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ABSTRAK 

 

 

 

Penggunaan rangkaian neural tiruan (ANN) semakin popular dan telah digunapakai 

dalam pelbagai bidang, seperti perubatan, kewangan, ekonomi, kejuruteraan dan 

sebagainya. Ini kerana ANN terkenal sebagai satu teknik pengkelasan bagi data tidak 

linear dan data keluaran bernombor. Walaubagaimanapun ANN masih menghadapi 

masalah dari segi pemprosesan yang agak lambat dan selalu terhenti di local minima. 

Kajian ke arah mempertingkatkan kecekapan latihan ANN telah menjadi satu bidang 

kajian yang aktif dengan penghasilan pelbagai kertas kajian daripada penyelidik ANN.  

Pada dasarnya, prestasi Perceptron Multi Lapisan (MLP) adalah banyak dipengaruhi 

dari saiz data dan teknik data pra pemprosesan yang akan digunakan. Kajian ini 

menganalisis kebaikan-kebaikan menggunakan data yang telah melalui pra 

pemprosesan dengan menggunakan teknik-teknik yang berbeza dalam kaedah untuk 

memperbaiki kecekapan latihan ANN. Min-maks, Z -skor dan teknik pra pemprosesan 

 Pernormalan Penskalaan Perpuluhan telah dinilai secara spesifiknya. Keputusan 

simulasi menunjukkan bahawa ketepatan berkomputer bagi proses latihan ANN adalah 

sangat baik apabila digunakan bersama-sama dengan pelbagai jenis teknik pra 

pemprosesan. 
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ABSTRACT 

 

 

 

The artificial neural network (ANN) has recently been applied in many areas, such as 

medical, biology, financial, economy, engineering and so on. It is known as an excellent 

classifier of nonlinear input and output numerical data. Improving training efficiency of 

ANN based algorithm is an active area of research and numerous papers have been 

reviewed in the literature. The performance of Multi-layer Perceptron (MLP) trained 

with back-propagation artificial neural network (BP-ANN) method is highly influenced 

by the size of the data-sets and the data-preprocessing techniques used. This work 

analyzes the advantages of using pre-processing datasets using different techniques in 

order to improve the ANN convergence. Specifically Min-Max, Z-Score and Decimal 

Scaling Normalization preprocessing techniques were evaluated. The simulation results 

showed that the computational efficiency of ANN training process is highly enhanced 

when coupled with different preprocessing techniques. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

1.1 An overview  

 

Artificial neural networks (ANN) seemed to be one of the best approaches in machine 

learning methods. ANNs are software constructs designed to mimic the way of the 

human brain learns. The neural network can imitate the process of human’s behavior 

and solve nonlinear matters, which has made it widely used in calculating and 

predicting complicated system, and achieved a non linearity mapped effect, which the 

conventional calculating way could not do. The nerve cell, which is the base of neural 

network, has the function of processing information. Neural networks extensively used 

in various applications such as image/signal processing, system identification, face 

detection and etc.  Gradient based methods are one of the most widely used error 

minimization methods used to train back propagation networks. Back propagation 

algorithm is a classical domain dependent technique for supervised training. It works by 

measuring the output error calculating the gradient of this error, and adjusting weights 

and biases in the descending gradient direction. Back propagation is the most 

commonly used and the simplest feed forward algorithm used for classification. 

ANNs are now globally recognized as the most effective and appropriate 

artificial intelligence technology for pattern recognition since ANN is nonlinear in 

nature and, thus, represents an exceptionally powerful method of analyzing real-world 

data that allows modeling extremely difficult dependencies [1]. ANNs have proven to 

be among the best methods of detecting hidden relations in a dataset (for example, in 

stock market or sales data). After ANN has analyzed the dataset (this process is called 

network training), it can make predictions and perform pattern recognition and 

categorization based on the found hidden dependencies.  Supervised learning algorithms 

are trained with labeled data only. But labeling the data can be costly and hence the 

amount of labeled data available may be limited. Training the classifiers with limited 

amount of labeled data can lead to low classification accuracy.  
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Hence pre-processing the data is required for getting better classification 

accuracy. Furthermore, data pre-processing can has a significant impact on 

generalization performance of ANN learning algorithms.  

 

1.2        Problem Statement  

  

The feed-forward Backpropagation artificial neural networks (ANN) are widely used to 

control the various industrial processes, modelling and simulation of systems and 

forecasting purposes. Back propagation (BP) algorithm is known for its ability to learn 

and highly suitable for problems in which no relationship is found between the input 

and output [2].  The Backpropagation learning has various drawbacks such as slowness 

in learning, stuck in local minima, requires functional derivative of aggregation function 

and thresholding function to minimize error function. Moreover, it was found out that 

the techniques for Pre-processing the data also plays an important role in effecting the 

performance of BP in term of high quality accuracy and less processing time. These 

weaknesses make BP unreliable in solving real-world problems. 

Improving training efficiency of neural network based algorithm particularly back 

propagation algorithm is an active area of research and numerous papers have been 

published until today to improving BP training.  

 In this research will investigate the following issues which affect the 

performance of BP algorithm: 

(i) Data is not properly pre-process 

Data preprocessing often neglected by researchers, although, it is an important step in 

data mining process. If there is much irrelevant and redundant information present or 

noisy and unreliable data, then knowledge discovery during the training phase is more 

difficult. Data have quality if they satisfy the requirements of the intended use, Low-

quality data will lead to low-quality mining Results. There are many techniques in pre-

process data such as; Min-Max, Z-Score and Decimal Scaling Normalization 

preprocessing techniques. By knowing which technique that can influence BP the most 

it can help to enhance BP training.  

