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Identification of novel GNAS mutations in
intramuscular myxoma using next-
generation sequencing with single-molecule
tagged molecular inversion probes
Elise M. Bekers1,2* , Astrid Eijkelenboom1, Paul Rombout1, Peter van Zwam3, Suzanne Mol4, Emiel Ruijter5,
Blanca Scheijen1 and Uta Flucke1

Abstract

Background: Intramuscular myxoma (IM) is a hypocellular benign soft tissue neoplasm characterized by abundant
myxoid stroma and occasional hypercellular areas. These tumors can, especially on biopsy material, be difficult to
distinguish from low-grade fibromyxoid sarcoma or low-grade myxofibrosarcoma. GNAS mutations are frequently
involved in IM, in contrast to these other malignant tumors. Therefore, sensitive molecular techniques for detection
of GNAS aberrations in IM, which frequently yield low amounts of DNA due to poor cellularity, will be beneficial for
differential diagnosis.

Methods: In our study, a total of 34 IM samples from 33 patients were analyzed for the presence of GNAS
mutations, of which 29 samples were analyzed using a gene-specific TaqMan genotyping assay for the detection of
GNAS hotspot mutations c.601C > T and c602G > A in IM, and 32 samples using a novel next generation sequencing
(NGS)-based approach employing single-molecule tagged molecular inversion probes (smMIP) to identify mutations
in exon 8 and 9 of GNAS. Results between the two assays were compared for their ability to detect GNAS mutations
with high confidence.

Results: In total, 23 of 34 samples were successfully analyzed with both techniques showing GNAS mutations in 12
out of 23 (52%) samples. The remaining 11 samples were analyzed with either TaqMan assay or smMIP assay only.
The TaqMan assay revealed GNAS mutations in 16 out of 29 samples (55%), with six samples c.601C > T (p.R201C;
38%) and ten samples c.602G > A (p.R201H; 62%) missense mutations. The smMIP assay identified mutations in 16
out of 28 samples (57%), with five samples c.601C > T (p.R201C; 31%) and seven samples c.602G > A (p.R201H; 44%)
missense mutations. In addition, four samples (25%) revealed novel IM-associated mutations, including c.601C > A
(p.R201S), c.602G > T (p.R201L), c.602G > C (p.R201P) and c.680A > G (p.Q227R). Combining the results of both tests,
23 out of 34 sporadic IM samples (68%) showed a GNAS mutation.

Conclusions: Both the TaqMan and the smMIP assay a show a high degree of concordance in detecting GNAS
hotspot mutations in IM with comparable sensitivity. However, since the NGS-based smMIP assay permits mutation
detection in whole exons of GNAS, a broader range of GNAS mutations can be identified by the smMIP approach.
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Background
Intramuscular myxoma (IM) is a benign soft tissue neoplasm
that belongs to the group of myxoid tumors characterized by
a marked abundance of extracellular myxoid matrix. These
tumors share several histological features, and depending on
their clinical presentation and place of origin, can be subdi-
vided into intramuscular, superficial-cutaneous, odontogenic
and juxta-articular myxoma [1, 2]. These myxomas all repre-
sent distinct entities with different characteristic gene lesions
involved in their pathogenesis. Therefore, gene mutation
analysis can be very helpful in differential diagnosis to sup-
port the histopathology of these tumors [3, 4].
IM is characterized by bland spindle- and/or

stellate-shaped cells embedded in a hypovascular, abun-
dant myxoid stroma. The nuclei are small showing no or
minimal nuclear atypia. Often areas with increased cellu-
larity can be observed and when hypercellular areas pre-
dominate it is designated as cellular myxoma [2, 5, 6],
which can easily be confused with low-grade fibromyx-
oid sarcoma or low-grade myxofibrosarcoma, especially
in very small biopsies. IM is a somatic mosaic disorder
generally occurring as a sporadic solitary neoplasm, al-
though it can be part of Mazabraud’s syndrome charac-
terized by a combination of polyostotic fibrous dysplasia
with multiple IM’s [7, 8]. Mazabraud’s syndrome and the
closely related McCune-Albright syndrome, which is as-
sociated with fibrous dysplasia, café au lait macules and
endocrine disorders, are caused by activating missense
mutations in codon 201 of the GNAS gene [8–12].
GNAS encodes the stimulatory G-alpha subunit of the

