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Emotionally Aversive Cues Suppress Neural Systems
Underlying Optimal Learning in Socially Anxious
Individuals

X Payam Piray,1 Verena Ly,2 X Karin Roelofs,1 X Roshan Cools,1* and X Ivan Toni1*
1Donders Institute, Radboud University, 6525 EN Nijmegen, the Netherlands, and 2Department of Clinical Psychology, Leiden Institute for Brain and
Cognition, Leiden University, 2333 AK Leiden, the Netherlands

Learning and decision-making are modulated by socio-emotional processing and such modulation is implicated in clinically relevant
personality traits of social anxiety. The present study elucidates the computational and neural mechanisms by which emotionally
aversive cues disrupt learning in socially anxious human individuals. Healthy volunteers with low or high trait social anxiety performed
a reversal learning task requiring learning actions in response to angry or happy face cues. Choice data were best captured by a compu-
tational model in which learning rate was adjusted according to the history of surprises. High trait socially anxious individuals used a
less-dynamic strategy for adjusting their learning rate in trials started with angry face cues and unlike the low social anxiety group, their
dorsal anterior cingulate cortex (dACC) activity did not covary with the learning rate. Our results demonstrate that trait social anxiety is
accompanied by disruption of optimal learning and dACC activity in threatening situations.
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Introduction
Economics, psychology, and neuroscience have often assumed
that emotions compete with reason during decision-making (Co-
hen, 2005; Kahneman, 2011). Recent theories challenge this no-
tion, suggesting that in fact emotions are deeply embedded
within decision-making computations (Phelps et al., 2014; Le-
rner et al., 2015). For instance, recent work has shown that trait-

anxiety and stress sensitivity influence learning rate, a quantity
reflecting the rate at which decision values are updated by new
information (Browning et al., 2015; de Berker et al., 2016). These
observations are in line with older descriptive studies suggesting
that emotions modulate cognitive flexibility (Dreisbach and Gos-
chke, 2004; van Steenbergen et al., 2010). Although recent studies
have revealed neural correlates of dynamic learning rate (Behrens
et al., 2007, 2008; Li et al., 2011), particularly in the dorsal ante-
rior cingulate cortex (dACC; Behrens et al., 2007, 2008), the com-
putational and neural mechanisms by which emotional cues and
emotion-related traits modulate learning rate are unknown.

Psychological models of conditioning, such as Rescorla–Wag-
ner (Rescorla et al., 1972), suggest that animals learn by comput-
ing prediction errors. Such errors are positive when an outcome
(reward or punishment) is better than expected and negative
when the outcome is worse than expected. According to these
models, animals learn by updating their expectation in propor-
tion to the prediction error multiplied by a learning rate. In Re-
scorla–Wagner models, the learning rate is assumed to be a
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Significance Statement

Social anxiety is known to influence a broad range of cognitive functions. This study tests whether and how social anxiety affects
human value-based learning as a function of uncertainty in the learning environment. The findings indicate that, in a threatening
context evoked by an angry face, socially anxious individuals fail to benefit from a stable learning environment with highly
predictable stimulus–response– outcome associations. Under those circumstances, socially anxious individuals failed to use their
dorsal anterior cingulate cortex, a region known to adjust learning rate to environmental uncertainty. These findings open the way
to modify neurobiological mechanisms of maladaptive learning in anxiety and depressive disorders.
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constant parameter between zero and one. Models of associative
learning, such as Pearce–Hall (Pearce and Hall, 1980), however,
suggest that animals learn stimulus– outcome associations by
tracking associability, a quantity reflecting the extent to which
each cue has previously been accompanied by surprise (unsigned
prediction errors). This quantity guides animals’ attention to-
ward cues with large associability. According to these models, the
associability signal gates the amount of future learning about the
cue on the basis of whether it has been a reliable or poor predictor
of reinforcement in the past. Bayesian or temporal difference
models proposed for learning in uncertain environments essen-
tially combine the key features of both accounts, in which error-
driven learning depends on a dynamic learning rate closely
resembling the notion of associability (Behrens et al., 2007, 2008;
Li et al., 2011; Iglesias et al., 2013). These models indicate that
when the environment is highly surprising, the learning rate
should be higher allowing expectations to get updated quickly.
This causal inference about changes in the environment might be
particularly disrupted in anxiety and depressive disorders, which
are associated with self-blame symptoms. As noted by Beck
(1967), self-blame in a depressed patient “expresses a patient’s
notion of causality”. In other words, in an uncertain environ-
ment, these patients might attribute negative outcomes to their
own actions instead of the stochasticity of the environment and
change their decisions frequently. This view is consistent with
theories suggesting that emotion-related traits modulate associa-
bility tracking in uncertain environments (Paulus and Yu, 2012;
Mason et al., 2017). Relatedly, a recent study has reported that
trait anxiety is negatively correlated with the ability to adjust
learning rate in uncertain environment (Browning et al., 2015).
However, the neural mechanisms by which learning rate is re-
lated to trait anxiety are still unknown. Furthermore, it is not
clear whether emotionally aversive cues in the environment me-
diate such relation.

Here, we combine functional neuroimaging and computa-
tional modeling to investigate whether and how emotions mod-
ulate learning rate and whether those modulations depend on
individual variation in the personality trait of social anxiety. A
hybrid computational model was considered, in which error-
driven learning depends on a learning rate containing both
dynamic-, similar to Pearce–Hall, and constant-, similar to Re-
scorla–Wagner, components. Model-based analysis of task-
related fMRI data was conducted to investigate the neural
correlates of dynamic learning rate in the dACC, a region previ-
ously shown to encode dynamic learning rate in uncertain envi-
ronments (Behrens et al., 2007, 2008). We hypothesized that the
dynamic adjustment of learning rate and its neural correlates
depend on emotional state and trait social anxiety.

Materials and Methods
Participants
Forty-five female volunteers gave written informed consent approved by
the local ethical committee (“Comissie Mensgebonden Onderzoek”,
Arnhem-Nijmegen) and participated in the study. Only women have
been recruited to have a relatively homogeneous sample in terms of
emotional reactivity (Koch et al., 2007; Domes et al., 2010). Exclusion
criteria were claustrophobia; neurological, cardiovascular, or psychiatric
disorders; regular use of medication or psychotropic drugs; heavy smok-
ing; and metal parts in the body. Participants were selected from an
online pool of students based on their scores on the Liebowitz social
anxiety scale (Liebowitz, 1987). Thus, participants were recruited to have
either low (not �13, n � 23) or high scores (not �25, n � 22) on this test.
One participant did not finish the experiment because of headache (from
the high-score group). Data from all other 44 participants were analyzed

(all right-handed, mean age of 20.7). We used data from a previously
published study (Ly et al., 2014) focused on the association between
emotional biasing of go/no-go responding and individual differences in
social avoidance. Unlike the current study, Ly et al. (2014) did not con-
sider any form of learning and only focused on behavioral inhibition.

