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Abstract

Stream GSOS is a specification format for operations and calculi on infinite
sequences. The notion of bisimilarity provides a canonical proof technique for
equivalence of closed terms in such specifications. In this paper, we focus on
open terms, which may contain variables, and which are equivalent whenever
they denote the same stream for every possible instantiation of the variables.
Our main contribution is to capture equivalence of open terms as bisimilarity
on certain Mealy machines, providing a concrete proof technique. Moreover, we
introduce an enhancement of this technique, called bisimulation up-to substi-
tutions, and show how to combine it with other up-to techniques to obtain a
powerful method for proving equivalence of open terms.

Keywords: bisimilarity, streams, open terms, GSOS, operational semantics

1. Introduction

Structural operational semantics (SOS) can be considered the de facto stan-
dard to define programming languages and process calculi. The SOS framework
relies on defining a specification consisting of a set of operation symbols, a set
of labels or actions and a set of inference rules. The inference rules describe
the behaviour of each operation, typically depending on the behaviour of the
parameters. The semantics is then defined in terms of a labelled transition sys-
tem over (closed) terms constructed from the operation symbols. Bisimilarity
of closed terms (∼) provides a canonical notion of behavioural equivalence.

It is also interesting to study equivalence of open terms, for instance to
express properties of program constructors, like the commutativity of a non-

✩The research leading to these results received funding from the European Research Council
(FP7/2007-2013, grant agreement nr. 320571; as well as from the LABEX MILYON (ANR-
10-LABX-0070, ANR-11-IDEX-0007), the project PACE (ANR-12IS02001) and the project
REPAS (ANR-16-CE25-0011). ©2018. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. This
manuscript is published in Science of Computer Programming; the official version can be found
at https://doi.org/10.1016/j.scico.2018.10.007

Email addresses: filippo.bonchi@unipi.it (Filippo Bonchi), jrot@cs.ru.nl (Jurriaan
Rot)

Preprint submitted to Science of Computer Programming February 13, 2019

http://arxiv.org/abs/1811.03606v2


(a)
n

n−→0

x
n−→x′ y

m−−→y′

x⊕y
n+m

−−−−→x′⊕y′

x
n−→x′ y

m−−→y′

x⊗y
n×m

−−−−→(n⊗y′)⊕(x′⊗y)

(b)
n

n−→0

x
n−→x′ y

m−−→y′

x⊕y
n+m

−−−−→x′⊕y′

x
n−→x′ y

m−−→y′

x⊗y
n×m
−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
m−−→x′

n.x
n−→m.x′

(c)
n

b|n
−−→0

x
b|n
−−→x′ y

b|m
−−−→y′

x⊕y
b|n+m

−−−−−→x′⊕y′

x
b|n
−−→x′ y

b|m
−−−→y′

x⊗y
b|n×m

−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
b|m
−−−→x′

n.x
b|n
−−→m.x′

(d)
X

ς|ς(X)
−−−−→X n

ς|n
−−→0

. . . x
ς|n
−−→x′ y

ς|m
−−−→y′

x⊗y
ς|n×m

−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
ς|m
−−−→x′

n.x
ς|n
−−→m.x′

Figure 1: A stream GSOS specification (a) is transformed first into a monadic specification
(b), then in a Mealy specification (c) and finally in a specification for open terms (d). In these
rules, n and m range over real numbers, b over an arbitrary set B, X over variables and ς over
substitutions of variables into reals.

deterministic choice operator. The latter can be formalised as the equation
X + Y = Y + X , where the left and right hand sides are terms with variables
X ,Y. Equivalence of open terms (∼o) is usually based on ∼: for all open terms
t1, t2

t1 ∼o t2 iff for all closed substitutions φ, φ(t1) ∼ φ(t2). (1)

The main problem of such a definition is the quantification over all substitutions:
one would like to have an alternative characterisation, possibly amenable to the
coinduction proof principle. This issue has been investigated in several works,
like [1, 2, 3, 4, 5, 6, 7].

In this paper, we continue this line of research, focusing on the simpler
setting of streams, which are infinite sequences over a fixed data type. More
precisely, we consider stream languages specified in the stream GSOS format [8],
a syntactic rule format enforcing several interesting properties. We show how to
transform a stream specification into a Mealy machine specification that defines
the operational semantics of open terms. Moreover, a notion of bisimulation –
arising in a canonical way from the theory of coalgebras [9] – exactly charac-
terises ∼o as defined in (1).

Our approach can be illustrated by taking as running example the fragment
of the stream calculus [10] presented in Figure 1(a). The first step is to transform
a stream GSOS specification (Section 2) into a monadic one (Section 3). In
this variant of GSOS specifications, no variable in the source of the conclusion
appears in the target of the conclusion. For example, in the stream specification
in Figure 1(a), the rule associated to ⊗ is not monadic. The corresponding
monadic specification is illustrated in Figure 1(b). Notice this process requires
the inclusion of a family of prefix operators (on the right of Figure 1(b)) that
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satisfy the imposed restriction.
The second step – based on [11] – is to compute the pointwise extension of

the obtained specification (Section 4). Intuitively, we transform a specification
of streams with outputs in a set A into a specification of Mealy machines with
inputs in an arbitrary set B and outputs in A, by replacing each transition

a
−→

(for a ∈ A) with a transition
b|a
−−→ for each input b ∈ B. See Figure 1(c).

In the last step (Section 5), we fix B = V → A, the set of functions assigning
outputs values in A to variables in V . To get the semantics of open terms, it
only remains to specify the behaviours of variables in V . This is done with the
leftmost rule in Figure 1(d).

As a result of this process, we obtain a notion of bisimilarity over open terms,
which coincides with behavioural equivalence of all closed instances, and pro-
vides a concrete proof technique for equivalence of open terms. By relating open
terms rather than all its possible instances, this novel technique often enables to
use finite relations, while standard bisimulation techniques usually require rela-
tions of infinite size on closed terms. In Section 6 we further enhance this novel
proof technique by studying bisimulation up-to [12]. We combine several stan-
dard up-to techniques with the notion of bisimulation up-to substitutions. These
up-to techniques are useful to obtain small relations, and thereby simplify the
bisimulation proof technique. For instance, as we show in Section 6, a rather
intricate combination of up-to techniques allows us to prove distributivity of
shuffle product over sum in stream calculus, that is, x⊗(y⊕z) = (x⊗y)⊕(x⊗z).

Throughout the paper, we exhibit our approach through several examples,
such as basic identities in the stream calculus. More generally, since we take
stream GSOS as the starting point, our approach is applicable precisely to all
causal functions on streams: those functions where the n-th element of the
output stream only depends on the first n elements of input. This follows from
the known result that functions on streams are causal iff they are definable
in stream GSOS [13]. For instance, the operations of the stream calculus of
Rutten [10] are causal. A typical example of a function which is one which
drops every second element of the input stream. Such functions fall outside the
scope of the current approach.

An earlier version of this work was presented at FSEN 2017. The current
paper extends the proceedings version [14] with proofs (none of which could be
included in the proceedings version), and a new section (Section 7) which estab-
lishes a connection with very recent work on the companion of a functor [15, 16].
The companion provides a promising foundation for a general presentation of
open terms in abstract GSOS [17, 8] (a general format for operations on coal-
gebras formulated in terms of distributive laws, of which stream GSOS is a
special case). The aim of the last section is to establish a precise link between
the current approach (for streams) and the abstract theory of distributive laws
in [15, 16], thus placing the current work in a wider context. In particular,
we find that the semantics of open terms GSOS introduced in this paper coin-
cides with the semantics that arises canonically from the companion. Further,
we show that the Mealy machine over open terms, which arises from the main
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construction in this paper, can equivalently be obtained through a general cor-
respondence between distributive laws and coalgebras (over a functor category).
By its very nature, this section is more technical than the previous sections, and
assumes a deeper familiarity with category theory; it is aimed at the reader with
an interest in the more general theory of coalgebra and distributive laws.

2. Preliminaries

We define the two basic models that form the focus of this paper: stream
systems, that generate infinite sequences (streams), and Mealy machines, that
generate output streams given input streams.

Definition 2.1. A stream system with outputs in a set A is a pair (X, 〈o, d〉)
where X is a set of states and 〈o, d〉 : X → A ×X is a function, which maps a
state x ∈ X to both an output value o(x) ∈ A and to a next state d(x) ∈ X .

We write x
a
−→ y whenever o(x) = a and d(x) = y.

Definition 2.2. A Mealy machine with inputs in a set B and outputs in a set
A is a pair (X,m) where X is a set of states andm : X → (A×X)B is a function
assigning to each x ∈ X a map m(x) = 〈ox, dx〉 : B → A × X . For all inputs
b ∈ B, ox(b) ∈ A represents an output and dx(b) ∈ X a next state. We write

x
b|a
−−→ y whenever ox(b) = a and dx(b) = y.

We recall the notion of bisimulation for both models.

Definition 2.3. Let (X, 〈o, d〉) be a stream system. A relation R ⊆ X ×X is
a bisimulation if for all (x, y) ∈ R, o(x) = o(y) and (d(x), d(y)) ∈ R.

Definition 2.4. Let (X,m) be a Mealy machine. A relation R ⊆ X ×X is a
bisimulation if for all (x, y) ∈ R and b ∈ B, ox(b) = oy(b) and (dx(b), dy(b)) ∈ R.

For both kind of systems, we say that x and y are bisimilar, notation x ∼ y,
if there is a bisimulation R s.t. x R y.

Stream systems and Mealy machines, as well as the associated notions of
bisimulation, are standard examples in the theory of coalgebras [9], a mathe-
matical framework that allows to study state-based systems and their semantics
at a high level of generality. In the current paper, the theory of coalgebras un-
derlies and enables our main results.

Throughout this paper, we denote by Set the category of sets and functions,
by Id : Set → Set the identity functor and by id : X → X the identity function
on an object X .

Definition 2.5. Given a functor F : Set → Set, an F -coalgebra is a pair (X, d),
where X is a set (called the carrier) and d : X → FX is a function (called the
structure). An F -coalgebra morphism from d : X → FX to d′ : Y → FY is a
map h : X → Y such that Fh ◦ d = d′ ◦ h.
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Stream systems and Mealy machines are F -coalgebras for the functors FX =
A×X and FX = (A×X)B, respectively.

The semantics of systems modelled as coalgebras for a functor F is pro-
vided by the notion of final coalgebra. A coalgebra ζ : Z → FZ is called final
if for every F -coalgebra d : X → FX there is a unique coalgebra morphism
|[−]| : (X, d) → (Z, ζ). We call |[−]| the coinductive extension of d.

Intuitively, the set Z of a final F -coalgebra ζ : Z → FZ represents the
universe of all possible F -behaviours and, for a coalgebra (X, d), |[−]| : X → Z

represents its semantics: a function assigning a behaviour to all states in X .
This motivates the following definition: given two states x, y ∈ X , x and y are
said to be behaviourally equivalent iff |[x]| = |[y]|. If F preserves weak pullbacks
then behavioural equivalence coincides with bisimilarity, i.e., x ∼ y iff |[x]| = |[y]|
(see [9]). This condition is satisfied by (the functors for) stream systems and
Mealy machines. In the sequel, by ∼ we hence refer both to bisimilarity and
behavioural equivalence.

Final coalgebras for stream systems and Mealy machines will be pivotal for
our exposition. We briefly recall them, following [9] and [18]. The set Aω of
streams over A carries a final coalgebra for the functor FX = A×X . For every
stream system 〈o, d〉 : X → A × X , the coinductive extension |[−]| : X → Aω

assigns to a state x ∈ X the stream a0a1a2 . . . whenever x
a0−−→ x1

a1−−→ x2
a2−−→

. . .

Recalling a final coalgebra for Mealy machines requires some more care.
Given a stream β ∈ Bω, we write β↾n for the prefix of β of length n. A
function c : Bω → Aω is causal if for all n ∈ N and all β, β′ ∈ Bω: β↾n = β′↾n
entails c(β)↾n = c(β′)↾n. Intuitively, c is causal if the first n symbols of the
output stream depends only on the first n symbols of the input stream. The
set Γ(Bω , Aω) = {c : Bω → Aω | c is causal} carries a final coalgebra for the
functor FX = (A × X)B. For every Mealy machine m : X → (A × X)B, the
coinductive extension |[−]| : X → Γ(Bω, Aω) assigns to each state x ∈ X and
each input stream b0b1b2 · · · ∈ Bω the output stream a0a1a2 · · · ∈ Aω whenever

x
b0|a0
−−−−→ x1

b1|a1
−−−−→ x2

b2|a2
−−−−→ . . . The interested reader is referred to [18] for

more details.