heterotrimeric G-protein complex, which regulates activa-
tion of adenylyl cyclase that converts adenosine triphos-
phate (ATP) into cyclic adenosine monophosphate
(cAMP). Overproduction of second messenger cAMP and
activation of downstream signaling pathways has been ob-
served in cells harboring GNAS mutations [13, 14]. In
2000, Okamoto et al. first described somatic post-zygotic
GNAS mutations in IM with and without fibrous dysplasia
[8]. Thereafter, three more studies showed that GNAS le-
sions occur frequently in sporadic IM, which were de-
tected in 36–61% of the cases, and exclusively involved
c.601C > T (p.R201C) and c.602G >A (p.R201H) muta-
tions [8, 15, 16]. On the other hand, GNAS mutations are
absent in low-grade myxofibrosarcoma, which can be use-
ful in the differential diagnosis with (cellular) IM [17, 18].
Notably, juxta-articular myxoma and cardiac myxoma also
lack GNAS driver mutations [4, 16].
A complicating factor for mutation detection in IM is the

mosaicism of GNAS mutations combined with hypocellu-
larity of the tumor, where low concentrations of genomic
DNA are isolated from these tissue specimens, especially in
the case of biopsy material. In the past decades, several
techniques for GNAS mutation detection have been devel-
oped and used [8, 19–21]. In 2009, Delaney et al. tested 28

IM’s for GNAS mutations by using conventional PCR
followed by mutation-specific restriction enzyme digestion
(PCR-MSRED) and COLD-PCR/MSRED and showed that
COLD-PCR/MSRED was more sensitive than the conven-
tional PCR (61% vs. 29% mutations) [15]. Thus, this tumor
type may benefit from the development of more robust and
sensitive techniques for mutation detection, such as next
generation sequencing (NGS). Recently, our molecular
diagnostic laboratory has developed a novel NGS-based ap-
proach employing single-molecule molecular inversion
probes (smMIP) that combines multiplex analysis with
single-molecule tagging, also named Unique Molecule
Identifiers (UMI) [22, 23]. By using this method, duplicate
reads can be identified and merged into a single consensus,
reducing false-positive calls originated during PCR and se-
quencing and allowing a technical sensitivity of 1% mutant
allele. In addition, the actual number of sequenced genomic
DNA (gDNA) molecules can be determined, which is espe-
cially relevant when analyzing limited amounts of gDNA.
Furthermore, the strand-specific amplifications allows the
distinction between genuine C >T and G >A mutations
from deamination artifacts frequently observed when se-
quencing gDNA in older formalin-fixed paraffin-embedded
(FFPE) tissue specimens. [22, 23].
In this study, we applied both TaqMan-based assays

and the smMIP technique for GNAS mutation detection
in IM, and compared both methods for reliable mutation
detection in a diagnostic setting.

Methods
Patient samples
This study included 34 samples of sporadic intramuscular
myxoma from 33 patients that were collected retrospect-
ively (from 1998 till 2018) from archives of the Pathology
Departments in the Netherlands of the Radboud University
Medical Centre, Jeroen Bosch Hospital (Den Bosch),
PAMM institute (Eindhoven) and Rijnstate Hospital
(Arnhem). None of the patients were prior diagnosed with
fibrous dysplasia or developed this during follow-up. From
one patient, two samples (sample 28 and 29) were analyzed,
which yielded identical data for mutation analyses. For each
case, a 4 μm thick section of FFPE material was stained
with haematotoxylin and eosin (H&E). The histological
diagnoses were revised (UF, EB) and classified according to
the 2013 World Health Organization criteria [2]. The sam-
ples included in this study complied with the standards of
the Committee for Human Research Ethics (CMO).

