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ON THE ASYMPTOTIC BEHAVIOR OF STATIC PERFECT FLUIDS

LARS ANDERSSON AND ANNEGRET Y. BURTSCHER

Abstract. Static spherically symmetric solutions to the Einstein–Euler equations with prescribed central
densities are known to exist, be unique and smooth for reasonable equations of state. Some criteria are also
available to decide whether solutions have finite extent (stars with a vacuum exterior) or infinite extent. In

the latter case, the matter extends globally with the density approaching zero at infinity. The asymptotic
behavior largely depends on the equation of state of the fluid and is still poorly understood. While a few
such unbounded solutions are known to be asymptotically flat with finite ADM mass, the vast majority
are not. We provide a full geometric description of the asymptotic behavior of static spherically symmetric
perfect fluid solutions with linear and polytropic-type equations of state. In order to capture the asymptotic
behavior we introduce a notion of scaled quasi-asymptotic flatness, which encodes a form of asymptotic
conicality. In particular, these spacetimes are asymptotically simple.

1. Introduction

Perfect fluids in general relativity are described by the Einstein–Euler equations, i.e.,

Gαβ = 8πTαβ , ∇αT
αβ = 0, (1.1)

where Gαβ = Rαβ − 1
2 Rgαβ is the Einstein tensor and Tαβ is the energy-momentum tensor of the fluid. The

latter is given by

Tαβ = (ρ+ p)uαuβ + p gαβ,

where ρ denotes the proper energy density, p the pressure and uα the velocity vector normalized to uαuα =
−1. The gravitational constant and the speed of light are normalized, i.e., G = c = 1. The system (1.1) is
underdetermined unless we prescribe a so-called equation of state, p = p(ρ), relating the pressure and proper
energy density.

1.1. Spherical symmetry and staticity. In the present context we are primarily interested in static
solutions of (1.1). Such solutions can be viewed as idealized models of stars when they have compact
support. In this case the interior region is described by a perfect fluid and the exterior region is given by an
asymptotically flat vacuum spacetime. A fundamental result, previously known as the “fluid ball conjecture”,
states that static asymptotically flat spacetimes with perfect fluid sources are spherically symmetric. This
conjecture was verified for solutions with positive density ρ > 0 satisfying dp

dρ ≥ 0 by Masood-ul-Alam [55],

building upon work of Lindblom and Masood-ul-Alam [46, 47, 53, 54] and Beig and Simon [10, 11]. It is
therefore natural to restrict our attention to not only static but also spherically symmetric solutions of (1.1).
We do, however, not limit our analysis to the standard asymptotically flat situation because it turns out
to be a very rigid assumption when dealing with perfect fluids in general relativity. Instead, we also allow
solutions with a slower fall-off rate and a conical angle at radial infinity.

Let us recall the setup of (1.1) in the case of spherical symmetry and staticity. The static and spherically
symmetric situation amounts to looking at metrics in polar coordinates {t, r, θ, φ} of the form

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2),

with unknown metric functions ν, λ. From the system (1.1) one obtains that energy momentum conservation
is described by the equation

dν

dr
= −dp

dr
(p+ ρ)−1. (1.2)
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On the other hand, integrating the field equations (1.1) gives e−2λ = 1 − 2m
r , where m = m(r) denotes the

mass m = m(r) up to the radius r, i.e.,

m(r) = 4π

∫ r

0

s2ρ(s) ds. (1.3)

The Einstein–Euler system (1.1) in spherical symmetry therefore reduces to two coupled nonlinear ordinary
differential equations for the mass function m = m(r) and pressure p = p(ρ(r)) of the form

dm

dr
= 4πr2ρ, (1.4a)

dp

dr
= −ρm

r2

(
1 +

p

ρ

)(
1 +

4πr3p

m

)(
1− 2m

r

)−1

. (1.4b)

The second equation (1.4b) has been studied extensively and is referred to as the Tolman–Oppenheimer–
Volkoff equation. Note that (1.4b) is highly nonlinear and singular at the center r = 0, which largely
complicates the analysis of the static system (1.4). Hardly any solutions in closed form are known, even
for the simplest equations of state. Known analytic solutions with linear equation of state are the flat dust
solution, the singular Klein–Tolman solutions [83] relevant for neutron stars, the Whittaker solution [87], a
stiff solution by Buchdahl and Land [16], and deSitter space and the Einstein static universe as solutions with
a cosmological constant (see Ivanov [44] for a full overview and a new exact solution). The problem of finding
explicit solutions is related to the integrability of Abel differential equations of the second kind [43]. Global
existence and uniqueness of smooth solutions as functions of r to (1.4) for reasonable equations of state and
given central density ρ0 > 0, on the other hand, was already established in 1991 by Rendall and Schmidt [71].
Related results in the relativistic and nonrelativistic case have been obtained in [8, 17, 50, 69, 74].

1.2. (In)finite extent and the role of the equation of state. The global existence and uniqueness
result of Rendall and Schmidt [71, Theorem 2] holds for equation of state ρ = ρ(p) which are nonnegative

and continuous for p ≥ 0, and furthermore smooth and satisfy dρ
dp > 0 for p > 0. If the matter has finite

extent, then the fluid ball is joined to a (unique) Schwarzschild exterior, hence the solutions is in particular
asymptotically flat. If the matter extends to infinity, then ρ tends to zero at infinity. In some borderline
cases the ADM mass of the solution can still be finite (see Remark 1.7 below), but in general it is not. In
[71, Section 4] some criteria for (in)finite radii are discussed. For example, the finiteness of the integral

∫ p0

0

dp

ρ2(p)
< ∞, p0 = p(r = 0),

implies that the stellar model has finite extent, a condition that depends on the low pressure regime only.
A similar criterion has been derived by Makino in [48, Theorem 1]. There, a finite radius is tied to the
condition

ρ

p

dp

dρ
= Γ +O(ρΓ−1), as ρ → 0+, Γ ∈ (43 , 2).

On the other hand, a star with finite radius must satisfy∫ p0

0

dp

ρ(p) + p
< ∞. (1.5)

These criteria, however, do not cover all equations of state, and further analysis are often necessary (see, for
example, [40, 78]). In the following we discuss some important special cases. Whenever the pressure only
depends on the density but does not depend on the entropy, the fluid is called barotropic. In order to be able
to directly replace the pressure p in (1.4) by the energy density ρ, we therefore focus on barotropic equations
of state.

Linear equation of state. We are particularly interested in the linear equation of state, with sound speed√
K normalized to be in [0, 1], so that

p = Kρ, 0 < ρ < ρ0. (1.6)

Since ∫ p0

0

dp

ρ(p) + p
=

K

1 +K

∫ Kρ0

0

dp

p
= ∞,
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the (in)finiteness criterion (1.5) shows that linear equations of state with K ∈ (0, 1] lead to solutions with
infinitely extending fluid. The above criteria cannot be applied to piecewise linear equations of state with a
hard and a soft phase, i.e., equations of state of the form

p(ρ) =

{
0 if ρ ≤ ρ0,

K(ρ− ρ0) if ρ > ρ0,

where the qualitative behavior changes at a critical density ρ0 > 0. The dynamics of the two-phase model
with sound speed

√
K = 1 in spherical symmetry, which describes hard stars with a vacuum exterior, has

been studied in the work of Christodoulou [21–23] and recently by Fournodavlos and Schlue [33].

Polytropic equations of state. In Newtonian theory, polytropes are given by a power-law equation of state of
the form

p = Kρ
n+1
n

N ,

where ρN is the Newtonian mass density. For special values of n, these polytropes are also adiabates. In the
limit n → ∞ we recover the linear equation of state. In general relativity, however, these power-law equation
of state are unphysical because the speed of sound could exceed the speed of light (see [79, p. 31f] for a brief
discussion on physical equations of state). The corresponding adiabates in general relativity are represented
by an equation of state of the form

p = KηΓ,

where η is the rest-mass density and 1 < Γ < 2 is the (constant) polytropic exponent. The energy density ρ

is then of the form

ρ = η +
1

Γ− 1
p = Cp

1
Γ +

1

Γ− 1
p. (1.7)

For C = K− 1
Γ , and n = 1

Γ−1 the corresponding polytropic index, (1.7) is the polytropic equation of state

ρ = K
n+1
n p

n
n+1 + np. (1.8)

For C = 0 we recover the linear “gamma-law” equation of state, i.e., p = KηΓ = (Γ − 1)ρ. The polytropic
equation of state (1.8) was already considered by Tooper [85], who numerically observed instability for Γ ≥ 4

3
(n ≥ 3). From an asymptotic point of view, solutions to (1.4) with (1.8) and power-law polytropic-type
equations of state of the form

p = Kρ
n+1
n (1.9)

essentially behave in the same way because the low-pressure regime dominates (compare, for example, [84,
85]). Solutions of (1.4) with polytropic-type equation of state (1.9) with small central densities ρ0 > 0 and
0 < n < 5 also have finite radii and finite masses as observed in [59,71,78]. However, for 3 < n < 5 solutions
with infinite extent do occur for larger central densities (compare to the Newtonian case, where finiteness is
guaranteed for n < 5). For n > 5 the fluid is always unbounded with infinite mass.

Despite the frequent use of the linear and polytropic-type equations of state in astrophysics (see, for
example, [20, 30–32, 77, 80]) and evolutionary problems (see, for example, [17, 37, 45] for the linear and
[14, 50, 63, 70] for the polytropic case), the very basic fact that a large class of static solutions and likewise
many other solutions are not asymptotically flat has received little attention. In particular, we are not aware
of a geometric description that captures the asymptotic behavior of perfect fluids with infinite extent. The
main motivation of this paper is to provide such a general geometric framework. We will focus on the linear
equation of state (1.6) and the polytropic-type equation of state (1.9). Although unphysical, the focus on
(1.9) is natural because it is known to lead to solutions with a similar asymptotic behavior as (1.8) but is
easier to handle analytically.
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1.3. The asymptotic behavior. It was already observed by Chandrasekhar [19] in 1972 that spherically
symmetric static solutions to (1.4) with a linear equation of state (1.6) exhibit an interesting limiting behavior
as they approach a singular solution with density function ρ∞(r) = constant ·r−2 as r → ∞. Chandrasekhar
computed the asymptotic behavior for K = 1

3 (and K = 1) using a reformulation in terms of Milne variables
and observed a spiraling behavior to the singular solution in these coordinates.

In the late 1990s Makino reformulated (1.4) with linear equation of state (1.6) as an autonomous system
and used plane dynamical systems theory, more precisely the Poincaré–Bendixson Theorem, to obtain that
for K = 1

3 the singular solution is the only element in the ω-limit set and hence all regular solutions converge

to it [48, Appendix]. Thus asymptotically the solutions behave like ρ(r) ∼ 3
56π r

−2 and m(r) ∼ 3
14r as

r → ∞. He also studied the spiral structure for more general equations of state in [49], and specifically linear
equations of state in [49, Section 2].

Around the same time Heinzle, Nilsson, Röhr and Uggla [41, 42, 58, 59] developed a different dynamical
systems approach to study Newtonian as well as relativistic stellar models. Nilsson and Uggla [59] numeri-
cally investigated the asymptotic behavior of solutions with power-law equations of state of the form (1.9)
and revealed that static solutions with finite extent are the only ones that occur for n . 3.339, but never
occur if n > 5. The more general approach of Heinzle, Röhr and Uggla in [42] applies to barotropic equations
of state that are asymptotically polytropic and linear at the low and high pressure regime, respectively. They
reformulate the spherically symmetric, static Einstein–Euler system (1.4) by introducing certain dimension-
less variables to obtain a regular dynamical system on a cube. This reformulation is very well suited for
numerical computations and visualization.

While all of the above reformulations as dynamical systems lead to very clear convergence results in the
reformulated variables, they cannot be used to derive a convergence rate in the original formulation. Lower
order terms are crucial to understand the resulting geometric structures and determine their asymptotic
behavior. A big drawback is the fact that the radial parameter r is removed in the system (1.4) by implicitly
replacing it with a new parameter, for example, in the work of Makino by

t(r) =

∫ r

δ

ds(
1− 2m(s)

s

)
s
,

whose growth rate with respect to r cannot be controlled well enough a priori. Such implicit reformulations
prevent us from interpreting the results obtained in the dynamical systems picture in the original variables,
i.e., m, ρ, p, and r. Nevertheless, the reformulation of (1.4) as a dynamical system is also the major analytic
tool employed in this paper.