2.1. System Specifications

Different kinds of transition systems, like stream systems or Mealy machines,
can be specified by means of algebraic specification languages. The syntax is
given by an algebraic signature Σ, namely a collection of operation symbols
{fi | i ∈ I} where each operator fi has a (finite) arity ni ∈ N. For a set X , TΣX
denotes the set of Σ-terms with variables over X . The set of closed Σ-terms is
denoted by TΣ∅. We omit the subscript when Σ is clear from the context.

A standard way to define the operational semantics of these languages is
by means of structural operational semantics (SOS) [19]. In this approach,
the semantics of each of the operators is described by syntactic rules, and the
behaviour of a composite system is given in terms of the behaviour of its compo-
nents. We recall stream GSOS [8, 13], a specification format for stream systems.

5



Definition 2.6. A stream GSOS rule r for a signature Σ and a set A is a rule

x1
a1−−→ x′1 · · · xn

an−−→ x′n

f(x1, . . . , xn)
a
−→ t

(2)

where f ∈ Σ with arity n, x1, . . . , xn, x
′
1, . . . , x

′
n are pairwise distinct variables,

t is a term built over variables {x1, . . . , xn, x′1, . . . , x
′
n} and a, a1, . . . , an ∈ A.

We say that r is triggered by (a1, . . . , an) ∈ An.
A stream GSOS specification is a tuple (Σ, A,R) where Σ is a signature, A

is a set of actions and R is a set of stream GSOS rules for Σ and A s.t. for each
f ∈ Σ of arity n and each tuple (a1, . . . , an) ∈ An, there is only one rule r ∈ R

for f that is triggered by (a1, . . . , an).

A stream GSOS specification allows us to extend any given stream system
〈o, d〉 : X → A×X to a stream system 〈o, d〉 : TX → A×TX , by induction: the
base case is given by 〈o, d〉, and the inductive cases by the specification. This
construction can be defined formally in terms of proof trees, or by coalgebraic
means; we adopt the latter approach, which is recalled later in this section.

There are two important uses of the above construction: (A) applying it to
the (unique) stream system carried by the empty set ∅ yields a stream system
over closed terms, i.e., of the form T ∅ → A×T ∅; (B) applying the construction
to the final coalgebra yields a stream system of the form TAω → A×TAω. The
coinductive extension |[−]| : TAω → Aω of this stream system is, intuitively, the
interpretation of the operations in Σ on streams in Aω .

a
a
−→ a

∀a ∈ A
x

a
−→ x′ y

b
−→ y′

alt(x, y)
a
−→ alt(y′, x′)

∀a, b ∈ A

Figure 2: The GSOS-rules of our running example

alt(a, alt(b, c))

alt(alt(c, b), a)

a c

Figure 3: A stream system

Example 2.7. Let (Σ, A,R) be a stream GSOS specification where the signa-
ture Σ consists of constants {a | a ∈ A} and a binary operation alt. The set R
contains the rules in Figure 2. For an instance of (A), the term alt(a, alt(b, c)) ∈
T ∅ defines the stream system depicted in Figure 3. For an instance of (B), the
operation alt : Aω×Aω → Aω maps streams a0a1a2 . . . , b0b1b2 . . . to a0b1a2b2 . . . .

Example 2.8. We now consider the specification (Σ,R, R) which is the frag-
ment of the stream calculus [20, 10] consisting of the constants n ∈ R and the bi-
nary operators sum ⊕ and (convolution) product ⊗. The set R is defined in Fig-

ure 1 (a). For an example of (A), consider n⊕m
n+m
−−−−→ 0⊕0

0
−→ 0⊕0

0
−→ . . . . For

(B), the induced operation ⊕ : Rω ×R
ω → R

ω is the pointwise sum of streams,
i.e., it maps any two streams n0n1 . . . , m0m1 . . . to (n0 +m0)(n1 +m1) . . . .

Definition 2.9. We say that a stream GSOS rule r as in (2) is monadic if t is a
term built over variables {x′1, . . . , x

′
n}. A stream GSOS specification is monadic

if all its rules are monadic.
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The specification of Example 2.7 satisfies the monadic stream GSOS format,
while the one of Example 2.8 does not since, in the rules for ⊗, the variable y
occurs in the arriving state of the conclusion.

The notions introduced above for stream GSOS, as well as the analogous ones
for standard (labelled transition systems) GSOS [21], can be reformulated in an
abstract framework – the so-called abstract GSOS [17, 8] – that will be pivotal
for the proof of our main result. In this setting, signatures are represented
by (polynomial) functors, as follows. A signature Σ presented as a collection
{fi | i ∈ I} of operations (with arities ni ∈ N) corresponds to the following
polynomial functor which, abusing notation, we also denote by Σ:

ΣX =
∐

i∈I

Xni Σ(g)(fi(x1, . . . , xni
)) = fi(g(x1), . . . , g(xni

))

for every setX and every map g : X → Y where, in the definition of Σ(g), we use
fi(−) to refer to the i-th coproduct injection. For instance, the signature Σ in
Example 2.7 corresponds to the functor ΣX = A+(X×X), while the signature
of Example 2.8 corresponds to the functor ΣX = R + (X × X) + (X × X).
Models of a signature are seen as algebras for the corresponding functor.

Definition 2.10. Given a functor F : Set → Set, an F -algebra is a pair (X, d),
where X is the carrier set and d : FX → X is a function. An algebra homo-
morphism from an F -algebra (X, d) to an F -algebra (Y, d′) is a map h : X → Y

such that h ◦ d = d′ ◦ Fh.

Particularly interesting are initial algebras : an F -algebra is called initial if
there exists a unique algebra homomorphism from it to every F -algebra. For
a functor corresponding to a signature Σ, the initial algebra is (T ∅, κ) where
κ : ΣT ∅ → T ∅ maps, for each i ∈ I, the tuple of closed terms t1, . . . tni

to
the closed term fi(t1, . . . tni

). For every set X , we can define in a similar way
κX : ΣTX → TX . The free monad over Σ consists of the endofunctor T : Set →
Set, mapping every set X to TX , together with the natural transformations
η : Id =⇒ T—interpretation of variables as terms—and µ : TT =⇒ T—glueing
terms built of terms. (We use the standard convention of denoting natural
transformations with a double arrow =⇒). Given an algebra σ : ΣY → Y , for
any function f : X → Y there is a unique algebra homomorphism f † : TX → Y

from (TX, κX) to (Y, σ).

Definition 2.11. An abstract GSOS specification (of Σ over F ) is a natural
transformation λ : Σ(Id × F ) =⇒ FT . A monadic abstract GSOS specification
(in short, monadic specification) is a natural transformation λ : ΣF =⇒ FT .

By instantiating the functor F in the above definition to the functor for
streams (FX = A×X) one obtains all and only the stream GSOS specifications.
Instead, by taking the functor for Mealy machines (FX = (A×X)B) one obtains
the Mealy GSOS format [8]: for the sake of brevity, we do not report the concrete
definition here but this notion will be important in Section 5 where, to deal with
open terms, we transform stream specifications into Mealy GSOS specifications.
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Example 2.12. For every setX , the rules in Example 2.7 define a function λX :
A+(A×X)× (A×X) → (A×TΣX) as follows: each a ∈ A is mapped to (a, a)
and each pair (a, x′), (b, y′) ∈ (A×X)× (A×X) is mapped to (a, alt(y′, x′)) [8].

We focus on monadic distributive laws for most of the paper, and since
they are slightly simpler than abstract GSOS specifications, we only recall the
relevant concepts for monadic distributive laws. However, we note that the
concepts below can be extended to abstract GSOS specifications; see, e.g., [22, 8]
for details.

A monadic abstract GSOS specification induces a distributive law ρ : TF =⇒
FT , which is a distributive law of the (free) monad (T, η, µ) over the functor F ,
i.e., it makes the following diagram commute:

TTF

µ

��

Tρ +3 TFT
ρT +3 FTT

Fµ

��
TF

ρ +3 FT

F

ηF

KS

Fη

19❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

(3)

The distributive law ρ allows us to extend any F -coalgebra d : X → FX to an
F -coalgebra on terms:

TX
Td // TFX

ρX // FTX

This construction generalises and formalises the aforementioned extension of
stream systems to terms by means of a stream GSOS specification. In particular,
(A) the unique coalgebra on the empty set ! : ∅ → F∅ yields an F -coalgebra on
closed terms T ∅ → FT ∅. If F has a final coalgebra (Z, ζ), the unique (hence
depicted by a dotted line) morphism |[−]|c : T ∅ → Z defines the semantics of
closed terms.

T ∅ TF∅ FT ∅

(A)

Z FZ

|[−]|c

T ! ρ∅

ζ

F |[−]|c

TZ TFZ FTZ

(B)

Z FZ

|[−]|a

Tζ ρZ

ζ

F |[−]|a

Further (B), the final coalgebra (Z, ζ) yields a coalgebra on TZ. By finality,
we then obtain a T -algebra over the final F -coalgebra, which we denote by
|[−]|a : TZ → Z and we call it the abstract semantics. We define the algebra
induced by λ as the Σ-algebra σ : ΣZ → Z given by

ΣZ
ΣηZ // ΣTZ

κZ // TZ
|[−]|a // Z . (4)
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3. Making arbitrary stream GSOS specifications monadic

The results presented in the next section are restricted to monadic specifica-
tions, but one can prove them for arbitrary GSOS specifications by exploiting
some auxiliary operators, introduced in [11] with the name of buffer. Theo-
rem 6.2 in Section 6 only holds for monadic GSOS specifications. This does not
restrict the applicability of our approach: as we show below, arbitrary stream
GSOS specifications can be turned into monadic ones.

Let (Σ, A,R) be a stream GSOS specification. The extended signature Σ̃ is
given by {f̃ | f ∈ Σ} ∪ {a. | a ∈ A}. The set of rules R̃ is defined as follows:

• For all a, b ∈ A, R̃ contains the following rule

x
b
−→ x′

a.x
a
−→ b.x′

(5)

• For each rule r =
x1

a1−−→x′
1 ··· xn

an−−→x′
n

f(x1,...,xn)
a−→t(x1,...,xn,x

′
1,...,x

′
n)

∈ R, the set R̃ contains

r̃ =
x1

a1−−→ x′1 · · · xn
an−−→ x′n

f̃(x1, . . . , xn)
a
−→ t̃(a1.x′1, . . . , a

′
n.x

′
n, x

′
1, . . . , x

′
n)

(6)

where t̃ is the term obtained from t by replacing each g ∈ Σ by g̃ ∈ Σ̃.

The specification (Σ̃, A, R̃) is now monadic and preserves the original semantics
as stated by the following result. For a detailed proof, see Appendix A.

Theorem 3.1. Let (Σ, A,R) be a stream GSOS specification and (Σ̃, A, R̃) be
the corresponding monadic one. Then, for all t ∈ TΣ∅, t ∼ t̃.

Example 3.2. Consider the non-monadic specification in Example 2.8. The
corresponding monadic specification consists of the rules in Figure 1 (b) where,
to keep the notation light, we used operation symbols f rather than f̃ .

In [16], it is conjectured that a variant of Theorem 3.1 goes through at
the more general level of abstract/monadic GSOS for arbitrary endofunctors
(rather than only streams systems), but a proof of such a general statement is
still missing. In [15], it is shown more abstractly that, for polynomial functors
on Set (such as our stream functor), any operation expressible by a GSOS
specification is also expressible by a plain distributive law (of one functor over
the other), but that proof is less constructive: it does not result in a concrete
new specification, but only shows existence.

4. Pointwise Extensions of Monadic GSOS Specifications

The first step to deal with the semantics of open terms induced by a stream
GSOS specification is to transform the latter into a Mealy GSOS specification.

9



We follow the approach in [11] which is defined for arbitrary GSOS but, as
motivated in Section 3, we restrict our attention to monadic specifications.