DNA isolation
Three 20 μm thick sections were cut from each specimen
of FFPE tissue and were digested at 56 °C for at least 1 h
in the presence of TET-lysis buffer (10mmol/L Tris/HCl
pH 8.5, 1 mmol/L EDTA pH 8.0, 0.01% Tween-20) with
5% Chelex-100 (143 to 2832; Bio-Rad, Hercules, CA),
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15 μg/mL GlycoBlue (AM9516; Thermo Fisher, Waltham,
MA), and 400 μg proteinase K (19,133; Qiagen, Valencia,
CA), followed by inactivation at 95 °C for 10min. DNA
concentration for TaqMan assay was assessed with the
NanoDrop Microvolume Spectrophotometer (Peqlab Bio-
technologies, Erlangen, Germany) and for smMIP assay
with the Qubit Broad Range Kit (Q32853; Thermo Fisher).
To concentrate the DNA samples for the robotized proto-
col of the smMIP procedure, supernatant was cooled on
ice and precipitated in the presence of 70% EtOH and 1/
10 volume 3M NaAc (pH 5.2). Pellets were washed with
cold 70% EtOH and dissolved in 80 μL Tris-EDTA. DNA
quality of the samples was tested using a size ladder con-
trol PCR, in which gene segments of house-keeping genes
were amplified, yielding different fragment sizes (100, 200,
300 and 400 bp), depending on the extent of fragmenta-
tion of the DNA.

TaqMan genotyping assay
Pre-designed and validated gene-specific TaqMan Genotyp-
ing Assays from Thermo Fisher Scientific was used for
quantitative real-time RT-PCR. Every set contained gene
specific forward 5’-CTTTGGTGAGATCCATTGACCTCA
A-3′ and reverse primers 3’-CACCTGGAACTTGG
TCTCAAAGATT-5′ and fluorescence labeled probes
(Table 1). Probes are spanning an exon junction to detect
genomic DNA. The PCR reaction volume was 20 μl and
contained 1 μl DNA (10 ng/μl), 10 μl TaqMan Universal
PCR Mastermix NoAmpErase UNG (Applied Biosystems,
Foster City, CA), 0,5 μl predesigned and validated
gene-specific TaqMan Gene Expression Assay mix (Applied
Biosystems), 0,5 μl TE buffer (Promega) and 8 μl water. ABI
Prism 7500 Real-Time PCR system (Applied Biosystem)
was used to amplify codon 201 of exon 8 of the GNAS gene
from each sample on a 96-well reaction plate with the
following protocol: 10min denaturation at 95 °C, 40 cycles
of 15 s denaturation at 95 °C, 1min annealing and exten-
sion at 60 °C. Dilution studies were performed using fibrous
dysplasia samples harboring the two previously described
GNAS mutations. The limit of detection was reliable at a
variant allele frequency (VAF) of 5%.

Next generation sequencing with single-molecule
molecular inversion probes
The single-molecule molecular inversion probe (smMIP)
procedure was performed as described elsewhere [22]. In
short, a pool of smMIPs covering 41 mutational hotspot re-
gions of 23 distinct genes, including GNAS, was

phopshorylated with T4 polynucleotide kinase. A total of
100 ng genomic DNA was used as input in the capture re-
action with the diluted phosphorylated smMIP pool. After
extension, ligation and exonuclease treatment, PCR reac-
tions were performed with barcoded reverse primers and
iProof high-fidelity master-mix (Biorad). PCR reactions of
the different samples were pooled, and purified with 0.8 x
volume of Agencourt Ampure XP Beads (Beckman Coulter,
Brea, CA). The purified libraries were prepared for sequen-
cing on a NextSeq 500 instrument (Illumina, San Diego,
CA) according to the manufacturer’s protocol (300 cycles
Mid Output sequencing kit, v2), resulting in 2 × 150 bp
paired-end reads. Data analyses were performed as previ-
ously described [22]. Variants were called at a VAF of > 1%
and ≥ 3 mutant gDNA molecules and a minimum of 20
gDNA molecules analyzed at that position. Samples that
did not fulfil the standard settings with respect to gene
coverage in combination with tumor load were marked as
inconclusive [22].

Results
Histopathology and clinical information of intramuscular
myxoma cases
Histopathology of H&E-stained slides confirmed that a
selected set of 34 samples from 33 patients showed the
classical features of IM, which were composed of uniform,
sparsely distributed cytological bland spindle- or
stellate-shaped cells with tapering eosinophilic cytoplasm
and small nuclei embedded in an abundant myxoid
stroma. One case showed prominent hypercellular areas
with more collagenous stroma and was diagnosed as cellu-
lar myxoma according to the criteria defined by Nielsen et
al (Fig. 1) [5, 6]. Of the 34 myxoid tumors, 31 samples
were obtained by local excision and 3 samples by needle
biopsy (Table 2). From one patient (sample 28 and 29), a
biopsy and the following excision were analyzed for GNAS
mutational status. No recurrences were reported in any of
the cases and no additional treatment was given. Follow
up time ranged between 2months and 21 years.

