
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/201648

Please be advised that this information was generated on 2019-06-02 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/200780903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/201648

Learning Unions of k-Testable Languages ?

Alexis Linard1, Colin de la Higuera2, and Frits Vaandrager1

1 Institute for Computing and Information Science
Radboud University, Nijmegen, The Netherlands

{a.linard,f.vaandrager}@cs.ru.nl
2 Laboratoire des Sciences du Numérique de Nantes

Université de Nantes, France
cdlh@univ-nantes.fr

Abstract. A classical problem in grammatical inference is to identify a
language from a set of examples. In this paper, we address the problem
of identifying a union of languages from examples that belong to several
different unknown languages. Indeed, decomposing a language into smaller
pieces that are easier to represent should make learning easier than
aiming for a too generalized language. In particular, we consider k-
testable languages in the strict sense (k-TSS). These are defined by a
set of allowed prefixes, infixes (sub-strings) and suffixes that words in
the language may contain. We establish a Galois connection between
the lattice of all languages over alphabet Σ, and the lattice of k-TSS
languages over Σ. We also define a simple metric on k-TSS languages. The
Galois connection and the metric allow us to derive an efficient algorithm
to learn the union of k-TSS languages. We evaluate our algorithm on an
industrial dataset and thus demonstrate the relevance of our approach.

Keywords: grammatical inference · k-testable languages · union of lan-
guages · Galois connection

1 Introduction

A common problem in grammatical inference is to find, i.e. learn, a regular
language from a set of examples of that language. When this set is divided
into positive examples (belonging to the language) and negative examples (not
belonging to the language), the problem is typically solved by searching for the
smallest deterministic finite automaton (DFA) that accepts the positive examples,
and rejects the negative ones. Moreover there exist algorithms which identify in
the limit a DFA, that is, they eventually learn correctly any language/automaton
from such examples [6].

We consider in this work a setting where one can observe positive examples
from multiple different languages, but they are given together and it is not clear
to which language each example belongs to. For example, given the following

? This research is supported by the Dutch Technology Foundation (STW) under the
Robust CPS program (project 12693).

2 A. Linard and C. de la Higuera and F. Vaandrager

set of strings S = {aa, aaa, aaaa, abab, ababab, abba, abbba, abbbba}, learning a
single automaton will be less informative than learning several DFAs encoding
respectively the languages a∗, (ab)∗ and ab∗a. There is a trade-off between the
number of languages and how specific each language should be. That is, covering
all words through a single language may not be the desired result, but having a
language for each word may also not be desired. The problem at hand is therefore
double: to cluster the examples and learn the corresponding languages.

In this paper, we focus on k-testable languages in the strict sense (k-TSS)
[10]. A k-TSS language is determined by a finite set of substrings of length at
most k that are allowed to appear in the strings of the language. It has been
proved that, unlike for regular languages, algorithms can learn k-TSS languages
in the limit from text [16]. Practically, this learning guarantee has been used in
a wide range of applications [2,3,12,13]. However, all these applications consider
learning of a sole k-TSS language [2], or the training of several k-TSS languages
in a context of supervised learning [13]. Learning unions of k-TSS languages has
been suggested in [14].

A first contribution of this paper is a Galois connection between the lattice of
all languages over alphabet Σ and the lattice of k-TSS languages over Σ. This
result provides a unifying and abstract perspective on known properties of k-TSS
languages, but also leads to several new insights. The Galois connection allows
to give an alternative proof of the learnability in the limit of k-TSS languages,
and suggests an algorithm for learning unions of k-TSS languages. A second
contribution is the definition of a simple metric on k-TSS languages. Based on
this metric, we define a clustering algorithm that allows us to efficiently learn
unions of k-TSS languages.

Our research was initially motivated by a case study of print jobs that are
submitted to large industrial printers. These print jobs can be represented by
strings of symbols, where each symbol denotes a different media type, such as
a book cover or a newspaper page. Together, this set of print jobs makes for
a fairly complicated ‘language’. Nevertheless, we observed that each print job
can be classified as belonging to one of a fixed set of categories, such as ‘book’
or ‘newspaper’. Two print jobs that belong to the same category are typically
similar, to the extent that they only differ in terms of prefixes, infixes and suffixes.
Therefore, the languages stand for the different families of print jobs. Our goal is
to uncover these k-TSS languages.