1.4. A geometric interpretation - Our results. In what follows we provide a geometric description of the
asymptotic behavior of solutions to (1.4) with linear equation of state (1.6) and power-law polytropic equation
of state (1.9). We show that spherically symmetric static perfect fluids with linear equation of state are so-
called quasi-asymptotically flat, a concept developed by Nucamendi and Sudarsky [60] which generalizes
(and includes) the notion of asymptotic flatness and at the same time admits conformal compactifications.
The spatial Riemannian part of the metrics is asymptotically conical.

Definition 1.1 (Quasi-asymptotically flat metrics (AFα) [60]). A spacetime (M, g) with topology R× (R3 \
BR(0)), where BR(0) is a ball of radius R around 0, is called quasi-asymptotically flat (AFα) if there exist
α ∈ (0, 1) and coordinates {τ, ξ, θ, φ} so that

g = gα + g̃, (1.10)

where gα is the so-called standard quasi-asymptotically flat metric (or SAFα metric), given by

gα = −dτ2 + dξ2 + (1− α)r2(dθ2 + sin2 θdφ2), (1.11)

and g̃ is of the form

g̃µνdx
µdxν = aττdτ

2 + aξξdξ
2 + 2aξτdξdτ

+ ξ2[aθθdθ
2 + aφφ sin

2 θdφ2 + 2aθφ sin θdθdφ]

+ 2ξ[aτθdτdθ + aξθdξdθ] + 2ξ[aτφ sin θdτdφ + aξφ sin θdξdφ],

with aµν = o(ξ−
1
2 ) as ξ → ∞.
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Note that the SAFα metrics gα play the same role as the Minkowski metric does for asymptotically flat
spacetimes.

Our result is formulated in this framework of quasi-asymptotic flatness.

Theorem 1.2 (Linear equation of state). The unique global smooth solution to the initial value problem of
the static Einstein–Euler equations (1.4) in spherical symmetric with linear equation of state p = Kρ, for
fixed K ∈ (0, 1), and central density ρ0 > 0, is quasi-asymptotically flat.

More precisely, in coordinates {τ = r
2K

1+K t, ξ = r√
1−α

, θ, φ}, the solution converges to the standard quasi-

asymptotically flat metric

gα = −dτ2 + dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2), with α =
4K

(1 +K)2 + 4K
,

with rate o(ξ−
1
2 ) as ξ → ∞.

The asymptotic behavior is different for solutions to (1.4) with power-law polytropic-type equation of
state (1.9). If n < 3 only solutions with finite extent occur, if n > 5 only solutions with infinite extent
occur [59]. Although the latter solutions represent metrics that converge to the flat spacetime, they are
neither asymptotically nor quasi-asymptotically flat in the strict sense due to a slower convergence rate than
o(r−

1
2 ) and an infinite ADM mass. This deviation from the standard (quasi-)asymptotically flat situation is

captured in our notion of scaled quasi-asymptotic flatness.

Definition 1.3 (Scaled quasi-asymptotically flat metrics (AFαβ)). A spacetime (M, g) with topology R×
(R3 \BR(0)), where BR(0) is a ball of radius R around 0, is called scaled quasi-asymptotically flat (AFαβ),
if there exist α ∈ [0, 1), β > 0 and coordinates {τ, ξ, θ, φ} so that

g = g(α,β) + g̃, (1.12)

where g(α,β) is the so-called standard scaled quasi-asymptotically flat metric (or SAFαβ metric), given by

g(α,β) = −dτ2 + ξ2β
(
dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2)

)
, (1.13)

and g̃ is of the form

g̃µνdx
µdxν = aττdτ

2 + aξξξ
2βdξ2 + 2ξβaξτdξdτ

+ ξ2(1+β)[aθθdθ
2 + aφφ sin

2 θdφ2 + 2aθφ sin θdθdφ]

+ 2ξ1+β [aτθdτdθ + aτφ sin θdτdφ] + 2ξ1+2β[aξθdξdθ + aξφ sin θdξdφ],

with aµν = o(ξ−
1
2 ) as ξ → ∞.

Remark 1.4 (Relation to asymptotic flatness). If α = β = 0, then g(α,β) = gα = g0 is the flat Minkowski
metric. In fact, we can write the Minkowski metric as g(α,β) for any choice of β ≥ 0 and fixed 1−α = 1

(1+β)2

if we choose a new radial coordinate ξ = 1+β
√
(1 + β)r, since then dr = ξβdξ. Thus while AFαβ metrics with

1− α = 1
(1+β)2 are asymptotic to the flat spacetime, their convergence rate is generally too slow to fall into

the standard asymptotically flat regime (the ADM mass is infinite). If, on the other hand, 1 − α < 1
(1+β)2

the corresponding AFαβ metrics converge (slowly) to a spacetime metric gα with a true conical angle.
Alternatively, we could have defined the SAFαβ metrics in (1.13) to be of the form

g(α,β) = −dτ2 + (1 + β)ζ2β
(
dζ2 + (1 − α)ζ2(dθ2 + sin2 θdφ2)

)
,

to emphasize the transformation of the Minkowski metric via ζ = 1+β
√√

1 + βr for any β ≥ 0 and fixed
α = 0 (independent of β). For α > 0 we would obtain the SAFα metrics in (1.11) with a true conical angle.

We formulate our result in this scaled quasi-asymptotically flat setting of Definition 1.3.

Theorem 1.5 (Polytropic equation of state). The unique global smooth solution to the initial value problem
of the static Einstein–Euler equations (1.4) in spherical symmetry with power-law polytropic equation of state
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p = Kρ
n+1
n , for K ∈ (0, 1) and n > 5 fixed, and central density ρ0 > 0, is scaled quasi-asymptotically flat.

More precisely, in coordinates {τ = eν(r)t, ξ = 1+β
√
(1 + β)r, θ, φ}, the solution is asymptotic to

g(α,β) = −dτ2 + ξ2β
(
dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2)

)
,

where β > n−5
4 and 1− α = 1

(1+β)2 < 16
(n−1)2 , with rate o(ξ−

1
2 ) as ξ → ∞.

In the original coordinates {t, r, θ, φ}, the spatial part of these solutions is asymptotic to the Euclidean
metric

h0 = dr2 + r2(dθ2 + sin2 θdφ2),

with convergence rate O(r−
2

n−1 ) as r → ∞.

Remark 1.6. In view of the relation of g(α,β) to the Minkowski metric when 1 − α = 1
(1+β)2 , discussed in

Remark 1.4, Theorem 1.5 shows that solutions to (1.4) with power-law polytropic equation of state are in

fact asymptotic to the flat metric. However, the convergence rate of O(r−
2

n−1 ) as r → ∞ is too slow to

interpret this behavior in the standard asymptotically flat setting which requires o(r−
1
2 ). It is conceivable

that for related equations of state, e.g., equations of state that are asymptotically linear/polytropic in the
low pressure regime, also a nontrival conical angle would occur, expressed by an inequality 1− α < 1

(1+β)2 .

Remark 1.7 (The borderline case). The asymptotic behavior of solutions to (1.4) for equations of state that
become polytropic of index n = 5 at the low pressure regime (recall that the low pressure regime is critical
for the behavior at spatial infinity) is already known. It has been shown that the so-called Buchdahl equation
of state [15], given by

p =
1

6

ρ6/5

ρ
1/5
0 − ρ1/5

, 0 < ρ < ρ0,

and generalizations thereof [9] yield asymptotically flat solutions with a fluid extending to infinity. This
essentially agrees with our observation in Theorem 1.5 if we would consider the limit n → 5, because the
necessary falloff rate to obtain an asymptotically flat spacetime requires o(r−

1
2 ) [24]. As such the index

n = 5 is the borderline case between finite and infinite mass/extent.

In what follows we briefly mention some of the properties of our geometric framework and discuss our
results in the wider context of relativistic perfect fluid models and of Einstein–matter equations in general.
For further definitions, properties and discussions related to the (scaled) quasi-asymptotically flat metrics,
we refer the reader to Section 2 of this paper.

Remark 1.8 (Generalized ADM mass). Since static perfect fluids with linear and polytropic equations of state
are not asymptotically flat, their ADM masses are infinite. In the framework of quasi-asymptotic flatness,
however, one can substitute the infinite ADM mass by the use of a so-called ADMα mass introduced by
Nucamendi and Sudarsky [60]. This notion of mass coincides with the monopole mass used in [6]. The
standard quasi-asymptotically flat metric gα has vanishing ADMα mass. The ADMα mass of a regular
solutions described in Theorem 1.2, however, remains unknown and we argue in Remark 3.9 that it could be
unbounded below. Hence also the concept of the ADMα mass is of little use in the analysis of perfect fluids.

Based on our notion of scaled quasi-asymptotic flatness with reference metrics g(α,β) as in Theorem 1.5
we consider a näıve definition of an ADMαβ mass in Remark 2.14. For reference Riemannian metrics

h(α,β) = ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdϕ2)

)

and h a scaled quasi-asymptotically flat metric we let

mADMαβ(h) =
1

16π(1− α)
lim
ξ→∞

ξ−β

∫

Sξ(0)

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (hkl) dSi, (1.14)

where dSi is the i-th surface element and ∇(α,β) is the covariant derivative with respect to h(α,β). We will
see that, if α = β = 0, then (1.14) is just the ADM mass, i.e.,

mADM00(h) = mADM(h).

The advantage of (1.14), however, is that it makes sense also for metrics that are asymptotically flat in
a non-standard sense, namely for asymptotically conical metrics and those with a slow converge rate as
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described in Definition 1.3. In comparison to the ADM mass the slower convergence rate is accounted for
by multiplication with ξ−β and the deficit angle is accounted for by dividing with 1− α.

Since the solutions studied in Theorems 1.2 and 1.5 are of AFα and AFαβ form, we obtain on a hyper-
surface Στ (τ is a rescaled time variable)

mADMαβ(h
lin|Στ

) = O(1) + τ2O(1) < ∞,

for β > 1−K
1+3K and 1− α <

(1+3K)2

4((1+K)2+4K) , and

mADMαβ(h
poly|Στ

) = n−1

√
Kn

2π

(n− 3)(n+ 1)n

(n− 1)2
∈ (0,∞),

for β = n−3
2 and 1 − α = 4

(n−1)2 . For further details see Remarks 3.10 and 4.3. It remains to be checked

whether any such notion of ADMαβ mass can be derived in a coherent and coordinate-invariant fashion,
and if and in what sense such a mass could be preserved in time. A rigorous approach could be based on
related work on other masses [24, 56, 60].

Remark 1.9 (Dynamics). Knowledge about the asymptotic behavior of static perfect fluids is also of use in
the full dynamic picture when constructing local solutions out of initial data sets. For example, recent results
of LeFloch and the second author [17] on the formation of trapped surfaces make use of initial data that are
constructed as large focused perturbations of static spherically symmetric perfect fluids with linear equation
of state. Local existence results for solutions to the Einstein–Euler equations (1.1) with, in particular,
power-law polytropic equations of state (1.9) but compact support have been studied in the smooth case
by Rendall [70]. Using initial data with compact support or satisfying certain falloff conditions, Brauer and
Karp [12–14] constructed solutions in a class of weighted Sobolev spaces with fractional order depending
on the polytropic exponent Γ. However, already Makino [50, 51] remarked the general static solutions of
(1.4) are actually excluded from the class of density distributions allowed in the setting of Brauer and
Karp, and proves existence of smooth solutions near an equilibrium. Olyinyk [62, 63] recently also obtained
local existence results in the realistic case of compact barotropic fluid bodies with a free matter-vacuum
boundary. For initial value formulations that do admit smooth static solutions with infinite extent studied
in Theorems 1.2 and 1.5, we expect that our geometric interpretation applies to other solutions studied in
those frameworks as well. In fact, problems with the common geometric paradigm of asymptotic flatness
already occur when one wants to consider rotating stars with a vacuum exterior. These stars are modeled
by stationary, axisymmetric perfect fluid spacetimes and one would expect that they are—in analogy to the
static case—glued to a Kerr vacuum exterior. This is surprisingly not the case [18,52], but if a rotating star
collapses to a black hole, it is expected that the exterior region is approximately Kerr [5, 35, 57, 64, 77, 80].

