes from the medical histories. They used
the data of the year leading up to the moment at which
a prediction was made, and discretized the time line into
four time slices, thereby giving more weight to data from
more recent developments. They feed all data to a deep
neural network with eighteen hidden layers to predict
whether the patient would die within 12 months or not.
Their results show the model reaches an average preci-
sion of 69%.1 Because early recall is beneficial for detect-
ing palliative patients, the authors note that the recall
from a high precision point onward is of interest: at a
precision of 90%, the model achieves 34% recall ([34]:5).
Lumping the data into time slice bins and feeding

these bins to the model at once helps to reduce the
sparsity of the data. It also resolves the challenge of cre-
ating comparable patient representations from incom-
parable sequences of data for different patients, which
result from irregular sampling. However, ignoring de-
tailed sequential information in the data inevitably leads
to information loss, such as a the order in which events
took place, the rate of the disease progression, and
whether the patient suffered from multiple diseases
simultaneously. The present research therefore aimed to
develop a predictive model that is aware of sequential
information.
Rajkomar et al. [35] used EMRs from two hospitals to

explore the use of deep neural networks in a variety of
tasks: in-patient mortality, re-admission within 30 days,
a hospital stay which lasts longer than 7 days, and
discharge diagnoses. For one of the hospitals, free-text
notes were available in addition to the structured data.
To solve the problem of variable amounts of data for
different patients, the authors trained three different
models that handle this problem in different ways, and
combined their outputs into final predictions. To over-
come the problem of different documentation standards
between hospitals, the authors imported the data in the
Fast Healthcare Interoperability Resources (FHIR) stand-
ard. This approach however does not harmonize data
between sites. Therefore, a model trained at one medical
center cannot be transferred to a different medical
center without further data processing.

Long short-term memory (LSTM) models
Different approaches and algorithms have been designed
to handle time-series data, including recurrent neural
networks, hidden Markov models, and conditional
random fields [36]. The absence of a strong memory in
these models however leads to the inability to exploit
long-distance interactions and correlations, which make

these algorithms less suitable for learning long-distance
dependencies typical of clinical data [36].
To address the challenges of time-series data, a spe-

cific type of recurrent neural network (RNN) was de-
signed for modeling long-term dependencies: long
short-term memory (LSTM) [37]. LSTMs, like regular
RNNs, have a memory for copying the activation pat-
terns of hidden layers. Iterative replications of hidden
layer activations are used to process data through time:
the activation pattern at time t is input to the network at
time t + 1 along with the new input available at t + 1.
The output per time step is therefore moderated by
current and historical data. In addition to simple RNNs,
LSTM units contain several gates: an input gate, an
output gate, and a forget gate. These gates influence the
flow of data through the model, allowing it to pass infor-
mation to another time step only when it is relevant,
thereby enabling the model to detect long-term depend-
encies and retain them as long as they need to be
remembered.
LSTM models increasingly receive attention in the

medical domain. An LSTM model was used for example
to diagnose patients in a hospital setting based on sensor
data such as blood pressure, temperature, and lab test
results [24]. Similarly, an LSTM model was used to
predict examination results given previous measure-
ments [38]. DeepCare is an LSTM-based system used to
infer the current illness state and to predict future med-
ical outcomes [39]. There is also an increasing body of
work using LSTMs for extracting specific information
(medical events or medication names for example) from
medical text such as scientific literature [40–42].

Predicting life expectancy with an LSTM
Due to the increasing availability of EMR data and the
success of LSTM models in many tasks, this research
aims to determine the feasibility of LSTM models for
predicting life expectancy based on EMR data. LSTM
models are especially suitable to perform this task, be-
cause they are able to keep the sequential nature of the
data intact and to exploit long-term dependencies –
traits that simpler predictive models generally do not
offer. We address the following questions:

1. How accurately can an LSTM trained on EMRs
predict the time to death (in number of months)?

2. To what extent does the inclusion of features from
unstructured textual data improve a prognostic
model for detecting the approaching end of a
patient’s life?

To our knowledge, there is no benchmark dataset
available for this task, and no clear baseline system exists
to compare our results to. Studies in this direction of
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research tend to be set in a hospital or hospice setting,
tend to involve terminally ill patients, and tend to be
disease-specific (and therefore to involve specialists).
Although a direct comparison is therefore not possible
within the scope of this study, we compared our results
to the most similar study analyzed in the systematic
review that was reported by [16] – the hospice study
reported by [15] – to place our systems’ performance
into perspective. With this comparison, we aimed to
shed light on our final question:

How does the prognostic accuracy of the models
compare to doctors’ prognostic accuracy?
In the following sections, we describe the methods we
used for training and testing the model, present and
discuss results, and describe ideas for future work.