This paper is organized as follows. In Section 2 we recall preliminary definitions
on k-TSS languages and define a Galois connection that characterizes these
languages. We then present in Section 3 our algorithm for learning unions of
k-TSS languages. Finally, we report on the results we achieved for the industrial
case study in Section 4. We refer to the full version of our paper for all the
proofs.1

1 For missing proofs, see http://arxiv.org/abs/1812.08269.

http://arxiv.org/abs/1812.08269

Learning Unions of k-Testable Languages 3

2 k-Testable Languages

The class of k-testable languages in the strict sense (k-TSS) has been introduced
by McNaughton and Papert [10]. Informally, a k-TSS language is determined
by a finite set of substrings of length at most k that are allowed to appear in
the strings of the language. This makes it possible to use as a parser a sliding
window of size k, which rejects the strings that at some point do not comply
with the conditions. Concepts related to k-TSS languages have been widely used
e.g. in information theory, pattern recognition and DNA sequence analysis [4,16].
Several definitions of k-TSS languages occur in the literature, but the differences
are technical. In this section, we present a slight variation of the definition of
k-TSS languages from [7], which in turn is a variation of the definition occurring
in [4,5]. We establish a Galois connection that characterizes k-TSS languages,
and show how this Galois connection may be used to infer a learning algorithm.

We write N to denote the set of natural numbers, and let i, j, k, m, and n
range over N.

2.1 Strings

Throughout this paper, we fix a finite set Σ of symbols. A string x = a1 . . . an is
a finite sequence of symbols. The length of a string x, denoted | x | is the number
of symbols occurring in it. The empty string is denoted λ. We denote by Σ∗ the
set of all strings over Σ, and by Σ+ the set of all nonempty strings over Σ (i.e.
Σ∗ = Σ+ ∪ {λ}). Similarly, we denote by Σ<i, Σi and Σ>i the sets of strings
over Σ of length less than i, equal to i, and greater than i, respectively.

Given two strings u and v, we will denote by u · v the concatenation of u and
v. When the context allows it, u · v shall be simply written uv. We say that u is
a prefix of v iff there exists a string w such that uw = v. Similarly, u is a suffix
of v iff there exists a string w such that wu = v. We denote by x[: k] the prefix
of length k of x and x[−k :] the suffix of length k of x.

A language is any set of strings, so therefore a subset of Σ∗. Concatenation
is lifted to languages by defining L · L′ = {u · v | u ∈ L and v ∈ L′}. Again, we
will write LL′ instead of L · L′ when the context allows it.

2.2 k-Testable Languages

A k-TSS language is determined by finite sets of strings of length k− 1 or k that
are allowed as prefixes, suffixes and substrings, respectively, together with all the
short strings (with length at most k − 1) contained in the language. The finite
sets of allowed strings are listed in what McNaughton and Papert [10] called
a k-test vector. The following definition is taken from [7], except that we have
omitted the fixed alphabet Σ as an element in the tuple, and added a technical
condition (I ∩ F = C ∩Σk−1) that we need to prove Theorem 7.

Definition 1. Let k > 0. A k-test vector is a 4-tuple Z = 〈I, F, T, C〉 where

– I ⊆ Σk−1 is a set of allowed prefixes,

4 A. Linard and C. de la Higuera and F. Vaandrager

– F ⊆ Σk−1 is a set of allowed suffixes,
– T ⊆ Σk is a set of allowed segments, and
– C ⊆ Σ<k is a set of allowed short strings satisfying I ∩ F = C ∩Σk−1.

We write Tk for the set of k-test vectors.

Note that the set Tk of k-test vectors is finite. We equip set Tk with a partial
order structure as follows.