GNAS mutation detection in intramuscular myxoma
All samples (n = 34) were tested for the presence of
GNAS mutations, 32 samples using the smMIP assay
and 29 samples with the TaqMan genotyping assay. First,
GNAS mutation detection was performed for 29 DNA
samples with the TaqMan assay, where specific fluores-
cently labeled probes were used for the detection of
c.601C > T (p.R201C) and c.602G > A (p.R201H) hotspot

Table 1 Fluorescent reporter probes for TaqMan assay

TaqMan assay Reporter probe wild-type Reporter probe mutant

GNAS c.601C > T 5’-CAGGACACGGCAGCGA-3’ 5’-CAGGACACAGCAGCGA-3’

GNAS c.602G > A 5’-TTCGCTGCCGTGTCCT-3’ 5’-CGCTGCCATGTCCT-3’

Underscored nucleotides are hot-spot mutation position
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mutations (Fig. 2). Each sample was analyzed in two in-
dependent assays together with both negative and posi-
tive control samples. GNAS genetic alterations were
identified in 16 out of 29 samples (55%), with six sam-
ples c.601C > T (38%) and ten samples c.602G > A (62%)
mutations (Table 3). From one patient both samples (bi-
opsy and excision) were positive for c.601C > T mutation
(Table 3; sample 28 and 29).
Next, we determined the presence of GNAS mutations

in exon 8 and exon 9 by the smMIP assay. Within the
smMIP Cancer Hotspot Panel, two smMIPs covered
GNAS exon 8 (providing sequencing analysis of both
DNA strands for a total 74 bp) and two smMIPs GNAS
exon 9 (sequencing analysis of 59 bp), respectively (Fig. 3).
Other mutational hotspot regions that were covered by
smMIPs included BRAF, CTNNB1, EGFR, HRAS, KRAS,
NRAS, IDH1, IDH2 and KIT (for the complete list see
[22]). The smMIP assay was performed on 32 samples in
total, including the 27 samples that also showed a success-
ful TaqMan assay and an additional set of 5 IM samples.
From these 32 samples, the NGS data of 5 samples (for
which a successful TaqMan assay was available) was based
on a very limited number of gDNA molecules, and there-
fore could not reliably be interpreted, most likely because
of very low cellularity of the IM sample and/or inferior
DNA quality (Table 3; inconclusive, Inc). In total, 16 out
of 28 samples (57%) showed a GNAS mutation, with five
samples c.601C > T (31%) and seven samples c.602G >A
(44%) mutations. In addition, four samples (25%) revealed
novel IM-associated mutations, including c.601C >A
(p.R201S), c.602G > T (p.R201L), c.602G > C (p.R201P)
and c.680A >G (p.Q227R).
Combining the above, 23 samples were successfully

analyzed with both techniques showing GNAS mutations
in 12 out of 23 (52%) samples. Collectively, our data

demonstrate that in 23 out of 34 IM samples (68%) a
GNAS mutation was detected using either TaqMan and/
or smMIP assay. All samples that were successfully ana-
lyzed with both approaches and harbored the classical
c.601C > T or c.602G > T mutations were identified with
both methods.
In total, eight samples showed the classical c.601C > T

mutation (35%) and eleven samples harbored the
c.602G > T mutation (48%). All hotspot mutations de-
tected by smMIP were also identified by the TaqMan
assay, including samples with a VAF of 5% (sample 2). On
the other hand, due to the more stringent settings of the
smMIP assay, five cases with hotspot mutations identified
by TaqMan assay did not yield sufficient data by the
smMIP approach for reliable interpretation. In contrast,
the smMIP assay allowed the detection of four novel (po-
tential) pathogenic GNAS mutations (17% of the 23 mu-
tated samples) beyond the c.601C > T and c.602G >A
mutations, not previously described for IM. Thus, both as-
says provide merits in the molecular diagnostics of IM.