(ii) Some parameters that  influence on the performance of BP 

The performance of BP algorithm is control by some parameters such as momentum, 

learning rate, activation function, number of hidden nodes, gain parameter. Those 

parameters are used for controlling the weight adjustment along the descent direction. 

Finding those initial and fixed parameters must be done with great care. The activation 

function must be differentiable, and it helps if the function is bounded, the sigmoid 
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functions such as logistic and tanh and the Gaussian function are the most common 

choices. Therefore, by knowing the best parameters for BP algorithm, the training 

process is highly enhanced when coupled with those different preprocessing techniques. 

 

1.3       Research Objectives  

 

This research was intended to do the following objectives: 

(i) To clarify the effect of some parameters in back propagation algorithm with 

different pre-processing techniques in improving the classification accuracy on 

some classification problems.  

(ii) To apply a combination of data pre-processing technique with optimal 

parameters in BP training algorithm. 

(iii)To compare the performance of the applying combination with other traditional 

techniques in classifying some benchmark problems. 

 

1.4       Scope of Research 

 

The research will focus only on enhancing the current working back propagation 

algorithm proposed by Nazri [3] with optimal parameters and combine with optimal 

data pre-processing techniques on some classification problems. Three pre-processing 

techniques will be used in this research for the comparison proposes which are: 

(i) Min-Max Normalization. 

(ii) Z-Score Normalization. 

(iii)Decimal Scaling Normalization.  

The performances of the integration method will be compare and analyze in 

terms of processing time, number of epochs and accuracy modeling on five dataset 

benchmark problems. 

 

1.5      Research Methodology 

 

The purpose of this research is to provide empirical evidence on the comparative study 

of different data preprocessing method in MLP model for classification problems, with 

four different algorithms.  

The research methodology will be as presented in Figure 1.1 will be describe as 

follows: 
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Figure 1.1: Research Methodology 

 

(a) Literature Review 

 

This phase provides the context of the research work which is relevant to the previous 

and the current work of the research and the relationship between different works. In 

this chapter, literature review discussed about back-propagation algorithm and some 

improvements by other researchers. Some modifications and variations of BP algorithm 

proposed Nazri [3] [2] which have been used to solve classification problems and will 

be applied throughout this thesis. 

  

(b) Pre-processing Data 

 

 Today the real world data are highly susceptible to noisy, missing, and inconsistent 

data due to their typically huge size (often several gigabytes or more) and their likely 

origin from multiple, heterogeneous sources[4] [5]. Low-quality data will lead to low-

quality mining results. This phase will discuss several data preprocessing techniques 

that can clean and remove noise and correct inconsistencies in data.  
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Evaluation (Performance Comparison) 
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(c) Artificial Neural Network (ANN)  

 

ANNs are mathematical techniques designed to deal with different problems. The 

research in the field has a history of several decades, but the interest started to grow in 

the early 1980s [2]. Today, Neural Networks can be configured in various arrangements 

to perform a range of tasks including pattern recognition, data mining, classification, 

forecasting and process modeling. ANNs are composed of attributes that lead to perfect 

solutions in applications where we need to learn a linear or nonlinear mapping. Some of 

these attributes are learning ability, generalization, parallel processing, and error 

endurance. These attributes would enable ANNs to solve complex problem methods 

precisely and flexibly. ANNs consist of an inter-connection number of neurons. There 

are many varieties of connections under study [4]. There are lot connection topologies 

to construct Multi Layer Perception (MLP) network as shown in Figure 1.2. The input 

nodes are the previous lagged observations, while the output provides the forecast for 

the future value. In order to process the information received by the input nodes, hidden 

nodes with appropriate nonlinear transfer functions are used.   

The MLP’s most popular learning rule is the error back propagation algorithm 

and can solve problems which are not linearly separable. 

 

 

Figure 1.2: Multilayer Perceptron Architecture 

 

(i) Backpropagation Algorithm  

 

Backpropagation (BP) is a common method of training ANN to minimize the objective 

function. BP described it as a Multi-stage Dynamic System optimization method [5]. BP 
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algorithm is a supervised learning method, and is a generalization of the delta rule [6]. It 

requires a dataset of the desired output for many inputs, making up the training set. It is 

most useful for feed-forward networks (networks that have no feedback, or simply, that 

have no connections that loop). The term is an abbreviation for "backward propagation 

of errors". BP requires that the activation function used by the artificial neurons or 

"nodes" be differentiable [7].  

BP is very good at recognizing of patterns (in fact it is usually better than a 

human). The data are presented directly to the network with each pattern well 

positioned on a grid and correctly sized. However, BP cannot handle patterns in a noisy 

“scene”, like recognizing a face in a crowd or a letter in a page of print [8]. Since the 

algorithm gets confused or this phenomena is known as an “unconstrained 

environment”. So it is very crucial to pre-process the data before presenting the data to 

BP algorithm. 

 

(d) Evaluation 

 

The effect of pre-processing techniques with ANN training algorithm is evaluate based 

on simulations on some benchmark datasets. A classification model is tested by 

applying it to test data with known target values and comparing the predicted values 

with the known values [9]. The test data must be compatible with the data used to build 

the model and must be prepared in the same way that the build data was prepared. 

Typically the build data and test data come from the same historical data set.  

A percentage of the records are used to build the model, the remaining records 

are used to test the model. Test metrics are used to assess how accurately the model 

predicts the known values. If the model performs well and meets the targets, it can then 

be applied to new data to predict the future. 