Definition 2. Let k > 0. The relation v on Tk is given by

〈I, F, T, C〉 v 〈I ′, F ′, T ′, C ′〉 ⇔ I ⊆ I ′ and F ⊆ F ′ and T ⊆ T ′ and C ⊆ C ′.

With respect to this ordering, Tk has a least element ⊥ = 〈∅, ∅, ∅, ∅〉 and a greatest
element > = 〈Σk−1, Σk−1, Σk, Σ<k〉. The union, intersection and symmetric
difference of two k-test vectors Z = 〈I, F, T, C〉 and Z ′ = 〈I ′, F ′, T ′, C ′〉 are given
by, respectively,

Z t Z ′ = 〈I ∪ I ′, F ∪ F ′, T ∪ T ′, C ∪ C ′ ∪ (I ∩ F ′) ∪ (I ′ ∩ F)〉,
Z u Z ′ = 〈I ∩ I ′, F ∩ F ′, T ∩ T ′, C ∩ C ′〉,
Z 4 Z ′ = 〈I 4 I ′, F 4 F ′, T 4 T ′, C 4 C ′ 4 (I ′ ∩ F)4 (I ∩ F ′)〉.

The reader may check that Z t Z ′, Z u Z ′ and Z 4 Z ′ are k-test vectors
indeed, preserving the property I ∩ F = C ∩Σk−1. The reader may also check
that (Tk,v) is a lattice with Z t Z ′ the least upper bound of Z and Z ′, and
Z uZ ′ the greatest lower bound of Z and Z ′. The symmetric difference operation
4 will be used further on to define a metric on k-test vectors.

We can associate a k-test vector αk(L) to each language L by taking all
prefixes of length k − 1 of the strings in L, all suffixes of length k − 1 of the
strings in L , and all substrings of length k of the strings in L. Any string which
is both an allowed prefix and an allowed suffix is also a short string, as well as
any string in L with length less than k − 1.

Definition 3. Let L ⊆ Σ∗ be a language and k ∈ N. Then αk(L) is the k-test
vector 〈Ik(L), Fk(L), Tk(L), Ck(L)〉 where

– Ik(L) = {u ∈ Σk−1 | ∃v ∈ Σ∗ : uv ∈ L},
– Fk(L) = {w ∈ Σk−1 | ∃v ∈ Σ∗ : vw ∈ L},
– Tk(L) = {v ∈ Σk | ∃u,w ∈ Σ∗ : uvw ∈ L}, and
– Ck(L) = (L ∩Σ<k−1) ∪ (Ik(L) ∩ Fk(L)).

It is easy to see that operation αk : 2Σ
∗ → Tk is monotone.

Proposition 4. For all languages L,L′ and for all k > 0,

L ⊆ L′ ⇒ αk(L) v αk(L′).

Conversely, we associate a language γk(Z) to each k-test vector Z = 〈I, F, T, C〉,
consisting of all the short strings from C together with all strings of length at
least k − 1 whose prefix of length k − 1 is in I, whose suffix of length k − 1 is in
F , and where all substrings of length k belong to T .

Learning Unions of k-Testable Languages 5

Definition 5. Let Z = 〈I, F, T, C〉 be a k-test vector, for some k > 0. Then

γk(Z) = C ∪ ((IΣ∗ ∩Σ∗F) \ (Σ∗(Σk \ T)Σ∗)).

We say that a language L is k-testable in the strict sense (k-TSS) if there exists a
k-test vector Z such that L = γk(Z). Note that all k-TSS languages are regular.

Again, it is easy to see that operation γk : Tk → 2Σ
∗

is monotone.

Proposition 6. For all k > 0 and for all k-test vectors Z and Z ′,

Z v Z ′ ⇒ γk(Z) ⊆ γk(Z ′).

The next theorem, which is our main result about k-testable languages, asserts
that αk and γk form a (monotone) Galois connection [11] between lattices (Tk,v)
and (2Σ

∗
,⊆).

Theorem 7 (Galois connection). Let k > 0, let L ⊆ Σ∗ be a language, and
let Z be a k-test vector. Then αk(L) v Z ⇔ L ⊆ γk(Z).