Probabilistic reversal learning task
Each participant completed 480 trials of a probabilistic learning task in
the scanner. Each trial started with a face cue (happy or angry) presented
on a color frame indicating the type of outcome valence (reward or
punishment) at the end of the trial. Thus, there were four trial types in a
2 � 2 factorial design with factors emotion (happy or angry) and valence
(reward or punishment). There were 120 trials per trial type. Participants
were instructed that the combination of emotional content of the face
cue and color frame distinguished the four trial types and that they had to
learn the optimal response for each of the four cue-types separately. The
response– outcome contingency was probabilistic and independent for
each trial type. The response– outcome contingency was reversed several
times for each trial type, resulting in different degree of volatility in the
course of experiment, while remaining counterbalanced across trial
types. Specifically, each participant completed three sessions, with a 1
min break in between the sessions. Each session consisted of 160 trials,
with 40 trials per trial type. For each trial type within a session, the
probability of a positive outcome given a go response could take one of
the following combinations in two consecutive blocks: (1) 0.5, 0.2, 0.5,
0.2; (2) 0.5, 0.2, 0.5, 0.8; and (3) 0.5, 0.8, 0.5, 0.8, where each session was
associated with one of these combinations. The blocks with probability of
0.5 were short blocks with average length of five trials, and other blocks
were long blocks with average length of 15 trials.

Emotional stimuli were adult Caucasian faces from 36 models (18
men) taken from several databases (Ekman and Friesen, 1976; Matsu-
moto and Ekman, 1988; Lundqvist et al., 1998; Martinez and Benavente,
1998). Model faces were trimmed to exclude influence from hair and
non-facial contours (van Peer et al., 2007; Roelofs et al., 2009). Model
identity was counterbalanced, such that the model occurred equally often
for each trial type. The color frame (yellow or gray) indicating the possi-
bility of reward or punishment was also counterbalanced across partici-
pants. On each trial, one of the face cues was presented centrally.
Participants were then allowed to make a response 100 ms after cue onset,
where they were required to make either a go or a no-go response within
1000 ms. If no response was made within 1000 ms, then a no-go response
was recorded. After a response– outcome delay of maximally 2000 ms
(depending on the response time), the outcome was presented for 1000
ms (�10 cents for reward, �10 cents for punishment, and 0 cents for
omitted reward or avoided punishment). The intertrial interval was jit-
tered (2500 – 4500 ms).

The relatively long time window for responding (1000 ms) ensured
that no-go responses are not because of failure in making a go response.
To illustrate this point, we tested each participant response time sepa-
rately for go responses in every trial type. This test revealed that for all
participants and all trial types, response times are significantly �1000 ms
window (t test, all p values �10 �10).

Computational models
In this section, we describe the computational learning models compared
in this study. A common choice model was then used in combination
with each of these learning models to predict the probability of choices,
which will be presented later.

All learning models track expected value xt on trial t of each stimulus
and action pair. Thus, if st is the stimulus presented on trial t, ct is the
choice taken and ot is the received outcome, all models compute a pre-
diction error signal and update the corresponding expected value:

�t � ot � xt�st,ct	,

xt�1�st,ct	 � xt�st,ct	 � �t�t,

where �t is the prediction error on trial t and �t is the learning rate
representing the degree to which the prediction error influences the cur-
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rent expected value. The learning models are different in how they con-
ceptualize the learning rate.

M1: Rescorla–Wagner model. This model (Rescorla et al., 1972) is the
simplest model among the tested models, containing only one free learn-
ing parameter as constant learning rate, �, bounded in the unit range,
[0 1]. Therefore, for this model, �t is equal to � on all trials.

M2: hybrid model. This model and its variant (M4) are the main mod-
els of interest in this study. The hybrid model quantifies associability, At,
and constructs the learning rate accordingly in two steps. First, it con-
structs Kt:

Kt � wAt � �1 � w	,

where w is the weight parameter constrained to lie in the unit range.
Therefore, Kt is a weighted combination of a constant- and a dynamic-
component according to w. If w � 0, the dynamic component, At, has no
influence on Kt and therefore the learning rate is a constant. Conversely,
if w � 1, Kt has no constant component and therefore it is fully dynamic.
Note that, regardless of the value of w, the maximum possible value (i.e.,
the scale) of Kt is 1. The learning rate is then defined as follows:

�t � �Kt,

where � is another free parameter, which indicates the scale of learning
rate. Thus, for any value of �, the learning rate on every trial lies between
0 and �.

In this model, the associability also gets updated. On every trial, two
factors influence the associability update, similar to update rules in
Bayesian dynamic models such as Kalman filter (Daw et al., 2006). First,
similar to the gain in the Bayesian models (e.g., Kalman gain), associa-
bility gradually reduces because of random diffusion:

At � �At
post.

Second, after observing the outcome of the trial, the associability gets
updated according to the surprise (i.e., squared prediction error):

At�1
post � At � �1 � �	�t

2.

Note that, on every trial, the learning rate, �t, depends on At, which
itself depends on squared prediction errors from the past trials, but not
the current one. Therefore, �t is not double counted in the value update.

Together, this learning model contains three free learning parameters,
�, w and �, which are all constrained to lie in the unit range. Moreover,
because squared prediction errors in this task are between 0 and 1 (as
outcomes are binary), associability will also always lie in the unit range.
Consequently, learning rates will always be between 0 and 1 ensuring that
expected values are well defined for any set of parameters.

M3: reinforcement learning model. The reinforcement learning model
of Li et al. (2011) model also combines error-driven learning with an asso-
ciability signal. The important difference between this model and M2 is that,
whereas in M2 the learning rate is a weighted combination of a dynamic and
a constant component, M3 only contains a dynamic component. Also, the
way that M3 quantifies surprise is slightly different compared with the M2 by
updating associability according to the absolute value of previous prediction
error (instead of squared value of prediction error).

At � �1 � 		 At�1 � 	��t�1�,

�t � �At,

where 	 and � are free parameters (bounded in the unit range) deter-
mining the step size for updating associability and the scale of learning
rate, respectively.

M4: hybrid emotion-specific w model. This model is identical to M2
except that it assumes two different weight parameters, wa and wh, for
angry and happy trials, respectively. Therefore, this model has one more
free parameter compared with M2.

