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ABSTRACT

Context. A convenient representation of the structure of the large-scale galactic magnetic field is required for the interpretation of
polarization data in the sub-mm and radio ranges, in both the Milky Way and external galaxies.
Aims. We develop a simple and flexible approach to construct parametrised models of the large-scale magnetic field of the Milky Way
and other disc galaxies, based on physically justifiable models of magnetic field structure. The resulting models are designed to be
optimised against available observational data.
Methods. Representations for the large-scale magnetic fields in the flared disc and spherical halo of a disc galaxy were obtained
in the form of series expansions whose coefficients can be calculated from observable or theoretically known galactic properties.
The functional basis for the expansions is derived as eigenfunctions of the mean-field dynamo equation or of the vectorial magnetic
diffusion equation.
Results. The solutions presented are axially symmetric but the approach can be extended straightforwardly to non-axisymmetric
cases. The magnetic fields are solenoidal by construction, can be helical, and are parametrised in terms of observable properties of the
host object, such as the rotation curve and the shape of the gaseous disc. The magnetic field in the disc can have a prescribed number
of field reversals at any specified radii. Both the disc and halo magnetic fields can separately have either dipolar or quadrupolar
symmetry. The model is implemented as a publicly available software package galmag which allows, in particular, the computation
of the synchrotron emission and Faraday rotation produced by the model’s magnetic field.
Conclusions. The model can be used in interpretations of observations of magnetic fields in the Milky Way and other spiral galaxies,
in particular as a prior in Bayesian analyses. It can also be used for a simple simulation of a time-dependent magnetic field generated
by dynamo action.
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1. Introduction

Recent increased interest in the large-scale magnetic fields of
the Milky Way (MW) and other spiral galaxies is driven by a
number of factors. Their role in the dynamics of the interstel-
lar medium (ISM) has been widely appreciated although not
completely understood. Their significance for the feedback pro-
cesses in evolving galaxies has also been recognised and is being
actively explored (e.g. Hopkins et al. 2018). Furthermore, the
separation of the Galactic foreground, including its magnetic
field and associated emission, from extragalactic contributions is
essential to identify the sources of ultra-high energy cosmic rays
(UHECR; Kotera & Olinto 2011; Mollerach & Roulet 2018) and
for cosmological interpretations of sensitive CMB observations
(e.g. Planck Collaboration XI 2019).

Our understanding of the Galactic magnetic field (GMF)
is based on observations of Faraday rotation of polarised
radio emission, synchrotron emission of energetic electrons,
and polarised emission and absorption by dust (e.g. Haverkorn
2015). Observations of external spiral galaxies have provided
rich polarisation data for their discs and haloes (Beck 2015;
Wiegert et al. 2015; Mao et al. 2015). Interpretation of such
data in terms of three-dimensional magnetic field structures
requires parametrised models of the magnetic field based on the

understanding of their nature and origin. It can be expected that
models that rely less on specific theoretical models would have a
larger number of free parameters whose physical meaning would
be less clear. On the contrary, physically motivated models can
be more flexible and lead to physically transparent interpreta-
tions of observations.

A range of heuristic models for the structure of the
GMF have been proposed (e.g. Sun et al. 2008; Jaffe et al.
2010; Van Eck et al. 2011; Jansson & Farrar 2012a,b;
Ferrière & Terral 2014; Terral & Ferrière 2017). Magnetic
fields in most of these models are superpositions of various ad
hoc parts whose parameters are selected by fitting to a range
of observables. The heuristic nature of the models makes them
rather inflexible. Furthermore, their parameters are not neces-
sarily related to the ISM properties (often lacking a transparent
physical meaning), and some such models fail to satisfy even
such fundamental constraints as ∇ · B = 0 or to allow for the
global helical nature of galactic magnetic fields that imprints
on its structure and symmetries. The ambiguities, problems and
limitations of the current approaches to GMF modelling have
been discussed in Planck Collaboration XLII (2016) and by the
IMAGINE consortium (Boulanger et al. 2018).

A possible way to overcome heuristics in GMF modelling
would be to extract the field structure from physical simulations
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of galaxy formation and evolution, which include all relevant
processes of magnetic field generation and are specific to the
MW. Such simulations of generic galaxies have led to important
insights into various magnetic structures in spiral galaxies (e.g.
Pakmor et al. 2017; Pakmor & Springel 2013) but their resolu-
tion remains insufficient to capture galactic dynamo action, as
it is controlled by turbulent processes on scales less than 100 pc.
Moreover, the simulations would have to be constrained in a way
flexible enough to reproduce an ever increasing set of observa-
tional data.

Here we propose a simple (that is, flexible, adjustable, ana-
lytic) and yet realistic (i.e., based on relevant equations and
observations) approach to model the large-scale (mean) mag-
netic field in the disc and halo of the Milky Way and other
spiral galaxies. The model has been implemented as a publicly
available software package galmag (Rodrigues 2018), which
can be used in the framework of Bayesian optimisers (e.g.
Steininger et al. 2018; Steininger 2018).

The text is organised as follows. In Sect. 2, we lay out the
modelling strategy, basic equations and fundamental assump-
tions. In Sect. 3, we describe the solutions for magnetic field
in the disc and in Sect. 4, for the halo. In Sect. 5 we discuss
possible applications of this model to the interpretation of obser-
vations of synchrotron emission and Faraday rotation (Sect. 5.1)
as well some of the ways in which it could be used to model the
evolution of galactic magnetic fields (Sect. 5.2); possible exten-
sions to this model are also discussed (Sect. 5.3), whilst Sect. 5.4
introduces the publicly available galmag software package that
implements the model. Our results are summarised in Sect. 6.

2. Basic equations

A physically meaningful model of a galactic magnetic field has
to rely on a clear physical picture of its origin and maintenance,
as well as on a specific galaxy model. Mean-field dynamo action
is the most plausible mechanism of generation and maintenance
of large-scale magnetic fields in spiral galaxies (Ruzmaikin et al.
1988; Beck et al. 1996; Brandenburg & Subramanian 2005;
Beck 2015). Therefore, we first explore the nature of magnetic
structures compatible with dynamo action. However, magnetic
fields observed in galaxies have many features that emerge inde-
pendently of the dynamo process. To allow for such features,
we make our model rather independent of the specific proper-
ties of dynamo-generated magnetic fields and use solutions of
the dynamo equations just as a convenient functional basis to
parametrise a wide class of magnetic structures. Furthermore, we
discuss how an even more general type of the governing equa-
tions can be used for these purposes.

The dynamo converts kinetic energy of random (turbulent)
flows into magnetic energy. The mean helicity of the random
flow, that emerges because of the overall rotation and stratifica-
tion, leads to the generation of magnetic fields at scales much
larger than the correlation scale of the random flow (this is
described as the α-effect). Differential rotation can accelerate the
energy conversion by stretching the large-scale magnetic fields
in the direction of the flow (the ω-effect). The spatial scale and
structure of the magnetic field are controlled by the mean-field
transport coefficients, quantifying the averaged induction effects
of the random flows, and the large-scale velocity shear rate. The
magnetic field structure also depends upon the geometric shape
of the dynamo region (e.g. spherical, toroidal or flat). When the
magnetic field is weak, so that its effect on the velocity field
is negligible, the dynamo leads to an exponential amplification
of the large-scale magnetic field. As the Lorentz force becomes

stronger, the field growth slows down and the system gradually
settles into a (statistically) steady state: the dynamo action satu-
rates.

The mean-field dynamo equation has the form

∂B
∂t

= ∇ × (αB) + ∇ × (V × B) + β∇2B, (1)

where B is the large-scale magnetic field, α and β are the tur-
bulent transport coefficients representing the mean induction
effects of the helical interstellar turbulence (the α-effect) and
turbulent magnetic diffusion, respectively, and V is the large-
scale velocity field. The latter is dominated by differential rota-
tion but can also include galactic outflows (fountain or wind) and
accretion.

Detailed reviews of the galactic dynamo and comprehensive
references can be found in Ruzmaikin et al. (1988), Beck et al.
(1996), Shukurov et al. (2007), and Shukurov & Subramanian
(2018). We present here a very short overview of the theory with
the number of specific references reduced to a minimum.

The mean-field galactic dynamo equation has been solved
under various approximations that cover a wide range of galac-
tic environments. Our goal is to present a general class of
physically-motivated magnetic field models that can be used to
fit observations without the need to delve too deeply into the the-
ory. Thus, we present a parametrised model with the large-scale
magnetic field in the form of an expansion over appropriate basis
functions, specifically the modes of free decay which solve the
diffusion equation in the disc and spherical geometries. The form
of the magnetic structures obtained is controlled by the choice of
the expansion coefficients. The large-scale magnetic field in the
model consists of a superposition of approximate solutions of the
kinematic mean-field dynamo equations for a thin disc (Sect. 3)
and a spherical gaseous halo (Sect. 4). Our use of the dynamo
equations is less restrictive than it might seem since their solu-
tions can be used as a functional basis to represent a wide class
of complex magnetic configurations, not necessarily produced
by dynamo action, in terms of a small number of the expansion
coefficients. Unlike representations in terms of the Euler poten-
tials (Ferrière & Terral 2014), magnetic configurations presented
here can be helical. Another advantage of our approach is that all
variables and parameters of the model are either directly observ-
able or related to observable quantities.

The approximate nature of the solutions that we use is due
to the approximations adopted to solve the equations as well as
the simple superposition of separate disc and halo solutions of
the dynamo equation. Such a superposition is not quite consis-
tent with the presumably non-linear nature of galactic dynamos.
However, the non-linear effects do not, plausibly, affect the spa-
tial distribution of the large-scale magnetic field too strongly
and the marginally stable dynamo eigenfunctions often pro-
vide a satisfactory approximation for the non-linear solutions
(Chamandy et al. 2014).

The analytic solutions of the mean-field dynamo equations
for the galactic discs and halos presented here are obtained
assuming that the disc is thin and the halo is spherical. The thin-
disc solutions are applicable at those distances to the galactic
centre s where h/s . 0.1, where h is the scale height of the warm
ionised gas that is assumed to host the mean magnetic field.