The above theorem generalizes results on strictly k-testable languages from
[4,16]. Composition γk ◦ αk is commonly called the associated closure operator,
and composition αk ◦ γk is known as the associated kernel operator. The fact
that we have a Galois connection has some well-known consequences for these
associated operators.

Corollary 8. For all k > 0, γk ◦ αk and αk ◦ γk are monotone and idempotent.

Monotony of γk ◦ αk was established previously as Theorem 3.2 in [4] and as
Lemma 3.3 in [16].

Corollary 9. For all k > 0, L ⊆ Σ∗ and Z ∈ Tk,

αk ◦ γk(Z) v Z (1)

L ⊆ γk ◦ αk(L) (2)

Inequality (1) asserts that the associated kernel operator αk ◦ γk is deflationary,
while inequality (2) says that the associated closure operator γk◦αk is inflationary
(or extensive). Inequality (2) was established previously as Lemma 3.1 in [4] and
(also) as Lemma 3.1 in [16].

Another immediate corollary of the Galois connection is that in fact γk ◦αk(L)
is the smallest k-TSS language that contains L. This has been established
previously as Theorem 3.1 in [4].

Corollary 10. For all k > 0, L ⊆ Σ∗, and Z ∈ Tk,

L ⊆ γk(Z)⇒ γk ◦ αk(L) ⊆ γk(Z).

As a final corollary, we mention that αk ◦ γk(Z) is the smallest k-test vector
that denotes the same language as Z. This is essentially Lemma 1 of [16].

6 A. Linard and C. de la Higuera and F. Vaandrager

Corollary 11. For all k > 0 and Z ∈ Tk, γk ◦ αk ◦ γk(Z) = γk(Z). Moreover,
for any Z ′ ∈ Tk,

γk(Z) = γk(Z ′)⇒ αk ◦ γk(Z) v Z ′.

We can provide a simple characterization of αk ◦γk(Z) as the canonical k-test
vector obtained by removing all the allowed prefixes, suffixes and segments that
do not occur in the k-testable language generated by Z.

Definition 12. Let Z = 〈I, F, T, C〉 be a k-test vector, for some k > 0. We say
that u ∈ I is a junk prefix of Z if u does not occur as a prefix of any string in
γk(Z). Similarly, we say that u ∈ F is a junk suffix of Z if u does not occur as
a suffix of any string in γk(Z), and we say that u ∈ T is a junk segment of Z if
u does not occur as a substring of any string in γk(Z). We call Z canonical if it
does not contain any junk prefixes, junk suffixes, or junk segments.

Proposition 13. Let Z be a k-test vector, for some k > 0, and let Z ′ be the
canonical k-test vector obtained from Z by deleting all junk prefixes, junk suffixes,
and junk segments. Then αk ◦ γk(Z) = Z ′.

Proposition 13 implies that if we restrict the lattice (Tk,v) to the canonical
k-test vectors, our Galois connection becomes a Galois insertion.

2.3 Learning k-TSS Languages

It is well-known that any k-TSS language can be identified in the limit from
positive examples [4,5]. Below we recall the basic argument; we refer to [4,5,16]
for efficient algorithms.

Theorem 14. Any k-TSS language can be identified in the limit from positive
examples.

Proof. Let L be a k-TSS language and let w1, w2, w3, . . . be an enumeration of
L. Let L0 = ∅ and Li = Li−1 ∪ {wi}, for i > 0. We then have

L1 ⊆ L2 ⊆ L3 ⊆ · · ·

By monotonicity of αk (Proposition 4) we obtain

αk(L1) v αk(L2) v αk(L3) v · · · (3)

and by monotonicity of γk (Proposition 6)

γk ◦ αk(L1) ⊆ γk ◦ αk(L2) ⊆ γk ◦ αk(L3) ⊆ · · · (4)

Since γk ◦ αk is inflationary (Corollary 9), L is a k-TSS language and, for each i,
γk ◦ αk(Li) is the smallest k-TSS language that contains Li (Corollary 10), we
have