M5: hybrid emotion-specific � model. This model is also identical to M2
except that it assumes two different overall scale, �, parameters for angry
and happy trials.

M6: hybrid valence-specific w model. This model is also identical to M2
except that it assumes two different weight, w, parameters for reward and
punishment trials.

Choice model. Each of the learning models was combined with a choice
model to generate probabilistic predictions of choice data. Expected val-
ues were used to calculate the probability of actions, a1 (go response) and
a2 (no-go response), according to a sigmoid (softmax) function:

pt�a1	 �
1

1 � e�
� xt�st,a1	�xt�st,a2		�b�st	,

pt�a2	 � 1 � pt�a1	,

where 
 is the decision noise parameter encoding the extent to which
learned contingencies affect choice (constrained to be positive) and b(st)
is the bias toward a1 because of the stimulus presented independent from
learned values. The bias is defined based on three free parameters, rep-
resenting bias because of the emotional content (happy or angry), be, bias
because of the anticipated outcome valence (reward or punishment)
cued by the stimulus, bv, and bias because of the interaction of emotional
content and outcome, bi. No constraint was assumed for the three bias
parameters. For example, a positive value of be represents tendencies
toward a go response for happy stimuli and for avoiding a go response for
angry stimuli (regardless of the expected values). Similarly, a positive
value of bv represents a tendency toward a go response for rewarding
stimuli regardless of the expected value of the go response. Critically, we
also considered the possibility of an interaction effect in bias encoded by
bi. Therefore, the bias, b(st), for the happy and rewarding stimulus is be �
bv � bi, the bias for the angry and punishing stimulus is �be � bv � bi, the
bias for the happy and punishing stimulus is be � bv � bi and the bias for
the angry and rewarding stimulus is �be � bv � bi.

Model fitting
We fitted parameters in the infinite real-space and transformed them to
obtain actual parameters fed to the models. Appropriate transform func-
tions were used for this purpose: the sigmoid function to transform
parameters bounded in the unit range (the learning parameters in all
models) and the exponential function to transform the decision noise
parameter in the choice model. No transformation was needed for the
bias parameters of the choice model as they were not bounded.

Free parameters of each model were estimated in two stages. In the first
stage, a set of parameters, �MAP

n , maximizing log-likelihood of data plus
log-prior [maximum a posteriori (MAP)] was estimated for every par-
ticipant separately (n is the index of participant) similar to our previous
study (Piray et al., 2016). A wide Gaussian prior was assumed for all
parameters (with 0 mean and a variance of 6.25). This initial variance is
chosen to ensure that the parameters could vary in a wide range with no
substantial effect of prior. Specifically, the log-effect of this prior is less
than one chance-level choice (i.e., log0.5) for any value of w between 0.05
and 0.95. This is also the case for all other free parameters constrained in
the unit range. A nonlinear derivative-based optimization algorithm (as
implemented in the fminunc routine in MATLAB, MathWorks) was
used for fitting. To overcome bias of the optimization algorithm to the
initial point, the optimization was repeated multiple times and the best
set of parameters was selected.

In the second stage, a hierarchical fitting procedure was used to fit the
models to participants’ choices. An expectation-maximization algorithm
was used for optimizing group and individual parameters in an iterative
fashion, with Laplace approximation for approximating the posterior
distribution (Huys et al., 2011). This method estimates the mean and the
variance of parameters across all participants (group parameters) in the
first step. In a subsequent step, that mean and variance is used to define a
normal prior distribution of parameters and to estimate parameters of
each individual participant using Laplace approximation. This proce-
dure is then continued iteratively to reach convergence. Group parame-
ters was initialized according to the mean and variance of the individual
parameters, �MAP

n , fitted in the first stage. This procedure regularizes
individual fitted parameters according to group parameters, thereby de-
creases fitting noise and protects against outliers. The final estimated
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values for the group parameters, 
, were used to generate the regressors
used in the fMRI analyses, as they are less biased by fitting noise. For
details of the hierarchical fitting procedure, see Huys et al. (2011).

All codes used for fitting are publically available online (https://
github.com/payampiray/cbm_v0). The Gramm plotting tools (Morel,
2018) were used for visualization.

Model selection
We used a Bayesian model comparison approach to assess which model
better captures participants’ choices. This approach selects the most par-
simonious model by quantifying model evidence, a metric which bal-
ances between model fits and complexity of the model (MacKay, 2003).
Notably, this procedure penalizes complexity induced by both group and
individual parameters using Laplace approximation and Bayesian infor-
mation criterion, respectively. For each model fitted using the hier-
archical fitting procedure, the log-model evidence is penalized for
complexities at both individual and group levels, which can be quan-
tified using Laplace approximation and Bayesian information crite-
rion, respectively (Piray et al., 2014):

LME � �
n

log P�Dn��n	 � �
n

log N��n�
,�	

�
1

2
dN log 2� �

1

2�
n

log �Hn� � d log N,

where Dn is the set of choice data for the nth participant �n, is the fitted
individual parameters for nth participant, 
 and � is the mean and
variance for the group distribution, respectively, d is number of free
parameters of the model, N is the number of participants, and �Hn� is the
determinant of the Hessian matrix of the log-posterior function at �n.
The log-likelihood function is the predicted probability of choice data given
the model and parameters defined as log p�Dn��n	 � �tlog pt�ct	, where the
sum is over all trials. Therefore, the first term on the right-hand side of the
equation is how well the model predicts data. The sum of the next three terms
together is the penalty because of individual parameters. The last term rep-
resents the penalty approximated for 2d (mean and variance together) group
parameters as quantified using Bayesian information criterion.

fMRI data acquisition and preprocessing
Whole-brain imaging was performed on a 3T MR scanner (Magnetom
Trio Tim, Siemens Medical Systems) equipped with a 32-channel head
coil using a multiecho GRAPPA sequence [Poser et al., 2006; repetition
time (TR): 2.32 ms, echo times (TEs): 9.0/19.3/30/40 ms, 38 axial oblique
slices, ascending acquisition, distance factor: 17%, voxel size 3.3 � 3.3 �
2.5 mm, field-of-view (FoV): 211 mm; flip angle, 908]. At the end of the
experimental session, high-resolution anatomical images were acquired
using a magnetization prepared rapid gradient echo sequence (TR: 2300
ms, TE: 3.03 ms, 192 sagittal slices, voxel size 1.0 � 1.0 � 1.0 mm, FoV:
256 mm).