Remark 1.10 (Other matter fields). The prototype for quasi-asymptotically flat metrics are the global mono-
pole spacetimes studied by Barriola and Vilenkin [6], Nucamendi and Sudarsky [61] and others. Conical
singularities (albeit in the center) also occur in electromagnetic fields, more precisely in asymptotically flat
spherically symmetric static solutions of the Einstein–Maxwell equations as shown by Tahvildar-Zadeh [82].
Spherically symmetric static solutions to the Einstein–Vlasov equations can also have infinite nonasymptot-
ically flat extent, and criteria for collisionless gas related to those in the perfect fluid case which guarantee
solutions with compact support have been discussed by Andréasson, Rein and coauthors [2,3,69]. Moreover,
in a dynamical collapse scenario Rendall and Veláquez [72] obtained solutions to the Einstein–Vlasov equa-
tions with naked-type singularities that are selfsimilar and not asymptotically flat. Overall it is apparent
that spacetimes with matter extending to infinity that are not asymptotically flat are not merely an artifact
of these theories but in fact a common feature in general relativity worth exploring. After all, asymptotic
flatness is an idealization that may simply not be suitable for many mathematical and physical scenarios.
The very basic vacuum solutions with positive and negative cosmological constant, de Sitter and anti-de
Sitter spacetimes, respectively, are prominent examples of asymptotically simple manifolds (in the sense of
Penrose [65–68]) that are not asymptotically flat. Spacetimes with an asymptotically hyperbolic (anti-de
Sitter) behavior, in particular, became increasingly important in the last few years [1,4,26,29,86]. We believe
that, along these lines, the geometric notion of scaled quasi-asymptotic flatness can be verified and adopted
in several other scenarios in general relativity as well.
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Outline. This paper is structured as follows. Section 2 builds the geometric core of this paper. The
concept of (scaled) quasi-asymptotic flatness is described in detail and related to the concept of asymptotic
simplicity, i.e., conformal compactifications at null infinity. Furthermore, we recall the notions of ADM
mass and ADMα mass and extend it to include spacetimes that are scaled quasi-asymptotically flat. Some
simplifications for the spherically symmetric setting are also derived, which will be of use later. In Section 3
we see that solutions to (1.4) with linear equation of state have infinite ADM mass but converge to a
standard quasi-asymptotically flat singular solution with vanishing ADMα mass. This proves Theorem 1.2.
The analytical tool used here is the reformulation of (1.4) as a dynamical system and a stability analysis
via linearization. A similar but slightly more involved procedure is applied in Section 4 to analyze solutions
with polytropic equations of state. This analysis and a geometric reformulation yields Theorem 1.5.

Notations and conventions. Throughout the manuscript we use greek indices µ, ν etc. to denote the
components 0, 1, 2, 3 of a spacetime metric g, and latin indices i, j, k etc. to denote the components 1, 2, 3 of
the spatial metric (often h). The signature of g is (−,+,+,+). We use the Einstein summation convention.

2. Beyond asymptotic flatness

2.1. Asymptotically and (scaled) quasi-asymptotically flat metrics. We are primarily interested in
spherically symmetric metrics. For polar coordinates {t, r, θ, φ} we can write the metric tensor in the form

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.1)

where ν and λ are the unknown metric variables. Asymptotic flatness is tied to the limiting behavior (with
specific decay rates)

lim
r→∞

ν(r) = lim
r→∞

λ(r) = 0, (2.2)

which only holds for a very limited number of equations of state. In general, we will not observe that λ(r)
tends to 0 at infinity but to some positive value Λ such that

lim
r→∞

e2λ(r) = e2Λ > 1. (2.3)

For example, in the specific situation of global monopole spacetimes the asymptotic behavior

e2ν(r) = e−2λ(r) = 1− α− 2M

r
+O(r−2)

has been studied by Barriola and Vilenkin [6] and later led Nucamendi and Sudarsky [60] to introduce the
concept of quasi-asymptotic flatness introduced in Definition 1.1.

Metrics that are quasi-asymptotically flat are asymptotic to metrics of the form

gα = −dτ2 + dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2),

for some α ∈ (0, 1), as ξ → ∞.
These metrics gα play the same role as the Minkowski metric does for asymptotically flat spacetimes. Note

that we allow the slightly weaker fall-off condition o(ξ−
1
2 ) rather than O(ξ−1) which was used by Nucamendi

and Sudarsky in [60]. This is in accordance with the asymptotically flat situation (see, for example, [24])
and the definition of a mass in Section 2.4.

Due to the occurrence of even slower convergence rates o(r−
1

2(1+β) ), for some β > 0, in our analysis of
solutions to the Einstein–Euler equations (1.1), we further introduced the concept of scaled quasi-asymptotic
flatness in Definition 1.3. The basic idea is to study metrics that are asymptotic to those of the form

g(α,β) = −dt2 + (1 + β)r2β
(
dr2 + (1− α)r2(dθ2 + sin2 θdφ2)

)
,

for α ≥ 0 and β ≥ 0 with convergence rate o(r−
1
2 ) as r → ∞.

In the Sections to come we will review general properties of (scaled) quasi-asymptotically flat metric, such
as the existence of conformal compactifications, the spherically symmetric situation and notions of masses.
Since gα = g(α,0) we will only consider the general case of scaled quasi-asymptotically flat metrics, and
remark on specific results if β = 0 separately.
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2.2. Asymptotic simplicity. In [60, Section 3] it was shown that the SAFα spacetime (M, gα) can be
conformally compactified in the sense of Penrose [65–67] and is therefore asymptotically simple. More
precisely, the concepts of future null infinity I + and past null infinity I − exist, but not spatial infinity ι0.
We recall the precise definition of (weakly) asymptotically simple spacetimes (see, for example, [68, Section
9.6]) and provide a corresponding proof for the SAFαβ spacetime (R1+3, g(α,β)).

Definition 2.1 ((Weakly) asymptotically simple spacetimes). A spacetime (M, g) is called asymptotically

simple if there exists a smooth spacetime (M̂, ĝ) with boundary such that

(i) M is the interior of M̂ , and hence M̂ = M ∪ I with ∂M̂ = I ,
(ii) the unphysical metric ĝ is conformal to the physical metric g, i.e., there exists a smooth conformal

factor Ω on M̂ such that
• ĝµν = Ω2gµν in M

• Ω > 0 on M , and Ω = 0, ∇µΩ 6= 0 along I ,
(iii) every inextendible null geodesic in M has a future and past end point on I .

A spacetime (M, g) is called weakly asymptotically simple if there exists an asymptotically simple N such

that for a neighborhood U of I in N̂ , U ∩N is isometric to a subset of M .

Note that (iii) requires that the spacetime is null geodesically complete and hence rules out singularities,
black holes etc. Weakly asymptotically simple spacetimes, however, may possess further “infinities”.

In the sense of Penrose, a spacetime is asymptotically flat if it is weakly asymptotically simple and
asymptotically empty, i.e., the Ricci tensor vanishes in a neighborhood of I .

Proposition 2.2. The SAFαβ spacetime (M, g(α,β)) is asymptotically simple for any α ∈ [0, 1) and β ≥ 0.
It is (asymptotically) empty if and only if α = 0.

Proof. We use standard conformal compactification of Minkowski space, to show that (M, g(α,β)) is asymp-
totically simple. The transformation

u = t+
r1+β

1 + β
, v = t− r1+β

1 + β
,

immediately implies that −dt2 + r2βdr2 = −dudv and r2(1+β)

(1+β)2 = (u−v)2

4 . Next we compactify u and v by

choosing

T = arctanv + arctanu, R = arctan v − arctanu.

Therefore,

u = tan

(
T −R

2

)
, v = tan

(
T +R

2

)
,

The range of T and R is T +R, T −R ∈ (−π, π), R ∈ (0, π) and can be extended to include future and past

null infinity, i.e., T + R, T − R = ±π. The fact that −dudv = (1+u2)(1+v2)
4 (−dT 2 + dR2) suggests that we

should use the conformal factor

Ω2 :=
4

(1 + u2)(1 + v2)
= 4 cos2

(
T − R

2

)
cos2

(
T +R

2

)
.

We verify that Ω satisfies all conditions of Definition 2.1. It is clear that Ω2 > 0 on M given by T+R, T−R ∈
(−π, π), R ∈ (0, π) and Ω = 0 for T +R, T −R = ±π. Furthermore,

∇TΩ = −2(cosT + cosR) sinT, ∇RΩ = −2(cosT + cosR) sinR,

thus do not vanish at the boundary because R 6= 0, π. The transformed SAFαβ metric g(α,β) (1.13) reads

ĝ(α,β) := Ω2g(α,β) = −dT 2 + dR2 +
(u − v)2

(1 + u2)(1 + v2)
(1 + β)2(1− α)(dθ2 + sin2 θdφ2)

= −dT 2 + dR2 + sin2 R (1 + β)2(1− α)(dθ2 + sin2 θdφ2).

Since the only non-vanishing terms of the Ricci curvature tensor are

R22 = (1 − (1− α)(1 + β)2), R33 = (1− (1− α)(1 + β)2) sin2 θ,
9



the metric g(α,β) is in general not asymptotically empty. It is asymptotically empty if and only if α = β = 0,
i.e., if g(α,β) is the Minkowski metric. �

Remark 2.3. In general, we do not expect that (scaled) quasi-asymptotically flat spacetimes as described in
Definition 1.3 admit a smooth conformal compactification. We can, however, show that the prescribed decay
rate yields a continuous conformal compactification and expect that further restrictions on the decay rate
of the derivatives yield more regular conformal compactifications in accordance with the asymptotically flat
situation (for a discussion in the latter framework see, for example, [34, Section 2.3] and [36, Section 3]). To
this end one has to utilize the same embedding and unphysical spacetime

M̂ = {(T,R) |R ∈ (0, π), T ±R ∈ (−π, π)} ∪ {T +R = ±π} ∪ {T −R = ±π},
and the same conformal factor,

Ω = 2 cos

(
T −R

2

)
cos

(
T +R

2

)
,

as in the proof of Proposition 2.2.

2.3. (Scaled) quasi-asymptotic flatness for static spherically symmetric spacetimes. We show
how the asymptotic behavior of spherically symmetric metrics (2.1) that are not asymptotically flat can be
analyzed in the setting of scaled quasi-asymptotic flatness, depending on the limiting behavior of λ and ν as
r → ∞.

In Sections 3 and 4 we verify that perfect fluids with linear and polytropic equation of state (for n > 5)
satisfy these conditions.

Proposition 2.4. Suppose g is a static spherically symmetric Lorentzian metric of the form (2.1), i.e., in
local coordinates {t, r, θ, φ} we can write

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

If for some Λ ≥ 0 and β ≥ 0 the functions λ and ν satisfy1

ν′(r) = o(r−
1

2(1+β) ),

e2λ(r)−2Λ − 1 = o(r−
1

2(1+β) ),
(2.4)

as r → ∞, then there exists α ∈ [0, 1) and a coordinate system {τ, ξ, θ, φ} such that g is of the form

g = g(α,β) + g̃,

with decay rates aµν = o(ξ−
1
2 ) as ξ → ∞ for the scaled components of g̃. In particular, g is scaled quasi-

asymptotically flat (AFαβ) in the sense of Definition 1.3 with scaling exponent β and deficit angle

(1− α)π = (1 + β)−2e−2Λπ.

Proof. Set τ := eν(r)t and ξ := 1+β
√
(1 + β)eΛr. Since β ≥ 0,

dτ = ν′(r)τdr + eν(r)dt,

dξ =
1

1 + β

(
(1 + β)eΛr

) 1
1+β

−1
(1 + β)eΛdr = eΛξ−βdr.

Hence

e2ν(r)dt2 = (dτ − ν′(r)τdr)2

= (dτ − ν′((1 + β)−1e−Λξ1+β)e−Λτξβdξ)2

= dτ2 − 2e−Λν′((1 + β)−1e−Λξ1+β)τξβdτdξ

+ e−2Λν′((1 + β)−1e−Λξ1+β)2τ2ξ2βdξ2,

and

e2λ(r)dr2 = e2λ(r)−2Λe2Λdr2 = e2λ((1+β)−1e−Λξ1+β)−2Λξ2βdξ2.

1Thus, in particular, limr→∞ λ(r) = Λ but ν(r) may diverge.
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The metric of the unit sphere, i.e., dΩ2 = dθ2 + sin2 θdφ2, remains unchanged and we thus have that

g =− e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ2

=− dτ2 + ξ2βdξ2 + (1 + β)−2e−2Λξ2(1+β)dΩ2

+ 2e−Λν′((1 + β)−1e−Λξ1+β)τξβdτdξ

+
[
−1 + e2λ((1+β)−1e−Λξ1+β)−2Λ − e−2Λν′((1 + β)−1e−Λξ1+β)2τ2

]
ξ2βdξ2.