Discussion
Intramuscular myxoma (IM) mostly occurs sporadically in
the skeletal muscle of the thigh. These lesions affect
mainly middle-aged adults, women more often than man
[1, 24]. The prevailing view is that driver mutations of this
neoplasm are exclusively located in codon 201 of the
GNAS gene, encoding the stimulatory G-protein alpha
subunit that activates the enzyme adenylate cyclase. Due
to the low cellularity and somatic mosaicism in most of
these lesions, mutation detection can be quite challenging
and the presence of a mutation can be easily missed.
In our study we used two different techniques (TaqMan

and smMIP assay) to compare the detection sensitivity of
GNAS mutations in these lesions. In our series, 23 out of
34 sporadic IM cases (68%) showed a GNAS mutation, 16
out of 29 samples (55%) in the TaqMan assay and 16 out
of 28 samples (57%) in the smMIP assay of which 23 sam-
ples were successfully analyzed with both techniques
showing GNAS mutations in 12 out of 23 (52%) samples.
The test-specific detection rate was 55% with the TaqMan
assay and 57% for the smMIP approach. The VAF for the
TaqMan assay was determined at > 5% in this study and
the required input was only 10 ng gDNA. The VAF for
smMIP was set at > 1% and a minimum of 3 mutant
gDNA molecules, and a coverage of 20 gDNA molecules.
This demonstrates that both tests are sensitive methods
and useful for molecular diagnostics of tumor samples
harboring mutations with a low mutant allele frequency.
In comparison, Walther et al found GNAS mutations

in 37% (23/63) of IMs with direct Sanger sequencing
and Delaney et al detected mutations in 61% (17/28)
using COLD-PCR/MSRED [15, 16]. However, the
smMIP technique, because of the whole exon

Fig. 1 Representative photomicrograph of heamatoxylin and eosine
(H&E)-stained section of a cellular intramuscular myxoma showing its
characteristic histological morphology
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sequencing nature of this test, allowed detection of four
additional mutations that previously have not been de-
scribed in IM. By using smMIP we identified one
c.680A > G mutation in exon 9, and three novel muta-
tions in exon 8, one mutation at position c.601, namely
c.601C > A, and two mutations at position c.602, which
included c.602G > C and c.602G > T. The c.601C > A
mutation has previously been reported in fibrous dyspla-
sia, while the c.602G > C and c.602G > T mutations were
only reported in sporadic endocrine tumors so far [9, 10,
19, 25]. These mutations were not detected by TaqMan,

since this assay was designed to report only the two clas-
sical hotspot mutations c.601C > T and c.602G > T.
The smMIP approach allows the distinction between

genuine C >T and G >A mutations from deamination arti-
facts frequently observed when sequencing gDNA from
FFPE tissue specimens [22]. All cases harboring a C >T or
G >A mutation in GNAS, mutant reads originating from
both DNA strands were observed, showing that these rep-
resent genuine mutations. Since the TaqMan approach does
not allow this distinction, deamination artifact could poten-
tially cause false positive results. In our study, all hotspot

Table 2 Patient characteristics

Patient Age at presentation (years) Gender Tumor localization Tumor size (cm) excision Follow-up (months)

1 74 M Lower leg 14 207

2 42 F Thigh 5 201

3 51 F Upper arm 0.8 128

4 45 M Upper leg 5.5 126

5 40 F Thigh Bx 99

6 47 F Lower leg 10 93

7 51 M Shoulder 3 85

8 64 M Thigh 5.2 83

9a 53 M Upper arm 2 83

10 45 M Thigh 5.8 82

11 57 F Thigh 9 67

12 72 M Thigh 3.5 63

13 71 M Back 3 210

14 55 M Thigh 4 182

15 55 M Thigh 4 157

16 53 F Upper arm 3 156

17 47 F Upper arm 5.5 100

18 38 F Upper arm 2 108

19 57 M Thigh 3.2 126

20 39 F Upper arm 7 191

21 69 F Chest 2 63

22 46 F Shoulder 3.5 200

23 64 F Thigh 3 194

24 46 M Thigh 5 181

25 67 F Lower arm 1.7 127

26 49 F Thigh 3 73

27 58 F Thigh 3 244

28b 33 F Thigh 7.5 224

29 65 M Thigh 5.5 31

30 59 F Thigh 7 12

31 40 F Upper arm Bx 260

32 71 F Thigh 1 6

33 54 M Thigh Bx 2

Bx: biopsy, acellular myxoma, bpatient with two intramuscular myxoma samples
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mutations detected with the Taqman assay were confirmed
with the smMIP technique, indicating no false-positive re-
sults with Taqman. Even samples with a VAF of around 5%
could be detected by both TaqMan assay and smMIP. The
four samples with a hotspot mutation that were detected
by TaqMan, but did not yield a reliable smMIP assay result,
all had a mutated VAF of approximately 10–30% as judged
by Taqman assay, and were therefore interpreted as true
mutations.
Significant benefits of the TaqMan assay include low cost