2.1. Symmetries of galactic magnetic fields

It is convenient to introduce cylindrical polar coordinates (s, φ, z)
with the origin at the galactic centre and the z-axis parallel to
the angular velocity Ω. Hence, Ω = (0, 0,Ω) and z = 0 at the
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galactic mid-plane. However, spherical coordinates (r, θ, φ) are
natural for the halo, with the polar axis θ = 0 aligned with the
z-axis of the cylindrical frame and the mid-plane (equator) at
θ = π/2.

Solutions of the dynamo equation are sensitive to the geom-
etry of the dynamo region. In a thin disc, large-scale mag-
netic fields of even parity strongly dominate, that is, Bs,φ(−z) =
Bs,φ(z) and Bz(−z) = −Bz(z); this configuration corresponds
to quadrupolar symmetry. Without dynamo action, quadrupo-
lar magnetic fields in a thin disc decay slower than dipolar
ones. As a result, for realistic values of parameters, dipolar mag-
netic fields can be supported by the dynamo only in the central
parts of the discs of spiral galaxies, .1 kpc. In a quasi-spherical
halo, however, both odd (dipolar) and even (quadrupolar) mag-
netic fields can be maintained with almost equal ease, with
Br,φ(−z) = −Br,φ(z) and Bθ(−z) = Bθ(z) for the dipolar symmetry
and Br,φ(−z) = Br,φ(z) and Bθ(−z) = −Bθ(z) in the quadrupo-
lar field (with z = r cos θ). Moreover, magnetic fields in the two
halves of the halo, z > 0 and z < 0, can be disconnected by
the disc, so that the symmetry of the magnetic field in the halo
is only weakly constrained. The model proposed here provides
freedom in selecting any symmetry of the magnetic field in the
disc and the halo independently.

Despite deviations from axial symmetry, mainly associ-
ated with the spiral pattern, galactic discs are sufficiently sym-
metric in azimuth that the axially-symmetric modes dominate
the dynamo. Therefore, deviations from axial symmetry in
the large-scale magnetic field, however strong they might be,
can be included as distortions of a background axially sym-
metric magnetic structure. In this paper, we mainly consider
axially symmetric galaxies and axially symmetric magnetic
fields and discuss extensions to more general configurations in
Sect. 5.3.

2.2. Boundary conditions

The simplest and best explored solutions of the mean-field
dynamo equations are obtained with the so-called vacuum
boundary conditions, that is, under the assumption that the elec-
tric current density outside the dynamo region is negligible in
comparison with any electric currents within it. Equivalently, the
magnetic diffusivity (inversely proportional to electric conduc-
tivity) outside the dynamo region is assumed to be much larger
than within it. With vanishing electric current density, ∇×B = 0,
the magnetic field is potential.

Neglecting external electric currents in the gaseous halo
appears to be reasonable given the low density of intergalactic
plasma. Regarding galactic discs surrounded by a gaseous halo,
it is important to note that the magnetic diffusivity relevant to a
large-scale magnetic field is the turbulent diffusivity. Poezd et al.
(1993) argue that the turbulent magnetic diffusivity in galactic
haloes is about 50 times larger than in the disc. This justifies the
application of vacuum boundary conditions to the large-scale
magnetic field at the disc surface as well. In other words, we
assume that the extension of the disc’s magnetic field into the
halo is a potential magnetic field that adds to the magnetic field
produced in situ in the halo.

In a thin disc, the vacuum boundary conditions have the form
Bφ(±h) = 0 and Bs(±h) ≈ 0, where z = ±h(s) is the disc surface.
The boundary condition for Bφ is exact whereas the accuracy of
the boundary condition for Bs is higher when the disc is thinner
(Priklonsky et al. 2000; Willis et al. 2004). The potential mag-
netic field around the disc, that satisfies these boundary condi-
tions, is purely vertical. The vacuum boundary conditions for
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Fig. 1. Two choices for the rotation curve discussed in the text (upper
panel) and the corresponding velocity shear rate S = sdΩ/ds (lower
panel): the Milky Way rotation curve obtained from CO observations
by (Clemens 1985; solid) and a simpler rotation curve given by Eq. (2)
(dashed).

the halo are Bφ(rh) = 0 and ∇ × B = 0 at r > rh, where rh is the
halo radius.

3. Magnetic field in the disc

3.1. Rotation curve and disc thickness

While the model can be applied to any galaxy, our choice of
fiducial parameters is motivated by the Milky Way, with the disc
rotation curve of Clemens (1985). To illustrate the impact of the
rotation curve on the magnetic field, we also consider a flat rota-
tion curve (i.e., the rotational speed is nearly independent of s at
large distances from the disc axis),

V(s) = V0
1 − exp(−s/s∗)
1 − exp(−s0/s∗)

, (2)

where s0 is a reference galactocentric distance defined below, V0
is the rotation speed at s = s0 and we take s∗ = 250 pc. The
two rotation curves and the corresponding velocity shear rates,
S = sdΩ/ds, are shown in Fig. 1.

The disc scale height is assumed to increase exponentially
with the cylindrical radius (a flared disc),

h(s) = h0 exp
(

s − s0

sh

)
, (3)

where we adopt a flaring length scale of sh = 5 kpc, similar
to that of the MW H i disc, and s0 is the Galactocentric dis-
tance of the Sun (Kalberla & Kerp 2009). In our fiducial model,
we adopted the characteristic height h0 = 0.5 kpc, which
is the scale height of the Lockman layer (Lockman 1984;
Dickey & Lockman 1990) near the Sun.

The radius of the dynamo-active part of the disc is chosen to
be sd = 17 kpc, similar to the radius of the supernova distribu-
tion in the MW (Case & Bhattacharya 1998). The fiducial values
of the parameters that appear in the model (which are also input
parameters for the galmag code) are shown in Table 1. Parame-
ters of the halo are introduced in Sect. 4.2.
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Table 1. Fiducial parameter values and input parameters of the galmag code.

Component Input parameter Equation Notation Fiducial value

General Reference galactocentric radius (6) s0 8.5 kpc
Disc Radius of the dynamo active disc (42) sd 17 kpc

Rotation curve V(s) Clemens (1985)
Dimensionless shear rate due to differential rotation (14) Rωd −53
Dimensionless intensity of helical turbulence (14) Rαd 0.4
Disc shape (3) h(s) –
Disc scale height at s = s0 (6) h0 0.5 kpc
Azimuthal magnetic field strength at s = s0 Bd −3 µG
Position of the first field reversal sr1 7 kpc
Position of the second field reversal (Model B) sr2 12 kpc

Halo Radius of the dynamo active halo (55) rh 15 kpc
Rotation curve (66), (67) V(r) –
Rotation curve turnover radius (67) sv 3 kpc
Dimensionless shear rate due to differential rotation (58) Rωh −204
Dimensionless intensity of helical turbulence (58) Rαh 4.3/8.1
Azimuthal magnetic field strength at s = s0 Bh −0.5 µG/−0.01 µG

3.2. Thin-disc dynamos

In terms of cylindrical coordinates (s, φ, z), the radial and
azimuthal components of the axisymmetric α2ω-dynamo Eq. (1)
can be written as

∂Bs

∂t
= −

∂(αBφ)
∂z

+ β
∂2Bs

∂z2 + β
∂

∂s

[
1
s
∂(sBs)
∂s

]
, (4)

∂Bφ
∂t

= S Bs +
∂(αBs)
∂z

+ β
∂2Bφ
∂z2 + β

∂

∂s

[
1
s
∂(sBφ)
∂s

]
, (5)

where S = s ∂Ω/∂s is the velocity shear due to differential rota-
tion. We do not exhibit the equation for Bz since, in a thin disc,
it decouples from the equations shown and can be solved sepa-
rately (equivalently, Bz can be derived from ∇ · B = 0).

It is convenient to use dimensionless variables, denoted with
tilde,

s̃ = s/s0 and z̃ = z/h0, with h0 = h(s0), (6)

where s0 is the reference cylindrical radius within the disc – for
example, s0 = s� ≈ 8.5 kpc is a convenient choice in the MW.
Using different length units across and along the disc allows us
to make the disc thinness explicit and quantified with the (small)
aspect ratio

ε = h0/s0. (7)

The large-scale velocity is measured in the units of a character-
istic rotational speed V0 = V(s0),

Ṽ =
V
V0
, Ω̃ = Ω

s0

V0
· (8)

Velocity shear due to differential rotation is non-dimensionalised
similarly,

S̃ =
S
S 0

, with S 0 = S (s0). (9)

The unit of time is the turbulent magnetic diffusion time across
the disc. With βd the turbulent magnetic diffusivity in the disc,
the dimensionless time is

t̃ = tβd/h2
0 . (10)

The magnitude of the α-effect can be estimated as

α ' min
(
l2Ω/h, v

)
, (11)

where l and v are the turbulent scale and speed, and the corre-
sponding fiducial value is used to non-dimensionalise α:

α̃ =
α

α0
, α0 =

l2V0

h0s0
· (12)

The magnitude of α cannot exceed α = v because it is a mea-
sure of the helical part of the turbulent flow speed, hence α/v
cannot exceed unity. This limit is usually important only in the
central parts of galaxies (where the thin-disc approximation does
not apply anyway). Equation (11) gives the magnitude of α and
its dependence on s through the variations of Ω and h with s. It
is expected that α is an odd function of z. Gressel et al. (2008a,b)
and Bendre et al. (2015) confirm this and discuss the dependence
of α on z in numerical simulations of the supernova-driven inter-
stellar medium. We adopt a factorised form for α(s, z),

α̃(s, z) =
Ω̃(s)

h̃(s)
a(z), where a(−z) = −a(z), (13)

where we assume that l, in Eqs. (11) and (12), is independent
of s. The model can be generalised straightforwardly to more
general forms of α(s, z).

When galactic outflow is neglected, the dynamo is fully char-
acterised by two dimensionless control parameters that quantify
the intensity of the mean magnetic induction due to helical tur-
bulence and differential rotation, respectively:

Rαd =
h0α0

βd
=

l2V0

s0βd
, Rωd =

h2
0S 0

βd
, (14)

where the subscript “d” refers to the disc (similar parameters are
defined slightly differently in the halo – see Sect. 4).