Method
Overview
We define the task to solve as follows: predict the life
expectancy (in number of months) of a patient at a cer-
tain moment in time, given the patient’s medical history
up to that moment. In order to learn the task automatic-
ally from data, we trained an LSTM model on medical
records of deceased patients with a recorded date of
death, in which the month of death functions as the
target to be predicted. We optimized the model architec-
ture and feature set, and tested the performance of
several models. The following sections describe:

� the dataset;
� the train-validation-test split;
� our methods for creating the input data for the

model;
� our methods for determining the model

architecture;
� our methods for feature selection;
� the evaluation protocol.

Data description
In collaboration with the academic hospital Radbou-
dumc [43], we extracted EMRs from the FaMe-net
repository [44] which stores EMRs of patients who have
given consent to the use of their EMR data in scientific
research. The data was collected from seven health care
facilities that are part of the health care consortium of
Nijmegen, the Netherlands. The dataset contains a total
of roughly 33,509 EMRs. The EMRs were used as input
for the model to learn which features of the data are
important indicators for estimating life expectancy. For
training and evaluation purposes, the model required
known dates of death to function as labels. Therefore,
only the pseudonymized medical records from deceased

patients were included, leading to a total 1234 medical
records (3.7% of the total number of patients).
The data consisted of records of 52% female patients

and 48% male patients. The medical records span the
five final years of life for each patient. The average age at
the moment of death was 78; 81 for women and 76 for
men. These averages correspond to the national averages
as reported by the national data center for statistics in
the Netherlands [45].

Structured data
The EMRs contain both structured and unstructured
data. Much of the information in the medical records is
highly structured due to the use of standardized medical
codes: ICD-10 codes (International Statistical Classifica-
tion of Diseases and Related Health Problems) [46] and
ICPC-1 codes (International Classification of Primary
Care) [47]. ICD and ICPC codes are used to document
medical information during a patient consult, such as
the reason for encounter and the diagnosis. Lab tests are
represented by lab codes, and lab values follow a prede-
fined format. Labels for the type of consultation and
medication come from limited sets of predefined de-
scriptions, and are therefore well-structured as well.

Unstructured data
In addition to structured information, EMRs contain
letters sent between specialists about the patient, and
notes taken during the consultation that are usually
intended for personal use by the GP only. On average,
121 consultations were documented per patient for the
five-year period, and for roughly 75% of the consulta-
tions, notes or letters were written. 85% of the docu-
ments are notes, and 15% are letters.
Notes and letters are free texts written in highly

variable formats. Depending on whether the texts are
personal notes, or meant for other readers as well, they
are characterized more or less, respectively, by large
amounts of noise (e.g. text formatting elements), idio-
syncratic use of language, many non-standardized abbre-
viations, spelling errors, ungrammatical sentences,
telegram-style writing and jargon.
In order to optimize and standardize the textual data

for further processing, we created a typical natural
language processing pipeline (a modular system in which
processing subtasks are performed sequentially, passing
analyses and information along) to 1) improve the
quality of the texts by removing and correcting noise, 2)
improve the recognition of semantically similar words,
and 3) remove redundant information such as headers
and footers from letters. The pipeline consists of pro-
cesses to normalize the text, tokenize the text into
sentences and words, add the lemmatized word form, re-
move headers and footers from letters, expand common
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abbreviations (e.g., ‘p’, ‘pt’, ‘pat’→ ‘patient’), map common
synonyms to the same concept (e.g., ‘oesophagus’ / ‘esopha-
gus’ / ‘oesofagus’→ ‘slokdarm’), provide part-of-speech
tags, and correct spelling errors. For a detailed description
of these processing steps and the motivation behind each,
we refer the reader to [48, 49].

Train-validation-test split
Because the number of patients per health care practice
was highly variable, and to mimic real-life use of the
model, we split the dataset into 90% development data
(1107 patients) and 10% test data (127 patients). We set
apart the 10% most recent patients from health care
facilities (based on their date of death) as test data. We
used the most recent patients as test data to mimic a
scenario of actual deployment: if a system for automatic
prognostication would be used in reality, it would be
applied to new data – patients records which at no point
have entered the cross-validation cycle.
We optimized the LSTM model architecture and the fea-

ture set with separate exhaustive ten-fold cross-validation
procedures on the development dataset. We split the
development dataset randomly into ten non-overlapping
sets of 90% training data and 10% validation data for ten
rounds of validation.
After tuning the hyperparameters of the model and

determining the composition of the feature set, we
assessed the generalization of the model by training it
on all development data, and testing it on the unseen
test data.