 

1.6      Research Outcome 

 

This research outcome is to evaluate the effect of some pre-processing techniques and 

optimal parameters in BP training algorithm. Based on BP techniques, the best model 

was obtained from the selection and adjusting the optimal parameter settings which are 

built in BP algorithm settings, such as learning rate, momentum term, activation 

function, gain value and the number of hidden nodes in achieving a good performance 

in classification which are measured based on Accuracy, CPU time and the number of 

Epochs.  
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1.7      Research Significance 

 

The research significance is improving and enhancing BP training by integrate or 

combine the optimal data pre-processing technique with optimal parameters which 

control BP to get good accuracy for classification problem on some benchmark dataset.    

 

1.8       Thesis Outline  

 

The thesis is subdivided into six chapters, including the introduction and conclusion 

chapters. The following is the synopsis of each chapter: 

 Chapter 1:  Introduction. Apart from providing an outline of the thesis, this 

chapter contains an overview of the background to research work, research 

problem, objectives, research scope and methodologies in conducting this 

research. 

 

 Chapter2: Literature Review. The Back-propagation (BP) is one of the most 

successful computational intelligence techniques and widely used learning 

algorithm for Artificial Neural Networks (ANN). However, it convergence 

rate can be very slow. Researchers had tried to improve its computational 

efficiency by adjusting parameters such as learning rate, momentum, gain of 

activation function, network topology and different learning algorithms. 

Moreover, the proper choices of pre-process technique also play a big role in 

improving the BP learning process. This chapter reviews the research 

contribution made by various researchers to improve the training efficiency 

of BP. This chapter demonstrates the effect of using pre-process technique to 

the BP learning process. At the end of this chapter, some of the advantages 

posed by the proper choice of pre-process technique are outlined. This 

chapter lays a foundation for introducing a proper technique for improving 

the learning efficiency as described in Chapter Three. 

 

 Chapter3: Research Methodology. This chapter extends the work on using pre-

process technique as proposed in Chapter Two. It was discovered that the 

use of pre-process technique influences the BP performance. Since most of 

the data mining technique employed during the training process of BP 

networks use pre-process technique. An efficient of work flow has been 
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presented that properly select pre-process technique together with BP 

algorithms. The proposed workflow is programmed in MATLAB 

programming language and is tested for its correctness on selected 

benchmark data sets. The results of the proposed workflow were compared 

to facilitate further testing and validation in the next chapter. 

 

 Chapter4: Results and Discussions. The efficient workflow proposed in Chapter 

Three is further validated for its efficiency and accuracy on a variety of 

benchmark datasets. The performance of the proposed workflow is tested in 

three ways: (a) the speed of convergence measured in number of iterations 

and CPU time; and (b) the classification accuracy on testing data from 

benchmark datasets. The results are then discussed for their interpretation 

and implementation through various ANN models.  

 

 Chapter5: Conclusion and future work. The research contributions are 

summarized and recommendations are made for further continuation of 

work. 

 



 

 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Artificial Neural Networks (ANNs) particularly Back-propagation neural network 

(BPNN) is one of the most successful computational intelligence techniques used in 

various applications nowadays [10]. However, the training process for a BPNN require 

the designers to arbitrarily select parameters such as network topology, initial weights 

and biases, learning rate value, the activation function, value for gain in activation 

function and momentum. An improper choice of any of these parameters can result in 

the slow convergence or even network paralysis, where the training process comes to a 

standstill or get stuck at local minima. Furthermore, the effect of selecting a proper pre-

process technique can also contribute a significant improvement to the BP learning 

process [11]. Therefore, this chapter focuses on the previous literature work that 

suggested certain improvements on BPNN model together with the effect of using pre-

processing techniques for classification problems.  

 

2.2 Artificial Neural Networks (ANN) 

 

Artificial Neural Networks (ANN) is analytical techniques modelled on the learning 

processes of human cognitive system and the neurological functions of the brain. ANN 

works by processing information like biological neurons in the brain and consists of 

small processing units known as Artificial Neurons, which can be trained to perform 

complex calculations [12]. 

 An Artificial Neuron can be trained to store, recognize, estimate and adapt to 

new patterns without having the prior information of the function it receives. This 

ability of learning and adaption has made ANN superior to the conventional methods 

used in the past. Due to its ability to solve complex time critical problems, it has been 

widely used in the engineering fields such as biological modelling, financial 
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forecasting, weather forecasting, decision modelling, control systems, manufacturing, 

health and medicine, ocean and space exploration etc [13] [14] .  

 

2.3 Back Propagation Neural Network 

 

Back-Propagation Neural Network (BPNN) is one of the most novel supervised-

learning Multilayer Perceptron Artificial Neural Networks (MLP-ANN) model 

proposed by Rumelhart, Hinton, & Williams (1986).  The BPNN learns by calculating 

the errors of the output layer to find the errors in the hidden layers. This qualitative 

ability makes it highly suitable to be applied on problems in which no relationship is 

found between the output and the inputs. Due to its high rate of plasticity and learning 

capabilities, it has been successfully implemented in wide range of applications (Lee, 

Booth, & Alam, 2005). Previous works have confirmed that the performance of MLP in 

many cases outperform conventional statistic techniques [16]. The main power of 

ANNs lies in their ability to approximate complex and non-linear relationship between 

input and output data by learning from example [17].   