In terms of dimensionless variables, Eqs. (4) and (5) reduce
to
∂Bs

∂̃t
= −Rαd

∂(α̃Bφ)
∂̃z

+
∂2Bs

∂̃z2 + ε2 ∂

∂s̃

[
1
s̃
∂(s̃Bs)
∂s̃

]
, (15)

∂Bφ
∂̃t

= RωdS̃ Bs + Rαd
∂(α̃Bs)
∂̃z

+
∂2Bφ
∂̃z2 + ε2 ∂

∂s̃

[
1
s̃
∂(s̃Bφ)
∂s̃

]
· (16)
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It is now clear that the solutions are fully determined by Rαd,
Rωd, S̃ (s), α̃(s) and ε.

In a thin disc, the magnetic field distribution along z is estab-
lished over a time scale h2/βd ' 5 × 108 yr which is ε−2 =
(s0/h0)2 times shorter than the time scale at which the radial dis-
tribution evolves, s2

0/βd. Because of this difference, the radial
derivatives in Eqs. (15) and (16) have ε2 as a factor. Therefore,
the magnetic field distribution in a thin disc can be represented
as a local solution (at a given galactocentric distance s), b(z; s),
modulated by an envelope Q(s). The local solution also depends
on s since α, S and h vary with s, but this variation is paramet-
ric. It is convenient to normalise the local solution to unit sur-
face magnetic energy density,

∫ h
−h |b|

2 dz = 1, at all values of s:
then Q(s) represents magnetic field strength at the galactocentric
radius s (an envelope of the local solutions). Thus, asymptotic
solutions of Eqs. (15) and (16) for ε � 1 have the form

B(s, z, t) = exp(Γt) Q(s) b(z; s) . (17)

The magnetic field varies exponentially with time at a rate Γ in
the kinematic dynamo stage. In a saturated thin-disc dynamo, the
solution has a similar form but with Γ = 0 (Poezd et al. 1993).
The local solution is discussed in Sect. 3.3, whereas Sect. 3.4
presents the radial solution Q(s).

To simplify the notation, we use exclusively the dimension-
less variables with the tilde suppressed in the remaining part of
this section unless otherwise stated.

3.3. Local solutions

Governing equations for the local solution, b = exp (γt) (bs, bz),
follow from Eqs. (15) and (16) when we put ε = 0:

γ(s)bs = −Rαd
∂

∂z

[
α(s, z)bφ

]
+
∂2bs

∂z2 , (18)

γ(s)bφ = RωdS (s)bs +
∂2bφ
∂z2 + Rαd

∂

∂z
[α(s, z)bs] . (19)

To allow for the disc flaring, we introduce the following new
variables:

ẑ =
z

h(s)
, b̂s =

bs

RαdΩ(s)
and γ̂ = γ(s) h2(s) . (20)

Since Rαd � Rωd at s & 1 kpc in most spiral galaxies, we can
omit the term proportional to Rαd in Eq. (19), thus obtaining the
αω-dynamo approximation:

γ̂(s)̂bs = −
∂

∂̂z

[
a(z)bφ

]
+
∂2b̂s

∂̂z2 , (21)

γ̂(s)bφ = D(s)̂bs +
∂2bφ
∂̂z2 , (22)

where a(z), the z-dependent part of α(s, z), is defined in Eq. (13)
andD(s), the local dynamo number, includes the radial variation
of the dynamo parameters:

D(s) = RαdRωd Ω(s)S (s)h2(s) . (23)

It is also convenient to introduce the local (in galactocentric
radius) values of Rαd and Rωd,

Rα(s) = RαdΩ(s), Rω(s) = RωdS (s)h2(s), (24)

so that D = RαRω. The normalisation condition for the local
solution reduces to∫ 1

−1

(
|̂bs|

2 + |bφ|2
)

d̂z = 1, (25)

where we have neglected b̂z because this component of magnetic
field is, on average, weaker than the other two. To this order in
ε, bz does not enter the equations for bs and bφ and can be solved
for separately. The result can be shown to be identical to that
obtained from ∇ · B = 0.

The vacuum boundary conditions are

b̂s = bφ = 0 at ẑ = ±1. (26)

Since a(z) is an odd function of z, solutions of Eqs. (21) and (22)
split into two independent classes, even and odd in z (or
quadrupolar and dipolar, respectively). These can be distin-
guished using the symmetry conditions at the galactic mid-plane,

∂̂bs

∂̂z
=
∂bφ
∂̂z

= bz = 0 at z = 0 (even parity), (27)

b̂s = bφ =
∂bz

∂̂z
= 0 at z = 0 (odd parity). (28)

Approximate solutions for both parity families can be obtained
in the form of an expansion over the free-decay modes obtained
as solutions of Eqs. (21) and (22) for a(z) = D(s) = 0. The
procedure is discussed in detail by Shukurov et al. (2008) and
Chamandy et al. (2014), and here we only provide the results.

From Eqs. (21)–(27), we obtain the following approximate
solutions of quadrupolar symmetry, for a(̂z) = sin(π̂z/2):

bs(z; s) ≈ Rα(s)K0(s)
[
cos

πz
2h(s)

+
3
√
−D(s)

4π3/2 cos
3πz

2h(s)

]
, (29)

bφ(z; s) ≈ −2K0(s)

√
−
D(s)
π

cos
πz

2h(s)
, (30)

γ(s) ≈
1

h2(s)

[
−
π2

4
+

1
2

√
−πD(s)

]
, (31)

where

K0(s) =

[
1 −

4D(s)
π
−

9D(s)
16π3

]−1/2

(32)

is the normalization factor obtained using Eq. (25). These solu-
tions are shown in Fig. 2. Equation (31) provides the criti-
cal value of the local dynamo number required for the local
amplification and maintenance of the magnetic field: γ ≥ 0 for
D ≤ Dc ≈ −π

3/4 ≈ −8. Other choices of the functional form
of a(̂z) lead to slightly different values of the critical dynamo
number (e.g. −11 for a = z), but the difference hardly has any
practical consequences.

In the odd-parity solutions, the term proportional to (−D)1/2

in bs vanishes for a(̂z) = sin(π̂z/2). Therefore, it is more con-
venient to use a similar solution with a(z) = ẑ that satisfies the
symmetry condition Eq. (28), here written to the lowest order in
(−D)1/2:

bs(z; s) ≈ K1(s)Rα(s)
√

2 sin
πz

h(s)
, (33)

bφ(z; s) ≈ −2K1(s)
√
−D(s) sin

πz
h(s)

, (34)

γ(s) ≈
1

h2(s)
, (35)
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Fig. 2. Comparison of the local quadrupolar eigenfunctions for D =
−20 (upper panel) and −50 (middle panel) obtained from numerical
solution of the local Eqs. (21) and (22) with the approximate eigen-
functions Eqs. (29) and (30): bφ from the numerical solution are shown
solid (red) and bs, dashed (blue); their approximate counterparts are
shown with dotted curves of the matching colour. The eigenfunctions
are normalised to bφ(0) = 1. Bottom panel: numerical (black, solid) and
approximate, Eqs. (31) (red, dashed), solutions for the local growth rate
as a function of the local dynamo number.

with

K1(s) = [1 − 4D(s)]−1/2 . (36)

The dipolar modes can be excited, γ ≥ 0, forD ≤ −2π4 ≈ −195,
a threshold much higher than for the quadrupolar modes. This
is true for any plausible form of a(̂z) and explains the predomi-
nance of quadrupolar magnetic fields in thin discs.

The local solutions are derived, formally, for |D| � 1
but they remain reasonably accurate for |D| as large as about
50 or more (Ji et al. 2014). We compare in Fig. 2 the local
quadrupolar eigenfunctions obtained from numerical solution of
Eqs. (21) and (22) with the approximate solutions Eqs. (29)–(31)
for D = −20 and −50, values typical of the main parts of spiral
galaxies (see Fig. 3).

The local eigenfunctions presented above are approximate
solutions of the mean-field dynamo equations. However, the
functional basis of these solutions, the free-decay modes, can
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Fig. 3. Radial profiles of the local dynamo number (upper panel) and the
local growth rate of the quadrupolar solutions (lower panel) for the flat
rotation curve Eq. (2) (solid) and for the MW rotation curve of Clemens
(1985; dashed). Upper panel: critical dynamo number Dc ≈ −π

3/4 is
shown dotted for reference.

be used as a complete functional basis to represent any mag-
netic field configuration. The free-decay modes are solutions of
Eqs. (21) and (22) with a(z) = 0 and D(s) = 0, so that the
equations decouple and can easily be solved. Normalised as in
Eq. (25), the dipolar and quadrupolar free-decay eigenfunctions
and eigenvalues (identified with superscripts d and q, respec-
tively) have the following respective forms with n = 1, 2, 3, . . .:

b(d)
n =

(
sin(πn̂z)

0

)
, b(d)′

n =

(
0

sin(πn̂z)

)
, γ̂(d)

n = −π2n2, (37)

b(q)
n =

(
cos

[
π
(
n − 1

2

)
ẑ
]

0

)
, b(q)′

n =

(
0

cos
[
π
(
n − 1

2

)
ẑ
]) , (38)

γ̂
(q)
n = −π2

(
n − 1

2

)2
. (39)

The free-decay disc modes are double degenerate as two orthog-
onal modes of the same parity (distinguished by prime) corre-
spond to each eigenvalue.

3.4. Radial solution

When Eq. (17) is substituted into Eqs. (15) and (16), and
Eqs. (18) and (19) are allowed for, equations for both Bs and
Bφ reduce to the same equation for Q(s), that is,

ε2 ∂

∂s

[
1
s
∂

∂s
(sQ)

]
+ [γ(s) − Γ]Q = 0, (40)

where γ(s) is the local growth rate obtained as a part of the local
solution, Eq. (31) or (35). This equation applies to both even and
odd local solutions, and to both α2ω and αω-dynamos, that is,
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Fig. 4. Four leading eigenmodes Qn(s) of the radial Eq. (40) given by
Eq. (43).

with and without the term proportional to Rαd in Eq. (19). The
boundary conditions adopted are

Q(0) = Q(sd) = 0. (41)

The condition at s = 0 follows from axial symmetry, whereas
that at the outer boundary of the dynamo-active region s = sd is
adopted for the sake of simplicity.

When Ω(s) and h(s) are known, the global growth rate Γ and
the radial distribution of the magnetic field strength Q(s) can
be obtained by solving Eq. (40) numerically. However, for our
present purposes it is more useful to obtain an approximate ana-
lytical solution for Q(s). This allows faster computations at the
cost of an additional approximation. When the magnetic field
model is used in Bayesian analyses, the computation speed is of
primary importance.