Let (Σ, A,R) be a monadic stream GSOS specification and B some input
alphabet. The corresponding monadic Mealy GSOS specification is a tuple
(Σ, A,B,R), where R is the least set of Mealy rules which contains, for each

stream GSOS rule r =
x1

a1−−→x′
1 ··· xn

an−−→x′
n

f(x1,...,xn)
a−→t(x′

1,...,x
′
n)

∈ R and b ∈ B, the Mealy rule

rb defined by

rb =
x1

b|a1
−−−→ x′1 · · · xn

b|an
−−−→ x′n

f(x1, . . . , xn)
b|a
−−→ t(x′1, . . . , x

′
n)

(7)

An example of this construction is shown in Figure 1 (c).
Recall from Section 2 that any abstract GSOS specification induces a Σ-

algebra on the final F -coalgebra. Let σ : ΣAω → Aω be the algebra induced
by the stream specification and σ : ΣΓ(Bω, Aω) → Γ(Bω , Aω) the one induced
by the corresponding Mealy specification. Theorem 4.3, later in this section,
informs us that σ is the pointwise extension of σ.

Definition 4.1. Let g : (Aω)n → Aω and ḡ : (Γ(Bω , Aω))n → Γ(Bω, Aω) be two
functions. We say that ḡ is the pointwise extension of g iff for all c1, . . . , cn ∈
Γ(Bω, Aω) and β ∈ Bω , ḡ(c1, . . . , cn)(β) = g(c1(β), . . . , cn(β)). This notion is
lifted in the obvious way to Σ-algebras for an arbitrary signature Σ.

Example 4.2. Recall the operation ⊕ : Aω × Aω → Aω from Example 2.8
that arises from the specification in Figure 1 (a) (it is easy to see that the
same operation also arises from the monadic specification in Figure 1 (b)). Its
pointwise extension ⊕̄ : Γ(Bω,Rω) × Γ(Bω,Rω) → Γ(Bω ,Rω) is defined for all
c1, c2 ∈ Γ(Bω ,Rω) and β ∈ Bω as (c1⊕̄c2)(β) = c1(β)⊕ c2(β). Theorem 4.3 tells
us that ⊕̄ arises from the corresponding Mealy GSOS specification (Figure 1(c)).

In [11], the construction in (7) is generalised from stream specifications to
arbitrary abstract GSOS. The key categorical tool is the notion of costrength
for an endofunctor F : Set → Set. Given two sets B and X , we first define
ǫb : XB → X as ǫb(f) = f(b) for all b ∈ B. Then, csFB,X : F (XB) → (FX)B is

a natural map in B and X , given by csFB,X(t)(b) = (Fǫb)(t). See Appendix B
for some additional basic properties of costrength.

Now, given a monadic specification λ : ΣF =⇒ FT , we define λ̄ : Σ(FB) =⇒
(FT )B as the natural transformation that is defined for all sets X by

Σ(FX)B
csΣB,FX // (ΣFX)B

λB
X // (FTX)B . (8)

Observe that λ̄ is also a monadic specification, but for the functor FB rather
than the functor F . The reader can easily check that for F being the stream
functor FX = A × X , the resulting λ̄ is indeed the Mealy specification corre-
sponding to λ as defined in (7).

It is worth to note that the construction of λ̄ for an arbitrary abstract GSOS
λ : Σ(Id × F ) =⇒ FT , rather than a monadic one, would not work as in (8).

10



The solution devised in [11] consists of introducing some auxiliary operators as
already discussed in Section 3. The following result has been proved in [11] for
arbitrary abstract GSOS, with these auxiliary operators. Our formulation is
restricted to monadic specifications.

Theorem 4.3. Let F be a functor with a final coalgebra (Z, ζ), and let (Z̄, ζ̄)
be a final FB-coalgebra. Let λ : ΣF =⇒ FT be a monadic distributive law, and
σ : ΣZ → Z the algebra induced by it. The algebra σ̄ : ΣZ̄ → Z̄ induced by λ̄ is
a pointwise extension of σ.

In the theorem above, the notion of pointwise extension should be un-
derstood as a generalisation of Definition 4.1 to arbitrary final F and FB-
coalgebras. This generalised notion, that has been introduced in [11], will not
play a role for our paper where F is fixed to be the stream functor FX = A×X .
Nevertheless, for the sake of completeness, we report its definition in Appendix
C, and prove Theorem 4.3 at this general level (Appendix C.1).

Example 4.4. We show how to obtain, in the abstract setting, the correspond-
ing Mealy GSOS specification from a stream GSOS specification. To simplify
the example we only consider the operator of ⊕ of our running example. The
syntax, i.e. ⊕, defines a functor ΣX = X × X and the behavior functor of
stream systems is F = R×X . The monadic GSOS specification, i.e. the family
of rules for ⊕ in Figure 1 (b), induces a natural transformation

λ : (R×−)× (R×−) =⇒ (R× T−)

whose X-component is given by:

λX : (R×X)× (R×X) =⇒ R× TX

〈〈a, x1〉, 〈b, x2〉〉 7−→ 〈a+ b, 〈x1, x2〉〉
(9)

For defining the pointwise extension ⊕̄ of ⊕, we have to consider the behavior
functor FBX = (R ×X)B. Following the construction of λ̄, an X-component
of a λ̄ is of the type:

λ̄X : (R×X)B × (R×X)B =⇒ (R× TX)B

Let φ(b) = 〈φ0(b), φ1(b)〉 for φ ∈ (R×X)B and b ∈ B. By instantiation of (8),
λ̄X is defined by:

〈φ, ψ〉 ∈ (R×X)B × (R×X)B

λb.〈φ0(b), φ1(b), ψ0(b), ψ1(b)〉 ∈ (R×X × R×X)B

λb.〈φ0(b) + ψ0(b), 〈φ1(b), ψ1(b)〉〉 ∈ (R× TX)B

csΣB,R×X

λB
X

11



Using the notation φ
b|φ0(b)
−−−−−→ φ1(b) to denote φ(b) = 〈φ0(b), φ1(b)〉 and taking

into account the definition of λ̄, we get what we want, i.e. the rules defining
the semantics of ⊕̄ are the family of the family of Mealy GSOS rules for ⊕ in
Figure 1 (c). Notice we have reused the operation symbols f rather than f̄ to
keep the notation light.

5. Mealy Machines over Open Terms

We now consider the problem of defining a semantics for the set of open
terms TV for a fixed set of variables V . Our approach is based on the results in
the previous sections: we transform a monadic GSOS specification for streams
with outputs in A into a Mealy machine with inputs in AV and outputs in A,

i.e., a coalgebra for the functor FX = (A×X)A
V

. The coinductive extension of
this Mealy machine provides the open semantics: for each open term t ∈ TV and
variable assignment ψ : V → Aω, it gives an appropriate output stream in Aω.
This is computed in a stepwise manner: for an input ς : V → A, representing
“one step” of a variable assignment ψ, we obtain one step of the output stream.

We start by defining a Mealy machine c : V → (A × V)A
V

on the set of
variables V as on the left below, for all X ∈ V and ς ∈ AV :

c(X )(ς) = (ς(X ),X ) X ς|ς(X )ff (10)

Concretely, this machine has variables as states and for each ς : V → A a self-
loop, as depicted on the right. Now, let λ : Σ(A × −) ⇒ A × T be a monadic

abstract stream specification and λ̄ : Σ((A × −)A
V

) ⇒ (A × T (−))A
V

be the
induced Mealy specification, as defined in (8). As mentioned in Section 2, λ̄

defines a distributive law ρ : T ((A × −)A
V

) ⇒ (A × T (−))A
V

, which allows to

extend c (see (10)) to a coalgebra mλ : TV → (A× TV)A
V

, given by

TV
Tc // T (A× V)A

V ρV // (A× TV)A
V

. (11)

This is the Mealy machine of interest. Intuitively, it is constructed by com-
puting the pointwise extension of the original stream GSOS specification (as
in the previous section) and then defining the Mealy machine by induction on
terms. The base case is given by (10), and the inductive cases by the (pointwise
extended) specification. We first give a few examples.

Example 5.1. Consider the stream specification λ of the operation alt, given
in Example 2.7. The states of the Mealy machine mλ are the open terms TV .
The transitions of terms are defined by the set of rules

a
ς|a
−−→ a

x
ς|a
−−→ x′ y

ς|b
−−→ y′

alt(x, y)
ς|a
−−→ alt(y′, x′)

for all ς : V → A and a, b ∈ A

together with the transitions for the variables as in (10). For instance, for each
X ,Y,Z ∈ V and all ς, ς ′ : V → A, we have the following transitions in mλ:

12



alt(X , alt(Y,Z))

alt(alt(Z,Y),X )

ς |ς(X ) ς ′|ς ′(Z)

Example 5.2. For the fragment of the stream calculus introduced in Exam-
ple 2.8, the Mealy machine over open terms is defined by the rules in Figure
1(d). Below we draw the Mealy machines of some open terms that will be useful
later.

X ⊕ Y

ς|ς(X )+ς(Y)

��
Y ⊕ X

ς|ς(Y)+ς(X )

��
(X ⊕ Y)⊕Z

ς|(ς(X )+ς(Y))+ς(Z)

��
X ⊕ (Y ⊕ Z)

ς|ς(X )+(ς(Y)+ς(Z))

��

We define the open semantics below by the coinductive extension of mλ.
Let Γ̃ = Γ((AV)ω , Aω) be the set of causal functions c : (AV )ω → Aω, which

is the carrier of the final coalgebra for the functor FX = (A × X)A
V

. Notice
that a function c : (AV)ω → Aω can equivalently be presented as a function
c̃ : (Aω)V → Aω (swapping the arguments in the domain). Given such a function
c : (AV )ω → Aω and a function ψ : V → Aω, in the sequel, we sometimes abuse
of notation by writing c(ψ) where we formally mean c̃(ψ).

Definition 5.3. Let λ : Σ(A×−) ⇒ A×T be a monadic abstract stream GSOS
specification. The open semantics of λ is the coinductive extension |[−]|o : TV →

Γ̃ of the Mealy machine mλ : TV → (A× TV)A
V

defined in (11).

Note that the open semantics |[−]|o assigns to every open term t a causal
function on streams. Thus, two terms are behaviourally equivalent (identified
by |[−]|o) precisely if they denote the same causal function.

Since |[−]|o is defined coinductively (as the unique morphism into the final
coalgebra), behavioural equivalence of open terms can now be checked by means
of bisimulations on Mealy machines (Definition 2.4). We define open bisimilarity,
denoted by ∼o, as the greatest bisimulation onmλ. Obviously, for all open terms
t1, t2 ∈ TV it holds that t1 ∼o t2 iff |[t1]|o = |[t2]|o. The following result provides
another useful characterisation of |[−]|o.

Lemma 5.4. Let λ be a monadic abstract stream GSOS specification, with
induced algebra σ : ΣAω → Aω. Let λ̄ be the corresponding Mealy specification,
with induced algebra σ̄ : ΣΓ̃ → Γ̃. Then the open semantics |[−]|o is the unique
homomorphism making the diagram below commute:

ΣTV ΣΓ̃

TV Γ̃

V

Σ|[ ]|o

κV σ̄
|[ ]|o

ηV
proj

(12)
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where η and κ are defined by initiality (Section 2), and for each X ∈ V and
ψ : V → Aω, proj(X )(ψ) = ψ(X ).

Proof. The open semantics is, by definition, the coinductive extension of mλ,
as depicted on the right below:

V

c

��

ηV // TV

Tc

��

|[−]|o // Γ̃

ζ

��

TΣ(A× V)A
V

ρV

��
(A× V)A

V

(id×ηV)A
V

// (A× TV)A
V

(id×|[−]|o)
AV

// (A× Γ̃)A
V

where (Γ̃, ζ) is the final (A × −)A
V

-coalgebra. It is a standard fact in the
theory of bialgebras that |[−]|o is an algebra morphism as in the statement of
the lemma, so it remains to prove proj = |[−]|o ◦ η. To this end, observe that

|[−]|o ◦ηV is a coalgebra morphism from c : V → (A×V)A
V

to the final coalgebra
(above diagram; the fact that ηV is a coalgebra morphism is again standard).
By finality, it suffices to prove that proj is a coalgebra morphism. This easily
follows from the definition of proj and c.

Observe that, by virtue of Theorem 4.3, the algebra σ̄ is the pointwise ex-
tension of σ. This fact will be useful in the next section to relate ∼o with
bisimilarity on the original stream system.

5.1. Abstract, Open and Closed Semantics

Recall from Section 2 the abstract semantics |[−]|a : TAω → Aω arising as in
(B) from a monadic abstract stream specification λ. The following proposition is
the key to prove Theorem 5.6 relating open bisimilarity and abstract semantics.