and short turn-around time (≤2 working days). A limitation
of Taqman is that within one assay only one or two hotspot

mutations can be detected. For smMIP analysis the
turn-around time in our laboratory is ≤7 working days. A
large initial investment was needed and high numbers of
samples are required for parallel analyses to have a
cost-efficient test. Because multiple genes can be tested at
once with the smMIP assay, large amounts of samples are
relatively easy obtained in routine clinical setting with the
current demand of molecular diagnostics [22]. Because of
the sensitive characteristics of the smMIP technique and its
accuracy of mutation detection on FFPE material as well as
the broader coverage of the GNAS gene, this technique to
our opinion is preferable.

Fig. 2 Schematic overview of the Taqman assay. In addition to the genomic DNA template, four additional oligonucleotide components are
required to detect the mutation. These include an unlabeled PCR primer pair and two TaqMan probes with a FAM (F) or a VIC (V) dye label on
the 5’end, in combination with a minor groove binder (MGB) and a nonfluorescent quencher (Q) on the 3’end (1). The TaqMan probes hybridize
to the target DNA after denaturation between the unlabeled PCR primers. The signal from the fluorescent dye on the 5’end of a TaqMan probe is
quenched by the quencher on its 3’end through fluorescence resonance energy transfer (FRET) (2). During PCR, the AmpliTaq Gold DNA
polymerase extends the unlabeled primers using the genomic DNA template strand. When the DNA polymerase reaches the TaqMan probe, it
cleaves the molecule, separating the fluorescent dye from the quencher. The qPCR instrument detects fluorescence from the unquenched FAM
or VIC dye in one reaction (3)
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The most important differential diagnoses of IM, espe-
cially the cellular variant, are low-grade fibromyxoid sar-
coma and low-grade myxofibrosarcoma. In biopsy
material the distinction can be challenging and in those
cases molecular diagnostics can be beneficial. A specific

immunohistochemical and molecular signature is well
known for low-grade fibromyxoid sarcomas with expres-
sion of MUC4 and the presence of FUS/EWSR1-CREB 3
L2/1 fusions making a distinction from IM easily possible
[17, 18]. In contrast, for low-grade myxofibrosarcoma,

Table 3 Mutation analysis intramuscular myxoma

Sample Taqman assay
(WT/Mut/Inc)

smMIP assay
(WT/Mut/Inc)

Mutation Amino acid
substitution

Mutant allele
frequency (smMIP)