Li ⊆ γk ◦ αk(Li) ⊆ L (5)

Learning Unions of k-Testable Languages 7

Because (Tk,v) is a finite partial order it does not have an infinite ascending chain.
This means that sequence (3) converges. But then sequence (4) also converges,
that is, there exists an n such that, for all m ≥ n, γk ◦ αk(Lm) = γk ◦ αk(Ln).
By equations (4) and (5) we obtain, for all i,

Li ⊆ γk ◦ αk(Li) ⊆ γk ◦ αk(Ln) ⊆ L

This implies L = γk ◦ αk(Ln), meaning that the sequence (4) of k-TSS languages
converges to L.

3 Learning Unions of k-TSS Languages

In this section, we present guarantees concerning learnability in the limit of
unions of k-TSS languages. Then, we present an algorithm merging closest and
compatible k-TSS languages.

3.1 Generalities

It is well-known that the class of k-testable languages in the strict sense is not
closed under union. Take for instance the two 3-testable languages, represented
by their DFA’s in Figure 1a, that are generated by the following 3-test vectors:

Z = 〈{aa}, {aa}, {aaa}, {aa}〉
Z ′ = 〈{ba, bb}, {ab, bb}, {baa, bab, aaa, aab}, {bb}〉

with Σ = {a, b}. The union γ3(Z) ∪ γ3(Z ′) of these languages, represented by
its DFA in Figure 1b, is not a 3-testable language. Indeed, it is not a k-testable
language for any value of k > 0. For k = 1, the only k-testable language that
extends γ3(Z) ∪ γ3(Z ′) is Σ∗. For k ≥ 2, the problem is that since ak−1 is an
allowed prefix, ak−1b is an allowed segment, and ak−2b is an allowed suffix, ak−1b
has to be in the language, even though it is not an element of γ3(Z) ∪ γ3(Z ′).

It turns out that we can generalize Theorem 14 to unions of k-TSS languages.

Theorem 15. Any language that is a union of k-TSS languages can be identified
in the limit from positive examples.

Proof. Let L = L1 ∪ · · · ∪ Ll, where all the Lp are k-TSS languages, and let
w1, w2, w3, . . . be an enumeration of L. Define, for i > 0,

Ki =

i⋃
j=1

γk ◦ αk({wj}).

Since each wj is included in a k-TSS language contained in L, and γk ◦ αk({wj})
is the smallest k-TSS language that contains wj , we conclude that, for all j,
γk ◦ αk({wj}) ⊆ L, which in turn implies Ki ⊆ L. Since there are only finitely
many k-test vectors and finitely many k-TSS languages, the sequence

K1 ⊆ K2 ⊆ K3 ⊆ · · · (6)

8 A. Linard and C. de la Higuera and F. Vaandrager

start

start

a a

a

b

a

b

(a) γ3(Z) and γ3(Z′).

start

a

a

a

b b

a

(b) γ3(Z) ∪ γ3(Z′).

Fig. 1. k-testable languages are not closed under union.

converges, that is there exists an n such that, for all m ≥ n, Km = Kn. This
implies that all wj are included in Kn, that is L ⊆ Kn. In combination with the
above observation that all Ki are contained in L, this proves that sequence (6)
converges to L.

The proof of Theorem 15 provides us with a simple first algorithm to learn
unions of k-TSS languages: for each example word that we see, we compute the
k-test vector and then we take the union of the languages denoted by all those
k-test vectors. The problem with this algorithm is that potentially we end up
with a huge number of different k-test vectors. Thus we would like to cluster
as many k-test vectors in the union as we can, without changing the overall
language. Before we can introduce our clustering algorithm, we first need to
define a metric on k-test vectors.

Definition 16. The cardinality of a k-test vector Z = 〈I, F, T, C〉 is defined by:

|Z| = |I|+ |F |+ |T |+ |C ∩Σ<k−1|.

Intuitively, the distance between two k-test vectors is the number of prefixes,
suffixes, substrings and short words that must be added/removed to transform
one k-test vector into the other. For examples, see Fig. 2b.