Given the multiecho GRAPPA MR sequence (Poser et al., 2006), the
head motion parameters were estimated on the MR images with the
shortest TE (9.0 ms), because these images are the least affected by blood
oxygenation level-dependent (BOLD) signals. These motion-correction
parameters, estimated using a least-squares approach with six rigid body
transformation parameters (translations, rotations), were then applied
to the four echo images collected for each excitation. After spatial realign-
ment, the four echo images were combined into a single MR volume
using an optimized echo weighting method (Poser et al., 2006). Noise
effects in data were removed using FMRIB’s ICA-based Xnoiseifier tool,
which uses independent component analysis (ICA) and classification
techniques to identify noise components in data (Salimi-Khorshidi et al.,
2014). Other preprocessing steps were performed in SPM12. The T1-
weighted image was spatially coregistered to the mean of the functional
images. The fMRI time series were transformed and resampled at an
isotropic voxel size of 2 mm into the standard Montreal Neurological
Institute space using both linear and nonlinear transformation parame-
ters as determined in a probabilistic generative model that combines

image registration, tissue classification, and bias correction (i.e., unified
segmentation and normalization) of the coregistered T1-weighted image
(Ashburner and Friston, 2005). The normalized functional images were
spatially smoothed using an isotropic 6 mm full-width at half-maximum
Gaussian kernel.

Statistical analysis of imaging data
General linear model (GLM) was used to model effects at the single-
subject level (first-level analysis). Four sets of four regressors, each
containing one regressor per trial type, were considered: one set was
time-locked to the visual presentation of cues; one set was time-locked to
the visual presentation of outcomes; one set was parametrically modu-
lated by prediction error and time-locked to the presentation of the trial
outcome; one set was parametrically modulated by dynamic learning rate
and time-locked to the presentation of the trial outcome. Group param-
eters obtained through the hierarchical fitting procedure, 
, were used to
generate these signals. Twelve motion regressors representing six motion
parameters obtained from the brain-realignment procedure and their
first derivative were also included.

Contrasts of interests were estimated at the subject-level. These con-
trast images were then used in a second-level GLM to make inference at
the group level (t test). The region-of-interest analysis in the dorsal an-
terior cingulate was performed in anatomically defined mask of the ros-
tral cingulate motor area, which has been shown to correlate with
learning rate and has distinct connectional fingerprints. The rostral cin-
gulate motor area mask was created based on a diffusion-parcellation
atlas of human medial and ventral frontal cortex (thresholded at p �
0.25; Neubert et al., 2015).

Results
Forty-four participants performed a probabilistic learning task.
Participants were selected from an online pool of students based
on their scores on the Liebowitz social anxiety scale (Liebowitz,
1987). Thus, participants were recruited to have either low (not
�13) or high scores (not �25) on this test. Participants were
accordingly divided into two groups with low (n � 23, mean �
8.26, SE � 0.76) or high (n � 21, mean � 31.00, SE � 1.37) social
anxiety.

In the experiment (Fig. 1), participants were presented with
validated images of faces (happy or angry) and were asked to
make either a go or a no-go response (i.e., press a button, or
withhold a button press, respectively) for each of these facial cues
to obtain monetary reward or avoid monetary punishment.
There were four trial types: happy face–reward outcome trials,
happy punishment, angry reward, and angry punishment trials.
Participants were also informed about outcome valence at the
start of each trial by presenting the face image in a background
color (yellow or white) indicating whether, at the end of a trial, a
win outcome consisted of obtaining a reward or avoiding a pun-
ishment. Crucially, the response– outcome contingencies for the
cues were probabilistic and manipulated independently, and re-
versed after a number of trials, varying between 5 and 15 trials, so
that the experiment consisted of a number of blocks with varying
trial length (Fig. 1C). Within each block, the probability of a win
was fixed. There were matched numbers of action– outcome con-
tingency reversals across trial types, with 120 trials in each of the
four trial types (see Materials and Methods for details).

Participants learned the task effectively: performance quanti-
fied as the number of correct decisions given the true underlying
probability was significantly higher than chance across the group
(t(43) � 14.68, p � 0.001). Importantly, participants responded to
reversals. As Figure 2 shows, their performance was approxi-
mately at chance level immediately after reversals and improved
slowly for all trial types and both type of responses. Note that, as
Figure 2 shows, the effects of reversal learning on performance is
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not different between go and no-go responses as the slope of the
two curves is not substantially different.

The emotional cues did not influence overall task perfor-
mance (t(43) � �0.37, p � 0.71), nor participants’ bias toward go
responses (t(43) � �1.39, p � 0.17). However, longer latencies of
go responses following the presentation of angry face cues relative
to happy face cues indicated that participants did process the
emotional content of those cues (t(43) � 3.72, p � 0.001). Laten-
cies of go responses, however, did not vary as a function of social
anxiety (t(43) � 0.68, p � 0.5).

Emotional cues modulate adaptive learning rate
We tested whether participants adjusted their learning rate dy-
namically according to the history of surprises. First, we consid-
ered a Rescorla–Wagner model in which expected value is
updated by the product of prediction errors and a constant learn-
ing rate (Model M1). We then focused on assessing the additional
explanatory power of a class of an augmented hybrid Pearce–Hall
Rescorla–Wagner models in which the learning rate depends on
another variable, Kt, that combines the learning rate of Rescorla–
Wagner with that of Pearce–Hall model. The dynamic compo-
nent of Kt was adjusted according to the history of surprises (or
sample variance equal to squared prediction error), similar to the
Pearce–Hall associability rule.

Therefore, we built a model (Model M2) in which Kt is a
weighted combination of a constant- and a dynamic-component

according to a weight parameter, w. The weight parameter, w,
indicates the degree to which this dynamic associability compo-
nent influences on Kt and thereby contributes to the learning rate.
If w � 0, the dynamic component has no influence on Kt and
therefore the learning rate is a constant. Conversely, if w � 1, Kt

has no constant component and therefore the learning rate is
fully dynamic.

On every trial, the product of Kt with another free parameter,
�, indicates the learning rate on that trial, in which � indicates the
overall scale of learning rate (also constrained to lie in the unit
range). Thus, whereas w indicates the degree to which learning
rate is changing over time, � determines the maximum of learn-
ing rate. In other words, on every trial, learning rate lies between
zero and �. In sum, this augmented hybrid model contains both a
model with a constant learning rate (if w � 0) for which the
learning rate is always �, and a model with a fully dynamic learn-
ing rate (if w � 1) as special cases.