Concordance between
Taqman and smMIP assay

1 WT WT Concordant

2 Mut Mut c.601C > T p.R201C 5% Concordant

3 WT WT Concordant

4 WT WT Concordant

5a WT Mut c.680A > G p.Q227R 27% Mutation not included in
TaqMan assay

6 WT WT Concordant

7 Mut Mut c.602G > A p.R201H 13% Concordant

8 Mut Mut c.602G > A p.R201H 14% Concordant

9 WT WT Concordant

10 Mut Mut c.602G > A p.R201H 26% Concordant

11 Mut NA c.601C > T p.R201C Not analyzed by smMIP

12 WT WT Concordant

13 WT WT Concordant

14 Mut Mut c.601C > T p.R201C 13% Concordant

15 Mut Inc c.602G > A p.R201H Insufficient quality
for smMIP assay

16 WT WT Concordant

17 WT WT Concordant

18 Mut Inc c.602G > A p.R201H Insufficient quality
for smMIP assay

19 Mut Mut c.602G > A p.R201H 10% Concordant

20 Mut Mut c.602G > A p.R201H 9% Concordant

21 Mut NA c.602G > A p.R201H Not analyzed by smMIP

22 Mut Mut c.601C > T p.R201C 15% Concordant

23 Mut Mut c.602G > A p.R201H 19% Concordant

24 WT WT Concordant

25 WT WT Concordant

26* WT Mut c.602G > T p.R201L 15% Mutation not included
in TaqMan assay

27 Mut Mut c.602G > A p.R201H 14% Concordant

28b Mut Inc c.601C > T p.R201C Insufficient quality for smMIP assay

29b Mut Inc c.601C > T p.R201C Insufficient quality for smMIP assay

30a NA Mut c.602G > C p.R201P 12% Not analyzed by Taqman

31 NA Mut c.601C > T p.R201C 13% Not analyzed by Taqman

32a NA Mut c.601C > A p.R201S 14% Not analyzed by Taqman

33 NA Mut c.601C > T p.R201C 17% Not analyzed by Taqman

34 NA Mut c.602G > A p.R201H 7% Not analyzed by Taqman

WT: wild-type; Mut: mutation identified; Inc.: inconclusive; NA: not analyzed
aSamples with novel mutations in smMIP assay which are not included in the TaqMan assay
bTwo samples tested from the same patient (biopsy and excision)
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specific immunohistochemical or molecular characteris-
tics are lacking. Sensitive molecular tests, like smMIP and
TaqMan assays for GNAS mutation analysis, might be very
helpful in assessing the diagnosis, which has therapeutic
consequences when considering malignancy [21]. Never-
theless there are also cases in which no GNAS mutation
could be detected, suggesting that there are still other ab-
errations to be identified in IM.
Panagopoulos et al recently found abnormal karyotypes

in 21 out of 68 cases, with nine cases showing nonrandom
involvement of chromosome 8 (which harbors the GNAS
gene) with seven cases showing trisomy 8, one with a dele-
tion and one with a translocation. Only one case in their

series showed a c.601C > T GNAS mutation [26]. Thus,
chromosomal aberrations could be an alternative explan-
ation for at least a subset of the non-mutated cases.
The smMIP-NGS cancer hotspot panel that was

employed to check for GNAS mutations, also contained
smMIPs that covered mutational hotspots in the genes
AKT1, BRAF, CTNNB1, EGFR, ERBB2, GNA11, GNAQ,
H3F3A, H3F3B, HRAS, IDH1, IDH2, JAK2, KRAS, MPL,
MYD88, NRAS, PDGFRA and PIK3CA. In none of the
32 samples that could be reliably analyzed by smMIPs,
additional mutations were detected in these regions.
Thus, GNAS mutations represent a unique driver muta-
tion for this benign tumor type.

a b

Fig. 3 Schematic overview of the smMIP assay. (a) First, the single molecule molecular inversion probe (smMIP) capture procedure is performed.
smMIPs are long oligonucleotides consisting of two targeting arms (extension probe and ligation probe), joined by a backbone. The probe
sequences are complementary to genomic DNA sequences surrounding the target region that covers a hotspot location (indicated by the yellow
asterisk). During the capture reaction, smMIPs are hybridized to genomic DNA (gDNA), followed by an extension and ligation reaction, which
results in circular smMIPs. Subsequent exonuclease treatment will remove all linear gDNA and unused smMIPs. Between the backbone and probe
sequences are primer sequences (green bars) that are used to amplify the target region, followed by library preparation and next-generation
sequencing (NGS). (b) By including a single-molecule tag of 8 random nucleotides (N8) at the end of the ligation probe, duplicate reads can be
identified and merged into a consensus thereby removing PCR and sequencing artifacts. Genuine C > T and G > A mutations can be
distinguished from deamination artifacts by strand specific amplification of the smMIPs. In our smMIP design, exon 8 and exon 9 of the GNAS
gene are each covered by two independent smMIPs targeting both strands (smMIP1–2 and smMIP3–4, respectively)
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Conclusion
In conclusion, both TaqMan and smMIP assay are com-
parably sensitive molecular methods with valuable ap-
plicability in diagnostic pathology for IM. Furthermore,
due to a broader coverage of the GNAS gene by the
smMIP approach, four novel IM-associated missense
mutations of GNAS could be identified (17% of all mu-
tated samples), which previously have only been re-
ported in McCune-Albright syndrome and sporadic
endocrine tumors.
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