For α ∈ (0, 1) defined by 1− α = (1 + β)−2e−2Λ, g is therefore of the form

g = g(α,β) + g̃,

and it remains to verify the decay rates for g̃. The nonzero components of g̃, that is aτξ and aξξ as in
Definition 1.3, satisfy

aτξ = 2e−Λν′((1 + β)−1e−Λξ1+β)τ = o(ξ−
1
2 ),

and

aξξ = −1 + e2λ((1+β)−1e−Λξ1+β)−2Λ − e−2Λν′((1 + β)−1e−Λξ1+β)2τ2

= o(ξ−
1
2 )− o(ξ−1) = o(ξ−

1
2 ),

due to the assumptions (2.4). This verifies the conditions of Definition 1.3. �

Remark 2.5 (Higher decay rates). Suppose g is a spherically symmetric metric with better decay rates, i.e.,
for a β > −1,

ν′(r) = O(r−
1

1+β ),

e2λ(r)−2Λ − 1 = O(r−
1

1+β ),
(2.5)

as r → ∞, then g of course also satisfies (2.4) since − 1
2(1+β) > − 1

1+β . Hence by Proposition (2.4), g is

AFαβ. However, the components aµν then satisfy a better decay rate o(ξ−1) then if β would have been
chosen optimally. This will be useful later in the context of an ADMαβ mass in Remark 2.14.

In the case β = 0, Proposition 2.4 implies that the metric is quasi-asymptotically flat in the sense of
Definition 1.1.

Corollary 2.6. Suppose g is a static spherically symmetric Lorentzian metric of the form (2.1), i.e., in local
coordinates {t, r, θ, φ} we can write

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2).

If for some Λ ≥ 0 the functions λ and ν satisfy

ν′(r) = o(r−
1
2 ),

e2λ(r)−2Λ − 1 = o(r−
1
2 ),

(2.6)

as r → ∞, then there exists a coordinate system {τ, ξ, θ, ϕ} such that g̃µν = o(ξ−
1
2 ) as ξ → ∞. In particular,

g is quasi-asymptotically flat in the sense of Definition 1.1 with deficit angle

(1− α)π = e−2Λπ.

2.4. Beyond the ADM mass. Let us recall the definition of the ADM mass. For asymptotically flat
metrics the spatial part should satisfy

hij = δij + o(r−
1
2 ), ∂khij = O(r−

3
2 ), as r → ∞.

The associated ADM mass can then be defined by the asymptotic behavior at spatial infinity,

mADM(h) =
1

16π
lim

R→∞

∫

SR(0)

(∂lhi
l − ∂ihl

l) dSi, (2.7)

where SR(0) is a 2-sphere with radius R and dSi are the Euclidean coordinate surface elements, i.e., dSi =
xi

r dx
1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn. The ADM mass exists and is finite if the scalar curvature R(h) is integrable
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[7, 24]. Moreover, it is a geometric invariant (i.e., coordinate-invariant) that is always nonnegative and zero
only for the Minkowski metric [75, 76, 88].

For general spherically symmetric Riemannian metrics of the form

h = a(r)dr2 + b(r)r2(dθ2 + sin θ2dφ2),

with a, b differentiable and satisfying the above decay a − 1 = o(r−
1
2 ), b − 1 = o(r−

1
2 ), ar = O(r−

3
2 ) and

br = O(r−
3
2 ), one obtains (see, for example, [25, p. 12])

mADM(h) =
1

2
lim
r→∞

(
(a− b)r − brr

2
)
. (2.8)

In particular, the ADM mass of the Schwarzschild metric coincides with the mass of m of the black hole.

Let us consider the problem of convergence for the integral in (2.7) in the case of quasi-asymptotically
flat spacetimes. The asymptotic behavior of a spherically symmetric, quasi-asymptotically flat metric g is
dominated by the corresponding SAFα metric gα (1.11). The spatial part hα of gα, i.e.,

hα = dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2),

has scalar curvature

R(hα) =
2α

1− α
ξ−2 > 0, ξ ∈ (0,∞).

Since R(hα) 6∈ L1(R3 \BR(0)) for any R > 0, the ADM mass of hα and thus h is infinite [7].
One advantage of proving quasi-asymptotic flatness for a given spacetime is the availability of another

concept of mass, the so-called ADMα mass for the spatial part of the spacetime metric g. This natural
generalization of the ADM mass for AFα slices can be defined using the background metric hα, again
following the work of Nucamendi and Sudarsky [60] with a slightly weaker fall-off rate. They introduced the
ADMα mass in the framework of Einstein–scalar theory.

Definition 2.7 (ADMα mass [60]). Suppose hα is the spatial SAFα metric defined for the hypersurface Στ

(i.e., such that τ = constant) of (1.11) and

h = hα + h̃

is a spatial AFα metric with h̃ij = o(ξ−
1
2 ) and ∂kh̃ij = O(ξ−

3
2 ) as ξ → ∞. The ADMα mass of h is defined

by

mADMα(h) =
1

16π(1− α)
lim
ξ→∞

∫

Sξ(0)

(hαikhαjl − hαijhαkl)∇α
j (hkl) dSi, (2.9)

where ∇α denotes the covariant derivative associated to hα and dSi the i-th coordinate surface element with
respect to hα.

Remark 2.8 (Relation to ADM mass). In the following sense, the ADMα mass is an extension of the ADM
mass. If α = 0, then h0ij = δij is just the reference Euclidean metric and

(h0ikh0jl − h0ijh0kl)∇0
j (hkl) = δikδjl∂jhkl − δijδkl∂jhkl = ∂lhi

l − ∂ihl
l,

thus (2.9) yields exactly (2.7).

Remark 2.9. The ADMα mass coincides with the parameter M of global monopole spacetimes studied by
Barriola and Vilenkin [6].

Remark 2.10 (The ADMα mass is a geometric invariant of (Σ, h).). Nucamendi and Sudarsky proved in

[60, Section 4] that the ADMα is coordinate invariant given their slightly stricter setting with h̃ij = O(ξ−1)

and ∂kh̃ij = O(ξ−2). To see that the proof extends to our Definition 2.7 it is crucial to note that h in
“Cartesian” coordinates xi, yi (which are assumed to preserve the asymptotic behavior) reads

h
(x)
ij = (1− α)δij + α

xixj

ξ2
+Aij ,

h
(y)
ij = (1− α)δij + α

yiyj

ξ2
+Bij ,
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now with

Aij = o(ξ−
1
2 ), Bij = o(ξ−

1
2 ), (2.10)

∂kAij = O(ξ−
3
2 ), ∂kBij = O(ξ−

3
2 ), (2.11)

as compared to O(ξ−1) and O(ξ−2) in [60, Eq. (39)]. This follows directly from [24, Lemma 1] and the fact
that the SAFα metric satisfies

hα
ij = (1− α)δij + α

xixj

ξ2
.

Lemma 1 in [60, p. 1315] follows also from the decay assumptions (2.10). In fact, |Aab| ≤ C
ξγ for some

γ > 0 and sufficiently large ξ yields the same result. Lemma 2 in [60, p. 1316] follows too, in fact it can be

improved to only require ηa = o(ξ
1
2 ) and ∂ηa(y)

∂yb = o(ξ−
1
2 ). The final result for our weaker decay rates used

in Definition 2.7 follows from the Theorem in [60, p. 1319 ff], and it remains to be checked whether all the
same terms can still be eliminated.

Remark 2.11 (Non-positivity of the ADMα mass.). Unlike the ADM mass for asymptotically flat spacetimes,
the ADMα mass is not nonnegative. Indeed, it can be negative, depending on the choice of the reference
metric (which corresponds to adding a constant). The more crucial point of whether the ADMα is generally
bounded from below is still open. We refer to [60, 61] for a discussion of these issues.

In what follows, we derive a simpler notion of the ADMα mass if the metric is spherically symmetric, in
analogy to the expression (2.8) in the asymptotically flat situation.

Lemma 2.12. Suppose h is a spherically symmetric, quasi-asymptotically flat, Riemannian 3-metric of the
form

h = a(ξ) dξ2 + b(ξ) (1 − α)ξ2(dθ2 + sin2 θdφ2), α ∈ [0, 1).

Then the ADMα mass of h is

mADMα(h) = lim
ξ→∞

1

2

(
ξ(a− b)− ξ2∂ξb

)
. (2.12)

Therefore, if a− b = O(ξ−1) and ∂ξb = O(ξ−2), then mADMα(h) is finite.

Proof. Recall that the spatial part of the SAFα metric is

hα = dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2).

In Cartesian coordinates,

x1 = ξ sin θ cosφ, x2 = ξ sin θ sinφ, x3 = ξ cos θ,

we have the metric components

hα
ij = (1− α)δij + α

xixj

ξ2
, (2.13)

since dξ2 =
xixj

ξ2 dxidxj . The components of the inverse metric h−1 are

hαij =
1

1− α

(
δij − α

xixj

ξ2

)
, (2.14)

thus we can already compute the first term, hαikhαjl − hαijhαkl, in the integral of (2.9).
It remains to compute the covariant derivative of h. Since ∇α is the Levi-Civita connection with respect

to hα, by definition, ∇α
kh

α
ij = 0 for all i, j, k. Therefore, we prefer to write h as a perturbation of hα, that is,

h = bhα + (a− b)dξ2.

Hence

∇αh = (∇αb)hα +∇α((a− b)dr2)

= (∇αb)(hα − dξ2) + (∇αa)dξ2 + (a− b)(∇αdξ2)

= (1− α)(∇αb)(δ − dξ2) + (∇αa)dr2 + (a− b)(∇αdr2)

= (1− α)(∇αb)δ + (∇αa− (1 − α)∇αb)dξ2 + (a− b)(∇αdξ2), (2.15)
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where δ is the standard Euclidean metric δ = dx2 + dy2 + dz2. Since b is just a function,

∇α
j b = ∂jb =

db

dξ

∂ξ

∂xj
= ∂ξb

xj

ξ
,

and similarly for a. For any (0, 2)-tensor field, ∇α
j hkl = ∂jhkl−αΓm

jkhml−αΓm
jlhmk, with Christoffel symbols

αΓm
jk =

α

ξ2

(
δjkx

m − xmxjxk

r2

)
. (2.16)

In particular, for dξ2 = xkxl

ξ2 dxkdxl,

∇α
j (dξ

2)kl = ∂j(dξ
2)kl − αΓm

jk(dξ
2)ml − αΓm

jl (dξ
2)mk

= δkj
xl

ξ2
+ δlj

xk

ξ2
− 2

xjxkxl

ξ4
− α

ξ2

(
δjkxl −

xjxkxl

ξ2

)
− α

ξ2

(
δjlxk − xjxkxl

ξ2

)

=
1− α

ξ2

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)
.

Thus by (2.15),

∇α
j hkl = (1− α)∂ξb

xj

ξ
δkl + (∂ξa− (1− α)∂ξb)

xjxkxl

ξ3

+
1− α

ξ2
(a− b)

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)
. (2.17)

Together with (2.14), we can now compute the i-th component of the integrand in (2.9),

T i := (hαikhαjl − hαijhαkl)∇α
j (hkl).

For the first term in (2.17), we obtain

T i
(1) = (hαikhαjl − hαijhαkl)(1− α)br

xj

ξ
δkl

= (1− α)
∂ξb

ξ

(
hαikxk − hαijxj

3− α

1− α

)
= −2∂ξb

xi

ξ
,

and for the second one

T i
(2) = (∂ξa− (1 − α)∂ξb)(h

αikhαjl − hαijhαkl)
xjxkxl

ξ3
= 0,

since hαijxj = xi, hαkl xkxl

ξ2 = 1 and hαklδkl =
3−α
1−α . Finally, the third term of the i-th component of the

integrand is

T i
(3) =

1− α

ξ2
(a− b)(hαikhαjl − hαijhαkl)

(
δjkxl + δjlxk − 2

xjxkxl

ξ2

)

=
1− α

ξ2
(a− b)

(
0 + xi 2

1− α
− 0

)
= 2(a− b)

xi

ξ2

Since
√
dethα = (1− α), the i-th coordinate surface element reads

dSi =
xi

ξ

√
det(hα)dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn = (1− α)

xi

ξ
dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn,

where the notation d̂xi means that dxi is missing. Therefore, including the component xi

ξ of the i-th

coordinate surface element,

T ixi

ξ
= −2∂ξb+ 2

a− b

ξ
, (2.18)
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and we obtain (2.12) from (2.9) and (2.18),

mADMα =
1

16π(1− α)
lim
ξ→∞

∫

Sξ(0)

(
2
a− b

ξ
− 2∂ξb

)
(1− α)dS

=
1

8π(1 − α)
lim
ξ→∞

∫ π

0

∫ 2π

0

(
a− b

ξ
− ∂ξb

)
(1− α)ξ2 sin θ dθdφ

=
1

2
lim
ξ→∞

(
ξ(a− b)− ξ2∂ξb

)
. �

A more special case is the following, where the ADMα is already built in the construction of the metric,
just like the ADM mass of the black hole is built in the standard expression of the Schwarzschild metric (cf.
also [61, Section2]).