To obtain a simple analytical solution of Eq. (40), consider γ
to be a constant, γ = γ0, within the disc radius, s < sd, and zero
outside,

γ(s) =

{
γ0 , 0 ≤ s < sd,

0 , s ≥ sd.
(42)

A suitably averaged value of γ(s) within the disc can be adopted
for γ0. The relevance of this approximation depends on the spe-
cific case, particularly the rotation curve and the rate of the disc
flaring, as shown in Fig. 3. The inner parts of the disc, s . 1 kpc,
should be disregarded since the thin-disc approximation is not
applicable there. At s & 1 kpc, the approximation γ(s) = const
does not appear unreasonable, especially for the Milky Way rota-
tion curve, as shown in the lower panel of Fig. 3.

For γ(s) of Eq. (42), Eq. (40) with boundary conditions
Eq. (41) can be solved to yield the eigensolutions

Qn(s) = J1 (kns/sd) , n = 1, 2, 3, . . . , (43)

Γn = γ0 − ε
2k2

n, (44)

where J1(x) is the standard Bessel function (of order one) and
kn ≈ 3.83, 7.02, 10.17, . . . are its zeros, thus, J1(kn) = 0. The
first four modes of Qn(s) are shown in Fig. 4. Independently of
the form of γ(s), the lowest radial mode, Q1(s), is sign-constant
but Qn(s) has n − 1 zeros, and thus the scale of variation of
Qn(s) decreases with n. This feature of the solution is respon-
sible for the reversals of the large-scale magnetic field discussed
in Sect. 3.9.

The evolving radial distribution of magnetic field is obtained
as a superposition of the eigensolutions of Eq. (40):

Q(s, t) =

∞∑
n=1

CneΓntQn(s), (45)

where, in the context of dynamo models, the coefficients Cn are
determined by the initial conditions. Alternatively, the eigen-
functions Qn(s)b(z; s) can be used as the basis functions to repre-
sent a given magnetic field with exp(Γnt) absorbed into Cn. The
set of radial eigenfunctions Qn is complete, so that any radial
distribution of magnetic field can be represented in this form.
The only constraint on the form of the solution is due to the fact
that the set of the local solutions b is incomplete. Nevertheless,
a wide class of magnetic field distributions along z can be rep-
resented as a superposition of various quadrupolar and dipolar
local modes, so that the lack of the functional completeness of
the local solutions is not likely to be restrictive in practice. Oth-
erwise, the complete set of local free-decay modes b(q,d)

m (z; s) of
Eqs. (37)–(39) can be used instead of the local dynamo solu-
tions to construct a more general expansion over a complete set
of basis functions of the form

B(s, z) =

∞∑
m=1

∞∑
n=1

CmnQn(s)b(q,d)
m (z; s),

which can be used to parametrise (in terms of the coefficients
Cmn) an arbitrary magnetic field that does not need to be a solu-
tion of the dynamo equations.

3.5. Vertical magnetic field

The axially symmetric vertical component of the magnetic field,
Bz, can be obtained from

∇ · B =
1
s
∂

∂s
(sBs) +

∂Bz

∂z
= 0, (46)

using Bs(s, z) = bs(z; s)Q(s) from Eq. (29) or (33), and Eq. (43).
We have assumed that γ0 = const to derive the simple form
Eq. (43), implyingD = const. It is therefore justifiable to neglect
the dependence of D, Ω and h on s when differentiating Bs in
Eq. (46) and only retain the dependence of Q on s (this simpli-
fication can easily be relaxed if required). By virtue of linearity,
Eq. (46) can be solved for each radial mode n separately:

−
∂B(n)

z

∂z
=

1
s
∂

∂s
(sB(n)

s ) = RαK0Cn
1
s

d
ds

[sJ1(kns/sd)]

×

(
cos

πz
2h(s)

+
3

4π3/2

√
−D(s) cos

3πz
2h(s)

)
· (47)

Then, for the quadrupolar parity,

B(n)
z = −RαK0Cn

kn

sd
J0

(
kns
sd

)
×

∫ z

0

cos
πz′

2h
+

3
√
−D

4π3/2 cos
3πz′

2h

 dz′ (48)

where the dependence of Rα D, h and K0 on s should be allowed
for.

3.6. Magnetic field in the disc

We can now collect the solutions from Sects. 3.3–3.5 to write the
approximate solution of the dynamo equation (evolving or at a
fixed time) for a thin disc as a sum of Nr radial eigenmodes,Bs
Bφ
Bz

 =

Nr∑
n=1

Cn


B(n)

s

B(n)
φ

B(n)
z

 , (49)
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where, for the quadrupolar symmetry,

B(n)
s = K0(s)Rα(s)J1(kns/sd)

×

[
cos

πz
2h(s)

+
3
√
−D(s)

4π3/2 cos
3πz

2h(s)

]
, (50)

B(n)
φ = −2

√
−
D(s)
π

K0(s)J1(kns/sd) cos
πz

2h(s)
, (51)

B(n)
z = −

2knh(s)
πsd

K0(s)Rα(s)J0(kns/sd)

×

[
sin

πz
2h(s)

+

√
−D(s)
4π3/2 sin

3πz
2h(s)

]
, (52)

and similarly for the dipolar symmetry. The local dynamo
parameters D(s) and Rα(s) are defined in Eqs. (23) and (24),
whereas an example of the form of h(s) is given by Eq. (3). In
what follows (and in the galmag code), we normalise each eigen-
mode so that each expansion coefficient represents the strength
of the corresponding part of the magnetic field at the reference
radius s0, that is, |Cn| = |B(n)(s0, 0)|.

The coefficients Cn can be chosen to fix the strength and
to reproduce any radial distribution of the magnetic field. For
instance, when used to approximate the magnetic field observed
in the disc, Cn are used to fit the observations to a desired accu-
racy. When used to simulate a growing magnetic field, its evolu-
tion is introduced through Cn = C(0)

n eΓnt, where the initial values
C(0)

n at t = 0 are obtained from the similar expansion for the seed
magnetic field. Galactic evolution can be included by an appro-
priate time variation ofD(s), Ω(s), h(s) and sd.

3.7. Dynamo parameters

In order to use the solution presented above, the dimensionless
dynamo control parameters Rαd and Rωd have to be specified. We
adopt the reference radius s0 = s� ≈ 8.5 kpc and, correspond-
ingly, V0 = 220 km s−1 and S 0 = −35 km s−1 kpc−1 as obtained
from the rotation curve. An estimate of the turbulent magnetic
diffusivity widely used in various applications derives from the
mixing length theory,

β = 1
3 lv, (53)

where l and v are the turbulent scale and speed, respectively. With
l ' 50 pc (see Hollins et al. 2017, and references therein) and
v ' 10 km s−1 (e.g. Mac Low & Klessen 2004), we have β '
5 × 1025 cm2 s−1. Equations (53) and (14) then yield

Rαd = 0.39, Rωd = −53 . (54)

A summary of parameters used by galmag and their fiducial val-
ues can be found in Table 1.

3.8. The role of the disc flaring and details of the rotation
curve

Figure 5 shows the vertical cross section of magnetic field
in the disc, constructed using the first two radial eigenmodes
with (C1,C2) = (4.6 µG,−1.5 µG). These distributions have an
absolute maximum of |B| at large s. This happens because the
local dynamo number of Eq. (23) increases with galactocen-
tric distance in an exponentially flared disc, D ∝ ΩS h2 ∝

s−2 exp(2s/sh) for a flat rotation curve, Ω ∝ S ∝ s−1. If h
indeed increases with s faster than s2, the outer parts of galactic
discs can have relatively strong magnetic fields at early stages

of magnetic field growth when these kinematic solutions apply.
Such distributions may occur in young and evolving galaxies.
Non-linear dynamo effects eventually limit the local magnetic
field strength to a value related to equipartition between mag-
netic and turbulent kinetic energies, B2 ≈ 4πρv2(D/Dcr − 1) ∝
s−2 exp(2s/sh − s/sρ) assuming that ρ ∝ exp(−s/sρ). The radial
profile of magnetic field strength then depends on the relation
between the radial length scales of the gas density and disc thick-
ness. The number density of H i in the MW has sρ ' 3 kpc
(Kalberla & Kerp 2009) which is close to sh/2 ' 2.5 kpc. There-
fore, we cannot exclude the possibility that the magnetic field
remains strong in the outer MW. The effective boundary of the
dynamo active region is then determined by the rapid increase
of the local dynamo time scale γ−1(s) ' h2(s)/βd with s in a
flared disc: this time scale exceeds 1010 yr where h & 1 kpc for
βd = 5×1025 cm2 s−1, and the growth of magnetic field becomes
practically negligible. For h(s) given by Eq. (3), this happens
at s & 11 kpc provided βd is independent of s. When the mag-
netic field is stronger in the outer parts of the disc, the boundary
condition Q(sd) = 0 may be too restrictive. We have considered
solutions with ∂(sQ)/∂s|s=sd = 0 to confirm that the magnetic
field distribution in the main part of the disc is not significantly
affected but the outer field maximum becomes more pronounced.

The increase of the local dynamo number with distance from
the galactic centre enhances the large-scale magnetic field in
the outer parts of a galactic disc in either the kinematic or sat-
urated dynamo. As a result, the magnetic field energy density
may decrease with radius slower than other energy densities in
the interstellar medium, as suggested by Beck (2007).

3.9. Field reversals along the galactocentric radius

Magnetic field reversals can be reproduced naturally in the
model because the radial eigenfunction Qn(s) has n − 1 zeros.
With an appropriate selection of the expansion coefficients Cn,
any desired number of reversals located at any prescribed posi-
tions can be produced. While the strength of the magnetic field
is controlled by the magnitudes of the expansion coefficients Cn,
the number of reversals and their positions along the radius are
controlled by the ratios of the coefficients, for instance, Cn/C1.
Since Q2(s) has one zero while Q3(s) has two zeros, retaining
only the two leading terms in the expansion Eq. (49) allows us
to obtain a magnetic field with one radial reversal, whereas in
order to have two reversals, Q3(s) needs to be included. To help
selecting the coefficients as required to obtain a magnetic field
that has a given number of reversals at desired positions, we
present Fig. 6 where the ranges of C2/C1 and C3/C1 that pro-
duce one or two reversals can be read off the left-hand panel.
The desired positions of the reversals can be converted into the
coefficient ratios using the middle and right-hand panels. Simi-
lar diagrams can be constructed for any number of reversals if
required.