 Despite providing successful solutions BPNN has some limitations. Since, it 

uses gradient descent learning which requires careful selection of parameters such as 

network topology, initial weights and biases, learning rate, activation function, and 

value for the gain in the activation function. An improper use of these parameters can 

lead to slow network convergence or even network stagnancy. Previous researchers 

have suggested some modifications to improve the training time of the network. Some 

of the variations suggested are the use of learning rate and momentum to stop network 

stagnancy and to speed-up the network convergence to global minima. These two 

parameters are frequently used in the control of weight adjustments along the steepest 

descent and for controlling oscillations (Zaweri, Seneviratne, & Althoefer, 2005).  

Recently, researches had found out that the techniques for pre-processing the 

data also plays an important role in effecting the performance of MLP, where pre-

processing data encourage the high quality accurate and less time.  

There are many data pre-processing techniques have been discussed in 

literatures. Some of work has been done on the real world data and the others on 

benchmark dataset problems. The researchers used various model of ANN techniques 

and combined with the pre-processing techniques to get high accurate. It is important to 

pre-process data due to noisy data, errors, inconsistencies, outliers and lack of variable 

values [21] [23]. Different data pre-processing techniques like cleaning method, outlier 

detection, data integration and transformation can be carried out before classification 



11 

 

process to achieve successful analysis. Normalization is an important pre-processing 

step in data mining to standardize the values of all variables from dynamic range into 

specific range. Outliers can significantly affect data mining performance, so outlier 

detection and removal is an important task in wide variety of data mining applications. 

 

2.4 Back Propagation and Pre-processing Techniques 

 

Concern with the effect of pre-processing data, Suhartono, et la.2006, provided an 

empirical evidence on the comparative study of many data preprocessing method in NN 

model for forecasting trend and seasonal time series. Three types of data preprocessing 

based on the decomposition method are applied and compare to the airline data. Those 

are de-trend, de-seasonal, and combination detrend-deseasonal. All of these data 

preprocessing are implemented by using MINITAB software. To determine the best 

hybrid model, that is combination data preprocessing based on the decomposition 

method and NN model, an experiment is conducted with the basic cross validation 

method. The available training data is used to estimate the weights for any specific 

model architecture. The testing set is the used to select the best model among all models 

considered. In this work, the number of hidden nodes varies from 1 to 10 with an 

increment of 1. The lags of 1, 12 and 13 are included due to the results of Faraway and 

Chatfield (1998), Atok and Suhartono (2000), and Suhartono et al. (2005a). The FFNN 

model used in this empirical study is the standard FFNN with single-hidden-layer. They 

also use the standard data preprocessing in NN for the airline data by transform detrend, 

deseasonal, and combination detrend-deseasonal data to range (0,1) scaling . The 

performance of in-sample fit (training data) and out sample forecast (testing data) is 

judged by the commonly used error measures, the mean squared error (MSE) and ratio 

MSE to ARIMA model. The simulation and real data contain 144 month observations. 

The first 120 data observations are used for model selection and parameter estimation 

(training data in term of NN model) and the last 24 points are reserved as the test for 

forecasting evaluation and comparison (testing data). The ratio of testing samples 

comparison that combination detrend-deseasonal as data preprocessing and 

transformation range (0,1) on FFNN with 5 unit nodes (for simulation data) and 4 unit 

nodes for the airline data in hidden layer yield the best MSE. The reduction of MSE is 

highly significant if compare to the result of FFNN without detrend-deseasonal as data 

preprocessing, those are 52.8% for simulation data and 61.8% for the airline data. Based 

on the results can conclude that the combination detrend-deseasonal based on the 
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decomposition method as data preprocessing in FFNN yields a great impact on the 

increasing accuracy of forecasting trend and seasonal time series.  

The research followed by Tudu, et la. 2008 where he presents a comparative 

study of different normalization techniques for enhancing pattern classification of black 

tea using electronic nose. For this study black tea samples were collected from different 

tea gardens in India. At first Principal Component Analysis (PCA) was used to 

investigate presence of clusters in the sensors responses in multidimensional space. 

Then different normalization techniques were used on the black tea data. Finally 

classification performances were done using BP-MLP. BP-MLP algorithm for black tea 

classifications using normalized data marginally enhances the pattern recognition 

accuracy of electronic nose system. Three-layer Back propagation Multilayer 

Perceptron (BP-MLP) model with one input layer, one hidden layer and one output 

layer has been considered. Experimentations with electronic nose have been performed 

with 194 finished tea samples with six different taster scores of tea samples and sensor 

output signatures are logged in the computer. Initial PCA analysis was done on raw data 

set as well as on normalized date set, and improves the separable nature on normalized 

data set. Further BP-MLP was tested on normalized data set. Different normalization 

techniques and BP-MLP algorithm were done on MATLAB platform. With raw data, 

the simulation results for testing demonstrated that BP-MLP algorithm achieved 

accuracy of 60.25%. Whereas, with normalized data set, the classification accuracy 

marginally improves. It is noted that from this study for classification of black tea using 

electronic nose based on BP-MLP algorithm, normalization technique of Range Scale2 

gives the better classification rate more than 93% [24]. 

In the same year 2008, Paulin, et la. In his research on feed forward neural 

network and the Back propagation algorithm are used to train the network. The 

proposed algorithm is tested on a real life problem, the Wisconsin Breast Cancer 

Diagnosis problem. The data set was partitioned into two sets: training and testing set. 