Corollary 2.13. Suppose a(ξ) =
(
1− 2M(ξ)

r

)−1

with M(ξ) = o(ξ) as r → ∞ and b(ξ) = 1, then Lemma 2.12

implies that the metric

h =

(
1− 2M(ξ)

ξ

)−1

dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2)

has ADMα mass

mADMα(h) = lim
ξ→∞

M(ξ).

Proof. By the assumption M(ξ) = o(ξ), for each n ∈ N exists ξn > 0 such that

1− 1

n
≤ 1− 2M(ξ)

r
≤ 1 +

1

n

for all ξ ≥ ξn. Therefore, by Lemma 2.12, for all n ∈ N,

mADMα(h) =
1

2
lim
ξ→∞

(a− b)ξ = lim
ξ→∞

M(ξ)

1− 2M(ξ)
ξ

≤ n

n− 1
lim
ξ→∞

M(ξ),

and similarly

mADMα(h) ≥
n

n+ 1
lim
ξ→∞

M(ξ),

which yields the desired result by the Squeeze Theorem. �

Remark 2.14 (ADMαβ mass). As in the quasi-asymptotically flat case, one should have a geometrically
invariant ADMαβ mass, that takes the slower convergence rate into account. One expects to obtain a mass
that measures the deviation to

h(α,β) = ξ2β
(
dξ2 + (1 − α)ξ2(dθ2 + sin2 θdφ2)

)
.

An ad hoc candidate would be

mADMαβ(h) =
1

16π(1− α)
lim
ξ→∞

ξ−β

∫

Sξ(0)

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (hkl) dSi, (2.19)

where dSi is the i-th coordinate surface element with respect to h(α,β). Clearly, if β = 0 (2.19) is just the
ADMα mass of h, and if α = β = 0 it is the ADM mass. In fact, we expect an even more direct relation as
appears in the spherically symmetric case in Remark 2.16 below.

To obtain a rigorous geometrically invariant definition of such an ADMαβ mass for scaled quasi-asymptoti-
cally flat metrics, one may follow the steps outlined by Michel [56]. We will not pursue such a rigorous defi-
nition further in this paper, but rather provide arguments for why an investigation of such slowly converging
spacetimes is useful in the first place, and how a notion of generalized ADM mass helps to control their
asymptotic behavior.
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Remark 2.15 (ADMαβ mass for the Minkowski metric). In the Introduction, in Remark 1.4, we mentioned

that the Minkowski metric can be rewritten as a SAFαβ metric g(1−1/(1+β)2),β) for any β ≥ 0 if we choose
a radial coordinate ξ = 1+β

√
(1 + β)r. For arbitrary α and β, we obtain that

(h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j (h0

kl) =
2((1− α)(1 + β)2 − 1)

ξ1+2β(1− α)(1 + β)
,

for the integrand of the ADMαβ mass of h0, which in general may not be integrable. If, however, 1 − α =
1

(1+β)2 then the integrand vanishes since h0 is then the SAFαβ metric h(α,β) and

mADMαβ(h
0) = 0.

Remark 2.16 (ADMαβ mass in spherical symmetry). A comparison to hα helps to simplify the formula
(2.19). Although ξ is not the area radius (but a scaled version thereof, see Remark 1.4), we consider the
same “scaled” Cartesian coordinates given by

y1 = ξ sin θ cosφ, y2 = ξ sin θ sinφ, y3 = ξ cos θ.

The metric and inverse metric components are therefore

h
(α,β)
ij = ξ2βhα

ij = ξ2β
(
(1 − α)δij + α

yiyj

r2

)
,

and

h(α,β)ij = ξ−2βhαij =
1

ξ2β(1− α)

(
δij − α

yiyj

ξ2

)
,

where we used the already derived expressions (2.13) and (2.14) for the spatial components of the SAFα
metric gα read we can simplify the first factor in the integrand of (2.19) to

h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl = ξ−4β(hαikhαjl − hαijhαkl) (2.20)

=
1

ξ4β(1− α)2
(
δikδjl − δijδkl

)
− α

ξ2(1+2β)(1− α)2
(
δikyjyl + δjlyiyk − δijykyl − δklyiyj

)

Similarly, to simplify the term

∇(α,β)
j hkl = ∂jhkl − (α,β)Γm

jkhml − (α,β)Γm
jlhmk

we utilize the relation of the Christoffel symbols of h(α,β) and hα and the formula for αΓm
jk obtained in (2.16),

i.e.,

(α,β)Γm
jk = (1 + β) αΓm

jk +
β

ξ2

(
ykδ

m
j + yjδ

m
k − ymδjk

)

= (1 + β)
α

ξ2

(
δjky

m − ymyjyk

ξ2

)
+

β

ξ2

(
ykδ

m
j + yjδ

m
k − ymδjk

)
,

or also written as

(α,β)Γm
jk = αΓm

jk +
β

ξ2

(
ykδ

m
j + yjδ

m
k − (1− α)ymδjk − α

ymyjyk

ξ2

)
.

Hence ∇(α,β)
j hkl can be written as

∇(α,β)
j hkl = (1 + β)∇α

j hkl − β
(
∂jhkl −

1

ξ2
(ykhjl + ylhjk + 2yjhkl − δjky

mhml − δjly
mhmk)

)
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or, alternatively, as

∇(α,β)
j hkl = ∇α

j hkl −
β

ξ2

((
ykδ

m
j + yjδ

m
k − (1 − α)ymδjk − α

ymyjyk

ξ2

)
hml

+
(
ylδ

m
j + yjδ

m
l − (1− α)ymδjl − α

ymyjyl

r2

)
hmk

)

= ∇α
j hkl −

β

r2

(
2yjhkl + ykhjl + ylhjk − (1− α)ym(δjkhml + δjlhmk)− α

ymyj

r2
(ykhml + ylhmk)

)

︸ ︷︷ ︸
=:G(α,β)(h)jkl

.

The above manipulations hold for any Riemannian metric h. For a spherically symmetric AFαβ metric
h̃ of the form

h̃ = ξ2β
(
a(ξ)dξ2 + b(ξ)(1 − α)ξ2(dθ2 + sin2 θdφ2)

)
(2.21)

= bh(α,β) + (a− b)ξ2βdξ2, (2.22)

we can therefore directly use the computations of Lemma 2.12 to simplify (2.19), since h̃ = ξ2βh with h as
in Lemma 2.12. It follows that

∇(α,β)h̃ = (1 − α)ξ2β(∇(α,β)b)δ + ξ2β(∇(α,β)a− (1 − α)∇(α,β)b)dξ2

+ (a− b)(∇(α,β)ξ2βdξ2)

= ξ2β∇αh+ (∇ξ2β)(a− b)dξ2 + ξ2β(a− b)(∇(α,β)dξ2 −∇αdξ2), (2.23)

where ∇jξ
2β = ∂jξ

2β = 2βξ2β
xj

ξ2 and ∇(α,β)dξ2 −∇αdξ2 = − β
ξ2G

(α,β)(dξ2)jkl. We consider the integrand

T̃ i = (h(α,β)ikh(α,β)jl − h(α,β)ijh(α,β)kl)∇(α,β)
j h̃kl

= ξ−2β(hαikhαjl − hαijhαkl)

(
∇α

j hkl + 2β(a− b)
yjykyl

ξ4
− (a− b)

β

ξ2
G(α,β)(dξ2)jkl

)

By (2.17) in the proof of Lemma 2.12, the first term in this product is known to be

T̃ i
(1) = ξ−2βT i = ξ−2β

(
−2∂ξb

yi

ξ
+ 2(a− b)

yi

ξ2

)
,

and the second term vanishes similar to T i
(2). To compute the last term we note that (dξ2)kl =

ykyl

ξ2 and

G(α,β)(dξ2)jkl = −2
yjykyl

ξ2
+ (1 − α)(δjkyl + δjlyk − 2

yjykyl

ξ2
),

of which the first term disappears in the product T̃i (similar to T i
(2) and the second one simplifies as in T i

(3).

Thus the last term in T̃i reads

T̃ i
(3) = ξ−2β(a− b)

β

ξ2
(hαikhαjl − hαijhαkl)(1 − α)δjlxk = ξ−2β2β(a− b)

yi

ξ2
.

We combine all the terms and thus arrive at

T̃ i = ξ−2β

(
−2(∂ξb)

yi

ξ
+ 2(1 + β)(a − b)

yi

ξ2

)
,

and thus

T̃ i yi

ξ
= r−2β

(
2(1 + β)

a− b

ξ
− 2∂ξb

)
. (2.24)

Finally, note that the components of the i-th coordinate surface element dSi with respect to h(α,β) are

dSi =
yi

ξ

√
det(h(α,β))dy1 ∧ . . . ∧ d̂yi ∧ . . . ∧ dyd = (1− α)ξdβ

yi

ξ
dy1∧ = . . . ∧ d̂yi ∧ . . . ∧ dyd,
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where d = 3 is the dimension. The normal vectors coincide, hence

dSi = (1 − α)ξ3βdS̃i, (2.25)

where dS̃i is the i-th coordinate surface element of the Euclidean space (with r replaced by ξ, and xi replaced
by yi).

Thus combining (2.24) with (2.25) yields

mADMαβ(h̃) =
1

16π(1− α)
lim
ξ→∞

ξ−3β

∫

Sξ(0)

(
2(1 + β)

a− b

ξ
− 2∂ξb

)
dSi

=
1

8π(1− α)
lim
ξ→∞

ξ−3β

∫ π

0

∫ 2π

0

(
2(1 + β)

a− b

ξ
− 2∂ξb

)
(1− α)ξ3βξ2 sin θdθdφ

=
1

2
lim
ξ→∞

(
ξ(1 + β)(a− b)− ξ2∂ξb

)
, (2.26)

a formula for the ADMαβ for spherically symmetric AFαβ metrics of the form (2.21).

3. Perfect fluids with linear equation of state

The linear relation p = Kρ, K ∈ [0, 1], between the pressure p and the mass-energy density ρ immediately
implies that the static Einstein–Euler equations (1.4a)–(1.4b) in spherical symmetry can be reformulated as
system of ordinary differential equations in m and ρ,

mr = 4πr2ρ, (3.1a)

ρr = − (1 +K)ρ

r − 2m

(
4πr2ρ+

m

rK

)
. (3.1b)

Even in this simplest setting, only very exceptional exact solutions are known [43]. More can be said about
the asymptotic behavior of solutions. A geometric understanding of the asymptotic behavior of the resulting
spherically symmetric, static spacetime metric

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (3.2)

is the main goal of this Section. The metric components λ, ν can be derived by integrating (1.2)–(1.3) and
yield (for ν(0) := 0)

e2ν(r) =

(
ρ0

ρ(r)

) 2K
1+K

, e2λ(r) =

(
1− 2m

r

)−1

. (3.3)

3.1. The initial value problem. Suppose we prescribe an central density ρ0 > 0 and K ∈ (0, 1]. According
to Rendall and Schmidt [71, Theorem 2] and LeFloch and the second author [17, Theorem 4.3] there exists
a unique, smooth, and positive global solution (m, ρ) of (3.1) such that

lim
r→0

m(r) = 0, lim
r→0

ρ(r) = ρ0.

The solution must have infinite extent since condition (1.5) is violated, i.e., for any p0 > 0,
∫ p0

0

dp

ρ(p) + p
=

∫ p0

0

dp

(1 + 1
K )p

= ∞.

