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Ultraviolet fixed point functions of the functional renormalisation group equation for f (R)-gravity 
coupled to matter fields are discussed. The metric is split via the exponential parameterisation into 
a background metric and a fluctuating part, the former is chosen to be the one of a four-sphere. Also 
when scalar, fermion and vector fields are included global quadratic solutions exist as in the pure gravity 
case for discrete sets of values for some endomorphism parameters defining the coarse-graining scheme. 
The asymptotic, large-curvature behaviour of the fixed point functions is analysed for generic values of 
these parameters. Examples for global numerical solutions are provided. A special focus is given to the 
question whether matter fields might destabilise the ultraviolet fixed point function. Similar to a previous 
analysis of a polynomial, small-curvature approximation to the fixed point functions different classes for 
such functions are found.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Searching for a viable theory of quantum gravity is one of the 
most important open problems in theoretical physics. Many differ-
ent approaches try to elucidate it from various perspectives. In this 
letter, the asymptotic safety scenario for quantum gravity [1] will 
be employed based on a specific ansatz for the effective action: 
an investigation of f (R)-gravity minimally coupled to an arbitrary 
number of scalar, Dirac, and vector fields is discussed with a spe-
cial focus on the study of global fixed functions, the generalisation 
of non-Gaußian fixed point (NGFP). Recently, the flow equation 
used herein has been derived within the functional renormalisa-
tion group (FRG) for the effective average action, and this equation 
has been solved to obtain the respective NGFP function in a poly-
nomial, small-curvature approximation [2], see also ref. [3]. These 
solutions provide the foundation of the here reported study. Re-
sults for the NGFP function for the pure gravity case within the 
employed version of the flow equation have been given recently 
in refs. [4,5]. Note that such solutions of NGFP functions but for 
different truncations of the flow equation have been obtained in 
refs. [6–20]. Hereby the characteristics of the solutions for these 
functions differ significantly depending on the technical aspects of 
the respective work. Given the fixed functions’ importance for the 
asymptotic safety scenario this requires further understanding. In 
the following it will be studied whether coupling matter might 
give an important hint to resolve ambiguities.

E-mail address: natalia.alkofer@gmail.com.

Coupling matter to gravity within the asymptotic safety sce-
nario has a long history, see refs. [18,21–47], however, with mixed 
results. In ref. [2] comprehensible estimates have been provided 
which gravity-matter systems may give rise to NGFPs suitable for 
rendering the theory asymptotically safe. In this reference the flow 
equation has been derived within a seven-parameter family of 
non-trivial endomorphisms in the regularisation procedure. Herein 
this freedom will be exploited to show the existence of global 
quadratic solutions. In ref. [2] it was also shown that for vanishing 
endomorphisms gravity coupled to the matter content of the stan-
dard model of particle physics (and also many beyond the standard 
model extensions) exhibit a NGFP whose properties are strikingly 
similar to the case of pure gravity: there are two UV-relevant di-
rections, and the position and critical exponents converge rapidly 
when higher powers of the scalar curvature beyond the quadratic 
ones are included. Building on this result numerical solutions will 
be obtained for a global fixed function for the pure gravity as 
well as for the gravity-matter system with standard model matter 
content. Hereby the discussion of the singular points of the flow 
equation and the asymptotic behaviour of the solution for large 
scalar curvatures turns out to be the crucial element.

Based on generic features of the employed flow equation one 
can show for global solutions a property already visible at the 
level of the polynomial approximations, namely that addition of 
fermions, stabilise an existing NGFP if the coarse graining operator 
is chosen as the Laplacian. As the Standard Model is dominated 
by fermions therefore a NGFP function for f (R)-gravity coupled to 
the Standard Model matter content exists in this case.

https://doi.org/10.1016/j.physletb.2018.12.061
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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This letter is organised as follows: in sect. 2 the derivation of 
the flow equation is briefly reviewed. In sect. 3 the properties of 
the flow equation in four dimensions are discussed. The existence 
of global quadratic solutions is shown by constructing two explicit 
examples. Furthermore, the asymptotic behaviour is analysed, and 
numerical solutions for two selected cases are presented. In sect. 4
the results are summarised and conclusions are provided.