Creating input data for the model
The LSTM model expects fixed-length input sequences,
while the sequences of data points for all patients are of
variable length and are characterized by irregular
sampling. Therefore, we cannot simply feed the model a
sequence of only the days on which a patient visited the
GP: alignment with the actual time line would be lost,
and sequences of different patients would not be com-
parable. We aggregated the data over thirty-day periods
(we refer to these periods both as ‘thirty-day period’ and
‘month’ in this paper, for the sake of simplicity) to create
a time line.
On average there are three consultations per patient

per month, but generally only one of the three is an
actual visit - others tend to be associated actions in
response to a visit (e.g., administrative actions, phone
calls, contacting a specialist). Therefore, we chose to ag-
gregate data over one-month periods even though it
leads to some loss of information regarding the order of
events: one-month periods are large enough to solve the
issues of irregular sampling and data sparsity, but small
enough to capture longitudinal disease progression and

to capture overall in- or decreases in the frequency of
contact between the doctor and the patient.
We represented each month with one feature vector.

Each vector is a frequency distribution over all features
for a patient in a particular month. Each medical record
in the dataset spans 5 years, and is therefore represented
by 61 feature vectors, which contain frequency counts
for each feature that occurred during the corresponding
month.
We normalized the data per feature category, and we

normalized the data per month for each patient to annul
the effect of the number of consultations in a month
and the length of text documents. Normalizing the data
helps to prevent exploding and vanishing gradients (a
common difficulty when training artificial neural net-
works), which would impede correct adaptation of the
weights and biases of the hidden layer of the LSTM
model. The frequency counts for the features were
normalized to values between 0 and 1 by dividing all fea-
ture values of a feature category within a thirty-day
period by the highest absolute value in that period of the
patient’s history.
We want to train the model to learn to predict the life

expectancy for any given moment in time. We used a
sliding window to divide the complete medical history
into subsequences of the history. We trained the model
to the predict life expectancy for each of these subse-
quences, so it learns to predict the life expectancy for
any given moment in the five-year time frame. The
optimal window size was determined during the model
optimization phase.

Determining the model architecture
We determined the model architecture with a stepwise
hyperparameter search using ten-fold cross-validation to
compare various LSTM configurations, implemented
with Tensorflow [50]. We experimented with the follow-
ing parameters: activation function, learning rate, batch
size, number of hidden layers, number of units per
hidden layer, window size, peephole connections, drop-
out, and number of epochs.
The best performing model is a fully connected model

consisting of an input layer, two hidden layers and an
output layer, for each time step. We used a batch size of
5, used a learning rate of 10− 5, and we trained the model
for ten epochs. We used the Adam Optimizer to
optimize the gradient descend procedure, and used
cross-entropy to minimize the loss during the training
process. No dropout or peephole connections were used.
The optimized LSTM model observes 10 time steps,

or in other words, the input to the network represents a
window of 10 months. For each time step, the input
layer consists of a feature vector with roughly 900 to
1200 dimensions (depending on the amount of keyword
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features). The hidden layers contain 50 hidden units
each, for which we use the tanh activation function. We
initialized the weights of the hidden units randomly
from a truncated normal distribution, and used a bias of
0.1. We modeled the probability that the end of life
occurs at a certain moment in time by projecting life
expectancy on a time line. The maximum life expectancy
of the train and test cases is determined by the length of
the total medical history (5 years) minus the length of
the sliding window (10 months); the maximum life
expectancy does not exceed this number, because pre-
dictions are made for the final time step in the window
only. Therefore, the output sequence at time t represents
a time line of 50 ‘future’ months. The model architecture
is schematically illustrated in Fig. 1.
At each time step, the hidden layer is fully connected

to the input and output layers of the current time step,
and to the hidden layers of the previous and next time
steps. Because information is passed from each time step
to the next, the model considers information from all
previous time steps in the window when the final predic-
tion at the final time step is made.
Figure 2 shows three example predictions for one

patient at different moments in time. The predictions
are based on three different time slices of 10 months,
taken from the patient’s medical history. The model
creates a probability distribution by predicting the
chance that the end of life will occur during each spe-
cific month.
The output sequence is transformed by a softmax

function to ensure that the probabilities for all months

in the distribution together sum to 1. We interpreted
the argmax of the probability distribution (the month
with the highest likelihood of dying) as the life expect-
ancy predicted by the model. In Fig. 2, the correspond-
ing actual life expectancies at the final time step are: 33
months (predicted: 28 months), 19 months (predicted:
15 months) and 3 months (predicted: 5 months), re-
spectively. The y-axis can be interpreted as a relative
measure of certainty; the higher the peak, the more
confident the model is about a prediction.

Selecting features for the structured EMR data
In order to construct the feature set of the structured
data, we tested several combinations of feature categor-
ies and the effect of different feature reduction methods,
with the aid of an additional ten-fold cross-validation
procedure. We first determined the optimal representa-
tion of the structured data by testing different frequency
cut-off methods: no frequency cut-off, removal of fea-
tures with an absolute occurrence < 100, removal of
features with a relative frequency of < 1%, and removal
of the most infrequent features that together covered
25% of the data. Additionally, we tested several levels of
simplification for all ICD and ICPC codes, that have the
format ‘[letter][number].[decimals]’ (e.g. D84.02, esopha-
geal reflux without esophagitis). We tested abstraction to
‘[letter][number]’ (D84, esophageal condition), the affected
system denoted with a ‘[letter]’ only (D, the digestive sys-
tem), a broad categorization of thematic consultation
elements (e.g. standard procedure) and a combination of
the latter two (e.g. D + standard procedure).