Early observations by Chandrasekhar [19] and others [20,48] reveal that the mass functionm(r) =
∫ r

0 s2ρ(s) ds

grows with r3 near the center and linearly in r near infinity. The asymptotic behavior for r → 0 is

m(r) =
4π

3
ρ0r

3 − 4π2 (1 +K)(1 + 3K)

9K
ρ20r

5 +O(r7),

ρ(r) = ρ0 − 2π
(1 +K)(1 + 3K)

3K
ρ20r

2 + 8π2 (1 +K)(1 + 3K)

9K2
ρ30r

4 −O(r6),

according to the Taylor series expansion derived by differentiating (3.1) at the origin [17]. It helps to observe
that ρ is an even function and m is an odd function if we would consider solutions on the whole real line.
See also [38] for higher order terms of the mass function and linear barotropic and polytropic equations of
state.
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3.2. The asymptotic behavior at infinity. In contrast to the initial behavior, less is known about the
behavior of m and ρ as r tends to infinity. We already know that m is strictly increasing as r → ∞, ρ
is strictly decreasing with limr→∞ ρ(r) = 0 and r2ρ(r) remains bounded [17, Theorem 4.3]. However, the
solution is not asymptotically flat due to formula (2.8) for the ADM mass for spherically symmetric metrics,
which yields that

mADM = lim
r→∞

m(r) = ∞.

In order to still be able to say something about the behavior of the solution at radial infinity, we therefore
need to have a better understanding of the growth rate of m for large r.

3.2.1. The singular solution. Näıvely, in order to derive some asymptotics as r → ∞, we make the Ansatz

m(r) = c1r
α, ρ(r) = c2r

β ,

for some α, β, c1, c2 ∈ R. Plugged into the system (3.1), this yields the exact solution

m∞(r) :=
2K

(1 +K)2 + 4K
r, ρ∞(r) =

K

2π((1 +K)2 + 4K)
r−2. (3.4)

Obviously, this solution is special and somewhat unphysical since the density blows up at the center. Because
the trajectories of solutions cannot intersect, this singular solution is an upper bound for all regular solutions
of (3.1) with central density ρ0 ∈ (0,∞).

Setting ν(1) := 0, integrating (1.2) yields

e2ν(r) = r
4K

1+K ,

and (1.3) yields

e2λ(r) =

(
1− 2m∞(r)

r

)−1

=
(1 +K)2 + 4K

(1 +K)2
.

We write g∞ = g∞(K) for the singular metric (3.2) with sound speed K ∈ (0, 1] corresponding to (m∞, ρ∞),
i.e.,

g∞ = −r
4K

1+K dt2 +
(1 +K)2 + 4K

(1 +K)2
dr2 + r2(dθ2 + sin2 θdφ2).

Although unphysical, these singular solutions play an important role from the geometric point of view.

Proposition 3.1. Fix K ∈ (0, 1]. The singular solution (3.4) of the Einstein–Euler system (3.1) with linear
equation of state p = Kρ is quasi-asymptotically flat. More precisely, up to a coordinate transformation it is
the AFα metric

g∞ = − dτ2 + dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2) +
4K

1 +K

τ

ξ
dτdξ −

(
2K

1 +K

τ

ξ

)2

dξ2, (3.5)

with deficit angle

α =
4K

(1 +K)2 + 4K
.

The ADMα of each spatial slice Στ vanishes.

Note that the deficit angle (1− α)π remains within the interval
[
π
2 , π

]
for all K, hence is bounded away

from 0 uniformly for all linear equations of state.

Proof. Since ν′(r) = O(r−1) and λ(r) = Λ, it follows immediately from Corollary 2.6, and the coordinate

transformations τ = r
2K

1+K t and ξ = eΛr used in the proof, that g∞ is quasi-asymptotically flat of the form
(3.5). The deficit angle is given by

1− α = e−2Λ = lim
r→∞

e−2λ(r) = lim
r→∞

(
1− 2m(r)

r

)
= 1− 4K

(1 +K)2 + 4K
=

(1 +K)2

(1 +K)2 + 4K
.

By Lemma 2.13, since a(ξ) = 1−
(

2K
1+K

τ
ξ

)
and b = 1, the ADMα of

h∞(τ) = g∞|Στ
= a(ξ)dξ2 + (1− α)ξ2(dθ2 + sin2 θdφ2)
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at each spatial slice Στ is

mADMα(h∞(τ)) = lim
ξ→∞

a(ξ)− b(ξ)

2ξ
= − lim

ξ→∞

4K2

(1 +K)2
τ2

ξ
= 0. �

Remark 3.2. Dadhich [27,28] recovered the above family of singular solutions as those spherically symmetric
isothermal perfect fluids without boundary that are conformal to a Kerr–Schild metric. In this case, the
latter is given by components

gµν = ηµν + 2Hlµlν ,

where η denotes the flat Minkowski metric, H a constant nonzero scalar field and lµ represents a null vector
relative to g and η. He called this geometric behavior “minimally curved”.

3.2.2. Reformulation as a dynamical system. In 1972 Chandrasekhar [19] studied the asymptotic behavior of
the system (3.1) by reformulating the system using Milne variables. In the late 1990s Makino reformulated
(3.1) as an autonomous system and used plane dynamical systems theory, more precisely the Poincaré–
Bendixson Theorem, to obtain that for K = 1

3 the singular solution is the only element in the ω-limit set
and hence all regular solutions converge to it [48, 49]. While the case of the linear equation of state is not
directly included in the dynamical systems analysis of Heinzle, Röhr and Uggla [42], it can be seen as the
limiting case n → ∞ of relativistic polytropes (1.9). The convergence to the only ω-limit and fixed point,
i.e., the singular solution, thus would also follow from their approach. As already mentioned in Section 1.3
of the Introduction, however, the existing implicit reformulations as dynamical system cannot be applied
directly, because they do not allow for a translation of a convergence rate in the original radial variable.
Instead, while otherwise using a similar approach as in [49, Section 2], we utilize an explicit reformulation.

Lemma 3.3. Fix K ∈ (0, 1]. The spherically symmetric Einstein–Euler system (3.1) is equivalent to the
autonomous system

ȧ = 1− ea + 2eb, (3.6a)

ḃ =
1 + 7K

2K
− 1 + 3K

2K
ea + (1−K)eb, (3.6b)

where t(r) = log r and

a(t) = − log

(
1− 2m(r(t))

r(t)

)
, b(t) = log

(
4πr(t)2ρ(r(t))

)
+ a(t). (3.7)

3.2.3. Asymptotic stability and convergence to the singular solution. The singular solution (3.4) transforms
in the formulation of Lemma 3.3 to the constant singular solution (a∞, b∞) with

a∞(t) = log
(1 +K)2 + 4K

(1 +K)2
, b∞(t) = log

2K

(1 +K)2
. (3.8)

It plays the special role of the single ω-limit point of the plane dynamical system (3.6). In fact, it is a
hyperbolic fixed point and we can analyze the stability of the nonlinear flow by linearizing the system
around (a∞, b∞).

Lemma 3.4. Fix K ∈ (0, 1]. The singular solution (3.8) is a fixed point and the only ω-limit point of the
plane dynamical system (3.6), i.e., all solutions (a, b) converge to (a∞, b∞) as t → ∞. It is a nonlinear
hyperbolic sink for (3.6), and the eigenvalues λ± of the linearized equation are

λ± = − 1 + 3K

2(1 +K)
± i

√
7 + 42K −K2

2(1 +K)
,

with −1 ≤ ℜλ± < − 1
2 .

Proof. The fact that (a∞, b∞) is the single ω-limit point follows from the Poincaré–Bendixson Theorem by
excluding the possibilities of orbits and other fixed points as in [49, Section 2].

To compute the eigenvalues, let us write x = (a, b) and ẋ = F (x) for the dynamical system (3.6). The
linearization around x∞ = (a∞, b∞) is of the form

dx(t)

dt
= A∞x(t) + c∞,
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where

A∞ := DF |(a∞,b∞) =

(
−ea∞ 2eb∞

− 1+3K
2K ea∞ (1−K)eb∞

)
=

(
− (1+K)2+4K

(1+K)2
4K

(1+K)2

− 1+3K
2K

(1+K)2+4K
(1+K)2

2K(1−K)
(1+K)2

)
, (3.9)

and

c∞ := −A∞x∞ =




log (1+K)2(2K)
4K

(1+K)2

((1+K)2+4K)
(1+K)2+4K

(1+K)2

log (1+K)
1+7K

K (2K)
2K(1−K)

(1+K)2

((1+K)2+4K)
1+3K
2K

(1+K)2+4K

(1+K)2




.

The eigenvalues of A∞ are

λ± = − 1 + 3K

2(1 +K)
± i

√
7 + 42K −K2

2(1 +K)
,

the corresponding eigenvectors are

u± =

(
K(1 + 8K −K2)∓ iK(1 +K)

√
7 + 42K −K2

(1 + 3K)((1 +K)2 + 4K)

)
.

Because the eigenvalues have negative real part − 1+3K
2(1+K) < − 1

2 (since K > 0 the inequality is also strict),

the singular solution (a∞, b∞) is a hyperbolic sink. �

We denote by ϕt the nonlinear flow of ẋ = F (x), i.e., ϕt(x0) is the solution x(t) of ẋ = F (x) with initial
condition x(0) = x0. Standard dynamical systems theory provides a control of the asymptotic behavior in
the vicinity of the singular solution (3.8).

Theorem 3.5 (Asymptotic stability in terms of (a, b)). Fix K ∈ (0, 1]. For every norm |.| on R
2 there exists

a constant C ≥ 1 and a neighborhood U of the singular solution x∞ = (a∞, b∞) such that for any initial
condition x ∈ U , the solution is defined for all s ≥ 0 and for any ε > 0,

|ϕs(x) − x∞| ≤ Ce
−( 1+3K

2(1+K)
−ε)s|x− x∞|, s ≥ 0. (3.10)

Thus, in particular, the singular solution is asymptotically stable.
Moreover, there is a neighborhood U around x∞ = (a∞, b∞) such that the flow ϕs of F is C1-conjugate to

the affine flow s 7→ x∞+eA∞s(x−x∞), where A∞ = DF |x∞
(3.9). That is, there exists a C1-diffeomorphism

h : U → U such for x, x∞ + eA∞s(x− x∞) ∈ U we have

ϕs(h(x)) = h(x∞ + eA∞s(x− x∞)).

Note that, instead of employing ε > 0 in (3.10), we can write more rigidly

|ϕs(x)− x∞| ≤ Ce−
s
2 |x− x∞|, s ≥ 0,

to obtain an estimate independent of K ∈ (0, 1].

Proof. Since ℜλ± = − 1+3K
2(1+K) < − 1

2 < 0 by Lemma 3.4, the first part of the statement is due to the

exponential contraction of the linear flow and the Gronwall inequality (see, for example, [73, Theorem 5.1]).
The conjugacy statement follows from the Hartman–Grobman theorem, or can also be proven directly

since (a∞, b∞) is a hyperbolic sink (see, for example, [73, Theorem 5.2]). The fact that we obtain a C1-
diffeomorphism and not merely a homeomorphism h follows from the smoothness of F [39, 81]. �

Corollary 3.6 (Asymptotic stability in terms of (m, ρ)). Fix K ∈ (0, 1]. The asymptotic behavior of
solutions (m, ρ) to the system (3.1) with initial data ρ0 > 0 for r → ∞ is

m(r) =
2K

(1 +K)2 + 4K
r +O

(
r

1−K
2(1+K)

+ε
)
,

ρ(r) =
K

2π((1 +K)2 + 4K)
r−2 +O

(
r
− 5+7K

2(1+K)
+ε
)
.
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Proof. Step 1. Estimate a(t)− a∞. Let us fix an initial density ρ0 > 0. For every such ρ0 there exists a
unique global smooth solution (m, ρ) to the system (3.1) with infinite extent (see discussion in Section 3.1).
In particular, we obtain the corresponding initial value x0 = (a0, b0) through

a0 := − log (1− 2m(1)) , b0 := log(4πρ(1)) + a0,

for the reformulated system (3.6) and a corresponding solution (a, b) with a(0) = a0 and b(0) = b0. By
Lemma 3.3,

x(t) = (a(t), b(t)) → x∞ = (a∞, b∞) as t → ∞.

Thus there exists a t0 = t0(K, ρ0) > 0 such that for all t ≥ t0 the remaining solution x(t) is in the
neighborhood U of x∞ obtained in Theorem 3.5. By (3.10), since the flow satisfies ϕt = ϕt0+s = ϕs ◦ ϕt0

for s = t− t0,

|ϕt(x0)− x∞| = |ϕs(x(t0))− x∞| ≤ Ce
−( 1+3K

2(1+K)−ε)s|x(t0)− x∞|.