Proposition 5.5. Let |[−]|a and |[−]|o be the abstract and open semantics re-
spectively of a monadic abstract stream GSOS specification λ. For any t ∈ TV,
ψ : V → Aω:

|[t]|o(ψ) = |[(Tψ)(t)]|a .

Proof. Let ψ : V → Aω. We formulate what we need to prove as commutativity
of the following diagram:

TV TAω

Γ̃ Aω

Tψ

|[−]|o |[−]|a

ev(ψ,−)

14



where ev(ψ,−) is defined, for f ∈ Γ̃, by

ev(ψ,−)(f) = f(ψ) . (13)

It is convenient below to observe the following equality:

ev(ψ,−) = (Γ̃ ≃ 1× Γ̃
ψ′×id
−−−−→ (AV)ω × Γ̃

ev
−−→ Aω) (14)

where ψ′ : 1 → (AV)ω is a transpose of ψ.
Let σ : ΣAω → Aω be the algebra induced by the distributive law λ. The

proof proceeds by showing that |[−]|a◦Tψ and ev(ψ,−)◦|[−]|o are both Σ-algebra
morphism from the algebra κV : ΣTV → TV to σ, such that |[−]|a ◦ Tψ ◦ ηV =
ev(ψ,−) ◦ |[−]|o ◦ ηV . The equality then follows by uniqueness, see Section 2.1.

For |[−]|a ◦ Tψ, consider the following diagram:

ΣTV ΣTAω ΣAω

TV TAω Aω

V Aω

ΣTψ

κV

Tψ

ψ

ηV

Σ|[−]|a

κAω

|[−]|a

ηAω

id

σ

(15)

The squares on the left commute by naturality. The triangle on the right below
holds since |[−]|a is an algebra for the (free) monad T , and the upper square is
a standard fact in the theory of bialgebras (it follows from the definition of σ
and that |[−]|a is an algebra for the monad T ). This shows that |[−]|a ◦Tψ is an
algebra morphism, and |[−]|a ◦ Tψ ◦ ηV = ψ.

For ev(ψ,−) ◦ |[−]|o, consider the diagram below. Here stΣ
(AV)ω,Γ̃

: (AV)ω ×

ΣΓ̃ → Σ((AV)ω × Γ̃) is the strength of the functor Σ, see Appendix B for some

15



basic properties which are used in the rest of the proof.

(i)

(ii)

nat. iso.

nat. stΣ
−,Γ̃

pointw. ext.

(B.1)

(14)

ΣTV ΣΓ̃ 1× ΣΓ̃ Σ(1× Γ̃) Σ((AV )ω × Γ̃) ΣAω

(AV)ω × ΣΓ̃

TV Γ̃ 1× Γ̃ (AV)ω × Γ̃ Aω

V

κV

|[−]|o

ηV
proj

≃

σ̄

Σ ≃

≃

ev(ψ,−)

stΣ
1,Γ̃

ψ′ × id

id × σ̄

ψ′ × id

Σ(ψ′ × id)

stΣ
(AV )ω,Γ̃

id × σ̄

ev

Σev

σ

(16)
where (i), (ii) commute by Lemma 5.4 (see also the lemma for the definition of
proj). Hence ev(ψ,−) ◦ |[−]|o is an algebra morphism, and it only remains to
prove that ev(ψ,−) ◦ proj = ψ:

ev(ψ,−) ◦ proj(X ) = proj(X )(ψ) (13)

= ψ(X ) def. of proj

From ev(ψ,−) ◦ |[−]|o ◦ ηV = ev(ψ,−) ◦ proj = ψ = |[−]|c ◦ Tψ ◦ ηV and the fact
(shown above) that ev(ψ,−) ◦ |[−]|o and |[−]|c ◦Tψ are algebra morphisms of the
same type, we conclude that they are equal.

As a simple consequence, we obtain the following characterization of ∼o.

Theorem 5.6. For all t1, t2 ∈ TV, |[t1]|o = |[t2]|o iff for all ψ : V → Aω:
|[Tψ(t1)]|a = |[Tψ(t2)]|a.

This is one of the main results of this paper: Tψ(t1) and Tψ(t2) are expres-
sions in TAω built from symbols of the signature Σ and streams α1, . . . αn ∈ Aω.
By checking t1 ∼o t2 one can prove that the two expressions are equivalent for
all possible streams α1, . . . αn ∈ Aω.

Example 5.7. By using the Mealy machine mλ in Example 5.1, the relation

R ={(alt(X , alt(Y,Z)), alt(X , alt(W ,Z))), (alt(alt(Z,Y),X ), alt(alt(Z,W),X ))}

is easily verified to be a bisimulation (Definition 2.4). In particular this shows
that |[(alt(X , alt(Y,Z))]|o = |[alt(X , alt(W ,Z))]|o. By Theorem 5.6, we have that
|[Tψ(alt(X , alt(Y,Z))]|a = |[Tψ(alt(X , alt(W ,Z)))]|a for all ψ : V → Aω, i.e.,

alt(α1, alt(α2, α3)) ∼ alt(α1, alt(α4, α3)) for all α1, α2, α3, α4 ∈ Aω.
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The above law can be understood as an equivalence of program schemes stating
that one can always replace the stream α2 by an arbitrary stream α4, without
changing the result.

Example 5.8. By using the Mealy machines in Example 5.2, it is easy to check
that both {((X ⊕Y)⊕Z,X ⊕(Y⊕Z))} and {(X ⊕Y,Y⊕X )} are bisimulations.
This means that |[(X ⊕ Y)⊕Z]|o = |[X ⊕ (Y ⊕ Z)]|o and |[X ⊕ Y]|o = |[Y ⊕ X ]|o.
By Theorem 5.6 we obtain associativity and commutativity of ⊕:

(α1 ⊕α2)⊕α3 ∼ α1 ⊕ (α2 ⊕α3) and α1 ⊕α2 ∼ α2 ⊕α1 for all α1, α2, α3 ∈ Aω.

Example 5.9. In a similar way, one can check that {((a+b).(X⊕Y), a.X⊕b.Y) |
a, b ∈ R} is a bisimulation. This means that |[(a+ b).(X ⊕ Y)]|o = |[a.X ⊕ b.Y]|o
for all a, b ∈ R and, using again Theorem 5.6, we conclude that (a+b).(α1⊕α2) ∼
a.α1 ⊕ b.α2 for all α1, α2 ∈ Aω.

Often, equivalence of open terms is defined by relying on the equivalence
of closed terms: two open terms are equivalent iff under all possible closed
substitutions, the resulting closed terms are equivalent. For ∼o, this property
does not follow immediately by Theorem 5.6, where variables range over streams,
i.e., elements of the final coalgebra. One could assume that all the behaviours
of the final coalgebra are denoted by some term, however this restriction would
rule out most of the languages we are aware of: in particular, the stream calculus
that can express only the so-called rational streams [10].

The following theorem, which is the second main result of this paper, only
requires that the stream GSOS specification is sufficiently expressive to describe
arbitrary finite prefixes. We use that any closed substitution φ : V → T ∅ defines
φ† : TV → T ∅ (see Section 2.1).

Theorem 5.10. Suppose λ : Σ(A×−) ⇒ A× TΣ is a monadic abstract stream
GSOS specification which contains, for each a ∈ A, the prefix operator a.− as
specified in (5) in Section 3. Further, assume T ∅ is non-empty.

Let |[−]|c and |[−]|o be the closed and open semantics respectively of λ. Then
for all t1, t2 ∈ TV: |[t1]|o = |[t2]|o iff |[φ†(t1)]|c = |[φ†(t2)]|c for all φ : V → T ∅.

Proof. First, we prove that for any φ : V → T ∅, the following diagram commutes:

TV
Tφ //

φ† ""❊
❊
❊
❊
❊
❊
❊
❊ TT ∅

T |[−]|c //

µ∅

��

TAω

|[−]|a

��
T ∅

|[−]|c

// Aω

(17)

Indeed, commutativity of the left-hand side is a general property of monads,
commutativity of the right-hand side a general property of algebras induced by
distributive laws.

Now, for the implication from left to right, suppose |[t1]|o = |[t2]|o, and let
φ : V → T ∅. Then

|[φ†(t1)]|c = |[T (|[−]|c ◦ φ)(t1)]|a = |[T (|[−]|c ◦ φ)(t2)]|a = |[φ†(t2)]|c .
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The first and last equality hold by (17). The middle equality holds by Theo-
rem 5.6, instantiated to ψ = |[−]|c ◦ φ : V → Aω.

For the converse, suppose

|[φ†(t1)]|c = |[φ†(t2)]|c (18)

for all φ : V → T ∅, and let ψ : V → Aω. We need to prove that |[t1]|o(ψ) =
|[t2]|o(ψ). Let n ≥ 0, and define φn : V → T ∅ by

φn(X ) = ψ(X )(0).ψ(X )(1).(. . .).ψ(X )(n − 1).t

for some t ∈ T ∅ (assumed to exist); this is indeed a term in T ∅, since we assumed
the presence of the prefix operator. By definition of the prefix operator, it follows
that

|[φn(X )]|c↾n = ψ(X )↾n (19)

i.e., the first n elements of |[φn(X )]|c coincide with the first n elements of ψ(X ).
For all t ∈ TV , since |[t]|o is causal, we have

|[t]|o(|[−]|c ◦ φn)↾n = |[t]|o(ψ)↾n . (20)

Further, we have, for any t ∈ TV ,

|[t]|o(|[−]|c ◦ φn) = |[T (|[−]|c ◦ φn)(t)]|a = |[φ†n(t)]|c (21)

by Proposition 5.5 and (17) respectively. We obtain

|[t1]|o(ψ)↾n = |[t1]|o(|[−]|c ◦ φn)↾n = |[φ†n(t1)]|c↾n

= |[φ†n(t2)]|c↾n = |[t2]|o(|[−]|c ◦ φn)↾n = |[t2]|o(ψ)↾n

by (20), (21) and assumption (18). Since this works for all n, we conclude
|[t1]|o(ψ) = |[t2]|o(ψ) as desired.

Example 5.11. The specification in Figure 2 does not include the prefix op-
erator, therefore it does not meet the assumptions of Theorem 5.10. Instead,
the monadic GSOS specification in Figure 1(b) contains the prefix. Recall from
Example 5.9 that (a + b).(X ⊕ Y) ∼o a.X ⊕ b.Y. Using Theorem 5.10, we can
conclude that (a+ b).(t1 ⊕ t2) ∼ a.t1 ⊕ b.t2 for all t1, t2 ∈ T ∅.

6. Bisimulation up-to substitutions

In the previous section, we have shown that bisimulations on Mealy machines
can be used to prove equivalences of open terms specified in the stream GSOS
format. In this section we introduce up-to substitutions, an enhancement of
the bisimulation proof method that allows to deal with smaller, often finite,
relations. We also show that up-to substitutions can be effectively combined
with other well-known up-to techniques such as up-to bisimilarity and up-to
context. We note that our results here strongly rely on the specification being

18



x
a
−→ x′

f(x)
a
−→ f(x′ ⊕ x′)

x
a
−→ x′

g(x)
a
−→ g(x′ ⊕ x′)

Figure 4: f and g, operators over streams

x
ς|a
−−→ x′

f(x)
ς|a
−−→ f(x′ ⊕ x′)

x
ς|a
−−→ x′

g(x)
ς|a
−−→ g(x′ ⊕ x′)

Figure 5: Pointwise extensions of f and g.

monadic: in Appendix D we show that they fail in general for non-monadic
specifications.

Intuitively, in a bisimulation up-to substitutions R, the states reached by
a pair of states do not need to be related by R, but rather by θ(R), for some
substitution θ : V → TV . We give a concrete example. Suppose we extend
the stream calculus of Example 2.8 with the operators f and g defined by the
rules in Figure 4. In Figure 5, we have the pointwise extensions of these new
operators. It should be clear that f(X ) ∼ g(X ). To try to formally prove
f(X ) ∼ g(X ), consider the relation R = {(f(X ), g(X ))}. For all ς : V → A,

there are transitions f(X )
ς|ς(X )
−−−−→ f(X ⊕ X ) and g(X )

ς|ς(X )
−−−−→ g(X ⊕ X ). The

outputs of both transitions coincide but the reached states are not in R, hence
R is not a bisimulation. However it is a bisimulation up-to substitutions, since
the arriving states are related by θ(R), for some substitution θ mapping X to
X ⊕ X . In fact, without this technique, any bisimulation relating f(X ) and
g(X ) should contain infinitely many pairs.