The testing set was not seen by any neural network during the training phase and it is 

only used for testing the generalization of neural network ensembles after they are 

trained. The research used the 80% examples for the training set, and the rest 20% 

examples for the testing set. There are three layers in the back propagation network, 

including an input layer containing nine units, a hidden layer containing six units and an 

output layer containing only one unit. The value of the unit in the output layer shows 

whether the input is a normal cell or not. At the start of training, all connection weights 

in network are set to random values. All input vectors are normalized so that the 

minimum and maximum are 0 and 1, respectively. The architecture used in these 
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applications consisted of tan-sigmoid hidden units and one purelin output unit. The 

learning rate is 0.7 was used. Number of maximum allowable epochs was 1000. In this 

work six training algorithms are used, among these six methods, Levenberg Marquardt 

method gave the good result of 99.28%. Preprocessing using min-max normalization is 

used in this diagnosis.  

Later, Jayalakshmi et la. [15], proposed various normalization methods used in 

back propagation neural networks to enhance the reliability of the trained network. 

Jayalakshmi proposed a network with eight inputs and four inputs and the results 

obtained are compared in terms of error. The highest performance is obtained when the 

network consists of eight inputs with three hidden layers with 15, 14, 14, 1 neurons 

respectively. The network parameters such as learning rate, momentum constant, 

training error and number of epochs can be considered as 0.9, 0.9, 1e-008 and 100 

respectively. Before training the weights are initialized to random values. The main 

reason to initialize weights with small values is to prevent saturation. The performance 

of the network models were evaluated with the entire sample which was randomly 

divided into training and test sample. All models are tested using the standard rule of 

80/20, where 80% of the samples are used for training and 20% are used for testing. The 

experimental results showed that the performance of the diabetes data classification 

model using the neural networks was dependent on the normalization methods [25]. 

In the same year 2011, Jain et la, proposed a privacy preserving data distortion 

method based on min max normalization transformation. They use WEKA (Waikato 

Environment for Knowledge Analysis) software to test the accuracy of distorted 

method. The privacy parameters are measured by a separate Java program. They have 

constructed the classifier for NB Tree classification, and a 10-fold cross validation to 

obtain the classification results .In his paper, Jain [27] conducted the experiment on four 

real life datasets and the experimental result show that the min max normalization 

transformation based data distortion method is effective for privacy preserving data 

mining. The privacy parameters used in this paper show the degree of privacy 

protection by the proposed method. Furthermore, the proposed method also maintain 

the performance of data mining technique after data distortion. Jain also suggested that 

it is interesting to use the other normalization methods like Z-score normalization and 

Normalization by decimal scaling and compare its result with Min-max normalization.  

Mustaffa et al.[28] investigated the use of three normalization techniques in 

predicting dengue outbreak where all of the input and output data were normalized 

before training and testing processes in order to ensure that data are not overwhelmed 

by each other in terms of distance measure. In this paper three types of normalization 
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techniques has been applied separately; Min-Max Normalization, Z-Score 

Normalization and Decimal Point Normalization, these techniques are incorporated in 

the LS-SVM and Neural Network (NNM) prediction model respectively, the purpose of 

using three different normalization techniques is to identify the best normalization to be 

used in this research. Comparisons of results are made based on prediction accuracy and 

mean squared error MSE, the data divided proportionally as stated; 70% Training, 350 

instance data for training and 30% testing, 150 instance data for testing. From the 

undertaken experiments it shown that  LS-SVM and NNM can achieved better accuracy 

and MSE by using Decimal Point Normalization compared to the other two techniques 

Min-Max and Z-Score Normalization. Furthermore, the simulations results obtained 

indicate that the LS-SVM is a better prediction model as compared to the NNM. 

Then Patel et al. [29], analyzed the performance of modified k-Means clustering 

algorithm with data preprocessing technique includes cleaning method, normalization 

approach and outlier detection with automatic initialization of seed values on datasets 

from UCI dataset repository.  Data pre-processing techniques are applied on raw data to 

make the data clean, noise free and consistent.  Data Normalization standardize the raw 

data by converting them into specific range using linear transformation which can 

generate good quality clusters and improve the accuracy of clustering algorithms. The 

performance analysis of modified k-Means clustering algorithm shows that decimal 

scaling normalization technique gives the best results for the modified k-means 

clustering algorithm and secondly min-max data normalization generates the best results 

for modified k-means clustering algorithm. The analysis shows that outlier detection 

and removal with generates the best and most effective and accurate results than other 

techniques used in this paper. The paper also compares the MSE performance of the 

proposed Mk-Means algorithm with MSE of Data Normalization techniques on River 

dataset. The analysis result shows the best result for Mk-Means with normalization 

approach. 

Recently, in the year 2011, Norhamreeza and Nazri et la.2011, proposed a new 

modified BP learning algorithm by introducing adaptive gain together with adaptive 

momentum and adaptive learning rate into weight update process. By computer 

simulations, they demonstrated that the proposed algorithm achieved a better 

convergence rate and can find a good solution in early time as compared to the 

conventional BP. The research used four common benchmark classification problems to 

illustrate the improvement in convergence time The proposed algorithm adaptively 

changes the gain parameter of the activation function together with momentum 

coefficient and learning rate to improve the learning speed. The effectiveness of the 
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proposed algorithm has been compared with the conventional Back Propagation 

Gradient Descent BPGD and Back Propagation Gradient Descent with Adaptive Gain 

BPGD-AG [3]. The three algorithms were been verified by means of simulation on four 

classification problems including iris dataset with an improvement ratio nearly 2.8 

seconds for the BPGD and 1.33 seconds better for the BPGD-AG in terms of total time 

to converge; card dataset indicates almost 92.5% and 12.92% faster compared to BPGD 

and BPGD-AG respectively; glass almost 10.2 seconds less time to converge than 

BPGD, whilst BPGD-AG nearly 2 seconds; and thyroid is 90.65% faster than BPGD 

and almost 16.2% faster than BPGD-AG in learning the patterns. The results show that 

the proposed algorithm BPGD-AGAMAL has a better convergence rate and learning 

efficiency as compared to conventional BPGD and BPGD-AG. 