Definition 17. The function d : Tk × Tk 7→ IR+, which defines the distance
between a pair of k-test vectors, is given by: d(Z,Z ′) = |Z 4 Z ′|.

The next proposition provides a necessary and sufficient condition for when
the γk operator preserves least upper bounds, that is, when the union of the
languages of two k-test vectors equals the language of the union of these vectors.
The basic idea is that, for each k-test vector, we may construct a directed graph
in which the segments are the nodes. The graph contains an edge from segment
u to segment v if, when the content of the sliding window is u at some point, it
may become v when the sliding window advances one step. There exists a 1-to-1
correspondence between paths in this graph from an initial segment to a final
segment, and strings in the associated language with length at least k− 1. Given

Learning Unions of k-Testable Languages 9

two test vectors Z and Z ′, we consider the graph for the union Z tZ ′. The union
of the languages of Z and Z ′ equals the language of Z tZ ′ iff in this graph there
exists no path from a node in Z \ Z ′ to a node in Z ′ \ Z, or vice versa. Such a
path would allow us to construct a word in the language of Z tZ ′ that is neither
in the language of Z nor in the language of Z ′.

Proposition 18. Suppose Z = 〈I, F, T, C〉 and Z ′ = 〈I ′, F ′, T ′, C ′〉 are canoni-
cal k-test vectors, for some k. Let • 6∈ Σ be a fresh symbol, and let G = (V,E) be
the directed graph with

V = {•u | u ∈ I ∪ I ′} ∪ T ∪ T ′ ∪ {u• | u ∈ F ∪ F ′},
E = {(au, ub) ∈ V × V | a, b ∈ Σ ∪ {•}, u ∈ Σk−1}.

Suppose each vertex in V is colored either red, blue or white. Vertices in T \ T ′
are red, vertices in T ′ \ T are blue, and vertices in T ∩ T ′ are white. A vertex
•u is red if u ∈ I \ I ′, blue if u ∈ I ′ \ I, and white if u ∈ I ∩ I ′. A vertex
u• is red if u ∈ F \ F ′, blue if u ∈ F ′ \ F , and white if u ∈ F ∩ F ′. Then
γk(Z t Z ′) = γk(Z) ∪ γk(Z ′) iff there exists no path in G from a red vertex to a
blue vertex, nor from a blue vertex to a red vertex.

Suppose alphabet Σ contains n elements. Then the size of graph G from
Proposition 18 is in O(n · |Z ∪ Z ′|), and we can construct G from Z and Z ′ in
time O((n+k) · |Z∪Z ′|). Since the reachability property in Proposition 18 can be
decided in a time that is linear in the size of G, we obtain an O((n+k) · |Z ∪Z ′|)-
time algorithm for deciding γk(Z t Z ′) = γk(Z) ∪ γk(Z ′).

3.2 Efficient algorithm

Our algorithm to learn unions of k-testable languages is based on hierarchical
clustering. Given a set S of n words, we compute its related set of k-test vectors
S = {αk({x}) | x ∈ S}. Note that the k-test vectors are canonical. Then,
an n × n distance matrix is computed. To that end, the distance used is the
pairwise distance between k-test vectors defined in Definition 17. Next, the
algorithm finds the closest pair of compatible k-test vectors Z and Z ′, such that
γk(ZtZ ′) = γk(Z)∪γk(Z ′) and computes their union. An efficient implementation
for finding closest k-test vectors is the nearest-neighbor chain algorithm [1], which
finds pairs of k-test vectors such that these two closest k-test vectors are the
nearest neighbors of each other. The distance between the merged k-test vectors
and the remaining k-test vectors in S is updated. These two operations are
repeated until all initial k-test vectors have been merged into one, or that no
allowed union of two k-test vectors such that γk(Z t Z ′) = γk(Z) ∪ γk(Z ′) is
possible. We gather at the end of the process a linkage between k-test vectors,
which can lead to the computation of a dendrogram. When the number of k-test
vectors to learn is known, one can use this expected number of languages to find
the threshold that would, given the hierarchical clustering, return the desired
unions of k-test vectors.