Figure 7 illustrates the structure of axisymmetric magnetic
fields that have radial reversals. Model A, with a reversal at
s = 7 kpc, represents the same field as in the bottom right panel
of Fig. 5. Model B, constructed using the three leading eigen-
functions, has reversals at s = 7 and 12 kpc. In both models,
the magnetic field is normalised so that the azimuthal magnetic
field, shown in Fig. 7c, has the strength B(d)

φ |s=s0, z=0 = −3 µG in
the mid-plane z = 0 at the reference radius s = s0 = 8.5 kpc.

Figure 7d shows the vertical cross-section (a meridional
plane) of the magnetic structure in Model B to demonstrate that,
in a thin disc, the horizontal magnetic field components domi-
nate over the vertical field, |Bφ| > |Bs| � |Bz|, only on average.
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(b) Flat rotation curve, flared disc
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(c) MW rotation curve, constant scale height
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(d) MW rotation curve, flared disc
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Fig. 5. Sensitivity of the magnetic field structure to the rotation curve and disc flaring, illustrated with magnetic fields constructed using fiducial
parameters and (C1,C2) = (4.6 µG,−1.6 µG). The strength of the azimuthal component of the magnetic field is colour coded, while arrows indicate
the direction and strength of the poloidal magnetic field. Details of the disc models are indicated above each frame and the disc scale height is
indicated with a dotted line on the left and a dashed line on the right. Strong differential rotation near the galactic centre leads to a strong magnetic
field, especially in a flat disc. In a flared disc, which is thinner at small s, the field strength near the galactic centre is reduced but the outer region
has a stronger field.

Locally, and especially near the reversals and the disc axis, the
vertical magnetic field dominates. This is a direct consequence
of the solenoidality of magnetic field: if Bφ and Bs are weak, Bz
needs to be stronger to ensure that ∇ · B = 0. The dominance
of Bφ over Bs is less general in origin: this is a consequence of
the stretching of the radial magnetic field by differential rota-
tion, and the larger is the velocity shear the larger is the ratio
|Bφ/Bs| and the smaller is the magnitude of the magnetic pitch
angle p = arctan(Bs/Bφ).

4. Magnetic field in the halo

Magnetic field in the spherical halo is obtained as the perturba-
tion solution of the mean-field dynamo equation with free-decay
eigenfunctions as the unperturbed solutions. This approach is
similar to that employed to obtain the local disc solution in
Sect. 3.3.

In the spherical halo, it is convenient to use spherical coor-
dinates (r, θ, φ). As for the disc, we define convenient dimen-
sionless variables distinguished by the tilde: spherical radius and
time are measured in the units of the halo radius rh and the

corresponding magnetic diffusion time, respectively,

r̃ = r/rh and t̃ = tβh/r2
h, (55)

with βh the turbulent magnetic diffusivity in the halo. The veloc-
ity field and the α-coefficient are normalised as

α̃ = α/αh, Ṽ = V/Vh, (56)

where αh is the α-coefficient at the north pole, (r, θ) = (rh, 0),
and Vh is the equatorial rotation velocity at the boundary (r, θ) =
(rh, π/2).

In terms of the dimensionless variables, the mean-field
dynamo Eq. (1) reduces to

∂B
∂̃t

= Rαh∇̃ × (α̃B) + Rωh∇̃ × (Ṽ × B) + ∇̃2B, (57)

where we defined, analogously to Eq. (14), the dynamo parame-
ters

Rαh = rhαh/βh, Rωh = −rhVh/βh. (58)
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Fig. 6. Number and positions of magnetic field reversals along the disc radius, for a magnetic field constructed by a superposition of the first three
fastest growing eigenfunctions, Qn(s) with n = 1, 2, 3, for the fiducial choice of parameters shown in Table 1. Left-hand panel: number of the field
reversals (colour coded as indicated with the colour bar on the right of the panel) for various ratios of the expansion coefficients Cn/C1. Middle
and right-hand panels: galactocentric distances of the inner and outer reversal, srev,1 and srev,2 respectively, colour coded with the colour bar to the
right of each panel. White colour indicates the absence of the corresponding reversal.
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Fig. 7. Two examples of the disc magnetic field with radial reversals. Top panels: field strength in the galactic mid-plane is shown colour coded
with arrows showing the direction and strength of the magnetic field projected onto the mid-plane. Model A, shown in (panel a), has a reversal at
s = 7 kpc and corresponds to the same field as in the bottom right panel of Fig. 5. Model B, shown in (panel b), has the same parameters except for
having two reversals at s = 7 and 12 kpc. Panel c: azimuthal magnetic field in the two models. Panel d: vertical cross-section of Model B is shown,
with the magnitude of azimuthal magnetic field indicated with colour and arrows showing the projection of the magnetic field onto the (xz)-plane.

To avoid excessively heavy notation, we suppress the tilde on
the dimensionless variables and work exclusively with dimen-
sionless variables unless otherwise stated.

Solutions of Eq. (57), growing or decaying at a rate Γ, are
sought in the form of an expansion

B = exp(Γt)
N∑

i=1

aiBi(r), (59)

in the free-decay modes Bi which are obtained as solutions of
Eq. (57) with Rαh = Rωh = 0,

∇2Bi = γiBi . (60)

where γi < 0 is the rate of exponential decay of the mode Bi.
Outside the halo, an electromagnetic vacuum is assumed, imply-
ing a potential magnetic field, ∇ × Bi = 0. The boundary con-
ditions that ensure a continuous matching, at the halo boundary
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Fig. 8. Eight spherical free-decay eigenfunctions Bi of the smallest decay rates. Each mode is either purely toroidal or purely poloidal. Top row:
modes symmetric with respect to the mid-plane z = 0 (quadrupolar modes), while the modes in the bottom row are anti-symmetric (dipolar). For
the poloidal modes, arrows represent the projection of the magnetic field on the (xy)-plane. For the toroidal modes, contours show the strength of
the azimuthal component of the magnetic field with the normalisation Eq. (A.20). The decay rate of each mode γ is shown at the top of each panel.

r = 1, of the interior magnetic field to a potential exterior mag-
netic field that decays at infinity as the point dipole (the lowest
magnetic multipole) are given by (Moffatt 1978)

[Bi] = 0 at r = 1, Bi = O
(
r−3

)
for r → ∞, (61)

where the square brackets denote the jump of the corresponding
quantity.

The spatial form and decay rates of the spherical modes
of free decay are derived in Appendix A; here we briefly dis-
cuss their properties. The free decay modes form a complete,
orthonormal set of basis functions (related to spherical harmon-
ics), each either purely poloidal (comprising the field compo-
nents Br and Bθ) or purely toroidal (consisting of Bφ alone). They
can be divided into two classes based on their symmetry about
the equator θ = π/2: the symmetric modes are quadrupolar (indi-
cated with superscript “q”) whereas the anti-symmetric modes
have a dipolar symmetry (superscript “d”). Their analytic forms
can be found in Appendices A.1 and A.2, respectively. Figure 8
shows the structure of the four free-decay modes of each sym-
metry that have the largest γi.

4.1. The perturbation solution

Equation (57) can be conveniently written as

∂B
∂t

= ŴB + ∇2B, (62)

where the perturbation operator Ŵ corresponding to the α2ω-
dynamo is given by

ŴB = Rαh∇ × (αB) + Rωh∇ × (V × B). (63)

As discussed in Appendix B, galmag has also an option to use
the αω-dynamo operator but this approximation may be ques-
tionable in the case of the halo.

We substitute Eq. (59) into Eq. (62), take the scalar product
of the result with Bi and integrate over the whole space. As a
result, we obtain a homogeneous system of algebraic equations
for the expansion coefficients ai of the form

a j(γ j − Γ) +

N∑
i=1

aiWi j = 0, j = 1, 2, . . . ,N, (64)

where

Wi j =

∫
V

Bi · ŴB j d3r (65)

are the matrix elements of the perturbation operator, with inte-
gration performed over the whole space. Since the operator Ŵ
transforms a poloidal field into a toroidal one and vice versa (and
the two are orthogonal), it follows that Wii = 0 and each non-
vanishing matrix element involves at least one toroidal and one
poloidal free-decay eigenfunction. Because the toroidal eigen-
functions vanish at r > rh, the integrals are in fact restricted to
the interior of the halo. The solvability condition of the system
of equations for ai, the vanishing of its determinant, yields the
growth rate Γ. Once the matrix elements have been computed
and the system Eq. (64) has been solved for ai, Eq. (59) yields
the solution of the dynamo equation. One of the coefficients ai
remains arbitrary because the dynamo equation is linear in mag-
netic field and hence its solution is determined up to an arbitrary
factor. This freedom is used to fix the magnetic field strength at
any desired value.
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4.2. Parameters of galactic haloes

Velocity fields in galactic haloes are poorly known. Ran-
dom velocities are likely to increase with altitude, and H i
observations of Kalberla et al. (1998; see also Kalberla & Kerp
2009) suggest a three-dimensional velocity dispersion of about
100 km s−1, close to the sound speed at a temperature 106 K. The
scale of these motions is uncertain. The size of supernova rem-
nants above the galactic disc is expected to be of order 0.3 kpc
(McKee & Ostriker 1977). The size of the hot gas bubbles rising
from the disc and the scale of the Parker instability are of order
0.5–1 kpc (e.g. Rodrigues et al. 2016). Adopting the random
speed and scale as v = 100 km s−1 and l = 0.5 kpc, the turbu-
lent diffusivity is estimated by βh '

1
3 lv = 5 × 1027 cm2 s−1. The

corresponding magnetic diffusion time across the halo radius is
r2

h/βh ' 1.4 × 1010 yr.
The knowledge of the variation of the rotation speed with

position within galactic haloes is rather rudimentary. Both the
rotational speed and its radial gradient decrease in spiral galaxies
with distance from the mid-plane, with a typical vertical gradient
of order ∂V/∂z = −(15–25) km s−1 kpc−1 within a few kilopar-
secs from the mid-plane (Zschaechner et al. 2015). In our fidu-
cial model, the halo is assumed to have a rotation curve of the
form

V(r) = Vh f (r, θ) φ̂ (66)

(expressed in terms of dimensional variables), with φ̂ the unit
azimuthal vector and

f (r, θ) =
1 − exp (−s/sv)
1 − exp (−rh/sv)

, with s = r sin θ , (67)

where the turnover radius is chosen to be sv = 3 kpc, the typical
value found in observations and simulations of MW-type galax-
ies (Reyes et al. 2011; Schaller et al. 2015). For simplicity, the
rotation curve of Eqs. (66) and (67) has no z-dependence but
it can easily be introduced. The role of the variation of Ω with
z is to produce Bφ from Bz, arguably a process somewhat less
important than the stretching of the radial magnetic field in the
azimuthal direction at a rate S = s∂Ω/∂s.