The research continue by Norhamreeza and Nazri Nawi, et la.[18] by proposing 

an algorithm for improving the performance of the current working back propagation 

algorithm which is Gradient Descent Method with Adaptive Gain by changing the 

momentum coefficient adaptively for each node. The influence of the adaptive 

momentum together with adaptive gain on the learning ability of a neural network is 

analyzed. Multilayer feed forward neural networks have been assessed. Physical 

interpretation of the relationship between the momentum value, the learning rate and 

weight values is given. The efficiency of the proposed algorithm is compared with 

conventional Gradient Descent Method and current Gradient Descent Method with 

Adaptive Gain was verified by means of simulation on three benchmark problems. In 

learning the patterns, the simulations result demonstrate that the proposed algorithm 

converged faster on Wisconsin breast cancer with an improvement ratio of nearly 1.8, 

6.6 on Mushroom problem and 36% better on Soybean data sets. The results clearly 

show that the proposed algorithm significantly improves the learning speed of the 

current gradient descent Backpropagation algorithm. The result shows that the proposed 

algorithm GDM/AGAM has a better convergence rate and learning efficiency as 

compared to conventional Gradient Descent Method GDM and Gradient Descent 

Method with Adaptive Gain GDM/AG . 

Later, Nazri Nawi, et la.[39], proposed an algorithm for improving the 

performance of the back propagation algorithm by introducing the adaptive gain of the 

activation function. The efficiency of the proposed algorithm is compared with 

conventional Gradient Descent Method and verified by means of simulation on four 

classification problems. The performance criterion used in this research focuses on the 

speed of convergence, measured in number of iterations and CPU time. The benchmark 

problems used to verify the proposed algorithm are taken from the open literature. Four 
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classification problems have been tested including Wisconsin breast cancer, thyroid, 

IRIS classification and diabetes classification problem. The simulations have been 

carried out on a Pentium IV with 3 GHz PC Dell, 1 GB RAM and using MATLAB 

version 6.5.0 (R13). On each problem, the following three algorithms were analyzed 

and simulated. For all problems the neural network had one hidden layer with five 

hidden nodes and sigmoid activation function was used for all nodes. All algorithms 

were tested using the same initial weights, initialized randomly from range, the learning 

rate value is 0.3 and the momentum term value is 0.7 with the initial value used for the 

gain parameter is one and received the input patterns for training in the same sequence. 

The number of iterations until convergence is accumulated for each algorithm from 

which the mean, the standard deviation and the number of failures are calculated. The 

networks that fail to converge are obviously excluded from the calculations of the mean 

and standard deviation but are reported as failures. For each problem, 100 different 

trials were run, each with different initial random set of weights. The effectiveness of 

the proposed algorithm has been compared with the Gradient Descent Method GDM, 

verified by means of simulation on four classification problems including Wisconsin 

breast cancer and diabetes classification problem with an improvement ratio nearly 2.8 

and 1.2.for the total time of converge, thyroid took almost 65% less time to converge 

and IRIS the proposed algorithm outperformed the traditional GDM with 97% success 

in learning the patterns. Moreover, when comparing the proposed algorithm with GDM, 

it has been empirically demonstrated that the proposed algorithm GDM/AG performed 

highest accuracy than GDM. This conclusion enforces the usage of the proposed 

algorithm as alternative training algorithm of back propagation neural networks. 

 

2.5 The Pre-processing Technique  

 

Data transformation such as normalization is one of the data pre-processing techniques 

used in most of Data Mining System. An attribute of a dataset is normalized by scaling 

its values so that they fall within a small-specified range, such as 0.0 to 1.0.  

Normalization is particularly useful for classification algorithms involving 

neural networks, or distance measurements such as nearest neighbor classification and 

clustering. Normalization performs data smoothing and data normalization preparatory 

to modeling. The technique is easy to apply by using standard mathematical 

transformations such as min-max normalization to numerical columns, z-score 

normalization, log normalization, or decimal scaling normalization. Extreme values in 

data can make it difficult to detect patterns. If the data is very irregular, has very high or 
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low values, or values are scattered or do not follow a Gaussian distribution, normalizing 

the data can help fit the data to a distribution that better supports any modeling. There 

are many methods for data normalization includes min-max normalization, z-score 

normalization and normalization by decimal scaling. 

 

2.5.1 Min-Max Normalization 

 

This method rescales the features or outputs from one range of values to a new range of 

values. More often, the features are rescaled to lie within a range of [0,1] or from [-1, 

1]. The rescaling is often accomplished by using a linear interpretation formula, such as: 

  

       (1) 

 

Where Amax is the maximum value of attribute, Amin is the minimum value of attribute 

for ( AA minnewmaxnew __   ) = 0, When ( AA minmax  ) = 0, it indicates a constant 

value for that feature in the data. When a feature value is found in the data with a 

constant value, it should be removed because it does not provide any information to the 

neural network. When the min-max normalization is applied, each feature will lie within 

the new range of values will remain the same. Min-max normalization has the 

advantage of preserving exactly all relationships in the data. 