10 A. Linard and C. de la Higuera and F. Vaandrager

Example 19. Let k = 3. Given the sample of strings S in Table 2a, compute the
associate sample of 3-test vectors S = {Z1, Z2, . . . , Z8}. Then, compute its dis-
tance matrix (Table 2b) using the metric defined in Definition 17. Using classical
linkage algorithms (for instance nearest-neighbor chain algorithm), compute the
related linkage matrix depicted in Table 2c. We gather the dendrogram shown
in Figure 2d, where the 3 remaining 3-test vectors Z1 t Z8, Z2 t Z5 t Z7 and
Z3 t Z4 t Z6 cannot be merged. Indeed:

– γk(Z1 t Z8 t Z2 t Z5 t Z7) 6= γk(Z1 t Z8) ∪ γk(Z2 t Z5 t Z7).
– γk(Z1 t Z8 t Z3 t Z4 t Z6) 6= γk(Z1 t Z8) ∪ γk(Z3 t Z4 t Z6).
– γk(Z2 t Z5 t Z7 t Z3 t Z4 t Z6) 6= γk(Z2 t Z5 t Z7) ∪ γk(Z3 t Z4 t Z6).

With a desired number of 3-TSS languages to learn of 3, the returned languages
are γk(Z1tZ8) and γk(Z2tZ5tZ7) and γk(Z3tZ4tZ6). With a desired number
of 3-TSS languages to learn of 4, the returned languages would be γk(Z1 t Z8)
and γk(Z2 t Z5 t Z7) and γk(Z3) and γk(Z4 t Z6) instead.

S S

baba Z1 = 〈{ba}, {ba}, {bab, aba}, {}〉
abba Z2 = 〈{ab}, {ba}, {abb, bba}, {}〉
abcabc Z3 = 〈{ab}, {bc}, {abc, bca, cab}, {}〉
cbacba Z4 = 〈{cb}, {ba}, {cba, bac, acb}, {}〉
abbbba Z5 = 〈{ab}, {ab}, {abb, bbb, bba}, {}〉
cbacbacba Z6 = 〈{cb}, {ba}, {cba, bac, acb}, {}〉
abbba Z7 = 〈{ab}, {ba}, {abb, bbb, bba}, {}〉
babababc Z8 = 〈{ba}, {bc}, {bab, aba, abc}, {}〉

(a) Dataset and corresponding 3-test vectors.

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Z1 0 6 9 7 7 7 7 3

Z2 6 0 7 7 1 7 1 9

Z3 9 7 0 10 8 10 8 6

Z4 7 7 10 0 8 0 8 10

Z5 7 1 8 8 0 8 0 10

Z6 7 7 10 0 8 0 8 10

Z7 7 1 8 8 0 8 0 10

Z8 3 9 6 10 10 10 10 0

(b) Distance matrix.

Z5 Z7 0

Z4 Z6 0

Z2 Z5 t Z7 1

Z1 Z8 3

Z3 Z4 t Z6 10

(c) Linkage matrix.

Z1 Z8 Z2 Z5 Z7 Z3 Z4 Z6

0

2

4

6

8

10

(d) Corresponding dendrogram.

Fig. 2. Learning unions of k-test vectors.

We can see here that the lower bound on the number of returned languages
is the number of unions of k-test vectors satisfying the compatibility constraint

Learning Unions of k-Testable Languages 11

γk(Z t Z ′) = γk(Z) ∪ γk(Z ′). However, in case this constraint is relaxed, it is
possible to obtain a clustering into less parts, up to a single cluster standing for
γk(

⊔
Z∈S).

4 Case Study

Job dataset Our case study has been inspired by an industrial problem related
to the domain of cyber-physical systems. Recent work [15] focused on the impact
of design parameters of a flexible manufacturing system on its productivity. It
appeared in the aforementioned study that the productivity depends on the jobs
being rendered. To that end, the prior identification of the different job patterns
is crucial to enabling engineers to optimize parameters related to the flexible
manufacturing system.