2. RG equation for gravity and matter in f (R) truncation

To make this letter self-contained the derivation of the flow 
equation given in ref. [2] is briefly reviewed. It is based on the 
form of the FRG equations given in refs. [48,49], adapted to the 
case of gravity [1],

∂t�k = 1

2
STr

[(
�

(2)

k +Rk

)−1
∂tRk

]
. (1)

Here, k is the RG scale and t = ln(k/k0) the RG “time” with k0 be-
ing an arbitrary reference scale. �k denotes the effective average 
action and �(2)

k its second variation with respect to the fluctua-
tion fields. Rk is a regulator introduced such that solving the flow 
equation effectively integrates out quantum fluctuations with mo-
menta above the scale k.

Throughout this work for the gravitational part of the effective 
average action a f (R) truncation on d-spheres as background will 
be employed. To be explicit, the corresponding total effective ac-
tion reads

�k = �
grav
k + �matter

k , (2)

where �
grav
k is the gravitational part of the effective average action 

and �matter
k contains the matter fields. The gravitational part of the 

action is assumed to be given by

�
grav
k =

∫
ddx

√
g fk(R) + �

gf
k + �

gh
k , (3)

where fk(R) is an arbitrary, scale-dependent function of the Ricci 
scalar R , and the action is supplemented by suitable gauge fixing 
and ghost terms. This sector is taken to be identical to the one 
studied in ref. [5]. The matter sector is assumed to consist of N S
scalar fields, ND Dirac fermions, and NV Abelian gauge fields. The 
latter ones are fixed to Feynman gauge, and thus on curved back-
grounds the related ghosts are included. Matter self-interactions 
as well as the RG scale dependence of the matter wave-function 
renormalisations are neglected.

In a next step one splits the metric into a background and a 
fluctuating (quantum) part. In the following the exponential split

gμν = ḡμρ(eh)ρν (4)

is used thereby avoiding any signature change even for large fluc-
tuating fields. A detailed derivation of the gravitational part of the 
RG equation can be found in refs. [4,5], see also refs. [2,3].

Some of the global solutions for fixed functions presented here 
can only be obtained if additional endomorphisms in the reg-
ulator functions appearing in the RG equations are introduced. 
To this end, a set of parameters αG,M

S,D,V ,T , with the subscript la-
belling the type of field and the superscript the gravity or matter 
sector, are introduced: the regulators are chosen to depend on �G,M

S,D,V ,T := � − αG,M
S,D,V ,T R̄ where � is the Laplace operator, and 

R̄ is the positive curvature scalar of the background sphere. The 
labelling of subscripts refer to: S scalar, D Dirac, V transverse vec-
tor, and T transverse traceless symmetric tensor field.

In ref. [2] all the traces appearing in the RG equation have been 
done by explicitly summing over the eigenvalues of the Laplacian 

on the sphere in the different spin channels, for the respective 
expressions for these eigenvalues see, e.g., ref. [50]. Using a Litim-
type regulator [51,52]

Rk(z) = (k2 − z)θ(k2 − z) , (5)

∂t Rk(z) = 2k2θ(k2 − z) ,

these sums are all finite. Subsequently, an additional smoothing 
operation (namely averaging over two sums performed on the up-
per and lower limit of the resulting “staircase” function) are em-
ployed as part of the regularisation, see ref. [2] for more details.

Two widely used choices for the coarse graining operators 
termed “Type I” and “Type II” (see [53] for detailed definitions and 
a discussion of this typology) are given by the following choice of 
endomorphism parameters,

Type I: αG
T = αG

S = αG
V =

= αM
D = αM

V 1
= αM

V 2
= αM

S = 0 , (6a)

Type II: αG
T = − 2

d(d−1)
, αG

S = 1
d−1 , αG

V = 1
d ,

αM
D = − 1

4 , αM
V 1

= − 1
d , αM

V 2
= αM

S = 0 . (6b)

The RG equation takes the form of a partial differential equa-
tion for the scale-dependent function fk(R̄). As usual it is advan-
tageous to formulate it in dimensionless variables r = R̄/k2 and 
ϕ(r) = f (R̄)/kd . This leads to a separation of the “classical” scale 
dependence of f (R̄) from the quantum one which reads in four 
dimensions:

∂t�k =
∫

d4x
√

g ∂t f (R̄) (7)

= V 4 k4
(
∂tϕ(r) + 4ϕ(r) − 2rϕ′(r)

)
,

where V 4 = 384π2/R̄2 is the volume of the 4-sphere. The flow 
equation is then given by:

ϕ̇ + 4ϕ − 2rϕ′ = T TT + T ghost + T sinv (8)

+ T scalar + T Dirac + T vector ,

where

T TT = 5

2(4π)2

1

1 + (
αG

T + 1
6

)
r

(
1 +

(
αG

T − 1
6

)
r
)

(9a)

×
(

1 +
(
αG

T − 1
12

)
r
)

+ 5

12(4π)2
ϕ̇′+2ϕ′−2rϕ′′

ϕ′
(

1 +
(
αG

T − 2
3

)
r
)

×
(

1 +
(
αG

T − 1
6

)
r
)

,

T sinv = 1

2(4π)2
ϕ′′(

1+
(
αG

S − 1
3

)
r
)
ϕ′′+ 1

3 ϕ′ (9b)

×
(

1 +
(
αG

S − 1
2

)
r
)(

1 +
(
αG

S + 11
12

)
r
)

+ 1

12(4π)2
ϕ̇′′−2rϕ′′′(

1+
(
αG

S − 1
3

)
r
)
ϕ′′+ 1

3 ϕ′

×
(

1 +
(
αG

S + 3
2

)
r
)(

1 +
(
αG

S − 1
3

)
r
)

×
(

1 +
(
αG

S − 5
6

)
r
)

,
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T ghost = − 1

48(4π)2

1

1 + (αG
V − 1

4 )r
(9c)

×
(

72 + 18r(1 + 8αG
V )

− r2(19 − 18αG
V − 72(αG

V )2)
)

,

and

T scalar = N S

2(4π)2

1

1 + αM
S r

(
1 +

(
αM

S + 1
4

)
r
)

(10a)

×
(

1 +
(
αM

S + 1
6

)
r
)

,

T Dirac = − 2ND

(4π)2

(
1 +

(
αM

D + 1
6

)
r
)

, (10b)

T vector = NV

2(4π)2

(
3

1+
(
αM

V1
+ 1

4

)
r

(
1 +

(
αM

V 1
+ 1

6

)
r
)

×
(

1 +
(
αM

V 1
+ 1

12

)
r
)

− 1
1+αM

V2
r

(
1 + (αM

V 2
+ 1

2 )r
)

×
(

1 + (αM
V 2

− 1
12 )r

))
. (10c)

The first line of eq. (8) stems from the gravitational sector and 
depends correspondingly on the endomorphism parameters αG

S,V ,T . 
The second line originates from the matter part: the contributions 
from the transverse vector and scalar ghost fields are proportional 
to NV . In addition there are the ones of the Dirac and the scalar 
fields.

The common factor 1/(4π)2 can be removed from the coeffi-
cients defined in eqs. (9) and (10) by a suitable rescaling of ϕ(r), 
and this is assumed in the following (cf., e.g., eq. (12) below).

3. Flow equation and fixed functions in four dimensions

3.1. Discussion of the flow equation

The coefficient T Dirac shows a peculiarity, it is only linear in 
the curvature. During derivation it is also a ratio of a quadratic 
numerator and a linear denominator like the other coefficients, 
however, for the chosen regularisation procedure (and only for 
this one amongst the ones used in ref. [2]) this denominator can-
cels against one of the two numerator terms to yield T Dirac ∝
2(1 + (αD + 1/6)r).

Although simpler than the other terms the coefficient for the 
Dirac fields already displays a qualitative difference when changing 
the related endomorphism parameter. The allowed interval for αM

D
is −1/4 ≤ αM

D ≤ 0 (see the corresponding discussion in refs. [2,3]) 
with the lower end corresponding to a type-II- and the upper end 
to a type-I-regulator. It is plain that therefore the sign of the linear 
term depends on this parameter, and this will qualitatively change 
how fermions contribute to the flow equation. This property will 
be important when discussing the solutions for fixed functions.