If we replace the constant C = C(K) by a constant C̃ = C̃(K, ρ0) and assume without loss of generality
that all elements y in U satisfy |x∞ − y| ≤ 1, then

|ϕt(x0)− x∞| ≤ Ce
−( 1+3K

2(1+K)
−ε)te(

1+3K
2(1+K)

−ε)t0 ≤ C̃e
−( 1+3K

2(1+K)
−ε)t

In particular, if we think of |.| as the maximum norm in R
2, then for all ε > 0,

|a(t)− a∞| ≤ C̃e
−( 1+3K

2(1+K)
−ε)t, (3.11a)

|b(t)− b∞| ≤ C̃e
−( 1+3K

2(1+K)
−ε)t. (3.11b)

Step 2. Estimate m(r) −m∞. By Definition (3.7) of a,

m(r) =
r

2

(
1− e−a(t(r))

)
=

r

2

(
1− (1 +K)2

(1 +K)2 + 4K
ea∞−a(t(r))

)

=
r

2

(
1− (1 +K)2

(1 +K)2 + 4K
− (1 +K)2

(1 +K)2 + 4K
(ea∞−a(t(r)) − 1)

)

=
2K

(1 +K)2 + 4K
r − (1 +K)2

2((1 +K)2 + 4K)
r(ea∞−a(t(r)) − 1)

= m∞(r) +O
(
r
1− 1+3K

2(1+K)+ε
)
,

since for r (and hence t(r)) sufficiently large

∣∣∣ea∞−a(t(r)) − 1
∣∣∣ =

∣∣∣∣∣
∞∑

n=1

(a∞ − a(t(r)))n

n!

∣∣∣∣∣

= |a∞ − a(t(r))|
∞∑

n=0

|a∞ − a(t(r))|n
(n+ 1)!

≤ |a∞ − a(t(r))|e,

and thus by (3.11a) of Step 1 there is a constant C > 0 such that
∣∣∣ea∞−a(t(r)) − 1

∣∣∣ ≤ Ce
−( 1+3K

2(1+K)−ε)t(r) = Cr
−( 1+3K

2(1+K)−ε). (3.12)

Step 3. Estimate ρ(r)− ρ∞. This follows from (3.11b) in Step 1, Step 2 and the Definition (3.7) of b. We
have that

ρ(r) =
1

4πr2
eb(t(r))−a(t(r)) =

1

4πr2
eb(t(r))−b∞ea∞−a(t(r))eb∞−a∞

=
K

2π((1 +K)2 + 4K)
r−2eb(t(r))−b∞ea∞−a(t(r))

=
K

2π((1 +K)2 + 4K)
r−2

(
(eb(t(r))−b∞ − 1) + 1

)(
(ea∞−a(t(r)) − 1) + 1

)

= ρ∞(r) +O
(
r
−2− 1+3K

2(1+K)
+ε
)
,
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by (3.12) and the same estimate for the b-term. �

3.3. Quasi-asymptotic flatness and ADMα mass. In Proposition 3.1 we have observed that the singular
solution (m∞, ρ∞) to the system (3.1) is the SAFα metric with α = 4K

(1+K)2+4K . The ADMα mass of this

singular solution vanishes. Since by Corollary 3.6 every solution (m, ρ) to the initial value problem (3.1)
with ρ0 > 0 converges to (m∞, ρ∞), it is natural to expect that these solutions are also quasi-asymptotically
flat. However, due to the slow convergence rate obtained in Corollary 3.6 we cannot say whether the ADMα

mass is even finite.

We first derive conditions on the mass function m and density ρ that imply that we are dealing with an
quasi-asymptotically flat spacetime in the sense of Definition 1.1.

Lemma 3.7. Suppose for the function m : [0,∞) → R
+
0 exists α ∈ [0, 1) such that

2m

r
− α = o(r−

1
2 ), as r → ∞, (3.13)

and ρ satisfies

ρ′(r)

ρ(r)
= o(r−

1
2 ), as r → ∞. (3.14)

Then the solution of the Einstein–Euler system (1.4) is quasi-asymptotically flat with deficit angle (1−α)π.

Proof. We verify the conditions (2.6) of Corollary 2.6. Since eν(r) =
(

ρ0

ρ(r)

) K
1+K

, the assumption (3.14)

implies

ν′(r) = − K

1 +K

ρ′(r)

ρ(r)
= o(r−

1
2 ).

The decay assumption (3.13) implies that e2Λ := limr→∞ e2λ(r) = 1
1−α ≥ 1 exists. Moreover, by the

precise definition of little-o, for all C > 0 there exists r0 > 0 such that | 2mr − α| ≤ Cr−
1
2 for r ≥ r0. For r

sufficiently large we also have that |1− 2m
r | ≥ 1−α− |α− 2m

r | ≥ 1−α
2 . Thus, eventually for all r sufficiently

large,
∣∣∣e2λ(r)−2Λ − 1

∣∣∣ =
∣∣∣∣
2m
r − α

1− 2m
r

∣∣∣∣ ≤
Cr−

1
2

1−α
2

=
2C

1− α
r−

1
2 ,

which means that e2λ(r)−2Λ − 1 = o(r−
1
2 ). Since α = 1 − e−2Λ the claim about the deficit angle follows

immediately. �

We are now in a position to prove the first main Theorem 1.2 for the linear equation of state.

Proof of Theorem 1.2. By Corollary 3.6, for every ε > 0,

m(r) =
2K

(1 +K)2 + 4K
r +O

(
r

1−K
2(1+K)+ε

)
.

Therefore, since − 1+3K
2(1+K) + ε < − 1

2 for ε > 0 sufficiently small, as r → ∞,

2m

r
− α = O

(
r
− 1+3K

2(1+K)
+ε
)
= o(r−

1
2 ).

Similarly, by Corollary 3.6 and (3.1b),

ρ′(r)

ρ(r)
= − 1 +K

r − 2m

(
4πr2ρ+

m

rK

)

= O(r−
1+3K

2(1+K)+ε) = o(r−
1
2 ).

Lemma 3.7 thus implies quasi-asymptotic flatness, and in particular convergence to gα as r → ∞. �
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Remark 3.8 (ADMα mass for the Einstein–Euler system). In terms of the mass function of the Einstein–Euler
system (1.4) the mass function M in Corollary 2.13 is derived by a transformation of the expression

(
1− 2M

ξ

)−1

= e2λ(r)−2Λ − (ν′(r)τe−Λ)2

= (1− α)

(
1− 2m

r

)−1

− (ν′(r)τe−Λ)2

≤ (1− α)

(
1− 2m

r

)−1

Thus by Corollary 2.13, provided we could prove sufficient decay rates to verify coordinate invariance, we
would have that

mADMα(g|Στ
) = lim

ξ→∞
M(ξ) ≤ lim

ξ→∞

ξ

2

(
1− 1

1− α

(
1− 2m(r)

r

))

=
1

1− α
lim
ξ→∞

(
m
ξ

r
− αξ

2

)
. (3.15)

Remark 3.9 (ADMα mass for a linear equation of state). Since by Corollary 3.6

m(r) − α

2
r = O(r

1−K
2(1+K)

+ε),

the estimate (3.15) would suggest that the ADMα mass of regular perfect fluid solutions to (3.1) is in fact
infinite, just like the ADM mass. A more detailed calculation, taking into account the negative term with
ν′ and that ξ = eΛr, indeed reveals that

M(ξ) =
ξ

2

[
1−

(
1− 2m(e−Λξ)

e−Λξ

)(
1− α− (ν′(e−Λξ)τe−Λ)2

(
1− 2m(e−Λξ)

e−Λξ

))−1
]

=
ξ

2

[
1−

(
1− α+ o(ξ−

1
2 )
)(

1− α− (1− α)τ2o(ξ−1)
(
1− α+ (ξ−

1
2 )
))−1

]

=
ξ

2

[
1−

(
1− α+ o(ξ−

1
2 )
) (

1− α+ o(ξ−1)
)−1
]

=
ξ

2

[
1− 1 + o(ξ−

1
2 )
]
= o(ξ

1
2 ),

and therefore that

mADMα(g|Στ
) = lim

ξ→∞
M(ξ) = +∞ or −∞.

In Section 3.2.1, we have already observed that m(r) < m∞(r) for all regular solutions. Therefore also
M(r) < M∞(r) = 0 for all r > 0, and the ADMα mass is therefore not only negative but likely also
unbounded below. This suggests a negative answer for the question raised in [60] whether the ADMα mass
of quasi-asymptotically flat metrics is always bounded from below, at least for quasi-asymptotically flat
metrics in the sense of Definition 1.1. However, since we cannot prove that sufficient decay estimates hold,
we do in fact not know if we are still in the meaningful situation of Remark 2.10, where it is guaranteed that
the ADMα mass is a geometric invariant.

Remark 3.10 (Scaled quasi-asymptotic flatness and a ADMαβ mass). In the optimal quasi-asymptotically flat
setting we would set β = 0 even independent of K. However, it may be useful to interpret the solutions also
in the context of scaled quasi-asymptotic flatness. In the proof of Lemma 3.7 and the proof of Theorem 1.2
we have observed that, in fact,

ν′(r) = O(r−
1+3K

2(1+K)+ε), and e2λ(r)−2Λ − 1 = O(r−
1+3K

2(1+K)+ε),

as r → ∞. Therefore, if β >
2(1+K)
1+3K −1 = 1−K

1+3K , then spherically symmetric and static perfect fluid solutions
with linear equation of state could also considered to be scaled quasi-asymptotically flat as described in
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Remark 2.5. The ADMαβ satisfies

mADMαβ(g|Στ
) =

1

2
lim
ξ→∞

(1 + β)(1 +O(ξ−1) + τ2O(ξ−1)− 1)ξ

= O(1) + τ2O(1) < ∞

according to (2.26) for an optimal β (which we indeed expect to be 1−K
1+3K ). Here, we also have to change α,

which is then given by

1− α = (1 + β)−2e−2Λ <
(1 + 3K)2

4(1 +K)2
(1 +K)2

(1 +K)2 + 4K
=

(1 + 3K)2

4((1 +K)2 + 4K)
.

Since K ∈ (0, 1) implies 5K2 < 6K, the denominator is larger than the numerator, and hence also the

rescaled α = 1− (1 + β)−2e−2Λ > 3+6K−5K2

4((1+K)2+4K) is contained in the interval (0, 1).

4. Perfect fluids with polytropic equation of state

In their dynamical systems approach to the spherically symmetric static Einstein–Euler system (1.4),
Heinzle, Röhr and Uggla [42] made use of the quantities

ΓN (p) :=
ρ

p

dp

dρ
, σ(p) :=

p

ρ
,

defined in terms of the equation of state p = p(ρ). In [42, Theorem 5.1] it was shown that all regular solutions
of (1.4) have infinite masses and infinite radii if ΓN ≤ 6

5 and σ ≤ 1. The assumption on σ is related to the
dominant energy condition.

For polytropic equations of state (1.9), i.e., p = Kρ
n+1
n , we obtain that

Γpoly
N (p) =

n+ 1

n
, σpoly(p) = Kρ

1
n = K

n
n+1 p

1
n+1 .

Clearly, for n ≥ 5, the condition Γpoly
N ≤ 6

5 is satisfied, while the second condition σ ≤ 1 is not satisfied
in the high-pressure regime. Heinzle, Röhr and Uggla [42] therefore considered equations of state that are
linear for high pressures in [42], which leads to the analysis of so-called barotropic equations of state.

In a more detailed analysis, Nilsson and Uggla [59, Section 2] explain that the spherically symmetric

Einstein–Euler system with power-law polytropic equations of state p = Kρ
n+1
n , i.e., the system

mr = 4πr2ρ, (4.1a)

ρr = − n

n+ 1

(1 +Kρ
1
n )ρ

n−1
n

r − 2m

(
4πr2ρ

n+1
n +

m

rK

)
, (4.1b)

yields finite radius solutions if 0 < n < 5 and if the central density ρ0 is small. See also [71, Theorem 4]
where a result also for generalized power-law polytropic equations of state was obtained for 1 < n < 5. In
the case of 0 < n ≤ 3, there exists a global sink P2 where all orbits end (see also [48, Theorem 1]). If
3 < n < 5, then the majority of orbits still end at P2, but orbits ending at P1 (which have finite masses
but infinite radii) and P4 (which have infinite masses and radii) also occur. When n & 3.339 it was shown
numerically that there is at least one solution ending at P1. At n ≈ 3.357 and n ≈ 4.414 Nilsson and Uggla
obtained solutions with infinite masses and radii corresponding to P4. The dynamical behavior turns out
to be quite complicated and is not yet fully understood from an analytical point of view. For more details
see [59, Sections 2.5–2.7]. For n ≥ 5 all relativistic regular models have infinite radii and masses, and spiral
around the Tolman orbit P4, which is associated with a special nonregular Newtonian solution that is not
known in exact form.