We adopt a simple form for the α-coefficient often used in
spherical mean-field dynamo models; in dimensional variables,

α(r) = αh cos θ, (68)

implying the largest absolute value of α near the poles whilst
α also vanishes at the equator, reflecting the fact that the mean
helicity of the random flows is produced by the Coriolis force.

We consider an axially symmetric magnetic field in the
halo and assume that the dynamo operates within a region of
rh = 15 kpc in radius. We take Vh = 220 km s−1 (similar to
that in the disc). With the turbulent magnetic diffusivity βh =
5 × 1027 cm2 s−1, this leads to Rωh ' 200.

Estimating Rαh in the halo is more difficult given the uncer-
tainty of the random flow parameters. The standard estimate of
Eq. (11) yields αh ' l2Ω/h ' 1 km s−1 and Rαh = αhrh/βh ' 1
for Ω = 26 km s−1 kpc−1 and h = 3 kpc, the gas density scale
height in the halo. As the fiducial value for Rαh, we select its
marginal value corresponding to the vanishing dynamo growth
rate (see Sect. 4.3 for details): Rαh

(q) = 4.3 for symmetric solu-
tions and Rαh

(d) = 8.1 for anti-symmetric ones. The symmet-
ric mode is preferred to the anti-symmetric one only slightly,
Rαh

(q)/Rαh
(d) ' 0.5 for the marginal values. The similarity of

the marginal values of Rαh for the dipolar and quadrupolar mag-
netic structures in the halo reflects the fact that, unlike the disc
dynamo, spherical dynamos usually do not exhibit a strong pref-
erence for either symmetry.

4.3. Basic magnetic structures

Figure 9 shows two examples of magnetic structures in the halo
that are marginally stable with respect to the mean-field dynamo
action, ∂B/∂t = 0, one symmetric with respect to the equator
and the other anti-symmetric:

B(d)
h ≈ −0.48B(d)

1 − 0.38B(d)
2 − 0.70B(d)

3 − 0.12B(d)
4 ,

B(q)
h ≈ 0.14B(q)

1 + 0.86B(q)
2 + 0.10B(q)

3 − 0.41B(q)
4 .

The eigenfunctions are normalised to have B(d)
h = −0.5 µG and

B(q)
h = −0.01 µG at (s, z) = (8.5, 0.02) kpc in the anti-symmetric

and symmetric cases, respectively, so that they have similar max-
imum magnetic field strengths.

The poloidal magnetic lines (the left-hand panels) have the
so-called X shape detected in the halos of some galaxies, espe-
cially pronounced in the quadrupolar structure. This is a generic
field structure typical of any divergence-free vector field that can
be enhanced further by a large-scale velocity shear of the galac-
tic wind or fountain. Unlike the symmetric eigenfunction, the
anti-symmetric one has a maximum away from the equator. The
position of the maxima depends on the spatial forms of α(r) and
V(r); in our case, the rotation speed is independent of z, and α(r)
alone controls this feature.

It is not clear which of the two symmetries may dominate in
galactic haloes: this depends on the strength of the magnetic cou-
pling between the disc and the halo and between the two hemi-
spheres of the halo. If the disc-halo coupling is strong or the disc
disrupts magnetic connection between the two halo hemispheres,
the quadrupolar disc field could enforce a symmetric field struc-
ture in the halo. Halo fields of mixed parity are also a possibility,
but their modelling requires non-linear dynamo solutions rather
than superpositions of linear eigenmodes that we use here. The
strength of the disc-halo magnetic connection depends on the
ratio of the turbulent magnetic diffusivities in the two regions:
the larger the value of βh/βd, the weaker the coupling. Existing
models of the mean-field dynamo action in galactic disc-halo
systems only considered the range βh/βd ≤ 30.

The top two panels of Fig. 10 illustrate how the growth rates
and oscillation frequencies of the symmetric and anti-symmetric
modes depend on Rαh when all other parameters are fixed to the
fiducial values of Table 1. These solutions involve the first four
symmetric or anti-symmetric free-decay modes with expansion
coefficients shown in the lower half of Fig. 10. As shown in
Fig. 10b , both the symmetric and anti-symmetric eigenmodes
are typically oscillatory (ImΓ , 0). The fact that ImΓ = 0
for the anti-symmetric mode at Rαh & 10 appears to be an
artefact of including only a small number of the free-decay
modes into the perturbation series. The series Eq. (59) converges
rather slowly (Rädler & Wiedemann 1989; Rädler et al. 1990)
and adding a few more terms does not always improve the accu-
racy (Sokoloff et al. 2008). Therefore, the model for the halo
magnetic field that involves only a modest number of modes can
reproduce only relatively simple magnetic configurations (and
yet quite non-trivial – see Fig. 11). This does not appear to be
a serious problem, though, since the scale of the mean mag-
netic field in galactic haloes is unlikely to be smaller than a few
kiloparsecs.

The dependencies of the growth rate and oscillation fre-
quency of the magnetic field on the turnover radius of the rota-
tion curve sv are shown in Fig. 12. Larger values of sv correspond
to weaker differential rotation and, therefore, lower growth rates
and oscillation frequencies.
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Fig. 9. Examples of magnetic field configurations in the halo in the vertical (left panel) and horizontal (right panel) planes. Top row panel:
magnetic structure anti-symmetric with respect to the galactic mid-plane (the dipolar symmetry), while the bottom row shows the symmetric
magnetic field (quadrupolar symmetry). The strength of the azimuthal magnetic field is shown with colour in the left-hand column whilst the total
field strength is colour-coded in the right-hand column. Arrows represent the direction and strength of the magnetic field projected onto the figure
plane.

5. Discussion

Magnetic fields obtained above for the disc and halo are com-
bined by a simple superposition with arbitrary weights. For
illustration, we show in Fig. 11 a magnetic structure that has
two radial field reversals in the disc (Model B of Fig. 7)
and a symmetric (quadrupolar) field in the halo shown in the
bottom row of Fig. 9. The complexity of the resulting mag-
netic structure clearly illustrates the possibilities of the model.
The most important limitations of the model in its current
form is that it is axially symmetric and does not include
galactic outflows. Both can be addressed rather straightfor-
wardly within the framework of this approach. In the fol-
lowing we discuss some applications and extensions of our
approach.

5.1. Synthetic radio maps

The model can be used to interpret observations of synchrotron
emission and Faraday rotation as soon as the distributions of cos-
mic ray and thermal electrons have been specified. The total and
polarised synchrotron intensities, polarisation angle and Faraday
rotation measure can be derived as described in Appendix C. As
a simple illustrative example, we assume a uniform distribution
for the cosmic-ray electrons, nγ = const in terms of the number

density, and adopt exponential profiles for the number density of
thermal electrons,

ne(s, z, φ) = n0 exp
[
−

z
h(s)

−
s
se

]
, (69)

where h(s) is given by Eq. (3) and se = 3 kpc, is the scale
radius of the disc (chosen to be similar to the case of the
Milky Way, Binney & Tremaine 2008). Any other model (e.g.
Cordes & Lazio 2002) could be used instead but we prefer to
avoid exaggerating the amount of detail in the magnetic field
model that may arise from details such as spiral arms in more
complicated models for ne.

In the top panel Fig. 13, we show the synchrotron emission
in a galaxy seen edge-on with the magnetic field of Fig. 11.
The other two panels show the polarised emission at two wave-
lengths, λ = 5 cm and λ = 20 cm, as in C- and L-bands of the
VLA used, for example, in the CHANG-ES survey (Irwin et al.
2012). At 5 cm, most of the polarisation signal is dominated
by the disc component and localised around the mid-plane of
the disc. At longer wavelengths, most of the emission from the
galactic plane is depolarised and two conical lobes of about
5 kpc in height are prominent in the halo, similar to the so-called
X-shaped structures observed in edge-on galaxies (Wiegert et al.
2015).
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Fig. 10. Panel a: growth rates ReΓ and ( panel b) oscillation frequen-
cies ImΓ of the symmetric (solid) and anti-symmetric (dashed) fastest-
growing dynamo eigenmodes in a spherical halo as a function of Rαh,
with all the remaining parameters fixed at their fiducial values shown
in Table 1. Panels c and d: the magnitudes of the expansion coefficients
ai in Eq. (59) for the dipolar and quadrupolar modes, respectively. We
note that each sharp bend in ReΓ that occurs as Rαh changes is connected
with an intersection of two curves ai with distinct values of i.

5.2. Evolution of galactic magnetic fields

Another possible application is a simple, approximate model for
the evolution of a large-scale magnetic field in a galaxy. In this
application, an initial (seed) magnetic field has to be prescribed
and then it can be evolved using the growth rates of the magnetic
modes derived above. Suitable initial conditions must then be
selected. The simplest approach is to assume that all the modes
are equally represented in the initial state, that is, Cn indepen-
dent of n and chosen to obtain an initial large-scale magnetic
field of any given strength. A physically better motivated initial
magnetic field represents a random field produced by the fluc-
tuation dynamo in a young galaxy or protogalaxy (Poezd et al.

Fig. 11. Three-dimensional rendering of a symmetric (quadrupolar)
halo field combined with a quadrupolar disc field with two reversals
at s = 7 kpc and 12 kpc. The domain is a (17 kpc)3 box. The field lines
were seeded uniformly along a diagonal through the box. The arrows
show the magnetic field at points randomly sampled within the slice of
a thickness 2.5 kpc around the galactic mid-plane (which is indicated by
the semi-transparent surface) and are scaled according to the magnitude
of the magnetic field.