Solving the non-linear partial differential equation (8) for flows 
of the function ϕ(r) is an extremely complicated task. The neces-
sary first step in such an analysis is calculating its fixed functions, 
the generalisation of fixed points. Those are the solutions of the 
ordinary differential equation obtained by setting ∂tϕ(r) = 0 and 
thus ∂tϕ

′(r) = 0 = ∂tϕ
′′(r) in eq. (8). To distinguish them from the 

general scale-dependent function ϕ(r) a fixed function will be de-
noted as usual by ϕ�(r) in the following.

In its normal form ϕ� ′′′ = . . . the flow equation has the follow-
ing singularities: first, from the term proportional to ϕ� ′′′ in (9b)

rsing
1 = − 1

αG
S + 3

2

, rsing
2 = 0 , (11)

rsing
3 = − 1

αG
S − 5

6

, rsing
4 = − 1

αG
S − 1

3

,

and, second, from the denominators in the expressions (9) and 
(10). Hereby the extrema of ϕ�(r) via the second term in (9a)
are moving singularities. As seen below one can arrange the pa-
rameters and the solutions such that the moving singularities are 
cancelled against the numerators. Note that the singularity at van-
ishing curvature, rsing

2 = 0, reflects the non-smooth transition from 
a sphere to a flat space.

In the pure gravitational sector global fixed functions which are 
polynomials of quadratic order have been found and described in 
ref. [5]. For them, the third derivative vanishes and thus the sec-
ond summand of the expression (9b) does not contribute. In all 
other non-trivial solutions this term (which stems from the con-
formal mode) determines the structure of the differential equation 
in the normal form because in this and only this term a third-order 
derivative, i.e., ϕ′′′(r), appears.

3.2. Global solutions for fixed functions

3.2.1. Global quadratic solutions
As already mentioned above, global solutions of quadratic order,

ϕ�(r) = 1

(4π)2
(g�

0 + g�
1r + g�

2r2) (12)

are special. Hereby, g�
1 needs to assume a negative value. To un-

derstand why one requires this for a polynomial Ansatz one writes 
the action such that the Einstein–Hilbert action in standard nota-
tion is contained,

f (R) = �k

8πGk
− R

16πGk
+O(R2) , (13)

which allows one to identify

�k = − g0

2g1
k2 and Gk = − π

k2 g1
, (14)

respectively. Thus, a positive value for Newton’s constant requires a 
negative value of g1. As the RG flow for Newton’s constant cannot 
cross the zero, and therefore its UV and IR value possess the same 
sign, also its fixed point value must be positive for an acceptable 
solution, and thus g�

1 < 0.
The fact that the constant term in the polynomial expan-

sion, g0, does not appear on the right hand side of the flow 
equation (8) allows for a simple estimate how it is changed by 
the presence of matter fields. This in turn permits to estimate 
the influence of matter onto the cosmological constant within the 
present setting: gcomplete

0 ≈ g gravity
0 + 1

4 NV + 1
8 N S − 1

2 ND , for more 
details see [2]. Furthermore, the related critical exponent (which is 
as usual defined as the negative of the eigenvalue of the stability 
matrix of the linearised flow equation) is always 0 = 4.

Without matter fields, i.e., for N S = ND = NV = 0, five differ-
ent solutions for a globally quadratic fixed function have been 
identified in ref. [5]. In case ϕ�(r) is a polynomial the differen-
tial equation determining it can be written as

Pnum(r)

Pden(r)
= 0, (15)

i.e., as the requirement that the ratio of two polynomials vanish. 
This can be solved in two steps: first, solve for Pnum(r) = 0, and 
second, keep only those solutions where all roots of Pden(r) (i.e., 
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Table 1
Quadratic solutions for the fixed function with different matter content derived from the pure gravity solution (16).