We used a choice model to generate probability of choice data
according to action values derived for each model. Note that the
choice model controlled value-independent biases in making or
avoiding a go response because of the emotional or reinforcing
content of the cues (see Materials and Methods for formal defi-
nition). We then used a hierarchical Bayesian estimation algo-
rithm (Huys et al., 2011, 2012; Piray et al., 2014) to obtain
parameters of the model given the data. This is an algorithm with
the advantage that fits to individual subjects are constrained ac-

Figure 1. Probabilistic reversal learning task. A, Timeline of the task. Participants had to respond (either go or no-go) after a face cue was presented. A probabilistic outcome was presented
following a delay. Importantly, the presented cues were used as conditioned stimuli and the optimal response is a function of the probability of a win given a go, which varied across trials,
independent of the emotional content of the cue (C). B, There were four different trial types in the task. The cue of each trial could vary in emotional content (an angry or happy face) and in color (gray,
yellow). The color indicates whether the outcome of a trial is a reward or punishment. C, An example of probability sequence of win given a go response for one of the four trial types. The dots show
the actual feedback seen by the participant, which are drawn from this probability distribution. Probability of a win given the no-go response is the reverse of the probability of a win given the go
response (e.g., when probability of a win given go is 0.8, probability of win given no-go is 0.2). Note that the probability sequence (and thus the optimal response) is reversed multiple times for each
cue. The underlying probability sequence is manipulated independently for each cue.
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cording to the group-level distribution.
For each model, this procedure also calcu-
lates its evidence (Piray et al., 2014), a
measure of goodness of fit of the model
penalized by the complexity of the model
(MacKay, 2003), which can be used for
Bayesian model comparison. This analysis
revealed that the hybrid model explains
data better than the simpler model with a
constant learning rate (Table 1). As a con-
trol analysis, we compared M2 with two
other models. First, we considered the
reinforcement learning model imple-
mented by Li et al. (2011) (Model M3),
which was inferior to our original model.
Unlike M2, this reinforcement learning
model contains only a dynamic compo-
nent in its learning rate. Note that whereas
the weight parameter of M2 enables us to
quantify individual differences in the de-
gree to which participants followed the
Pearce–Hall associability rule, M3 does
not have such parameter. In other words,
under M3, all individuals equally follow
the Pearce–Hall associability rule.

We then asked whether emotional cues
modulate learning rate. Specifically, we
considered a variant of the hybrid model
M2 with emotion-specific weight param-
eters (Model M4). This dual weight model
contains separate weight parameters for
happy and angry trials. We used the same
Bayesian model comparison procedure to
compare this model with model M2. We
found that this model outperformed M2
despite the penalty for one extra parameter. We also used classical
likelihood ratio tests for comparing this model (M4) with the
original hybrid model (M2), as M2 is nested within M4. The
results confirmed the Bayesian model comparison results indicat-
ing that the hybrid model with emotion-specific w parameters (M4)
is better given the data (�2	

2 � 21.84, p � 0.0001).
We also considered control analyses to test modulation of M2

parameters across different factors. First, we fitted a model in
which � rather than w was assumed to be emotion-specific (M5).
This model tested the idea that emotions reduce or increase scale
of learning rate regardless of the dynamics of the environment.
The evidence for this model, however, was lower than that for the
original one (M2) ruling out that emotions affect the overall scale
of learning rate rather than its sensitivity to environmental dy-
namics (Table 1). Second, we tested a control model in which the
weight parameters varied as a function of the valence of the out-
come (Model M6). In this model, w was different for reward and
punishment trials. This model also did not outperform the orig-
inal model, M2. Altogether, these results suggest that emotional
state modulates the degree to which people adapt their learning
rate dynamically as a function of the history of surprises Table 2.

Trait social anxiety predicts dynamic learning rate in states
evoked by angry face cues
Trait social anxiety is a predictor of vulnerability to depression
and anxiety disorders (Mineka and Oehlberg, 2008), pathologies
hypothesized to be related to disrupted learning in uncertain
environments (Paulus and Yu, 2012; Huys et al., 2015). Further-

more, a recent study has shown that variability in learning rate in
a probabilistic learning task is associated with individual differ-
ences in trait anxiety (Browning et al., 2015). Here, we build on
these prior findings by assessing whether individual differences in
the effect of emotional cues on the dynamic learning rate, w, are
related to individual variability in social anxiety. To this end, we
tested how individual differences in parameters of the winning
model, M4, are related to social anxiety. We analyzed estimated
weights, w, using individually fitted parameters. Unlike parame-
ters estimated by the hierarchical Bayesian procedure that are
regularized according to all subjects’ data, the individually fitted
parameters are independently estimated and therefore can be
used in regular statistical tests. Nonparametric Wilcoxon rank

Figure 2. Performance after reversals. Data has been shown separately for each trial type and response type (go vs no-go).
Performance was about the chance level immediately after reversal and improved over the course of learning. For each participant,
a learning curve is defined by averaging performance after multiple reversals occurred for the corresponding trial type and response
type. Mean learning curve across all participants and corresponding standard error of the mean are plotted. Note that the x-axis
displays trials after reversals (reversal occurred at trial 0). HR, Happy and reward trial type; HP, happy and punishment trial type; AR,
angry and reward trial type; AP, angry and punishment trial type.

Table 1. Bayesian model comparison

Model No. free parameters
Relative log-model
evidence

M1 Rescorla–Wagner 5 �15.02
M2 Hybrid 7 �7.13
M3 Li et al. (2011) model 6 �14.78
M4 Hybrid emotion-specific w 8 0
M5 Hybrid emotion-specific � 8 �7.77
M6 Hybrid valence-specific w 8 �8.85

For each model, differential log-model evidence is shown. Higher values indicate more evidence in favor of the
model. The hybrid model with emotion-specific w (M4) has the highest Bayesian model evidence among all models.
Note that models are only different in the number of learning parameters. Additionally, all models contain four
parameters for generating choice including three value-independent biases in making a go or no-go response and
one inverse-temperature parameter. See Materials and Methods for formal definition of all models. See Table 2 for
further statistics on fitted parameters of the winning model.
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(two-tailed) tests were used, because of the non-Gaussian distri-
bution of the weight parameters (as they were constrained to lie
in the unit range).

The weight, w, differed significantly between the low and high
social anxiety groups on angry trials (p � 0.001, z � 3.20; Fig.
3A), but not on happy trials (p � 0.56, z � �0.59; Fig. 3B) and
the difference in weights (angry vs happy) was also significantly
different between the two groups (p � 0.033, z � 2.14). Thus,
participants with high versus low social anxiety exhibited reduced
dynamic adjustment of learning rate on trials starting with an
angry, but not a happy, face. No significant difference between
the two groups was found for the other parameters of the model
(all p � 0.05).