Fig. 1 Simplified LSTM architecture. At final time step t, xt represents the feature vector used as input to the hidden LSTM units, which activate
output ht. In each preceding time step, output h functions as an intermediate prediction of life expectancy. We are interested in final prediction
ht: a probability distribution for the next 50 months
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The absolute occurrence cut-off boundary (< 100)
yielded the best results for each feature category. The
model performed best when the diagnostic ICPC codes,
reasons for encounter codes, and ICD codes were
simplified to codes without decimal numbers (e.g.
D84.02→D84). The codes for medical history and inter-
vention yielded the best results when they were ab-
stracted to a combination of the affected system and
consultation element (e.g. D84.02→D + standard pro-
cedure). Medication names were cleared from informa-
tion regarding the dosage and use. Lab tests were only
included when they resulted in irregular or abnormal
values (as reported by the GP). These processing steps
reduced the complete feature set, which included 4649
unique features, with 80% to a set of 931 features.
Finally, we wanted to exclude redundant features from

the model. Testing all selections of features would have
made the grid search infeasible, therefore we determined
redundancy on the level of feature categories. We used a
forward stepwise feature selection approach: we added
the feature categories one by one in order of largest to
smallest positive impact on the results; feature categories
were considered to be redundant if they did not increase

the model’s performance. The addition of each category
led to an increase in accuracy, therefore none of the
categories were considered redundant. For complete-
ness, the order in which the feature categories were
added to the feature set, was: diagnosis (ICPC), medica-
tion, ICD code, reason for encounter (ICPC), lab results,
intervention (ICPC), medical history (ICPC), and con-
sultation type.

Selecting features for the unstructured EMR data
After applying the natural language processing pipeline
to the free-text data, a large set of unique keywords
remained. To reduce the dimensionality of the keyword
features, we experimented with three reduction
methods: 1) a frequency cut-off, for which we ordered
all content words from high to low frequency and took
the top n most frequently occurring words as features,
2) the top n content words with the lowest entropy
score, based on the Kullback-Leibler divergence [51]
between the actual frequency distribution of a word
through time and an ‘optimal’ distribution, and 3) word
embeddings created with word2vec. For more details
about each of these keyword reduction approaches, we

Fig. 2 Probability distributions produced by the baseline model for one patient at different moments in time. From top to bottom, the
corresponding actual number of months to death are 33 months, 11 months, and 3 months, respectively
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refer the reader to [48, 49]. The remainder of this
section elaborates on the word2vec representation of the
textual data.
By embedding words in a vector space, each word is

represented as a point in the space by a multidimen-
sional vector that is based on the word’s distributional
properties: the contexts in which it appears in a large
collection of text. Instead of using words as features, we
use the dimensions of the vector space as features, and
the word embeddings as feature values. Because the
number of dimensions rather than the number of unique
words determines the number of features, there is no
need to omit keywords. Representing words with word
embeddings prevents the exclusion of potentially im-
portant indicators that are possibly lost when occurrence
or frequency threshold heuristics are applied.
Similar vectors indicate similar words, therefore we

created document representations by calculating the
mean of the feature vectors of the words in a text, which
is an effective strategy for representing documents [52].
To determine the optimal model architecture and par-
ameter settings for word2vec, we trained several word2-
vec models [53] with different architectures and
parameter settings on the clinical texts from the EMRs
(±6.000.000 words in ±150.000 texts) and subjected
them to an analogy test, as described in [48].
The best-performing model made use of a skip-gram

architecture, a cut-off frequency boundary of 10, a
window size of 5, and 300 dimensions. We used default
settings for the remaining parameters. Although the
model with 300 dimensions produced the best results on
the analogy task, we tested the effect of using a word2-
vec representation consisting of 100 and 200 dimensions
as well, to control for unforeseen interaction effects with
the structured data features.
We concatenated the keyword feature vector to the

structured data feature vector to create a single feature
vector to feed to the model. Because we could not pre-
dict how the added keyword features would interact with
the structured data features that were already included
in the model in terms of information overlap (e.g., the
occurrence of a word for a certain disease may strongly
correlate with the occurrence of the corresponding
diagnostic code, thereby decreasing the added value of
the new features), we created feature sets of different
sizes for the frequency-based, entropy-based, and
word2vec-based approaches: a small (100 added key-
words), medium (200 added keywords), and large (300
added keywords) feature set.