In order to prove the soundness of this technique, as well as the fact that it
can be safely combined with other known up-to techniques, we need to recall
some notions of the theory of up-to techniques in lattices from [12]. Given a
Mealy machine (X,m), we consider the lattice (P(X ×X),⊆) of relations over
X , ordered by inclusion, and the monotone map b : P(X × X) → P(X × X)
defined for all R ⊆ X ×X as

b(R) = {(s, t) ∈ X ×X | ∀b ∈ B, os(b) = ot(b) and ds(b) R dt(b)}. (22)

It is easy to see that post fixed points of b, i.e., relations R such that R ⊆
b(R), are exactly bisimulations for Mealy machines (Definition 2.4) and that
its greatest fixed point is ∼.

For a monotone map f : P(X × X) → P(X × X), a bisimulation up-to
f is a relation R such that R ⊆ bf(R). We say that f is b-compatible if
fb(R) ⊆ bf(R) for all relations R. Two results in [12] are pivotal for us: first, if
f is compatible andR ⊆ bf(R) thenR ⊆ ∼; second if f1 and f2 are b-compatible
then f1 ◦ f2 is b-compatible. The first result informs us that bisimilarity can
be proved by means of bisimulations up-to f , whenever f is compatible. The
second result states that compatible up-to techniques can be composed.

We now consider up-to techniques for the Mealy machine over open terms
(TV ,mλ) as defined in Section 5. Recall that bisimilarity over this machine is
called open bisimilarity, denoted by ∼o. Up-to substitutions is the monotone
function (−)∀θ : P(TV ×TV) → P(TV ×TV) mapping a relation R ⊆ TV ×TV
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to
(R)∀θ = {(θ(t1), θ(t2)) | θ : V → TV and t1 R t2}.

Similarly, we define up-to context as the monotone function mapping every rela-
tion R ⊆ TV ×TV to its contextual closure C(R) and up-to (open) bisimilarity
as the function mapping R to ∼o R ∼o = {(t1, t2) | ∃t′1, t

′
2 s.t. t1 ∼o t′1 R t′2 ∼o

t2}.
Compatibility with b of up-to context and up-to bisimilarity hold immedi-

ately by the results in [23]. For up-to substitutions, we will next prove com-
patibility (Theorem 6.2). First, we prove a technical lemma, which states a
relation between the derivative of a term after a substitution for a particular
input and the derivative of the original term w.r.t. an input constructed based
on the substitution and the first input. We use the following notation: given
t ∈ TV , t(X1, . . . ,Xn) denotes that V(t) ⊆ {X1, . . . ,Xn} and t(t1, . . . , tn) the
term obtained from t by replacing Xi by ti.

Lemma 6.1. Let m : TV → (A × TV)A
V

be a Mealy machine induced by a
monadic Mealy GSOS specification that is the pointwise extension of a monadic
stream GSOS specification. Consider a substitution θ : V → TV and an input
ς : V → A. Then there exists a subsitution θ′ : V → TV and input ς : V → A

such that oθ(t)(ς) = ot(ς
′) and dθ(t)(ς) = θ′(dt(ς

′)) for all terms t ∈ TV. 1

Proof. We prove this by induction on the structure of the term t, with θ′ : V →
TV and ς ′ : V → A given by

(i) θ′(X ) = dθ(X )(ς) for all X ∈ V , and

(ii) ς ′(X ) = oθ(X )(ς) for all X ∈ V .

First we show that the base case holds, i.e. t = X for some X ∈ V . First observe
that oX (ς) = ς(X ) and dX (ς) = X for every input ς : V → A, as on variables the
Mealy machine m is fully defined by the Mealy machine c. From this it follows
that oθ(X )(ς) = ς ′(X ) = oX (ς ′), and that dθ(X )(ς) = θ′(X ) = θ′(dX (ς ′)).

Next we prove the inductive case. Consider the case t = f(t1, . . . , tn) where
each ti satisfies the inductive hypothesis. For all a1, . . . , an ∈ A and ς ∈ AV

there is a rule in the Mealy GSOS specification with the following shape:

X1
ς|a1
−−−→ X ′

1 . . . Xn
ς|an
−−−→ X ′

n

f(X1, . . . ,Xn)
ς|afa1,...,an
−−−−−−−→ t

f
a1,...,an(X

′
1, . . . ,X

′
n)

(23)

i.e. the output in the conclusion for f only depends of the outputs of the
premises. First we show that oθ(f(t1,...,tn))(ς) = of(t1,...,tn)(ς

′) using the following

1Recall m(t) = 〈ot, dt〉 : AV → A× TV where ot(ς) and dt(ς) are respectively the output
and the derivative of t ∈ TV for the input ς ∈ AV .
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calculation:

oθ(f(t1,...,tn))(ς)

= {by the def. of substitution on terms}

of(θ(t1),...,θ(tn))(ς)

= {by the appropriate instantiation of rule (23)}

a
f

oθ(t1)(ς),...,oθ(tn)(ς)

= {by the induction hypothesis}

a
f

ot1 (ς
′),...,otn (ς′)

= {by the appropriate instantiation of rule (23)}

of(t1,...,tn)(ς
′)

Finally, dθ(f(t1,...,tn))(ς) = θ′(df(t1,...,tn)(ς
′)) follows from another calculation:

dθ(f(t1,...,tn))(ς)

= {by def. of substitution on terms}

df(θ(t1),...,θ(tn))(ς)

= {by the appropriate instantiation of rule (23)}

t
f

oθ(t1)(ς),...,oθ(tn)(ς)
(dθ(t1)(ς), . . . , dθ(tn)(ς))

= {by induction, oθ(ti)(ς) = oti(ς
′) for i = 1, . . . , n }

t
f

ot1 (ς
′),...,otn (ς′)(dθ(t1)(ς), . . . , dθ(tn)(ς))

= {by induction, dθ(ti)(ς) = θ′(dti(ς
′)) for i = 1, . . . , n }

t
f

ot1 (ς
′),...,otn (ς′)(θ

′(dt1(ς
′)), . . . , θ′(dtn(ς

′)))

= {by def. of substitution on terms}

θ′(tf
ot1 (ς

′),...,otn (ς′)(dt1(ς
′), . . . , dtn(ς

′)))

= {by the appropriate instantiation of rule (23)}

θ′(df(t1,...,tn)(ς
′))

Theorem 6.2. The function (−)∀θ is b-compatible.

Proof. For convencience we will write f = (−)∀θ. Let R ⊆ TV × TV be a
relation, and let (θ(s), θ(t)) ∈ f(b(R)) for some substitution θ : V → TV and
pair of terms (s, t) ∈ b(R). In order to show that (θ(s), θ(t)) ∈ b(f(R)) we need
to prove that

(i) oθ(s)(ς) = oθ(t)(ς), and

(ii) (dθ(s)(ς), dθ(t)(ς)) ∈ f(R),
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for every input ς : V → A.
Now fix ς . By Lemma 6.1 there exists a ς ′ : V → A, such that oθ(t)(ς) = ot(ς

′)
for all t ∈ TV . Then, as (s, t) ∈ b(R), we have

oθ(s)(ς) = os(ς
′) = ot(ς

′) = oθ(t)(ς).

Next we need to show that (dθ(s)(ς), dθ(t)(ς)) ∈ f(R), i.e. that there exists a
substitution θ′ : V → TV and terms s′, t′ ∈ TV such that θ′(s′) = dθ(s)(ς),
θ′(t′) = dθ(t)(ς), and (s′, t′) ∈ R. By Lemma 6.1 there exist θ′ : V → TV and
ς ′ : V → A such that dθ(t)(ς) = θ′(dt(ς

′)) for all t ∈ TV , and thus

(dθ(s)(ς), dθ(t)(ς)) = (θ′(ds(ς
′)), θ′(dt(ς

′))).

By the assumption that (s, t) ∈ b(R), we get that (ds(ς
′), dt(ς

′)) ∈ R. So we
can conclude that (dθ(s)(ς), dθ(t)(ς)) ∈ f(R).

As a consequence of the above theorem and the results in [12], up-to sub-
stitutions can be used in combination with up-to bisimilarity and up-to context
(as well as any another compatible up-to technique) to prove open bisimilarity.
We will show this in the next, concluding example, for which a last remark is
useful: the theory in [12] also ensures that if f is b-compatible, then f(∼) ⊆ ∼.
By Theorem 6.2, this means that (∼o)∀θ ⊆ ∼o. The same obviously holds for
the contextual closure: C(∼o) ⊆ ∼o.

Example 6.3. We prove that the convolution product ⊗ distributes over the
sum⊕, i.e., α1⊗(α2⊕α3) ∼ (α1⊗α2)⊕(α1⊗α3) for all streams α1, α2, α3 ∈ R

ω.
By Theorems 5.6 and 6.2, to prove our statement it is enough to show that R =
{(X⊗(Y⊕Z), (X⊗Y)⊕(X⊗Z))} is a bisimulation up-to ∼o C(∼o (−)∀θ ∼o) ∼o.

By rules in Figure 1(d), for all ς : V → R, the transitions of the open terms
are

• X ⊗(Y⊕Z)
ς|ς(X )×(ς(Y)+ς(Z))
−−−−−−−−−−−−−−→ (ς(X )⊗(Y⊕Z))⊕(X ⊗(ς(Y)+ς(Z)).(Y⊕

Z))

• (X ⊗ Y)⊕ (X ⊗ Z)
ς|ς(X )×ς(Y)+ς(X )×ς(Z)
−−−−−−−−−−−−−−−−−→

((ς(X ) ⊗ Y)⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗Z)⊕ (X ⊗ ς(Z).Z))

For the outputs, it is evident that ς(X ) × (ς(Y) + ς(Z)) = ς(X ) × ς(Y) +
ς(X )× ς(Z). For the arriving states we need a few steps, where for all ς : V → R

and X ∈ V , ς(X ) denotes either a real number (used as a prefix) or a constant
of the syntax (Example 2.8).

(a) X ⊗ (ς(Y).Y ⊕ ς(Z).Z) R∀θ (X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z).

(b) By Example 5.9 and C(∼o) ⊆∼o, we have that:
X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼o X ⊗ (ς(Y).Y ⊕ ς(Z)).Z).

(c) By (b) and (a):
X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼oR∀θ∼o (X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z).
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(d) ς(X )⊗ (Y ⊕ Z) R∀θ (ς(X )⊗ Y)⊕ (ς(X ) ⊗Z).

(e) Using (d) and (c) with context C = ⊕ :
(ς(X ) ⊗ (Y ⊕ Z))⊕ (X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z))
C(∼oR∀θ∼o) ((ς(X )⊗Y)⊕ (ς(X )⊕Z))⊕ ((X ⊗ ς(Y).Y)⊕ (X ⊗ ς(Z).Z)).

(f) By Example 5.8 (associativity and commutativity of ⊕) and (∼o)∀ρ ⊆ ∼o:
((ς(X ) ⊗ Y)⊕ (ς(X ) ⊕Z))⊕ ((X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z)).Z))
∼o ((ς(X ) ⊗ Y)⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗Z)⊕ (X ⊗ ς(Z).Z)).

(g) By (e) and (f):
(ς(X ) ⊗ (Y ⊕ Z))⊕ (X × (ς(Y) + ς(Z)).(Y ⊕ Z))
∼oC(∼oR∀θ∼o)∼o ((ς(X )⊗Y)⊕(X⊗ς(Y).Y))⊕((ς(X )⊗Z)⊕(X⊗ς(Z).Z)).

7. A “familiar” construction of the Mealy Machine of Open Terms

In the previous sections, we transformed a monadic abstract GSOS speci-
fication into a ‘Mealy machine of open terms’, using the pointwise extension.
While it is still unclear if—and how—our approach generalises beyond streams
and Mealy machines to arbitrary coalgebras, in the current section we make
the first steps toward such a generalisation by connecting our work to recent
developments in the theory of distributive laws [15, 16]. These developments
provide a ‘semantics of distributive laws’, by organising them into a category
with a final object, the so-called companion.

The main aim of this section is to connect the concrete construction that
we provided in the current paper to this abstract work on distributive laws
and the companion. On the one hand, we show that the construction of a
‘Mealy machine of open terms’ and the association of causal functions to open
terms (Section 5), is an instance of a more general construction in the theory
of distributive laws. On the other hand, it provides a concrete case study for
some of the abstract techniques in [15, 16]. We therefore view the technical
development in the current section as a potentially useful step towards a more
general coalgebraic theory of open terms.