An obvious next question is how the low weight parameter in
the high socially anxious group affected their choice. Because the
weight parameter, w, indicates sensitivity of the learning rate to
changes in the environment, its effects on learning is manifested
in the relative performance in the stable versus volatile epochs.
For example, a model with a low weight, w, would change its
decisions on the basis of a few bad outcomes that could be be-
cause of noise. This model feature can cause poor performance
especially in relatively stable conditions in which the action– out-
come contingency does not change and optimal learning relies on
a reduced learning rate.

To demonstrate this quantitatively and in a relatively theory-
neutral fashion, we analyzed performance of participants on the
angry trials in two different conditions. We dissociated stable and
volatile epochs, depending on whether there has been at least a
change in action– outcome contingencies in the last 10 preceding
trials. Thus, a trial was defined as stable if no change occurred in
the action– outcome contingency in the last 10 trials. Otherwise,
it was defined as a volatile trial. Performance in the stable and
volatile epochs was quantified in terms of the average optimal
choice (i.e., the probability of choosing the action with the high-
est probability of winning). Because our task is stochastic (ac-
tion– outcome probability is never �80% and there are frequent
reversals) and the average length of stable blocks (with probabil-
ity of 80%) was 15 trials, the window of 10 trials provide a rea-
sonable criterion for defining stability. Note that the modeling
results presented above are not sensitive to such criteria in defin-
ing stability versus volatility and rather define volatility based on
the sequences of choices and surprises. Nevertheless, to ensure
that the results presented here are robust against the 10-trial cri-
terion, we considered other definition of stability in which the
window length was �10 trials. The pattern of results found for
those alternatives were consistent with the one presented here.

First, we analyzed optimal choice probability on angry trials as
a function of condition (stable vs volatile) using nonparametric
Wilcoxon tests (because of its non-Gaussian distribution, all tests

are two-tailed). Across all participants, optimal choice probabil-
ity was higher for stable than volatile trials (p � 0.0001, z � 4.04).
This is expected because making an optimal choice after a change
in action– outcome contingency (i.e., in volatile trials) is more
difficult than the stable condition in which there is no change in
contingency. The important question, however, is whether this
analysis confirms the model-based results, which suggest that
social anxiety affects optimal choice probability differentially for
the stable and volatile conditions. As predicted, we found a sig-
nificant interaction between social anxiety and epoch, with the
high social anxiety group showing less difference between opti-
mal choice probability in stable and volatile epochs than the low
social anxiety group (p � 0.02, z � 2.33; Fig. 3C). Post hoc tests
revealed that the low social anxiety group benefited from stability
of the environment as their performance was significantly better
in the stable than the volatile epoch (p � 0.0001, z � 3.83). This
effect was not present in the high social anxiety group (p � 0.12,
z � 1.55). Note that the difference in relative performance is not
because of better performance of the high social anxiety group in
volatile conditions. Specifically, no significant difference in opti-
mal choice probability on the volatile epoch was found between
the two groups (p � 0.88, z � �0.15) indicating that the high
social anxiety group did not perform better in volatile conditions.
Significant effects were found when we considered different win-
dow length for defining stability (windows with 11–14 trials, all p
values �0.05).

We also performed the same analysis for the happy trials,
which, as predicted by the model-based analyses, did not reveal
any group by epoch interaction effect (p � 0.91, z � �0.11; Fig.
3D).

Trait social anxiety predicts dorsal anterior cingulate cortex
activity related to learning rate in states evoked by angry face
cues
The dACC has been proposed to contribute to learning from
experience by computing learning rate (Behrens et al., 2007, 2008;
Rushworth et al., 2011). In nonhuman primates, lesions to dACC
results in an inability to use more than the most recent outcome to
guide decisions (Kennerley et al., 2006). In humans, BOLD re-
sponses in the dACC have been shown to correlate with learning rate
in a probabilistic learning task. Another study using the same task
has reported that the dynamic learning rate depends on trait anxiety
scores (Browning et al., 2015). The next question we ask here is
whether learning rate-related signals in the dACC depend on
emotion-related traits, such as social anxiety, and emotional states,
as manipulated using emotional facial cues.

To answer this question, we performed model-based fMRI
analysis (Cohen et al., 2017) to isolate BOLD signals that correlate
with learning rate in different emotional contexts. Our linear
regression model included not just dynamic learning rate, but
also prediction error to control for prediction error-related ef-
fects. These model-derived time series were considered as para-
metric regressors at the time of outcome, separately for each of
the four trial types, leading to eight regressors. Eight regressors-
of-no-interest were added to account for trial-type-specific ef-
fects at the time of cue presentation (4 regressors) and of outcome
presentation (4 regressors). To generate regressors for fMRI anal-
ysis on a common scale, we used the average parameters esti-
mated by the hierarchical Bayesian procedure across all subjects
as the common values for all parameters. This is a common ap-
proach in model-based neuroimaging, which enables us to draw
inferences about individual differences in the neural correlates of
model-derived regressors (Daw et al., 2006; Daw, 2011). In other

Table 2. Fitted parameters of the winning model (hybrid emotion-specific w
model) individually using maximum a posteriori (MAP) and the hierarchical fitting
procedure (HFP)

MAP 25th percentile MAP median
MAP 75th
percentile

HFP group
mean, 


wh 0.2 0.372 0.546 0.397
wa 0.21 0.426 0.649 0.403
� 0.789 0.868 0.909 0.922
� 0.404 0.539 0.673 0.458

 1.321 1.822 2.619 1.646
b� 0.021 0.181 0.339 0.152
be �0.12 0.029 0.181 0.032
bi �0.052 0.056 0.14 0.045
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words, any effect regarding individual dif-
ferences in neural correlates should be at-
tributed to neural signal rather than the
parameters used to generate regressors
correlating with those signals. Impor-
tantly, we used parameters of the hybrid
Model M2 (rather than M4) to ensure that
any difference in correlation between
BOLD and learning rate in angry versus
happy trials is not confounded with dif-
ferent weight parameters. An anatomi-
cally defined mask of the dACC (the
rostral cingulate motor area in the
connectivity-based parcellation atlas of
medial frontal cortex (Neubert et al.,
2015) was used for region-of-interest
analysis.

In line with previous findings, we
found that BOLD signal in the dACC,
across all trials and participants, corre-
lated with learning rate (bilaterally, peak
at x � 8, y � 26, z � 42, voxel-level fami-
lywise small-volume corrected at p �
0.05; Fig. 4A). Post hoc test at the peak
revealed that the effects are significantly
stronger for the angry than happy trials
(t(43) � 2.11, p � 0.041; Fig. 4B). Similar
effects were found when considering ac-
tivity of all voxels within the dACC
mask showing a significant (at p � 0.001
uncorrected) learning rate activity
(t(43) � 2.11, p � 0.041). Further tests
also revealed that dACC correlation
with learning rate was driven by the angry
trials. Specifically, BOLD signal in the dACC
exhibited a significant correlation with
learning rate during angry trials (bilaterally,
peak at x � �8, y � 24, z � 40, voxel-level
familywise small-volume corrected at p �
0.05), but not during happy trials (no voxel
survived uncorrected threshold of 0.001).
Therefore, we focused on angry trials and
asked whether high social anxiety individu-
als show weaker learning rate related activity
than the low social anxiety group, as sug-
gested by the modeling findings.