Evaluation protocol
We applied a third ten-fold cross-validation procedure
on the development data, to test the three frequency-
based, the three entropy-based, and the three word2vec-

based approaches for keyword selection to see how their
performance compared to a baseline model without key-
word features. We compared the models’ performance
in terms of root mean square error and mean deviation
between the actual and the predicted life expectancy.
We selected the best-performing keyword model for

each keyword selection approach, and compared these
models and the baseline model to human performance.
To make this comparison, we used the systematic review
about doctors’ prognoses [16] to select a study compar-
able to ours, both in terms of the task and in terms of
the outcome variable. The most comparable study was
carried out in a hospice setting, and concerned a
non-specific group of patients with regards to illness
[15]. The doctors that participated in the research were
no experts in palliative care.
Although study [15] was the most comparable study,

we cannot make a direct comparison between the stud-
ies. The results reported by [15] are based on a different
patient population than the results we report in this
paper. In the hospice setting, 92% of the patients lived
for maximally six months after admission, and the
median of survival was 24 days. In our study, the max-
imal life expectancy was roughly four years, or fifty
months. The chances of dying were evenly distributed
over these months as a result of the sliding window ap-
proach, thus the median of survival was 25 months.
Therefore, although life expectancy was limited in our
study and not in the hospice study, patients in the hos-
pice study had a much shorter life expectancy than in
our study.
However, the task presented to the doctors in [15] and

to our system was the same, and the manner in which
life expectancy was expressed in both studies is compar-
able. In study [15], the doctors expressed their estima-
tions on a continuous scale (e.g. in days, weeks or
months), in contrast to many other studies discussed in
the systematic review, which expressed life expectancy
either with a limited number of predefined categories
(for example, the trichotomy < 2 weeks; 2–8 weeks; > 8
weeks) or with probabilistic estimates for survival (for
example the probability that the patient will live lon-
ger than three months). Due to the large number of
output classes (fifty months), our outcome variable
can be interpreted as a continuum, in which life ex-
pectancy is expressed in number of months to live,
thereby enabling comparison to the hospice study
reported in [15].
Although the significant differences between the

patient population in the hospice study and our study
prevent us from making a direct comparison, the simi-
larities between the studies make a comparison inform-
ative. To provide a frame of reference, we therefore
included the results of [15] in our analysis.
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We adopted the evaluation criteria of the hospice-
based study. The authors considered a prediction to be
accurate if the actual moment of death fell within a win-
dow of 33% around the prediction. They divided the
actual life expectancy by the predicted life expectancy,
and regarded a prognosis as accurate if the quotient was
a value between 0.67 and 1.33. Quotients smaller than
0.67 therefore signify overly optimistic errors, while
values larger than 1.33 signify overly pessimistic errors
[15]. By allowing a proportional deviation of 33%, the
evaluation criteria are more tolerant for deviating pre-
dictions that lay further in the future than for deviations
in short-term predictions.
Finally, we tested the overall best-performing model

on unseen test data (consisting of the remaining 10% of
the dataset), and performed additional analyses to obtain
insight into the relation between predicted and actual
life expectancy, and between the certainty of the predic-
tions and life expectancy.
The following sections present:

1. the performance of the baseline model and each of
the keyword models (models with a feature set
including 100, 200 and 300 features for the
frequency-, entropy-, and word2vec-based feature
selection approaches);

2. a comparison between the performance of the
baseline model and the best-performing keyword
models on the one hand, and doctors’ performance
in a similar task on the other hand;

3. the performance of the overall best-performing
model on a held-out subset of test data;

4. additional output analyses.

Results
Comparing the baseline model to the keyword models
We compared the baseline model, trained on structured
data only, to the keyword models in terms of the root
mean square and mean deviation between the predicted
and the actual life expectancy. We experimented with
the number of keyword features, and the number of cells
in the hidden layers, to see whether they should be
increased to account for the variable amount of keyword
features. In all models, the other model parameters and
the set of structured data features (931 features in total)
were kept constant. The results of the baseline model
are shown in Table 1, and the results of several keyword
models are shown in Table 2.

As indicated with boldface in Table 2, the best-
performing keyword models per selection method are:

� model with frequency-based features: 100 hidden
units, 300 features;

� model with entropy-based features: 100 hidden units,
200 features;

� model with word2vec-based features: 50 hidden
units, 100 features.

For each keyword model in Table 2, the mean devi-
ation between actual and predicted life expectancy is
lower than the mean deviation in the baseline model (as
shown by Table 1). While the models (including the
baseline model) tend to overestimate life expectancy on
average, the models that include word2vec features show
the opposite pattern: the negative mean deviations show
that the word2vec models underestimate life expectancy.