 

2.5.2 Z-Score Normalization (Statistical) 

 

Z-score normalization is also called zero-mean normalization; this technique uses the 

mean and standard deviation for each feature across a set of training data to normalize 

each input feature vector. The mean and standard deviation are computed for each 

feature. The transformation is given in the general formula: 

 

  

        (2) 

 

Where A is mean of attribute A and A  = standard deviation of attribute A. This 

produces data where each feature has a zero mean and a unit variance. Z-Score 

normalization technique is applied to all the feature vectors in the data set first; creating 

a new training set and then training is commenced. Once the means and standard 

deviations are computed for each feature over a set of training data, they must be 

retained and used as weights in the final system design. It is a preprocessing layer in the 

neural network structure. Otherwise, the performance of the neural network will vary 

AAA

AA

A

minnewminnewmaxnew
minmax

minv
v _)__(' 






A

Av
v




'



18 

 

significantly because it was trained on a different data representation than the un- 

normalized data. 

The advantage of this statistical normalization is that it reduces the effects of 

outliers in the data. 

 

2.5.3 Decimal Scaling Normalization 

 

Normalization by decimal scaling normalizes by moving the decimal point of value of 

attribute A. The number of decimal points moved depends on the maximum absolute 

value of A. A value A of A is normalized to Aꞌ by the following formula: 

 
  A 
Aꞌ =      ―                                   (3) 

10   

Where m is the smallest integer such that Max |Aꞌ|<1. 

 

2.6 Fundamentals of Gradient Descent  

 

Multilayer feed-forward Neural Network training using gradient descent BPNN requires 

parameters such as network topology, initial weights and biases, learning rate value, 

activation function, and value for the gain in the activation function should be selected 

carefully. An improper choice of these parameters can lead to slow network 

convergence, network error or failure. Seeing these problems, many variations in 

gradient descent BPNN algorithm have been proposed by previous researchers to 

increase the training efficiency. Some of the variations are the use of learning rate and 

momentum to speed-up the network convergence and avoid getting stuck at local 

minima. These two parameters are frequently used in the control of weight adjustments 

along the steepest direction and for controlling oscillations. 

Momentum coefficient is a modification based on the observation that 

convergence might be improved if the oscillation in the trajectory is smoothed out, by 

adding a fraction of the previous weight change [32] [33]. It has been revealed through 

various studies that Back-propagation with Fixed Momentum Coefficient BPFM shows 

acceleration results when the current downhill gradient of the error function and the last 

change in weights are in the similar directions, when the current gradient is in an 

opposing direction to the previous update, BPFM will cause the weight direction to be 

updated in the upward direction instead of down the slope as desired, so in that case it is 
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necessary that the momentum coefficient should be varied adaptively instead of being 

kept fixed. 

Gradient descent is a first-order optimization algorithm. To find a local 

minimum of a function using gradient descent, one takes steps proportional to the 

negative of the gradient or of the approximate gradient of the function at the current 

point. If instead one takes steps proportional to the positive of the gradient, one 

approaches a local maximum of that function; the procedure is then known as gradient 

ascent. Gradient descent is also known as steepest descent, or the method of steepest 

descent. 

 

2.6.1 Gradient Descent Training 

 

Gradient descent is one of the oldest optimization methods known. The use of the 

method as a basis for multivariate function minimization dates back to Cauchy in 1847 

[34], and has been the subject of intense analysis. A popular method of training 

Multilayer Perceptron MLP is the error back propagation EBP algorithm which is a 

gradient descent with fixed learning rate. In order to accelerate the EBP algorithm, 

which has a drawback with slow convergence, many proposed a modified error function 

which showed improved convergence. However, they are still based on the gradient 

descent with non-optimal learning rates. 

 

2.6.2 The Gradient Descent Modification 

 

Nowadays, the Multilayer Perceptron (MLP) trained with the back propagation (BP) is 

one of the most popular methods used for classification purposes [34]. This method has 

the capacity of organizing the representation of the knowledge in the hidden layers and 

their high power of generalization. Typical architecture has three sequential layers: 

input, hidden and output layer [35-36]. Such that, a MLP with one layer can build a 

linear hyper-plane, a MLP with two layers can build convex hyper-plane and a MLP 

with three layers can build any hyper-plane. 

An MLP training using gradient descent back propagation requires careful 

selection of parameters such as; network topology, initial weights and biases, learning 

rate value, activation function, and value for the gain in the activation function. An 

improper choice of these parameters can lead to slow network convergence, network 

error or failure [37-38]. Seeing these problems, many variations in gradient descent 

algorithm have been proposed by previous researchers. Lately, Nazri [39] proposed a 
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modification by changing the gradient based search direction using a gain value. For the 

comparison purposes, this study will apply the gradient descent with gain (GDG) 

algorithm proposed by Nazri [39] due to its successful implementation and proven not 

to suffer the local minimum as compared to the traditional gradient descent. The 

following iterative algorithm has been proposed by Nazri [39] for changing the gradient 

based search direction using a gain value: 

 

Initializes the initial weight vector with random values and the vector of gain 

values with unit values. Repeat the following steps 1 and 2 on an epoch-by-

epoch basis until the given error minimization criteria are satisfied. 

Step 1  By introducing gain value into activation function; calculate the 

gradient of error with respect to weights by using Equation (6), 

and gradient of error with respect to the gain parameter by using 

Equation (7) 

Step 2  Use the gradient weight vector and gradient of gain vector 

calculated in step 1 to calculate the new weight vector and vector 

of new gain values for use in the next epoch. 