We found that individual differences
in social anxiety covaried strongly with learning rate-related sig-
nals in the dACC on angry trials (Fig. 4C). Specifically, the learn-
ing rate signal in the dACC during angry trials (at the peak voxel
x � �8, y � 24, z � 40) was stronger for the low than the high
social anxiety group (t(42) � 3.05, p � 0.004). Similar effects were
found when considering activity of all voxels within the dACC
mask showing a significant (at p � 0.001 uncorrected) learning
rate activity on angry trials (t(42) � 2.37, p � 0.023). Post hoc tests
at the peak voxel revealed that the high social anxiety group did
not show a significant correlation (t(20) � 0.93, p � 0.36).
These results demonstrate that, compared with the low social
anxiety group, the high social anxiety dynamically adapted their
learning rate to a lesser degree on trials involving presentation of
an angry face. Moreover, unlike the low social anxiety group,
their dACC BOLD signal did not covary with the learning rate on
these trials.

We looked at two control contrasts in the above neuroimaging
analysis. First, we found strong prediction error related signal in
the ventral striatum (bilaterally, peak at 14, 12, �8, voxel-level
familywise small-volume corrected at p � 0.05), consistent with
previous studies (McClure et al., 2003; O’Doherty et al., 2003;
Daw et al., 2006). Second, we performed a region-of-interest
analysis in the amygdala. We focused on the amygdala given its
important role in emotional processing (Weiskrantz, 1956; Le-
doux, 1996; Phelps and LeDoux, 2005), and previous reports on
amygdala sensitivity to learning rate (Li et al., 2011). Despite the
presence of clear emotion-related main effects of cue in the
amygdala (bilaterally, peak at �14, �8, �16, voxel-level family-
wise small-volume corrected at p � 0.05), with stronger signal
during the presentation of the angry faces, there were no signifi-
cant effects of learning rate in the amygdala (p � 0.001 uncor-
rected; Table 3).

Figure 3. Effects of social anxiety on learning rate. A, B, Effects of social anxiety (SA) on the weight given to the dynamic
component of the learning rate in angry (A) and happy (B) trials. High socially anxious individuals showed less dynamic adjustment
of learning rate (indexed by parameter w) on angry trials. There was no effect of social anxiety on dynamic learning rate on happy
trials. C, D, Effects of social anxiety on performance in stable and volatile epochs in angry (C) and happy (D) trials. In line with the
weight parameter results, high socially anxious individuals showed less benefit of stability in their performance than the low social
anxiety group on angry trials. There was no significant interaction on the happy trials. Standard boxplots are plotted, in which the
box is drawn between the 25 and 75 percentiles with a line indicating the median. The distribution of data is also shown.
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Discussion
In daily life, it is important to adaptively learn from the outcomes
of our decisions, even in environments with threat cues. The
adaptation should depend on the history of outcomes and the
degree to which those previous outcomes were surprising. When
the environment is full of surprises, recent experiences are more
predictive of future events than remote experiences. In those cir-
cumstances, a higher learning rate is optimal. We found evidence
that social anxiety is associated with reduced adaptation of learn-
ing rate, particularly in aversive states, such as those evoked here
by exposure to images of angry faces.

Our findings are in line with theories looking at psychiatric
disorders linked to social anxiety from the perspective of decision
neuroscience (Hartley and Phelps, 2012; Paulus and Yu, 2012;
Huys et al., 2015). These disorders are hypothesized to be accom-
panied by deficits in learning and decision-making, particularly
in uncertain environments requiring dynamic learning (Paulus
and Yu, 2012; Browning et al., 2015). Here, we focused on trait
social anxiety in healthy participants, as trait social anxiety is a
factor predicting vulnerability to anxiety and depression (Barlow,
2004; Mineka and Zinbarg, 2006; Mineka and Oehlberg, 2008).
Our data indicate that the presence of maladaptive biases in
learning, at both computational and neural levels, even in healthy
individuals. These findings suggest a particular computational
mechanism by which social anxiety might impact decisions in
threatening situations. In those situations, the weight of dynamic
learning rate is too low for anxious individuals, making them

oversensitive to noisy outcomes of their decisions. Suboptimal
decisions and oversensitivity to outcomes exacerbate each other,
generating a dysfunctional loop.

Inspired by these modeling results, we found signatures of
disrupted adaptation of learning rate in the behavioral data (Fig.
3C). In threatening situations evoked by angry face images, the
high social anxiety group did not benefit from stability in the
environment and showed similar levels of performance in both
stable and volatile situations. In contrast, the low social anxiety
group showed a much better performance in the stable situation
compared with the volatile situation. These results are consistent
with a recent report by Browning et al. (2015). They showed that
anxiety is associated with inability to adjust learning in stable and
volatile situations. Our data adds to those findings by showing
that inability in optimal learning is also a function of emotional
cues. Furthermore, our findings elucidate corresponding neural
mechanisms in socially anxious individuals by showing that dis-
ruption in optimal learning is accompanied by disruption in
dACC activity related to learning rate. The dACC has been argued
to specifically contribute to reinforcement learning by comput-
ing learning rate in uncertain environments (Behrens et al., 2007,
2008; Rushworth et al., 2011). However, so far, it has remained
unclear whether dACC computations of learning rate are modu-
lated by emotional cues or by traits such as social anxiety. Show-
ing those modulations is particularly important, because the
dACC is a central node of the brain system processing negative
affect (Shackman et al., 2011), suggesting that its computations
might be sensitive to negative emotions. Here, we replicated pre-
vious findings, namely covariation between dACC activity and
learning rate (Behrens et al., 2007, 2008). Furthermore, we added
to those reports by demonstrating that learning rate-related com-
putations are stronger when responding to emotional cues. More
importantly, our results suggest that high socially anxious indi-
viduals show disrupted dACC activity in relation to learning rate.