Comparing the best-performing models to doctors’
performance
We compared the results of the baseline model and the
best-performing keyword model per selection method to
the accuracy achieved by doctors in the hospice study
[15], to get an indication of the quality of the models’
predictions.
Prognoses were considered correct if the estimation

fell within a 33% window before and after the actual
moment of death. According to the metric we adopted
from the hospice study, the doctors’ estimates were ac-
curate for 20% of the patients, overly optimistic in 63%
of the cases, and overly pessimistic in 17% of the cases
[15], as is summarized by Table 3. For the baseline
model and the three best performing models that
include keyword features, we evaluated the quality of the
predictions with the same criteria. Table 3 shows the
results of the predictions made by the baseline model
and by the three models that include keyword features,
in addition to the doctors’ predictions.
As the results indicate, the baseline model outper-

forms the doctors’ estimates by 3% point when
cross-validated on the development data. The models
that include keyword features further enhance the per-
formance compared to the baseline, especially the model
that includes the word2vec-based features. Compared to
the baseline model, the frequency model increases the
performance with 6%, the entropy model with 5%, and
the word2vec model with 15%.

Performance of the best-performing model on unseen
test data
Finally, we tested the baseline model and the word2vec
keyword model on the unseen, held-out test set. The re-
sults for the baseline model and the (word2vec) keyword

Table 1 Deviation in months between actual life expectancy
and model’s predictions for the baseline model

Root mean square Mean deviation

17.6 6.4
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model are presented in Table 4, along with the human
baseline.
Compared to the results presented in Table 3, the

models’ accuracy for the held-out validation set drops: −
3% point for the baseline model and − 9% point for the
keyword model. The unseen test set contains data that
the model does not encounter in training, and while this
did not seem to affect the accuracy of the baseline model
much compared to the cross-validation experiments, it
notably affects the performance of the keyword model.
The results of the baseline model however match the
quality of the predictions made by doctors precisely, and
the keyword model increases the accuracy with 9%
compared to the human predictions and compared to
the baseline model.

Additional output analyses
We further analyzed the results of the keyword model in
terms of Pearson’s product-movement correlation coeffi-
cients, expecting to find a positive correlation between
the actual and the predicted life expectancy. Addition-
ally, we expected the model’s certainty (plotted as the
y-axis in Fig. 2) to both increase as the actual moment
of death approached, and as the predicted moment of
death approached. We therefore expected to find nega-
tive correlations between the relative certainty of the

predictions on the one hand, and the actual/predicted
life expectancies on the other hand. Finally, we expected
to find a higher level of certainty for predictions that are
close to the actual life expectancies. Therefore, we
expected the relation between the number of months
between actual/predicted life expectancy on the one
hand, and the certainty of the predictions on the other
hand to be inversely proportional to each other. The
tests, hypotheses, and results of the calculations are
summarized in Table 5.
As Table 5 shows, the calculations confirmed most of

the hypotheses. The results show a moderately positive
relation between the model’s predictions and the actual
life expectancy. To zoom in on the relation between
actual and predicted life expectancy, Fig. 3 shows fre-
quency counts of actual and predicted life expectancies.
The actual life expectancies are uniformly distributed:
because the medical histories are divided in 10-month
windows, every month in the range 1–50 is predicted
127 times, corresponding to the 127 test patients. The
predictions are not as evenly distributed as the actual ex-
pectancies: the model shows a tendency to predict that
the moment of death is either relatively nearby (< 1 year)
or relatively far away (> 3.5 years) in time.
The moderate negative correlation between certainty

and actual life expectancy (r = −.35), and the strong

Table 2 Deviation in months between actual life expectancy and predicted life expectancy for different keyword models

Selection
method

Hidden
units

Root mean square deviation Mean deviation

100 features 200 features 300 features 100 features 200 features 300 features

Frequency 50 17.6 17.2 17.0 4.5 5.0 5.8

100 17.5 17.4 16.9 2.1 1.2 1.7

200 17.7 17.8 17.8 1.6 1.3 1.0

Entropy 50 17.4 17.8 17.8 5.1 5.6 5.4

100 17.2 16.9 17.8 2.5 2.3 1.6

200 17.7 17.5 17.7 2.3 2.0 1.3

Word2vec 50 17.8 18.2 18.2 −3.4 −4.3 −3.7

100 18.1 17.8 17.8 −4.2 −4.1 −4.8

200 18.3 18.3 18.4 −3.75 −4.4 − 4.4

The models differ from each other in terms of selection method and number of included keywords. The best models are defined by two criteria: 1) having a
relatively low root mean square, followed by 2) having a low mean deviation. Note: the first criterion is leading, the second criterion is only used as a tie breaker.
For each selection method, the results of the best-performing model are marked with boldface, based on these criteria

Table 3 Evaluation of the quality of the predictions

Assessor Accuracy Overly pessimistic Overly optimistic

Human EMR data + patient consultation 20% 17% 63%

Baseline model structured data features 23% 58% 20%

Frequency model structured data features + frequency-based features (keywords) 29% 27% 44%

Entropy model structured data features + entropy-based features (keywords) 28% 46% 27%

Word2vec model structured data features + word2vec-based features (vector space dimensions) 38% 32% 31%