Table 1. Sample of identified job patterns.

job pattern 3-test vector type of job

aaaaa
a+ Z = 〈{aa}, {aa}, {aaa}, {aa}〉 homogeneousaaaaaaaaaa

aaaaa . . . aaa

abababab
(ab)+ Z = 〈{ab}, {ab}, {aba, bab}, {ab}〉

heterogeneousabababababab

abcabcabc
(abc)+ Z = 〈{ab}, {bc}, {abc, bca, cab}, ∅〉

abcabcabcabcabc

abcbcbcbca a(bc)+a Z = 〈{ab}, {ca}, {abc, bcb, cbc, cba}, ∅〉 miscellaneous

We consider a dataset containing strings, each representing a job. Our job
patterns are also represented by 3-testable languages, the 3-test vectors of which
are shown in Table 1. Our dataset, implementations and complete results are
available2.

5 Conclusion

In this paper, we defined a Galois connection characterizing k-testable languages.
We also described an efficient algorithm to learn unions of k-testable languages
that results from this Galois connection. From a practical perspective, we see
that obtaining more than one representation is meaningful since a too generalized
solution is not necessarily the best. To avoid unnecessary generalizations, the
union of two k-testable languages that would not be a k-testable language is

2 See https://gitlab.science.ru.nl/alinard/learning-union-ktss

https://gitlab.science.ru.nl/alinard/learning-union-ktss

12 A. Linard and C. de la Higuera and F. Vaandrager

not allowed. Note also that depending on the applications, expert knowledge
can provide an indication on the number of languages the returned union should
contain. In further work, we would like to extend the learning of unions of
languages to regular languages. An attempt to learn pairwise disjoint regular
languages has been made in [8,9]. However, no learnability guarantee has been
provided so far.

References

1. Benzécri, J.P.: Construction d’une classification ascendante hiérarchique par la
recherche en châıne des voisins réciproques. Les cahiers de l’analyse des données
7(2), 209–218 (1982)

2. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise dtds from xml
data. In: Proceedings of the 32nd international conference on Very large data bases.
pp. 115–126 (2006)

3. Coste, F.: Learning the language of biological sequences. In: Topics in Grammatical
Inference, pp. 215–247. Springer (2016)

4. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
& Machine Intelligence 12(9), 920–925 (1990)

5. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict
sense. In: Algorithmic Learning Theory (ALT), First International Workshop. pp.
325–338 (1990)

6. Gold, M.: Language identification in the limit. Information Control 10(5), 447–474
(1967)

7. de la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-
bridge University Press (2010)

8. Linard, A.: Learning several languages from labeled strings: State merging and
evolutionary approaches. arXiv preprint arXiv:1806.01630 (2018)

9. Linard, A., Smetsers, R., Vaandrager, F., Waqas, U., van Pinxten, J., Verwer, S.:
Learning pairwise disjoint simple languages from positive examples. arXiv preprint
arXiv:1706.01663 (2017)

10. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. Research Mono-
graph No. 65). The MIT Press (1971)

11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer-Verlag,
Berlin Heidelberg (1999)

12. Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Information 20(3), 329–342 (2011)

13. Tantini, F., Terlutte, A., Torre, F.: Sequences classification by least general gener-
alisations. In: International Colloquium on Grammatical Inference. pp. 189–202.
Springer (2010)

14. Torres, I., Varona, A.: k-tss language models in speech recognition systems. Com-
puter Speech & Language 15(2), 127–148 (2001)

15. Umar, W., Geilen, M., Stuijk, S., van Pinxten, J., Basten, T., Somers, L., Corporaal,
H.: A fast estimator of performance with respect to the design parameters of self re-
entrant flowshops. In: Euromicro Conference on Digital System Design. pp. 215–221
(2016)

16. Yokomori, T., Kobayashi, S.: Learning local languages and their application to dna
sequence analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence
20(10), 1067–1079 (1998)

	Learning Unions of k-Testable Languages