The connection with [15, 16] can be anticipated in a nutshell. Let [Set, Set]
be the category of Set endofunctors and natural transformations between them.
In [15, 16], a functor F : [Set, Set] → [Set, Set] is defined with the property
that F-coalgebras are in bijective correspondence with distributive laws over
a fixed functor F : Set → Set (we use the blackboard font F to distinguish
from the Set endofunctors used throughout the paper, denoted by plain capital
letters). When instantiated to the functor for stream systems FX = A×X , a
distributive law ρ : TF ⇒ FT , corresponds via the above construction to an F-
coalgebra, i.e., a natural transformation ρ̂ : T ⇒ F(T ). Interestingly, this natural
transformation ρ̂, at the component V , turns out to be the Mealy machine mλ

of open terms defined in (11). In this way, the Mealy machine mλ is thus
constructed via the correspondence between distributive laws and coalgebras.

In the remainder of this section we make this more precise. We start with
the basic necessary definitions.
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Definition 7.1. Given an endofunctor F : Set → Set, the category DL(F ) has
pairs (Σ, λ) as objects, where Σ: Set → Set is a functor and λ : ΣF =⇒ FΣ
is a distributive law, and a morphism from (Σ1, λ1) to (Σ2, λ2) is a natural
transformation θ : Σ1 =⇒ Σ2 such that λ2 ◦ θF = Fθ ◦ λ1, see [24, 25, 26, 27].
The final object (C, γ : CF =⇒ FC) in DL(F ) is called the companion of F , if
it exists. The companion is thus characterised by the property that for every
distributive law λ : ΣF =⇒ FΣ there exists a unique natural transformation
κ : Σ =⇒ F making the diagram below commute.

ΣF
κF +3

λ

��

CF

γ

��
FΣ

Fκ
+3 FC

(24)

See [15, 16] for a systematic study of the above notion of companion. In the
following theorem, coalg(F) denotes the category of F-coalgebras and coalgebra
morphisms between them.

Theorem 7.2 ([16]). There exists a functor F : [Set, Set] → [Set, Set] which
gives a one-to-one correspondence between distributive laws λ : ΣF =⇒ FΣ and
coalgebras λ̂ : Σ =⇒ F(Σ) (natural in F ). In particular, there is an isomorphism
of categories:

DL(F ) ∼= coalg(F) . (25)

In [16], F is called the familiar of F , and is characterised abstractly using
right Kan extensions. The theorem below provides a concrete characterization
for the familiar of the functor FX = A×X and for the isomorphism of Theo-
rem 7.2. First, F : [Set, Set] → [Set, Set] is defined for all Σ: Set → Set as

(A× Σ−)A
−

: Set → Set . (26)

Second, given a natural transformation of the form θ : HF =⇒ FG, we define
θ̂ : H =⇒ F(G), for all sets X , as

HX
HcX // H(A×X)A

X
csH

AX,A×X // (H(A×X))A
X (θX )A

X

// (A×GX)A
X

(27)

where the natural transformation c : Id =⇒ (A × −)A
−

is given for all sets X
and x ∈ X by

cX(x)(ς) = (ς(x), x). (28)

Theorem 7.3. The familiar of FX = A×X is F : [Set, Set] → [Set, Set] defined

as in (26). The assignment θ 7→ θ̂ defined in (27), restricted to the case where
H = G, extends to a functor which witnesses the isomorphism in (25).

Proof. In [16], it is shown that the familiar of an endofunctor F is given as

F(G) = RanF (FG).
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Now we show that, given an endofunctor G, the right Kan extension RanF (FG)

is given by(A×G−)A
−

, with the counit ǫ : F(G)F =⇒ FG given by

ǫX(a : AA×X → A×G(A×X)) = (id×Gπ2)(a(π1))

on a set X , which is easily seen to be natural. Thus we have to show that for
every H : Set → Set and θ : HF =⇒ FG, there exists a unique θ̂ : H =⇒ F(G)
making the diagram below commute:

HF
θ̂F +3

θ �&
❉❉

❉❉
❉❉

❉❉

❉❉
❉❉

❉❉
❉❉

F(G)F

ǫ
w� ✈✈
✈✈
✈✈
✈✈

✈✈
✈✈
✈✈
✈✈

FG

First we show that the diagram above commutes with the θ̂ defined in (27),

i.e. we show that ǫ ◦ θ̂F = θ. Given t ∈ GX we have:

ǫX(θ̂FX(t))

= {by definition of ǫ (counit)}

FG(π2)(θ̂FX(t)(π1))

= {by definition of θ̂}

FG(π2)(θ
AFX

FX (csHAFX ,FFX(H(cFX)(t)))(π1))

= {by definition of the functor (−)A
X

}

FG(π2)(θFX(csHAFX ,FFX(H(cFX)(t))(π1))))

= {by definition of costrength}

FG(π2)(θFX(H(ǫπ1)(H(cFX)(t))))

= {by naturality of θ}

θX(H(Fπ2 ◦ ǫ
π1 ◦ cFX)(t))

= {as Fπ2 ◦ ǫ
π1 ◦ cFX = id}

θX(t)

Next we show that θ̂ is the unique natural transformation making the diagram
above commute. Let κ : H =⇒ F(G) such that ǫ ◦ κF = θ. Given t ∈ HX and
ς : X → A we have:

θ̂X(t)(ς)

= {by definition of θ̂}

θX(csHAX ,FX(H(cX)(t))(ς))

= {by assumption}

ǫX(κFX(csHAX ,FX(H(cX)(t))(ς)))
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= {by definition of ǫ (counit)}

FG(π2)(κFX(csHAX ,FX(H(cX)(t))(ς))(π1))

= {by definition of costrength}

FG(π2)(κFX(H(ǫς ◦ cX)(t))(π1))

= {by naturality of κ}

FG(π2)(F(G)(ǫ
ς ◦ cX)(κX(t))(π1))

= {by definition of F(G) on morphisms}

FG(π2)(FG(ǫ
ς ◦ cX)(κX(t)(π1 ◦ ǫ

ς ◦ cX)))

= {as π2 ◦ ǫ
ς ◦ cX = id and π1 ◦ ǫ

ς ◦ cX = ς}

κX(t)(ς)

So κ = θ̂ and thus θ̂ is the natural transformation from H to F(G) such that

ǫ ◦ θ̂F = θ. So F(G) = RanFFG ∼= (A×G−)A
−

.

Now take a monadic stream GSOS specification λ : ΣF ⇒ FT and the cor-
responding distributive law ρ : TF ⇒ FT . Via (27), ρ corresponds to the F-

coalgebra ρ̂ : T ⇒ (A× T−)A
−

, which at the component V , is a function of the
shape

ρ̂V : TV → (A× TV)A
V

,

namely, a Mealy machine with input AV , output A and state space TV . This is
exactly the Mealy machine mλ for open terms defined in (11), Section 5:

Corollary 7.4. With ρ and λ as above, we have ρ̂V = mλ.

Proof. Recall from Section 5 that mλ is defined as

TV
Tc // T (A× V)A

V ρ̄V // (A× TV)A
V

. (29)

where ρ is the distributive law corresponding to the pointwise extension λ̄ of λ,
and c in the above coincides with cV in (28). Now, by Lemma Appendix C.3,
we have

ρ̄V =

(
T (A× V)A

V csT
AV ,A×V

−−−−−−−→ (T (A× V))A
V (ρV)A

V

−−−−−→ (A× TV)A
V

)
(30)

Combining (29) and (30) yields ρ̂V by definition of ρ̂. Hence ρ̂V = mλ.

A further observation sheds light on the relationship with the companion.
In [15], it is shown that companions of polynomial endofunctors on Set exist,
and a characterisation is given using a generalisation of the notion of a causal
function. For the functor FX = A×X , this notion ends up to be the usual def-
inition of causal function, given in Section 2. To characterise the companion, it
is convenient—following Section 5—to say c : (Aω)X → Aω is causal if the asso-
ciated c̄ : (AX)ω → Aω (swapping arguments) is causal in the usual sense (Sec-
tion 2). Below, we denote the set of all such causal functions by Γ((Aω)X , Aω).
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Then, using the results in [15], the companion (C, γ : CF =⇒ FC) of the stream
system functor FX = A×X is given by

CX = Γ((Aω)X , Aω) .

Since (C, γ) is a final object in DL(F ), there is a unique natural transfor-
mation κ : (T, ρ) =⇒ (C, γ). Its component at V is exactly the open semantics
from Definition 5.3, as stated formally by the following result.

Theorem 7.5. Let λ : ΣF ⇒ FT be an abstract monadic stream GSOS spec-
ification, and let ρ : TF ⇒ FT be the corresponding the distributive law. Let
κ : T ⇒ C be the unique morphism from (T, ρ) to (C, γ). Then κV = |[−]|o.

We give a self-contained proof of this fact, together with a concrete char-
acterisation of of the companion (including the associated distributive law),
in Appendix E.

8. Conclusions, Related and Future work

In this paper we have studied the semantics of open terms specified in the
stream GSOS format. Our recipe consists in translating the stream specifica-
tion into a Mealy specification giving semantics to all open terms. Remarkably,
this semantics equates two open terms if and only if they are equivalent under
all possible interpretations of variables as streams (Theorem 5.6) or under the
interpretation of variables as closed terms (Theorem 5.10). Furthermore, se-
mantic equivalence can be checked by means of the bisimulation proof method
enhanced with a technique called up-to substitutions (Theorem 6.2).

Two considerations are now in order. First, the main advantage of using up-
to substitutions rather than more standard coinductive techniques (e.g. [13, 8])
is that the former may allow finite relations to witness equivalence of open
terms (see Example 6.3), while the latter would often require infinite relations
containing all their possible instantiations. We expect this difference to be
relevant for equivalence checking algorithms; we leave as future work to properly
investigate this issue.

Second, the correspondences in Theorems 5.6 and 5.10 are far from being
expected. Indeed, for GSOS specifying labelled transition systems, the notions
of bisimilarity of open terms proposed in literature (like the formal hypothesis
in [1], the hypothesis preserving in [2], the loose and the strict in [3], the rule-
matching in [4]) are sound w.r.t. the semantics obtained by the interpretation of
variables as closed terms, but not complete. Such incompleteness seems to be
natural for the authors of [3] since, they say, in modern open systems, software
can be partially specified, executed and then instantiated during its execution.
From a coalgebraic perspective, the difficulties in having a complete coinductive
characterisation for the semantics of open semantics seems to arises from non-
determinism: passing from streams to labelled transition systems means from
the coalgebraic outlook to move from the functor FX = A × X to FX =
P(A×X).
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Endrullis et al. [28] consider bisimulation up-to techniques between stream
terms, in order to improve coinductive methods in Coq. Their terms include
variables, and up-to substitution is also used there. It is shown that up-to sub-
stitution is sound, in combination with other techniques such as up-to context
(for which causality is assumed; this is equivalent to GSOS-definability [13]).
The use of variables suggests that open terms may possibly be treated by the
techniques in [28] as well; however, bisimulations between are not mentioned
there. Moreover, the approach is different: in particular, it is not based on the
construction via Mealy machines. A more precise understanding of the connec-
tion to the current paper is left for future work.

In this sense, our work can be considered as a first concrete step towards
a (co)algebraic understanding of the semantics of open terms in the general
setting of abstract GSOS [17, 8]. Orthogonally to the current paper, there is
the more abstract perspective on distributive laws and abstract GSOS in the
recent papers [16, 15], which potentially is of use for bisimilarity of open terms.
In Section 7, we connected these two approaches, showing how the current
concrete work on streams fits in the more abstract perspective offered by these
papers. This is a promising starting point for a general coalgebraic theory of
bisimilarity of open terms, for GSOS specifications for arbitrary functors. We
leave the development of such a theory for future work.

One of the potential benefits of such a theory might be a general coalge-
braic theory of complete axiomatizations. The work of Silva on Kleene coalge-
bra [29] is a successful step in this direction, but its scope is limited to regular
behaviours. Interestingly enough, one of the first completeness results for reg-
ular behaviours [30] already makes use of the semantics of open terms. This
is indeed considered in the field to be one of the standard techniques to prove
(ω)-completeness for axiomatisations, see the survey in [31].