Predictions were considered accurate if they deviate less than 33% from the actual life expectancy. Results were adopted from [15]. Note: the doctors in [15]
estimated life expectancy for a different group of patients than our models do in this the current research
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negative correlation between certainty and predicted life
expectancy (r = −.61) in Table 5 show the model’s ten-
dency to be increasingly certain about predictions as life
expectancy is shorter. To illustrate this tendency, Fig. 4
shows the model’s certainty as a function of the pre-
dicted life expectancy. The relative certainty with which
the predictions are made is not a good indicator of the
model’s accuracy however, as shown by the bottom test
results in Table 5: no significant correlation exists
between certainty and the absolute difference between
actual and predicted life expectancy. Therefore, our
expectation about a higher model certainty for more ac-
curate predictions, was not reflected by the results.

Discussion
Comparison to human performance
To put the reported results in perspective, we provided a
comparison of the model’s performance to human per-
formance as described by [15]. To make a truly valid
comparison, our study design should include judgments
about life expectancy from GPs about the actual patients
that the medical records used for this research corres-
pond to. Making this comparison was however impos-
sible within the scope of this research, and with the use
of this dataset.
To our knowledge, no studies have been carried out in

which GPs performed the task of predicting life expect-
ancy for a non-specific group of patients. The most
comparable study from the systematic review [16] con-
cerned a non-specific group of patients in terms of ill-
ness, which was judged by clinicians from a broad
spectrum of disciplines [15].
Although the study is similar to ours, there are

important differences: patients were known to be ter-
minally ill in the hospice study. Therefore, the potential
life expectancy was technically not limited – death was
usually rather imminent. Our dataset consisted of the
medical records from the final five years of deceased

patients. Life expectancy was limited to fifty months due
to the sliding window approach, and the chances of
dying were evenly distributed over these months. Be-
cause our study did not focus on terminally ill patients,
the actual range of time to death was broader in our
study, even though life expectancy was limited.
However, as prognostic accuracy tends to be inversely

related to a longer life expectancy [16, 54, 55], we as-
sume that the task we formulated was relatively hard
compared to the task presented to the doctors: because
life expectancy was uniformly distributed over 1–50
months in our research, the model had to make predic-
tions about the near future (one month into the future)
as well as the far future (fifty months into the future).
We contrasted our study to the hospice study [15] re-
gardless of the differences between the two to sketch a
broader background. To correct for the difference
between tasks in our study and [15] at least partly, we
adopted the relative error margin of 33% from [15]. To
enable a perfect comparison however, the system should
be presented with the same test data as doctors – an
issue we intend to address in future work.

Data limitations
One of the main challenges we faced during this re-
search was the amount of available data. Our dataset
consisted of roughly 1200 patients which is a fair
amount of data according to clinical standards, but is
not considered to be a lot of data for training neural
networks. We partially addressed this problem by split-
ting each medical record into fifty time slices, thereby
increasing the number of cases with a factor of fifty.
However, more data would have been desirable for train-
ing the model, in order to increase the accuracy and
reduce overfitting.
Overfitting is a serious issue which we did not fully

manage to tackle, even though we maximized the
amount of training data, used cross-validation and early

Table 4 Evaluation of the quality of the predictions

Assessor Accuracy Overly pessimistic Overly optimistic

Human EMR data + patient consultation 20% 17% 63%

Baseline model structured data features 20% 68% 12%

Keyword model structured data features + word2vec-based features 29% 52% 19%

Predictions were considered accurate if they deviate less than 33% from the actual life expectancy. The human results were adopted from [15]. Note: the doctors
in [15] estimated life expectancy for a different group of patients than our models do in this the current research

Table 5 Results for correlation calculations between several outcome measures

Tested relations Hypotheses Pearson’s r Significance p

Actual vs. predicted life exp. positive relation .36 <.001

Certainty vs. actual life exp. negative relation −.35 <.001

Certainty vs. predicted life exp. negative relation −.61 <.001

Certainty vs. absolute difference between actual and predicted life exp. negative relation −.02 .12
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stopping, and explored the effects of drop-out in the
neural network. We expect that the use of more data in
future research will aid in a better feature selection
process, especially with regards to the textual features,
and will help the model to generalize better to unseen
cases. Additionally, more data would enable us to ex-
plore whether disease-specific training of the model is
beneficial, for example by training the model to make
predictions specific for trajectories associated with
cancer, dementia, or heart failure.

Interpretation of the output
We choose to return a probability distribution for a large
range of months, rather than producing a single-value
prediction or a classification with few classes. While
such output indeed delivers very interesting results, we
also needed a way to operationalize these probability
distributions in order to evaluate the model’s perform-
ance. In this research, we considered the argmax of a
distribution as the final prediction. However, this is just
one of many possible approaches. Alternative methods

for processing the model’s output include reporting the
first, the last, or any peak above a certain probability
threshold, and reporting sudden changes in life expect-
ancy. Determining whether or not alternative output
variables or interpretations of the current output vari-
able would better suit the task of predicting life expect-
ancy, fell outside the scope of this research, but would
be interesting to take into account in future research.