 

2.6.3 Derivation of the Expression to Calculate Gain Value 

 

Consider a multilayer feed-forward network, as used in standard back propagation 

algorithm [73]. Suppose that for a particular input pattern   , the desired output is the 

teacher pattern t = , and the actual output is  , where L denotes the output 

layer. The error function on that pattern is defined as; 

  

                                                 (4) 

 

Let  be the activation values for the  node of layer s, and let 

, be the column vector of activation values in the layer s and the input 

layer as layer 0. Let  be the weight values for the connecting link between the  

node in layer s -1 and the  node in layer s , and let = be the column 

vector of weights from layer s -1to the  node of layer s . The net input to the  

node of layer s is defined as;             ,and let 

=  be the column vector of the net input values in layer s . The 
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activation value for a node is given by a function of its net inputs and the gain 

parameter ; 

(5)

             

, where f is any function with bounded derivative.  

This information is now used to derive an expression for modifying gain values 

for the next epoch. 

Most of gradient based optimization methods use the following gradient descent 

rule: 

               (6) 

           

, where  is the learning rate value at step n and the gradient based search direction 

at step n is =                     = . 

 

In the proposed method the gradient based search direction is modified by 

including the variation of gain value to yield 

=              =                (7)    

 

The derivation of the procedure for calculating the gain value is based on the 

gradient descent algorithm. The error function as defined in Equation (4) is 

differentiated with respect to the weight value   . The chain rule yields, 

 

 

= [–  ……  – ].  . f ꞌ ( )                    (8) 

 

where =   . In particular, the first three factors of Equation (8) indicate  

 

that the following equation holds: 

 

)                            (9)  =   (  ) . f ꞌ ( 
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It should be noted that, the iterative formula as described in Equation (9) to calculate  

 is the same as used in the standard back propagation algorithms except for the 

appearance of the gain value in the expression. The learning rule for calculating weight 

values as given in Equation (6) is derived by combining (8) and (9). 

In this approach, the gradient of error with respect to the gain parameter can also be 

calculated by using the chain rule as previously described; it is easy to compute as:

  

                                                           (10) 

 

Then the gradient descent rule for the gain value becomes, 

∆  = ɳ                           (11)

       

At the end of every epoch the new gain value is updated using a simple gradient based 

method as given by the following formula, 

 =   – ∆                       (12) 

 

2.6.4 The implementation on Gradient Descent Method with Adaptive Gain 

Variation Algorithm (GD/AG) 

 

In gradient descent method, the search direction at each step is given by the local 

negative gradient of the error function, and the step size is determined by a learning rate 

parameter. Suppose at step n in gradient descent algorithm, the current weight vector is 

 , and a particular gradient based search direction is .  

The weight vector at step n+1 is computed by the following expression: 

 =  +                       (13) 

where,  is the learning rate value at step n . 

By using the proposed method, the gradient based search direction is calculated at each 

step by using Equation (7). 

The complete GD/AG algorithm works as follows; 

Step 1 - Initialize the weight vectors randomly, the gradient vector to zero and gain 

vector to unit values. Let the first search direction  be   , Set =0, epoch =1 and 

n=1 . Let Nt be the total number of weight values. Select a convergence tolerance value 

as CT. 

 

Step 2 - At step n, evaluate the gradient vector ( ). 
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Step 3 - Evaluate E ( ), if E ( ) < CT then STOP training ELSE go to step4. 

 

Step 4 - Calculate a new gradient based search direction which is a function of gain 

parameter: 

= –  

 

Step 5 -  If n > 1 THEN, 

 

Step 6 -  Update  : . 

 

Step 7 -  Evaluate the new gradient vector  with respect to gain value  

 

Step 8 -  Calculate the new gradient based search direction: 

= –  +  

Step 9 -  Set n = n +1 and go to step 2. 

 

2.7 Variation on gradient descent training  

 

A simple idea that can improve convergence of gradient descent is to include at the each 

iteration a proportion of the change from the previous iteration. Basic BP without 

momentum is a gradient descent algorithm and it was popularized by Rumelhart et al 

although similar ideas had been developed previously by Werbos [13]. The simplest 

implementation of this algorithm is by first calculating the network error for all patterns, 

then adjusting the network weights and biases along the negative of the gradient of the 

error function, one iteration of this algorithm is shown in Equation14, 

                       (14) 

Where, is the vector of current weight,  is the learning rate and  is the 

current gradient of the error with respect to the weight vector. The negative sign 

indicates that the new weight vector  is moving in a direction opposite to that of 

the gradient. 

 

2.7.1 Gradient Descent BP with Momentum (GDM) 

 

Momentum allows a network to respond not only to the local gradient, but also to recent 

trends in the error surface. Momentum allows the network to ignore small features in 
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the error surface. Without momentum a network may get stuck in ash allow local 

minimum. With momentum a network can slide through such a minimum [14], as 

shown in Figure 2.1. 

 
Figure 2.1:  The local (minima, maximum) 

 

Momentum can be added to BP method learning by making weight changes 

equal to the sum of a fraction of the last weight change and the new change suggested 

by the gradient descent BP rule. The magnitude of the effect that the last weight change 

is allowed to have is mediated by a momentum constant, , which can be any number 

between 0 and 1 when, the momentum constant is 0 a weight change is based solely on 

the gradient as shown in Figure 2.2. When the momentum constant is 1 the new weight 

change is set to equal the last weight change and the gradient is simply ignored, see 

Figures 2.3. 

 

 

 

Figure 2.2: High oscillation when momentum is zero 
 

 

 

Figure 2.3: Lower oscillation when momentum is one 
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