4.1. The initial value problem. In what follows we mainly restrict our attention to the power-law poly-
tropic equation of state (1.9) with polytropic index n > 5. Fix K ∈ (0, 1] and a central density ρ0 > 0. By
[71, Theorem 2] exists a unique, smooth and positive global solution (m, ρ) of (4.1) such that

lim
r→0

m(r) = 0, lim
r→0

ρ(r) = ρ0.
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The solution has infinite extent due to our discussion in Section 1.2, with ρ(r) → 0 as r → ∞. The asymptotic
behavior as r → 0 is given by the Taylor series expansion which reads

m(r) =
4π

3
ρ0r

3 + O(r5),

ρ(r) = ρ0 − 2π
n

n+ 1

(1 +Kρ
1
n

0 )(1 + 3Kρ
1
n

0 )

Kρ
1
n

0

ρ20r
2 +O(r4),

due to l’Hôpital’s rule.

4.2. The asymptotic behavior of solutions. Due to the dynamical systems analysis [59] we know that,
asymptotically for r → ∞, some solutions of (4.1) with 3 < n < 5 and all solutions with n ≥ 5 converge to
a fixed point P4 (which corresponds to B4 in [42]). In terms of m and ρ, this provides us with some control
on the asymptotic behavior of (some) solutions. We are primarily interested in polytropes with index n > 5,
but some results also hold for the (unstable) infinite solutions with index 3 < n < 5.

4.2.1. The dynamical system and its fixed points. The formulation of Nilsson and Uggla [59] for the Einstein–
Euler system in the case of the power-law polytropic equation of state makes use of the transformation

U =
4πr2ρ

4πr2ρ+ m
r

, V =
m
r

Kρ
1
n + m

r

, y =
Kρ

1
n

Kρ
1
n + 1

. (4.2)

which leads to the dynamical system

U̇ = U(1− U)[(1 − y)(3− 4U)F − n

n+ 1
G], (4.3a)

V̇ = V (1− V )[(1 − y)(2U − 1)F +
1

n+ 1
G], (4.3b)

ẏ = − 1

n+ 1
y(1− y)G. (4.3c)

with

F = (1− V )(1 − y)− 2yV, G = V [(1− U)(1 − y) + yU ].

The differentiation in (4.3) is with respect to a new independent variable (indirectly related to the geometry)
and r2 is given by

r2 =
Kn

4π

U

1− U

V

1− V

(
1− y

y

)n−1

.

According to the numerical analysis in [59, Section 2], if 3 < n . 3.339, all regular orbits end at the fixed
point P2 (which is the only hyperbolic sink in this case and leads to solutions with finite masses and radii).
For n & 3.339 isolated orbits also end at the equilibrium points P1 (solutions with finite masses but infinite
radii) and P4 (solutions with infinite masses and infinite radii). The latter fixed point P4 is given by

U4 =
n− 3

2(n− 2)
, V4 =

2(n+ 1)

3n+ 1
, y4 = 0, for n > 3, (4.4)

with eigenvalues2

λ± = − (n− 1)(n− 5)

4(n− 2)(1 + 3n)
± i

n− 1

4(n− 2)(1 + 3n)

√
7n2

2
− 11n− 1

2
, (4.5)

λ0 = − n− 1

(n− 2)(1 + 3n)
.

We see that − 1
12 ≤ ℜλ± = − (n−1)(n−5)

4(n−2)(1+3n) < 0 if and only if n > 5, in which case P4 becomes a hyperbolic

sink and all orbits end at P4, leading to solutions with infinite radii and masses [59].

2Note that the term 7n
2

2
− 11n − 1

2
under √ is nonnegative only for n ≥ 3.18767. Otherwise the eigenvalues are, in fact,

real.
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4.2.2. Asymptotic stability for solutions of (4.1) with polytropic index n > 5. The above properties and the
Hartman–Grobman theorem (see, for example, [73, Theorem 5.3]) imply that the behavior of the dynamical
system (4.4) near the fixed point P4 is qualitatively given by its linearization. The flow of (4.4) is C1-
conjugate to the affine flow s 7→ P4 + eA4s(x− P4), where the linearization around P4 is given by

A4 =




− (n−3)(n−1)
2(n−2)(1+3n) − (n−3)(n−1)n(1+3n)

8(n−2)3(1+n) − 3(n−3)(n−1)n2

2(n−2)3(1+3n)
4(n−2)(n−1)(n+1)

(1+3n)3
n−1

(n−2)(1+3n)
12(n−1)(n+1)
(n−2)(1+3n)3

0 0 − n−1
(n−2)(1+3n)


 .

As observed in [59], on the subset {y = 0} the relativistic equations (4.3a)–(4.3b) and the corresponding two
Newtonian equations and coincide. Since, however, we cannot directly relate the new independent variable
to r, we cannot compute a convergence rate of m and ρ as r → ∞. We merely compute the leading order
term based on the results of Nilsson and Uggla [59].

Proposition 4.1 (Asymptotic stability in terms of (m, ρ)). Fix K ∈ (0, 1] and n > 5. The asymptotic
behavior of solutions (m, ρ) to the system (4.1) with initial data ρ0 > 0 is

m(r) = n−1

√
2n−2Kn

π

(n− 3)(n+ 1)n

(n− 1)n+1
r

n−3
n−1 + o

(
r

n−3
n−1
)
,

ρ(r) = n−1

√
Kn

2nπn

(n+ 1)n(n− 3)n

(n− 1)2n
r−

2n
n−1 + o

(
r−

2n
n−1

)
,

as r → ∞.

Proof. This follows directly from the analysis of the dynamical system (4.3) in [59], since in the case of n > 5
the variables (U, V, y) converge to (U4, V4, y4) given in (4.4). By (4.2) we deduce that

ρ
n−1
n =

K

4πr2
U

1− U

V

1− V
,

hence the leading order term of ρ is

ρ4 =

(
K

2π

(n+ 1)(n− 3)

(n− 1)2

) n
n−1

r−
2n

n−1 .

Similarly, (4.2) implies that

m = 4πr3
U − 1

U

with leading order term

m4 =
2(n+ 1)K

n− 1

(
K

2π

(n+ 1)(n− 3)

(n− 1)2

) 1
n−1

r−
2

n−1+1 =

(
2n−2Kn

π

(n+ 1)n(n− 3)

(n− 1)n+1

) 1
n−1

r
n−3
n−1 . �

Remark 4.2. Be aware that, unlike in the case of the linear equation of state (cf. Section 3.2.1), the leading
order terms of the variables (m, ρ), i.e.,

“m4(r)” = n−1

√
2n−2Kn

π

(n− 3)(n+ 1)n

(n− 1)n+1
r

n−3
n−1 ,

“ρ4(r)” = n−1

√
Kn

2nπn

(n+ 1)n(n− 3)n

(n− 1)2n
r−

2n
n−1 ,

do not yield a (singular) solution to the original system (4.1) itself, but merely represents the asymptotic
behavior of regular solutions as r → ∞. Due to the third component of P4 only the behavior near y4 = 0,
i.e., at r = ∞, is described. One cannot apply Proposition 4.1 to the limit n → ∞ (corresponding to the
linear equation of state) since then y = p

p+ρ = K
1+K = const. > 0.
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4.3. Scaled quasi-asymptotic flatness and ADMαβ mass. In Proposition 4.1 we have observed that,

for static fluids with polytropic index n > 5, the mass function behaves like m(r) ∼ Cr
n−3
n−1 for some constant

C = C(n,K) as r → ∞. The expression (2.8) would therefore yield an ADM mass

mADM(g) = lim
r→∞

m(r) = ∞.

However, although

lim
r→∞

e2λ(r) = lim
r→∞

(
1− 2m(r)

r

)−1

= lim
r→∞

1

1− Cr−
2

n−1

= 1,

as in the asymptotically flat situation, we are in a situation where the ADM mass is not coordinate-invariant

because a(r) − 1 =
(
1− 2m

r

)−1 − 1 = O(r−
2

n−1 ) rather than o(r−
1
2 ).

Is the solution quasi-asymptotically flat in the sense of Definition 1.1? Because of the above, we would
have to set α = 0, but then again violate condition (3.13) in Lemma 3.7 which also requires that 2m

r − α =
2m
r = o(r−

1
2 ). On the other hand, we immediately see from Corollary 4.1 that

2m

r
n−3
n−1

∼ n−1

√
2n−2Kn

π

(n− 3)(n+ 1)n

(n− 1)n+1
as r → ∞.

This nonlinear scaling in the radial direction is different from the quasi-asymptotically flat case for fluids
with linear equation of state (although, as n → ∞, n−3

n−1 approaches 1). To accommodate this behavior we
introduced the notion of scaled quasi-asymptotic flatness in Section 2. It remains to verify that perfect fluids
with polytropic equations of state with index n > 5 are indeed scaled quasi-asymptotically flat in the sense
of Definition 1.3. We prove our second main Theorem 1.5 for the polytropic equation of state.

Proof of Theorem 1.5. We verify the conditions (2.4) of Proposition 2.4. By Proposition 4.1 the asymptotic
behavior of m and ρ is

m(r) = n−1

√
2n−2Kn

π

(n− 3)(n+ 1)n

(n− 1)n+1
r

n−3
n−1 + o

(
r

n−3
n−1
)
,

ρ(r) = n−1

√
Kn

2nπn

(n+ 1)n(n− 3)n

(n− 1)2n
r−

2n
n−1 + o

(
r−

2n
n−1

)
.

Hence the differential equations (4.1b) and (1.2) imply that

ν′(r) = − p′(r)

p(r) + ρ(r)
= − K n+1

n ρ
1
n ρr

ρ(Kρ
1
n + 1)

=
K

r(1 − 2m
r )

(
4πr2ρ

n+1
n +

m

rK

)

=
K

r(1 −O(r−
2

n−1 ))

(
O(r−

4n
n−1 ) +O(r−

2
n−1 )

)
= O(r−

n+1
n−1 )

and

e2λ(r)−2Λ − 1 =

(
1− 2m

r

)−1

− 1 =
1

1− O(r−
2

n−1 )
− 1 = O(r−

2
n−1 ).

Since −n+1
n−1 ≤ − 2

n−1 , the solution is AFαβ with β > n−5
4 and α = 1− 1

(1+β)2 > 1 −
(

4
n−1

)2
> 0 according

to Proposition 2.4. �

Remark 4.3 (ADMαβ mass). We believe that it is possible to set β = n−5
4 and 1 − α =

(
4

n−1

)2
in Theo-

rem 1.5. However, in view of Remark 2.5, we consider β = n−3
2 , which is negative for all values of n that

definitely lead to solutions with finite extent and is greater than 1 for solutions with definitely infinite extent.
The corresponding ADMαβ mass (2.26) from Remark 2.16 is then

mADMαβ(g|Στ
) =

1

2
lim
ξ→∞

(1 + β) ((1 + aξξ(τ, ξ)) − 1) ξ,
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where

aξξ = −1 + e2λ(r)−2Λ − e−2Λν′(r)2τ2 =

(
1− 2m

r

)−1

− 1 +O(r−
2(n+1)
n−1 )

=
2C(n,K)

ξ − 2C(n,K) + o(ξ−
1

1+β )
+O(ξ−2)

with leading order coefficient C(n,K) of m. Thus

mADMαβ(g|Στ
) =

1

2
lim
ξ→∞

(1 + β)

(
2C(n,K)

ξ − 2C(n,K) + o(ξ−
1

1+β )
+O(ξ−2)

)
ξ

= (1 + β)C(n,K)

= (1 + β) n−1

√
2n−2Kn

π

(n− 3)(n+ 1)n

(n− 1)n+1

= n−1

√
Kn

2π

(n− 3)(n+ 1)n

(n− 1)2
.
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