To conclude, it is worth to stress the fact that our approach is confined
to GSOS specifications. Extending it to more expressive formats, such as
tyft/tyxt [32] or ntyft/ntyxt [33], seems to be rather challenging. Indeed, while
GSOS specification have a neat categorical description in terms of distributive
laws [17, 8], we are not aware of similar results for more expressive formats. Fur-
thermore, while bisimilarity is guaranteed to be a congruence by these formats,
bisimulations up-to context is in general not compatible: a counterexample for
the soundness of up-to context and bisimilarity for the tyft format can be found
in [12].
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Appendix A. Proof of Theorem 3.1.

Theorem Appendix A.1 (Th. 3.1). Let (Σ, A,R) be a stream GSOS specifi-
cation and (Σ̃, A, R̃) be the corresponding monadic one. Then, for all t ∈ TΣ∅,
t ∼ t̃.

In order to prove Theorem 3.1 we have to recall the notion of disjoint exten-
sion.

Definition Appendix A.2. A (stream) GSOS specification S′ = (Σ′, A,R′) is
a disjoint extension of the (stream) GSOS specification S = (Σ, A,R) if Σ ⊆ Σ′,
R ⊆ R′ and R′ adds no new rules for operators in Σ.

Because R′ adds no new rules for operators in Σ we have that the behavior
of t ∈ TΣ∅ is the same for both specifications S and its disjoint extension S′.

Let S = (Σ, R,A) be a stream GSOS specification and let S̃ = (Σ̃, R̃, A) be
its translation to a monadic GSOS specification, see Section 3. If we consider
the stream GSOS specification S+ S̃ = (Σ∪ Σ̃, A,R∪ R̃) we have that S + S̃ is
a disjoint extension of both S and S̃. Let t̃ be the term obtained from t ∈ TΣ∅
by replacing each occurence of f ∈ Σ in t by f̃ ∈ Σ̃. Taking into account S + S̃

we will prove that for all t ∈ TΣ∅ we have that t̃ ∈ TΣ̃∅ is such that t ∼ t̃,

see Lemma Appendix A.8. Because S + S̃ is a disjoint extension of S̃, we can
ensure that Theorem 3.1 is sound.

In order to prove the result we define a relation R ⊆ TΣ∪Σ̃∅×TΣ∪Σ̃∅ and we
prove that this relation is a bisimulation up-to bisimilarity. Let R ⊆ TΣ∪Σ̃∅ ×
TΣ∪Σ̃∅ be the smallest relation satisfying:

(R-i) (c, c̃) ∈ R for each constant c ∈ Σ.

(R-ii) (t, a.t̃′) ∈ R if t ∈ TΣ∅ and t
a
−→ t′.

(R-iii) (f(t1, . . . , tn), f̃(s1, . . . , sn)) ∈ R whenever ti R si for all i = 1, . . . , n
and f ∈ Σ.

By structural induction on t and considering the different cases based on the
definition of R we can prove the following results

Lemma Appendix A.3. If (t, s) ∈ R then t ∈ TΣ∅ and s ∈ TΣ̃∅.

Lemma Appendix A.4. For all t ∈ TΣ∅, (t, t̃) ∈ R.

Lemma Appendix A.5. For all t(x1, . . . , xm) ∈ TΣV, t1, . . . , tm ∈ TΣ∅,
s1, . . . , sm ∈ TΣ̃∅, if ti R si for i = 1, . . . ,m then t(t1, . . . , tm) R t̃(s1, . . . , sm).

In addition we have:

Lemma Appendix A.6. For all t ∈ TΣ∪Σ̃∅, if t
a
−→ t′ then t ∼ a.t′.

Proof. Suppose that t0, t1, . . . ∈ TΣ∪Σ̃∅ and a0, a1, . . . ∈ A are s.t. t = t0, t
′ = t1,

a0 = a and t0
a0−−→ t1

a1−−→ t2
a2−−→ . . .. Define S = {(ti, ai.ti+1) | i = 0, 1, . . .}.

Relation S is a bisimulation given that for all i, ti
ai−−→ ti+1, ai.ti+1

ai−−→ ai+1.ti+2

by rule (5) and ti+1 S ai+1.ti+2. Finally (t, a.t′) = (t0, a0.t1) ∈ S
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Lemma Appendix A.7. R is a bisimulation up-to bisimilarity w.r.t. S + S̃.

Proof. We prove R is a bisimulation up-to bisimilarity by structural induction
on t ∈ TΣ∅ where (t, s) ∈ R for some s. Considering t ∈ TΣ∅ is enough because
of Lemma Appendix A.3.

Suppose that t = c is a constant. By Def. 2.6, c
a
−→ t′ with t′ ∈ TΣ∅ iff there

is axiom r, i.e. rule without premises, c
a
−→ t′. We have two cases to analyze

for s as a consequence of (R-i) and (R-ii): (i) Case s = c̃. By construction of

S̃ there is an axiom r̃ s.t. r̃ = c̃
a
−→ t̃′. By Lemma Appendix A.4, t′ R t̃′.

(ii) Case s = a.t̃′. Suppose that t̃′
b
−→ s′′ then t̃′ ∼ b.s′′ by Lemma Appendix

A.6. By (5), a.t̃′
a
−→ b.s′′. Finally, t′ ∼ t′ R t̃′ ∼ b.s′′ because ∼ is reflexive,

Lemma Appendix A.4 and Lemma Appendix A.6.
For the inductive case we consider t = f(t1, . . . , tn). Suppose f(t1, . . . , tn)

a
−→

t′. We have two cases to analyze as a consequence of (R-ii) and (R-iii). Case
(R-ii) follows similarly to its counterpart in the base case of the inductive proof.
For the case (R-iii) we consider (f(t1, . . . , tn), f̃(s1, . . . , sn)) ∈ R with ti R si
for all i = 1, . . . , n. Suppose that

f(t1, . . . , tn)
a
−→ t(t1, . . . tn, t

′
1, . . . , t

′
n)

because of an instantiation of the rule (2), then ti
ai−−→ t′i for each i = 1, . . . , n.

By induction, for each i, ti
ai−−→ t′i, si

ai−−→ s′i and there are t̂i and ŝi s.t.

t′i ∼ t̂i ŝi ∼ s′i (A.1)

t̂i R ŝi (A.2)

Using rule (6) and for each i, si
ai−−→ s′i, we can derive the following transition

f̃(s1, . . . , sn)
a
−→ t̃(a1.s

′
1, . . . an.sn, s

′
1, . . . , s

′
n)

To conclude the proof we have to prove that there are t̂ and ŝ such that

t(t1, . . . tn, t
′
1, . . . , t

′
n) ∼ t̂ R ŝ ∼ t̃(a1.s

′
1, . . . an.s

′
n, s

′
1, . . . , s

′
n)

To prove this, notice first that for each i

ti ∼ ai.t
′
i ∼ ai.t̂i ai.ŝi ∼ ai.s

′
i (A.3)

ai.t̂i R ai.ŝi (A.4)

The left side equation of (A.3) is a consequence of Lemma Appendix A.6 and
(A.1), taking into account that ∼ is a congruence for the prefix operators. The
right side equation of (A.3) is also a consequence of this last fact. Equation
(A.4) is a consequence of (R-iii) and (A.2).

Define t̂ = t(a1.t̂1, . . . , an.t̂n, t̂1, . . . , t̂n) and ŝ = t̃(a1.ŝ1, . . . , an.ŝn, ŝ1, . . . , ŝn).
Recall that ∼ is a congruence for all operator defined using the stream GSOS
specification format and this property can be extended to arbitrary context
constructed using these operators. Taking into account this fact and (A.1) and
(A.3) we get t(t1, . . . tn, t

′
1, . . . , t

′
n) ∼ t̂ and ŝ ∼ t̃(a1.s

′
1, . . . an.sn, s

′
1, . . . , s

′
n).

Finally t̂ R ŝ because of Lemma Appendix A.5, (A.2) and (A.4).
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Lemma Appendix A.8. Let S and S̃ be, resp., a stream GSOS specification
and its encoding in monadic GSOS specification. For the GSOS specification
S + S̃ we have t ∼ t̃ for all t ∈ TΣ∅.

Proof. The result is a straight consequence of Lemmas Appendix A.4 and Ap-
pendix A.7

Appendix B. Strength and Costrength

The categorical notions of strength and costrength are recalled here, as they
play an important role from Section 4 onwards. The strength of an endofunctor
F on Set is a map stFA,X : A×FX → F (A×X) natural in A and X , defined by

stFA,X(a, t) = (Fηa)(t) where ηa : X → A ×X is given by ηa(x) = (a, x). The

costrength of F is a map csFA,X : F (XA) → (FX)A natural in A and X , defined

by csFA,X(t)(a) = (Fǫa)(t) where ǫa : XA → X is given by ǫa(f) = f(a).
We recall several basic properties that will only be used in proofs, and can

be safely skipped by the reader. First of all, the following diagrams commute:

A× ΣV Σ(A× V )

ΣV

π2

stΣA,V

Σπ2

1× ΣV Σ(1× V )

ΣV

≃

stΣ1,V

Σ ≃

(B.1)

For the triangle on the left-hand side, we have Σπ2◦stΣA,V (a, t) = Σπ2◦Σηa(t) =
Σ(π2 ◦ ηa)(t) = t = π2(a, t). The triangle on the right-hand side is a special
case.

We will also use that costrength is natural in the endofunctor involved, i.e.,
for any natural transformation γ : F ⇒ G and any sets A,X , the following
diagram commutes:

F (XA) (FX)A

G(XA) (GX)A

csFA,X

γ
XA

csGA,X

(γX)A (B.2)

An analogous property holds for strength, see [11, Appendix A].
Finally, when T is a monad, the costrength csTA,− is always a distributive

law of the monad T over the functor (−)A (Diagram (3) with F = (−)A), see,
e.g., [34, Example 2].

Appendix C. The Pointwise Extension

We recall the general definition of pointwise extension. This requires a few
preliminary notions, in particular of a map ev; the reader can safely skip these

34



general definitions and move immediately to the instance where the functor at
hand is the one for streams, for which we give a concrete characterisation.

Definition Appendix C.1. Let s : Y → B×Y be an (B×−)-coalgebra. For
an FB-coalgebra m : X → (FX)B, define the F -coalgebra

s⋉m : Y ×X → F (Y ×X)

to be the function composition:

Y ×X
s×m
−−−→ (B × Y )× (FX)B

≃
−→ Y × (B × (FX)B)

idY ×ǫFX−−−−−−→ Y × FX
stFY,X
−−−−→ F (Y ×X)

Let 〈Z, ζ〉 be a final F -coalgebra. By finality, for all s : Y → B × Y and
m : X → (FX)B, there is a unique F -coalgebra morphism |[−]|s⋉m : Y ×X → Z:

Y ×X Z

F (Y ×X) FZ

|[−]|s⋉m

s⋉m

F |[−]|s⋉m

ζ (C.1)

We instantiate the above by taking s to be the final (B × −)-coalgebra
(Bω, 〈hd, tl〉), and m to be the final FB-coalgebra (Z̄, ζ̄); ev is then defined to
be the coinductive extension below.

Bω × Z̄ Z

F (Bω × Z̄) FZ

ev

〈hd, tl〉 ⋉ ζ̄

Fev

ζ (C.2)

In the current paper, we are interested in the case that Z = Aω consists of
streams (the final coalgebra of stream systems), and Z̄ = Γ(Bω, Aω) consists of
causal functions (the final coalgebra of Mealy machines). In that case, ev : Bω×
Γ(Bω, Aω) → Aω is given concretely by

ev(α, f) = f(α) . (C.3)

as reported in [11, Example 4.3].

Definition Appendix C.2. For a signature Σ, an algebra σ̄ : ΣZ̄ → Z̄ is a
pointwise extension of σ : ΣZ → Z if the following diagram commutes:

Bω × ΣZ̄ Σ(Bω × Z̄) Σ(Z)

Bω × Z̄ Z

stΣ
Bω,Z̄

id × σ̄

ev

Σev

σ (C.4)
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This generalises the concrete instance for streams in Definition 4.1.

Appendix C.1. Proof of Theorem 4.3

We need the following lemma to prove Theorem 4.3:

Lemma Appendix C.3. Let λ : ΣF =⇒ FT be a monadic abstract GSOS
specification, with pointwise extension λ̄ : ΣFB ⇒ (FT )B. Let ρ̄ : TFB ⇒
(FT )B be the distributive law induced by λ̄. Then

ρ̄ =

(
T (FX)B

csTB,FX
−−−−−→ (TFX)B

(ρX )B

−−−−→ (FTX)B
)

where ρ : TF ⇒ FT is the distributive law induced by λ.