Influences of emotional conditioned stimuli on optimal
learning, as found in this study, might be because of effects of
those stimuli on emotions, and subsequent effects of negative
emotions on optimal learning and decision-making. Another

Figure 4. Effects of social anxiety (SA) on learning rate-related activity in the dACC. A, Across all trials, dACC correlated with the learning rate (LR), although (B) the effects were stronger during
angry trials and was mainly driven by the angry trials. C, On angry trials, learning rate-related activity in the dACC was present in the low SA group, which showed significantly greater activity than
the high SA group. For a, t map (degrees of freedom � 43) is shown with all voxels within the anatomical mask of dACC with p � 0.005 (uncorrected for display). B, The effect size is defined as the

 coefficient at the peak voxel of learning rate-related activity in the dACC. C, The effect size is defined as the 
 coefficient at the peak voxel of learning rate-related activity in the dACC on angry trials.
B, C, The corresponding mean and SEM are plotted. The distribution of data is also shown. For further details of statistical analysis, see Table 3.

Table 3. Statistics of the neuroimaging analysis of the main effects of learning rate
in the dACC mask (small-volume voxel-level familywise error corrected)

Cluster-level
statistics Voxel-level statistics

PFWE k PFWE t(43) Peak, mm

Learning rate across all trials 0.034 38 0.032 �3.75 8 26 42
0.038 32 0.035 �3.72 �10 18 44

Learning rate on angry trials 0.017 77 0.013 �4.14 �8 24 40
0.033 38 0.017 �4.03 10 28 42
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possibility is that social threat cues disrupt optimal learning di-
rectly, even when they are not accompanied with negative emo-
tions. Future studies should address this question, in particular
by analyzing choice data and simultaneously recorded physiolog-
ical signals related to experienced emotions, such as skin conduc-
tance response. Importantly, although current research on
defensive behavior is mainly focused on elicited reactions, new
theories emphasize active responses to threat cues (LeDoux and
Daw, 2018). The neural processes underlying those active re-
sponses are not yet clear, although amygdala is hypothesized to
influence active decisions by signaling threats to the striatum
(LeDoux and Daw, 2018), which plays a key role in learning and
decision-making. The role of the dACC in these neural processes
are not yet known, although dACC has dense connectivity with
both the amygdala and the striatum (Draganski et al., 2008;
Shackman et al., 2011).

In this study, in addition to emotional content of conditioned
stimuli, we manipulated valence of outcomes independently.
However, no significant effect of outcome valence on optimal
tuning of learning rate was found. Nevertheless, further studies
are needed to investigate effects of outcome valence on optimal
learning. First, optimal learning might be more sensitive to pri-
mary punishments such as shocks. In this study, however, we
used monetary outcomes as instrumental reinforcers both as re-
ward and punishment. Second, the outcome manipulation of the
present study might not be sufficiently powerful to be detected in
our sample size. Third, in our paradigm, the punishment is
avoidable (outcome contingency is instrumental), although
the facial expression is not. This difference might lead to po-
tentiated effects for the negative facial expression versus the
negative outcome.

In this study, unlike the recent study by Li et al. (2011), we did
not find associability related activity in the amygdala, even when
we focused only on angry trials. However, there are important
differences between the paradigm used in this study and that of Li
et al. (2011). First, Li et al. (2011) used shocks as negative out-
comes, whereas we used financial losses as negative outcomes.
Second, Li et al. (2011) fitted their model to skin conductance
response data, whereas we fitted models to choice data. Finally, Li
and colleagues examined amygdala activation in the context of a
Pavlovian task that did not require making decisions, whereas the
current study required decision-making. Consistent with our
findings, a recent study in monkeys did not find significant effects
of amygdala lesions on associability in a stochastic two-arm ban-
dit task (Costa et al., 2016). It should be noted, however, that the
role of amygdala regarding associability computations in threat
situations might be to signal presence of threat to other regions
(Fox et al., 2015), such as dACC.

The biases induced by threatening social cues, such as angry faces,
reflect Pavlovian biases in learning. These Pavlovian biases are not
always the most rational responses, but they are generally useful
heuristics as they reflect predominant statistics of the environment
around us, for example threatening angry cues are more likely to be
followed by negative outcomes. Importantly, unlike Pavlovian re-
sponse biases, such Pavlovian learning biases affect causal inference.
Therefore, our findings suggest that threatening angry cues affect
how high trait social anxiety individuals make causal inference. In
the context of social threat cues, those individuals are unable to dis-
sociate a bad outcome that happened by chance from an actual mis-
take caused by their own actions. This might be related to symptoms
of “self-blame” in anxiety and depression disorders (Beck, 1967),
although further studies are needed to investigate this somewhat
speculative hypothesis. Previous works have linked Pavlovian biases

to neuromodulatory systems (den Ouden et al., 2013; Swart et al.,
2017), particularly dopaminergic (although see the recent study by
Rutledge et al., 2017) and serotonergic systems. Whether and how
these, or other neuromodulatory (Iglesias et al., 2013; Payzan-
LeNestour et al., 2013), systems modulate such Pavlovian biases in
learning rate in socially anxious individuals are open questions for
future studies.

Psychological, temporal difference and Bayesian accounts of
learning suggest that learning rate is a crucial element of learning,
which should be adaptively adjusted according to the history of sur-
prises to support optimal learning (Pearce and Hall, 1980; Yu and
Dayan, 2005; Behrens et al., 2007; Li et al., 2011; Mathys et al., 2011;
Iglesias et al., 2013). Here, we used an augmented hybrid Rescorla–
Wagner model in which learning rate was a weighted combination of
a dynamic and a constant component. The dynamic component was
gradually updated according to the sample variance (squared error)
on every trial. The hybrid model can be treated as a proxy model of
fully Bayesian accounts, which has the benefit to be close to classical
psychological models. An important open question for future stud-
ies is whether the inability to adjust learning rate in socially anxious
individuals is caused by disruptions in computationally higher levels
of reasoning that are responsible for detecting changes in the envi-
ronment. Hierarchical Bayesian models are particularly useful to
address this question (Behrens et al., 2007). Another important
question remained to be addressed is whether these hierarchically
computed learning rates vary as a function of the valence of predic-
tion errors, which is shown to influence baseline learning rates in
humans (Frank et al., 2004, 2007; Piray et al., 2014) as well as mon-
keys (Piray, 2011) and supported by neural models of prefrontal
cortex–basal ganglia (Frank et al., 2004; O’Reilly and Frank, 2006)
and mesostriatal circuits (Haber et al., 2000; Piray et al., 2017).

In this study, we characterized the computational and neural
mechanisms by which emotional context modulated optimal
learning in an uncertain environment and how those mecha-
nisms are disrupted in high trait social anxious individuals. These
findings open the way to test and modify the neurobiological
underpinnings of maladaptive learning in pathologies related to
social anxiety.
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