1993). Because of the finite size of the dynamo region, the pro-
jection of such a random field onto the dynamo eigenmodes does
not vanish. Ruzmaikin et al. (Sect. VII.14 in 1988) estimate the
corresponding initial dimensional magnitudes of the radial disc
modes as

C(0)
n =

b

N1/2
n

l
δsn

, (70)

where b is the root-mean square strength of the random magnetic
field b, Nn is the number of the correlation cells of b within a
cylindrical annulus of an axial extent 2h, radius s and width δsn,
with δsn the radial scale of Qn(s), and l is the scale of b. With
δs ' sdisc/n, N ' hssdisc/(nl3), l = 100 pc, sdisc = 20 kpc, we
have

C(0)
n ' n3/2

(
s

sdisc

)−1/2  l5

hs4
disc

1/2

' 10−5n3/2b
(

s
sdisc

)−1/2

· (71)

Thus, the seed for the large-scale dynamo due to the small-scale
magnetic field favours higher-order modes being proportional to
n3/2, because they have smaller scale, and decreases with radius
as s−1/2. A plausible estimate is b ' 5 µG by analogy with
observational estimates for nearby spiral galaxies. Otherwise, if
a dependence on the interstellar gas parameters is required, a
suitable estimate is

b ' (4πρ)1/2v, (72)

where ρ is the gas density in the diffuse warm interstellar gas and
v is the turbulent speed. The standard estimates of the latter are
ρ ' 1, 7 × 10−24 g cm−3 corresponding to the number density of
1 cm−3 and v ' 10 km s−1. This yields b ' 3 µG.
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Fig. 12. The effect of the form of the rotation curve on the dynamo
growth rate ReΓ and oscillation frequency ImΓ of the fastest-growing
magnetic field in the spherical halo. The shade of each curve corre-
sponds to the value of the turnover radius of the rotation curve, sv, with
the lightest shade for sv = 0.5 kpc and the darkest for sv = 7.5 kpc
with the increment of 1.75 kpc (the fiducial value is sv = 3 kpc). Dashed
curves are for the anti-symmetric eigenmodes and solid curves show
symmetric solutions.

5.3. Extensions of the model

There are several directions in which the model can be extended.
Perhaps most important is to include non-axisymmetric mag-
netic fields. This is straightforward to implement. In the disc,
the local equations of Sect. 3.3 and their solutions remain
unchanged but the radial part of the eigenfunction Qn of Sect. 3.4
becomes a function of both radius and azimuth. Solutions for
Qm(s, φ) were obtained in largely the same manner as above
by Baryshnikova et al. (1987), Krasheninnikova et al. (1989),
and Bykov et al. (1997), and are reviewed by Ruzmaikin et al.
(Sect. VII.8 in 1988) and Krasheninnikova et al. (1990). Intro-
ducing non-axisymmetric magnetic fields in the halo would only
require that non-axisymmetric free-decay modes are included
into the perturbation solution. This is straightforward to do and
does not require any significant modification of the formalism of
Sect. 4.1.

Another physically important generalisation is the inclusion
of galactic outflows and accretion flows, that is, large-scale
poloidal velocity fields U. The additional velocity compo-
nents appear in the perturbation operators. Within the disc, Uz
enters the local Eqs. (18) and (19) whereas Us is included in
the radial Eq. (40). The modified solutions are discussed by
Bardou et al. (2001) and Moss et al. (2000), respectively. In the
halo, the poloidal velocity just enters the perturbation oper-
ator Eq. (63) without affecting the procedure of perturbation
analysis.

The solutions used in the model are kinematic (linear in
magnetic field) as they are derived for V, α and β independent
of B. The linear nature of the solution is not restrictive in the
present context since its aim is to provide a convenient func-
tional basis to parametrise a desired magnetic configuration. On
the other hand, Chamandy et al. (2014) show that a wide class of
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Fig. 13. Synchrotron emission produced by the magnetic configuration
shown in Fig. 11 with the disc seen edge-on (see the text for other
assumptions). Top panel: the total intensity (Stokes parameter I). Mid-
dle and bottom panels: the polarised intensity at λ = 5 and λ = 20 cm,
respectively. The dashes are perpendicular to the polarisation angle and
their lengths are proportional to the fractional polarisation. No cor-
rection for random magnetic fields has been made in the fractional
polarisation.

non-linear solutions are well approximated by the marginally
stable eigenfunction (i.e., that obtained for ∂B/∂t = 0). Non-
linear dynamo effects, leading to solutions sensitive to the gas
density and other relevant parameters, can be introduced in the
radial thin-disc Eq. (40) as discussed by Poezd et al. (1993), via
a non-linear modification (quenching) of the local growth rate
which becomes a function of Q:

γ(s,Q) = γ(s)
[
1 − Q2/B2

0(s)
]
,

where γ(s) is the kinematic local growth rate obtained as dis-
cussed in Sect. 3.3. Since the time scale of magnetic field evo-
lution in the halo is comparable to 1010 yr (Sect. 4), non-linear
dynamo effects are likely to be less important in galactic haloes.
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5.4. The galmag software package

The model presented in this paper has been implemented as the
Python software package galmag1 (Rodrigues 2018), which is
publicly available under the GNU General Public License v3.
Further details can be found in the on-line code documentation2,
which includes a tutorial.

Since galmag uses Python objects of the d2o package
(Steininger et al. 2016) instead of regular numpy arrays, when it
is invoked using MPI, all the array operations are automatically
performed in parallel. As a stand-alone package, it can synthe-
sise three-dimensional magnetic field structures from a provided
set of expansion coefficients and compute synthetic maps of the
Stokes parameters of synchrotron emission and Faraday rotation.

A more flexible use of galmag is to employ it in mod-
ular magnetic field optimisation frameworks like the IMAG-
INE pipeline (Steininger et al. 2018; Steininger 2018), where it
serves as a magnetic field generator and is interfaced to multi-
purpose observable generators, such as the Hammurabi code3

(Waelkens et al. 2009). This allows us to not only compute maps
of observables from any point of view and thus to compare
with observations, but also provides sophisticated sampling tech-
niques to optimise the galmag parameters.

6. Conclusions

We have presented an approach to develop parametrised models
for large scale magnetic fields of the Milky Way and other disc
galaxies based on fundamental equations of magnetic field gen-
eration and evolution. Implemented in the software package gal-
mag, it is designed to be used in interpretations of observations
of Faraday rotation, synchrotron and dust emission, and other
observational tracers. In this paper, we have presented the basic
formalism of the approach, and demonstrated its capabilities in
illustrative examples.

The model is based on the expansion of the large-scale
magnetic field over a basis of eigenfunctions of the mean-field
dynamo Eq. (1), and the standard induction equation is its special
case obtained for α = 0. As long as the functional basis is com-
plete, any magnetic structure, whether or not produced by the
dynamo, can be represented as a superposition of the eigenfunc-
tions. Therefore, an alternative use of the magnetic field model
is to represent any magnetic configuration of interest in terms of
a relatively small number of parameters. The resulting magnetic
field is physically realisable, being a solution of the induction
equation or its modification with α , 0, as desired. Furthermore,
the fact that the model parameters have clear physical meaning
would help to refine it so as to satisfy any additional constraints.
Magnetic fields of the model are obtained in the form of series
expansions, and the series can be truncated to achieve the desired
amount of detail in the resulting solution.

The novelty and strength of our approach lies in advancing
both the flexibility and physical plausibility of GMF models. It
will be useful in Bayesian optimization machines, which seek
among many reasonable morphological approaches to the GMF
structure the one that gives the best results both in terms of phys-
ical plausibility and the explanation of existing data.
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Appendix A: Spherical free-decay modes

For axisymmetric free-decay modes, a solution to Eq. (60)
is obtained in terms of scalar potentials, as discussed by
Krause & Rädler (1980) and Moffatt (1978). For the reader’s
convenience, we present an outline of the solution. Any mag-
netic field B can be represented as the sum of a poloidal field
∇× AP, where AP is its vector potential, and a toroidal field BT:

B = ∇ × AP + BT, (A.1)

and ∇ · B = 0 provided

AP = −r×∇S , BT = −r×∇T, (A.2)

where r is the position vector normalised such that r = 1 is
the halo surface (r = rh in dimensional variables) and S and T
are known as the scalar potentials. In terms of the scalar poten-
tials and assuming axial symmetry, Eq. (60) reduces in spherical
coordinates (r, θ, φ) to

1
r2

∂

∂r

(
r2 ∂S
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂S
∂θ

)
= γS , (A.3)

1
r2

∂

∂r

(
r2 ∂T
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂T
∂θ

)
= γT, (A.4)

for r < 1 and,

∇2S = 0 T = 0 for r > 1, (A.5)

with the vacuum boundary conditions

[S ] = [∂S/∂r] = [T ] = 0 at r = 1, (A.6)

where [X] denotes the jump of X, and [X] = 0 means continuity.
We also require both potentials to be finite at r = 0.