Transparency
When it comes to incorrect predictions, both the base-
line and the keyword model tend to make overly pessim-
istic predictions. It would be interesting to investigate
why the models have a tendency toward overly pessimis-
tic predictions, despite being trained with and tested on
balanced data.
Related to this question, is the observation that the

model tends to predict that the moment of death is
either relatively close or far away in time, rather than
somewhere in between, again despite being trained and
tested on balanced data. We could speculate that the
decline in health is generally gradual over a long period
of time, while the transition from good health to the on-
set of severe illness may be sudden, as well as the transi-
tion from illness to death. The occurrence of features
that are associated with such changes, may be causing
the model to overfit on those features. Further explor-
ation of which factors were leading in a prediction, may
be helpful to understand which factors aid in accurate
and inaccurate predictions.
A crucial issue to address in future research therefore,

is the ‘black box’ character of the model. Being aware of
the reliability of a model’s predictions may be sufficient
for a model to have real-life applications, but does not
help us to gain insight in which (combinations of ) fac-
tors determine a correct prognosis. In future work, we
plan to explore methods for gaining more insight in the
nature of the patterns that are detected by neural

Fig. 3 Absolute frequency counts for actual and predicted life expectancies, for each month in range 1–50

Fig. 4 Relative certainty as a function of predicted life expectancy
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networks, as well as making the determinants of a
certain prediction transparent.

Conclusions
We aimed to advance the understanding of what is
needed for automatic processing of electronic medical
records, and to explore the use of unstructured clinical
texts for predicting life expectancy. The potential use of
automatic prognostication is not limited to health care
in practice, but could also be useful in other clinical
applications such, such as clinical trials. In clinical trials,
outcomes often depend on prognostic factors. Automatic
processing of medical records would enable quick and
systematic stratification of patients based on their prog-
noses, which could be used to further reduce biases [56].
Our contributions to previous work are that we com-

bine the following elements into one model: 1) in
addition to using structured data fields, we investigate
the use of textual features that we extracted from the
unstructured, clinical free-text, 2) we retain the sequen-
tial order of the medical events through time at a
month-level, 3) we express life expectancy in terms of
months rather than as a classification task with a small
amount of categories (such as dichotomous classes, e.g.
‘mortality is expected within or after a year’), and 4) our
research focuses on primary care data (rather than hos-
pice or hospital data) of a general patient population; we
made no selection based on disease (e.g. cancer pa-
tients), department (e.g. ICU patients), age (e.g. elderly
patients), or course of treatment (e.g. palliative / termin-
ally ill patients).
Using the evaluation criteria that were used by [15] to

evaluate doctors’ performance in a similar task, our
baseline model reached a level of accuracy similar to
human accuracy (20% accuracy). The keyword model
improves the prediction accuracy with 9% point to 29%
accuracy. This model tends to make rather pessimistic
predictions, while doctors tend to do the opposite.
Pessimistic predictions could promote early recognition
and anticipation of the palliative phase, and timely
discussion of ACP strategies.
Even though the model’s performance is far from

perfect, we consider this work to be among the first
steps in a line of research that has much potential for
clinical applications, for several reasons: good prognosti-
cation has the potential to contribute significantly to
end-of-life decision making, therefore we believe that
any increase in prognostic accuracy is worth persuing.
Additionally, human prognostication is costly, time-con-
suming, requires medical expertise, and is a subjective
task. Without compromising prediction accuracy, the
model is able to make predictions quickly, automatically
and systematically, while it does not depend on human
medical expertise. Even though the model reaches only

29% accuracy, we consider 9% point improvement to be
promising, considering that the model is trained on a
relatively small data sample.
Nevertheless, this research should be considered to be

exploratory. In order to replicate and extend this re-
search, we are currently expanding the dataset substan-
tially, by collecting additional data of both deceased and
active patients. This will allow us to zoom in on specific
illness trajectories, and to rephrase the task in such a
way that it will match clinical settings more closely, for
example by aiming to make predictions about patients
while they are still active. We plan to compare a range
of predictive models, alternative patient representations,
and (interpretations of ) output variables in future work.
To provide a better comparison between automatic and
human prognostication, we will investigate the predic-
tion accuracy of both the system and general practi-
tioners by presenting them with the same task and test
data. Additionally, we will work towards obtaining
insight about the driving forces behind good prognosti-
cation. We intend to explore which information is used
by the model, to make the model for automatic prognos-
tication more transparent, and improve our understand-
ing of this complex task.

Endnotes
1Due to the skewed distribution of the data (7% preva-

lence), the authors prefer to discuss their results in
terms of precision and recall, rather than sensitivity and
specificity, because it provides more information about
the algorithm’s performance ([34]:5).
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