Proof. Let ρ̄′ = (T (FX)B
csTB,FX
−−−−−→ (TFX)B

(ρX )B

−−−−→ (FTX)B). By [22, Lemma
3.4.27], ρ̄ is the unique distributive law satisfying λ̄ = ρ̄◦κFB ◦ΣηFB (this is an
instance of the one-to-one correspondence between (monadic) GSOS specifica-
tions and distributive laws). Hence, it suffices to show the following properties:

1. ρ̄′ is a distributive law of monad over functor;

2. λ̄ = ρ̄′ ◦ κFB ◦ ΣηFB .

For 1., consider the following diagram.

TT (FX)B

µ(FX)B

��

TcsTB,FX // T (TFX)B

csTB,TFX

��

T (ρX )B // T (FTX)B

csTB,FTX

��
(TTFX)B

(µFX)B

��

(TρX )B // (TFTX)B

(ρTX )B

��
(FTTX)B

(FµX )B

��
T (FX)B

csTB,FX // (TFX)B
(ρX )B // (FTX)B

(FX)B

η(FX)B

OO

(ηFX)B

66♥♥♥♥♥♥♥♥♥♥♥♥
(FηX )B

DD

The left part of the diagram commutes since csTB,− is a distributive law of the

monad T over the functor (−)B, the right part follows since ρ is a distributive
law of the monad T over the functor F (and the top-right square by naturality
of csTB,−).
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For 2., consider the following diagram.

Σ(FX)B

λ̄X

��csΣB,FX //

ν
(FX)B

��

(ΣFX)B
(λX )B //

(νFX )B

��

(FTX)B

T (FX)B
csTB,FX //

ρ̄′X

EE

(TFX)B

(ρX )B

::tttttttttttttt

(C.5)

where ν = κ ◦ Ση. The square commutes by (B.2), the triangle on to the right
since ρ is the distributive law extending λ, and the upper and lower shapes by
definition of λ̄ and ρ̄′ respectively.

This allows us to prove Theorem 4.3.

Proof of Theorem 4.3. Let |[−]|ρ̄a : T Z̄ → Z̄ and |[−]|ρa : TZ → Z be the algebras
arising by finality from ρ̄ and ρ respectively, as defined in diagram (B) at the
end of Section 2.1.

Let ν = κ ◦ Ση. The algebras σ : ΣZ → Z and σ̄ : ΣZ̄ → Z̄ are defined
respectively by |[−]|ρa ◦ νZ and |[−]|ρ̄a ◦ νZ̄ . We need to prove that the latter is a
pointwise extension of the former.

By Lemma Appendix C.3, the distributive law ρ̄ induced by λ̄ is given by

ρ̄ = (T (FX)B
csTB,X
−−−−→ (TFX)B

(ρX )B

−−−−→ (FTX)B) .

Hence, by [11, Theorem 6.1], |[−]|ρ̄a is a pointwise extension of |[−]|ρa, i.e., the
lower rectangle in the diagram below commutes:

(i) nat.

|[−]|ρ̄a is a p.e. of |[−]|ρa

Bω × Z̄ Σ(Bω × Z̄) ΣZ

Bω × T Z̄ T (Bω × Z̄) TZ

Bω × Z̄ Z

stΣ
Bω,Z̄

id × νZ̄

stF
Bω,Z̄

id × |[−]|ρ̄a

ev

Σev

νBω×Z̄

Tev

νZ

|[−]|ρa

(C.6)

The square (i) is naturality of strength (see Section Appendix B), and the
square on the right commutes by naturality of ν.
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Appendix D. Non-compatibility for non-monadic specifications

In our approach, we first transform an arbitrary stream GSOS specification
into a monadic one and then we construct the correspondingMealy specification.
One could transform directly an arbitrary specification into a Mealy specification
following the approach in [11], but Theorem 6.2 in Section 6 would not go
through. In this appendix we shortly explain why.

The pointwise extension of GSOS specification that is not monadic requires
the introduction of a family of auxiliary operators, the so-called buffer operators.
For a stream GSOS specification λ : Σ(Id × F ) =⇒ FT with F = A×X , there

is a Mealy GSOS specification λ̄ : Σ̄(Id × (F )A
V

) =⇒ (FT̄ )A
V

that pointwise
extends λ (see [11, Theorem 6.3]). Notice that that the signature used for the
Mealy machine is not the original Σ but Σ̄. In our setting, this signature is the
extension of Σ with the buffer operators ς⊲, for each ς : V → A. The extended
specification λ̄ defines their semantics as follows.

x
ς|a
−−→ x′

ς ⊲ x
ς′|a
−−−→ ς ′ ⊲ x′

In addition, for each rule r with shape (2) of the stream GSOS specification
and ς : V → A, the Mealy machines has a rule r′ defined by

r′ =
x1

ς|a1
−−−→ x′1 · · · xn

ς|an
−−−→ x′n

f(x1, . . . , xn)
ς|a
−−→ t(ς ⊲ x1, . . . , ς ⊲ xn, x

′
1, . . . , x

′
n)

By following this approach, open bisimilarity is not preserved by substitu-
tion.

For example, consider stream systems over reals and the family of “bad”
prefix operators a.x, for each a ∈ R. The following left and right rules rep-
resent respectively, a stream GSOS specification and its corresponding Mealy
specification.

a.x
a
−→ x a.x

ς|a
−−→ ς ⊲ x

For a fixed a ∈ R, let ς̂ : V → R be such that ς̂(X ) = a and ς̂(Y) 6= 0. Then
a.X and ς̂ ⊲ X are in ∼o because

a.X
ς|a
−−→ ς ⊲ X and ς̂ ⊲ X

ς|ς̂(X )
−−−−→ ς ⊲ X .

Consider now substitution θ : V → TV such that θ(X ) = X ⊕ Y, where ⊕ is
defined as in Figure 1(a). Then θ(a.X ) and θ(ς̂ ⊲ X ) are not bisimilar because

θ(a.X ) = a.(X ⊕ Y)
ς|a
−−→ ς ⊲ (X ⊕ Y), θ(ς̂ ⊲ X ) = ς̂ ⊲ (X ⊕ Y)

ς|ς̂(X )+ς̂(Y)
−−−−−−−−→

ς̂ ⊲ (X ⊕ Y) and a 6= ς̂(X ) + ς̂(Y).

This fact also entails that up-to substitutions is not compatible. Indeed,
following the general theory in [23], if it would be compatible, then open bisim-
ilarity would be closed under substitution.
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Appendix E. Details on the companion

In this section, we precisely characterise the companion (C, γ) of the functor
F , F (X) = A×X , show how this companion yields final Mealy machines, and
ultimately prove Theorem 7.5. As already mentioned in Section 7, C is given
by:

CX = Γ((Aω)X , Aω) . (E.1)

We will also prove below that γ : CF ⇒ FC is given by:

γX(c : (Aω)A×X → Aω) = (hd(c((a, x) 7→ a.α)), c′) (E.2)

where α ∈ Aω is an arbitrary stream, and c
′ : (Aω)V → Aω is given by

c
′(ψ : X → Aω) = tl(c((a, x) 7→ a.ψ(x))). (E.3)

In the proof that (C, γ) is the companion, we will use that the (C, γ) ‘constructs
final Mealy machines’ (Proposition Appendix E.2). First, we recall the following

characterisation of final Mealy machines for FA
V

(which is well-known; see,
e.g., [18]).

Lemma Appendix E.1. The final (A×−)A
V

-coalgebra ζ : Γ̃ → (A× Γ̃)A
V

is
given by

ζ(c : (Aω)V → Aω)(ς : V → A) = (hd(c(X 7→ ς(X ).α)), cς ) (E.4)

where α ∈ Aω is an arbitrary stream, and cς : (A
ω)V → Aω is given by

cς(ψ : V → Aω) = tl(c(X 7→ ς(X ).ψ(X ))). (E.5)

Proposition Appendix E.2. The X component of the F-coalgebra γ̂, corre-

sponding to the distributive law γ given in (E.2), is the final (A×−)A
X

-coalgebra.

Proof. This follows from a simple computation.

γ̂X(c : (Aω)X → Aω)(ς : X → A)

= {by definition of γ̂}

γA
X

X (csCAX ,A×X(C(cX)(c)))(ς)

= {by definition of the functor (−)A
X

}

γX(csCAX ,A×X(C(cX)(c))(ς))

= {by definition of costrength}

γX(C(ǫς ◦ cX)(c))

= {by definition of ǫ}

γX(C(x 7→ (ς(x), x))(c))

= {by definition of the functor C on morphisms}

γX((ϕ : A×X → Aω) 7→ c(x 7→ (ς(x), x)))

But after spelling out γX , it is immediately clear that this is exactly the Mealy
machine given in Lemma Appendix E.1.
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Now, we can prove that (C, γ) as presented above is really the companion.

Proposition Appendix E.3. The companion of FX = A × X is given by
(C, γ) as defined in (E.1) and (E.2) in the beginning of this section.

Moreover, given a distributive law ρ : TF =⇒ FT , the natural transforma-
tion κ : T =⇒ C, which is the unique morphism from (Σ, λ) to the companion
(C, γ), is given by

κX(t ∈ TX)(ψ : V → Aω) = |[(Tψ)(t)]|a . (E.6)

Proof. It is not very difficult to verify that κX(t) is a causal function.
In order to show that (C, γ) is the companion, we first show that κ is a

morphism from (T, ρ) to (C, γ), i.e. that Fκ ◦ ρ = γ ◦ κF . First observe that

γ(κFX(t ∈ TFX)) = (hd(|[T ((a, x) 7→ a.α)(t)]|a), c
′),

where c
′ : (Aω)X → Aω is given by

c
′(ψ : X → Aω) = tl(|[T ((a, x) 7→ a.ψ(x))(t)]|a).

Now for the left component we have

hd(|[T ((a, x) 7→ a.α)(t)]|a)

= {as hd = π1 ◦ ζ}

π1(ζ(|[T ((a, x) 7→ a.α)(t)]|a))

= {by definition of |[−]|a}

π1(F (|[−]|a)(ρAω (T (ζ)(T ((a, x) 7→ a.α)(t)))))

= {using π1 ◦ Ff = π1}

π1(ρAω (T (ζ)(T ((a, x) 7→ a.α)(t))))

= {as ζ(a.α) = (a, α)}

π1(ρAω (T ((a, x) 7→ (a, α))(t)))

= {by definition of the functor F on morphisms}

π1(ρAω (TF (x 7→ α)(t)))

= {by naturality of ρ}

π1(FT (x 7→ α)(ρX(t)))

= {using π1 ◦ Ff = π1}

π1(ρX(t))

and for the right component we have

c
′(ψ : X → Aω)

= {by definition of c′}

tl(|[T ((a, x) 7→ a.ψ(x))(t)]|a)

= {as tl = π2 ◦ ζ}
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π2(ζ((|[T ((a, x) 7→ a.ψ(x))(t)]|a)))

= {by definition of |[−]|a}

π2(F (|[−]|a)(ρAω (T (ζ)(T ((a, x) 7→ a.ψ(x))(t)))))

= {as ζ(a.ψ(x)) = (a, ψ(x))}

π2(F (|[−]|a)(ρAω (T ((a, x) 7→ (a, ψ(x)))(t))))

= {by definition of the functor F on morphisms}

π2(F (|[−]|a)(ρAω (TF (ψ)(t))))

= {by naturality of ρ}

π2(F (|[−]|a)((FT (ψ)(ρX(t)))))

= {using π2 ◦ Ff = f ◦ π2}

|[T (ψ)(π2(ρX(t)))]|a

= {by definition of κ}

κX(π2(ρX(t)))(ψ)

Thus, combining both calculations, we get F (κX)(ρX(t)) = γX(κFX(t)).
Finally we show that κ is also the unique such morphism. Let θ be a mor-

phism from (T, ρ) to (C, γ). Then both θ and κ are coalgebra morphisms from
(T, ρ̂) to (C, γ̂). And for a set X , θX and κX are coalgebra morphisms from
(TX, ρ̂X) to (CX, γ̂X), but (CX, γ̂X) is the final Mealy machine according to
Proposition Appendix E.2, so κX = θX for all sets X and thus κ = θ.

Putting everything together, we obtain the proof of Theorem 7.5.

Proof of Theorem 7.5. For any t ∈ TV and ψ : V → Aω :

κV(t)(ψ) = |[(Tψ)(t)]|a = |[t]|o(ψ)

by Proposition Appendix E.3 and Proposition 5.5, and thus κV = |[−]|o.
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