The potentials satisfy identical equations at r < 1, so con-
sider this equation for G equal to either S or T ,

1
r2

∂

∂r

(
r2 ∂G
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂G
∂θ

)
− γG = 0. (A.7)

Using separation of variables, G(r, θ) = R(r)Θ(θ), Bessel’s equa-
tion is obtained in r and Legendre’s equation in θ, with the sep-
aration constant n(n + 1) (n = 1, 2, 3, . . .):

r2 d2R
dr2 + 2r

dR
dr
− [γr2 + n(n + 1)]R = 0, (A.8)

d
dθ

(
sin θ

dΘ

dθ

)
+ n(n + 1)Θ sin θ = 0. (A.9)

In terms of x =
√
−γr and Q(x) = x1/2R(x) in Eq. (A.8) and

x = cos θ in Eq. (A.9), we have

x2 d2Q
dx2 + x

dQ
dx

+

[
x2 −

(
n + 1

2

)2
]

Q = 0, (A.10)

d
dx

[
(1 − x2)

dΘ

dx

]
+ n(n + 1)Θ = 0. (A.11)

Non-singular solutions of Eqs. (A.3) and (A.4) then follow as

T =

∞∑
n=1

∞∑
l=1

cnlTnl(r)Pn(cos θ), (A.12)

S = rh

∞∑
n=1

∞∑
l=1

cnlS nl(r)Pn(cos θ), (A.13)

Table A.1. Decay rates of spherical free-decay modes, γnl.

l = 1 l = 2 l = 3 l = 4

n = 1 −π2 −(4.493)2 −(2π)2 −(7.725)2

n = 2 −(4.493)2 −(5.763)2 −(7.725)2 −(9.095)2

n = 3 −(5.763)2 −(6.988)2 −(9.095)2 −(10.417)2

n = 4 −(6.988)2 −(8.813)2 −(10.417)2 −(11.705)2

where

Tnl(r) = S nl(r) =
1

ξnl
√

r
Jn+1/2(ξnlr), (A.14)

with constants cnl,

ξnl =
√
−γnl, (A.15)

and ξnl are solutions to (A.18). The factor rh in Eq. (A.13) is
introduced to ensure dimensional consistency when obtaining
the magnetic field from these potentials. The boundary condi-
tions (A.6) reduce to

Tnl = 0, S nl = dn,
∂S nl

∂r
= −(n + 1)dn at r = 1, (A.16)

where dn are constants. Eliminating dn, the boundary conditions
for S nl reduce to the recurrence relation
∂S nl

∂r
+ (n + 1)S nl = 0 at r = 1 . (A.17)

Together with the requirement that Tnl and S nl do not vanish
simultaneously, this gives

Jn−1/2(ξnl)Jn+1/2(ξnl) = 0, (A.18)

which determines the admissible values for ξnl, and γnl = −ξ2
nl

yields the decay rates γnl given in Table A.1.
For l odd, Jn−1/2(ξnl) = 0 for all n. Hence, Tnl = 0 for l odd.

Conversely, when l is even, Jn+1/2(ξnl) = 0 for all n. Hence, S nl =
0 for l even. The solutions satisfying the boundary conditions can
be written as follows:

T =

∞∑
n=1

∑
l even

cnl
√

r
Jn+1/2(ξnlr)Pn(cos θ), (A.19a)

S =

∞∑
n=1

∑
l odd

dnl
√

r
Jn+1/2(ξnlr)Pn(cos θ), (A.19b)

where cnl and dnl are constants. Individual terms in the sums are
arranged according to increasing magnitude of the decay rates,
|γnl|.

The free-decay modes form two separate families based on
their symmetry about the equator θ = π/2, the anti-symmetric
(dipolar) and symmetric (quadrupolar) ones. The anti-symmetric
modes, denoted with superscript (d), occur when both n and l
are either odd or even, whilst the symmetric modes that have
superscript (q) occur otherwise.

Explicit forms of a few of the lowest free-decay modes are
given in the next section, each normalised to∫

V
|Bn|

2 d3r = 1, (A.20)

where the integral is taken over the sphere r ≤ 1, to form an
orthonormal set. Although each eigenmode is either poloidal or
toroidal, their superpositions Eq. (A.20) necessarily contain both
poloidal and toroidal parts: purely toroidal and purely poloidal
fields cannot sustain Ohmic dissipation and unavoidably
decay.
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A.1. Symmetric modes

The four leading quadrupolar free-decay modes are shown in the
upper row of Fig. 8. The quadrupolar mode of the slowest decay
has (n, l) = (2, 1) and is poloidal,

B(q)
1 = A1

(
Q1(r)

r
(3 cos2 θ − 1), −

sin θ cos θ
r

d
dr

[rQ1(r)], 0
)
,

(A.21)

where A1 ≈ 0.662 and

Q1(r) =

{
r−1/2J5/2(q1r), r ≤ 1,
r−3J5/2(q1), r > 1,

q1 ≈ 4.493. (A.22)

The next mode, (n, l) = (1, 2), is toroidal and has the same eigen-
value,

B(q)
2 = A2 (0, 0, Q2(r) sin θ) , (A.23)

where A2 ≈ 1.330 and

Q2(r) =

{
r−1/2J3/2(q1r), r ≤ 1,
r−2J3/2(q1r), r > 1.

(A.24)

The modes B(q)
3 and B(q)

4 , poloidal and toroidal respectively,
also form a doublet with the common eigenvalue and correspond
to (n, l) = (4, 1) and (n, l) = (3, 2), respectively:

B(q)
3 = A3

(
−20

Q3(r)
r

S 1(θ), −r−1 d
dr

[rQ3(r)]
dS 1(θ)

dθ
, 0

)
,

(A.25)

where A3 ≈ 0.133, S 1(θ) = 35 cos4 θ − 30 cos2 θ + 3 and

Q3(r) =

{
r−1/2J9/2(q3r), r ≤ 1,
r−5J9/2(q3), r > 1,

q3 ≈ 6.988, (A.26)

and

B(q)
4 = A4

(
0, 0, −Q4(r)

dS 2(θ)
dθ

)
, (A.27)

where A4 ≈ 0.763, S 2(θ) = 5 cos3 θ − 3 cos θ and

Q4(r) =

{
r−1/2J7/2(q3r), r ≤ 1,
r−4J7/2(q3), r > 1.

(A.28)

A.2. Anti-symmetric modes

The spherical components of magnetic field in a few leading
anti-symmetric modes have the following form, illustrated in the
bottom row of Fig. 8.
The mode that decays most slowly is poloidal, with (n, l) = (1, 1):

B(d)
1 = C1

(
2
r

Q1(r) cos θ, −
sin θ

r
d
dr

[rQ1(r)], 0
)
, (A.29)

where C1 ≈ 0.346 and

Q1(r) =

{
r−1/2J3/2(k1r), r ≤ 1,
r−2J3/2(k1), r > 1.

k1 = π, (A.30)

The next two modes B(d)
2 and B(d)

3 , poloidal and toroidal with
(n, l) = (3, 1) and (n, l) = (2, 2), respectively, form a degenerate
pair:
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Fig. A.1. Growth rates ReΓ and oscillation frequencies ImΓ of the sym-
metric and anti-symmetric fastest-growing eigenmodes of the spher-
ical αω-dynamo as a function of Rαh with the remaining parame-
ters fixed at their fiducial values. Dashed curves show the results
obtained for the α2ω-dynamo, whereas solid curves are for the
αω-dynamo.

B(d)
2 = C2

(
2 cos θ

r
(5 cos 2θ − 1)Q2(r) ,

−
sin θ

r
(5 cos2 θ − 1)

d
dr

[rQ2(r)] , 0
)
, (A.31)

where C2 ≈ 0.250 and

Q2(r) =

{
r−1/2J7/2(k2r), r ≤ 1,
r−4J7/2(k2), r > 1,

k2 ≈ 5.763. (A.32)

The toroidal mode of the doublet has the form

B(d)
3 = C3 (0, 0, Q3(r) sin θ cos θ) , (A.33)

where C3 ≈ 3.445 and

Q3(r) =

{
r−1/2J5/2(k2r), r ≤ 1,
r−3J5/2(k2r), r > 1.

(A.34)

The fourth antisymmetric mode is also poloidal, with
(n, l) = (1, 3):

B(d)
4 = C4

(
2
r

Q4(r) cos θ, −
1
r

d
dr

[rQ4(r)] sin θ, 0
)
, (A.35)

where C4 ≈ 0.244 and

Q4(r) =

{
r−1/2J3/2(k4r), r ≤ 1,
r−2J3/2(k4), r > 1,

k4 = 2π. (A.36)
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Appendix B: The αω-dynamo approximation
for the halo

In the main part of this paper, we use an α2ω-dynamo model
for the halo, where the toroidal magnetic field is produced from
the poloidal one by both differential rotation and the α-effect.
The contribution of the α2-dynamo to the generation of the
toroidal field is usually weaker and therefore often neglected
to simplify the solutions. To assess the consequences of this
approximation, here we provide solutions of the αω-dynamo in
the halo which should be compared with results presented in
Sect. 4.3.

For the αω-dynamo, the operator defined in Eq. (63) is sim-
plified to

ŴB = Rαh

(
∇ × (αB) − [∇ × (αB)]φ

)
+ Rωh∇ × (V × B), (B.1)

thus removing the contribution of the α-effect to the azimuthal
magnetic field. In Fig. A.1, similar to Fig. 10, we show the result-
ing eigenvalues and expansion coefficients of the perturbation
solution. The difference between the two solutions is noticeable.

The α2-dynamo is negligible in comparison with the αω
mechanism when |Rω/Rα| � 1 or even |Rω/R2

α| � 1
(Ruzmaikin et al. 1980). For the fiducial value of parameters,
|Rω/Rα| ' 140 in the disc and 50–100 in the halo (and
|Rωh/Rαh

2 = 10–50). Thus, unlike the case of galactic discs with
strong differential rotation, the αω-approximation cannot be rec-
ommended for the halo because it neglects a potentially impor-
tant part of the dynamo mechanism.

Appendix C: Synchrotron emission and Faraday
rotation

For the line of sight along the x-axis of a Cartesian reference
frame r = (x, y, z), the synchrotron emissivity at a wavelength λ
is derived as

ε(r, λ) ∝ [B2
y(r) + B2

z (r)](κ+1)/4λ(κ−1)/2, (C.1)

assuming a uniform distribution of cosmic ray electrons and the
cosmic ray energy spectrum N(E) dE ∝ E−κ dE with κ = 3. The
Stokes parameters are computed as

I(y, z, λ) =

∫ ∞

−∞

ε(x′, y, z, λ) dx′, (C.2)

Q(y, z, λ) = p0

∫ ∞

−∞

ε(x′, y, z, λ) cos[2ψ(x′, y, z)] dx′, (C.3)

U(y, z, λ) = p0

∫ ∞

−∞

ε(x′, y, z, λ) sin[2ψ(x′, y, z)] dx′, (C.4)

with the intrinsic polarisation degree p0 = 0.75, and the local
polarisation angle ψ(r) is obtained from

ψ(r) =
π

2
+ arctan

[
Bz(r)
By(r)

]
+ 0.81Rαd

(
λ

1 m

)2 ∫ ∞

x

ne(x′, y, z)
1 cm−3

Bx(r′)
1 µG

dx′

1 pc
, (C.5)

where the thermal electron density ne(r) is given by Eq. (69)

in both the disc and the halo. The polarised intensity, observed
polarisation angle and fractional polarisation follow as

P =
√

Q2 + U2, Ψ = 1
2 arctan(U/Q), p = P/I. (C.6)

The Faraday rotation measure is calculated as RM = ∂Ψ/∂(λ2).
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