(N S , ND , NV ) αG
S αG

V αT αM
S αM

D αM
V 1 g�

0 g�
1 g�

2 rmin 0,1

(0,0,0) .0389 .3189 −.0978 – – – .6800 −1.179 .4505 1.308 4, 2.02
(0,45/2,0) .0389 .3189 −.0978 – 0 – −10.57 −4.929 1.884 1.308 4, 1.98
(4,45/2,0) −.0819 .0389 −.3778 −.2111 0 – −9.970 −5.078 1.382 1.837 4, 2.35
(4,45/2,12) −.0190 .1603 −.2563 −.0897 0 −.3397 −6.702 −8.630 1.825 2.364 4, 2.36

Table 2
Quadratic solution for the fixed function with different matter content derived from the pure gravity solution (17).

(N S , ND , NV ) αG
S αG

V αT αM
S αD αM

V 1 g�
0 g�

1 g�
2 rmin 0,1

(0,0,0) −.0638 −.1472 −.5638 – – – 1.236 −1.074 0.2134 2.518 ≈ 16, 4
(0,45/2,0) −.0638 −.1472 −.5638 – 0 – −10.01 −4.824 0.9581 2.518 4, 2.98
(4,45/2,0) −.0554 −.1388 −.5550 −.3855 0 – −9.415 −4.637 0.9014 2.572 4, 3.05
(4,45/2,12) −.0308 −.1140 −.5308 −.3644 0 −.6143 −5.813 −9.368 1.705 2.746 4, 2.8

the potential singularities of this equation) coincide with roots of 
the numerator.

In the case of a quadratic Ansatz for the fixed function, Pnum(r)
is a fifth-order polynomial,1 and its six coefficients can be deter-
mined by a discrete set of values for g�

0, g�
1, g�

2, αG
T , αG

V and αG
S , 

see ref. [5]. Quite surprisingly, in all five solutions found in this 
reference the potential singularities given by the zeros of the de-
nominator are cancelled by the numerator. On the other hand, for 
two of these five solutions the eigenperturbations lead to a differ-
ential equation with four instead of three fixed singularities, and 
therefore such eigenperturbations cannot exist globally. For an-
other of these five solutions αT = (11 + √

265)/54 ≈ 0.505 > 2/3, 
i.e., the inequality for a positive argument of the regulator function 
is violated. This leaves us with two solutions, and the correspond-
ing values for the parameters are given in the respective first lines 
of Tables 1 and 2. The exact values of these parameters are, re-
spectively,

αG
S = 5

√
265−73
216 , αG

V = 67−2
√

265
108 ,

αG
T = 11−√

265
54 , g�

0 = 49+√
265

96 , (16)

g�
1 = − 4141+121

√
265

5184 , g�
2 = 67795+3583

√
265

279936 ,

or

αG
S = − 3

47 , αG
V = − 83

564 , αG
T = − 53

94 ,

g�
0 = 89

72 , g�
1 = − 101

94 , g�
2 = 1414

6627 . (17)

As this will be important below we also give the value for the 
minimum of the fixed functions

rmin = − g�
1

2g�
2

=
⎧⎨
⎩

3
20 (25 − √

265) ≈ 1.3082 ,

141
56 ≈ 2.5179 .

(18)

As a matter of fact, for a global quadratic solution one can rewrite 
the equation for the fixed function such that the parameters g�

i
appear only in the ratio rmin = −g�

1/2g�
2 on the left hand side be-

cause then some of the expressions in eqs. (9a) and (9b) simplify:

ϕ′ − rϕ′′

ϕ′ = rmin

rmin − r
(19)

and

1 The l.h.s. of the flow equation (8) is for the Ansatz (12) not a polynomial 
of order N = 2 as naïvely expected because the term proportional to r2 cancels: 
4ϕ(r) − 2rϕ′(r) = 4g0 + 2rg1.

ϕ′′(
1 + (

αG
S − 1

3

)
r
)
ϕ′′ + 1

3ϕ′ = 1

1 + αG
S r − rmin/3

. (20)

For the solution (16) one of the zeros of second summand 
of (9a) occurs exactly at rmin and thus the potential singularity 
is cancelled. The singularity in the scalar term occurs at negative 
values of r and is thus of no concern. For the solution (17) the 
potential pole due to the scalar term appears also exactly at rmin , 
and the same is true for the first term in (9a) and the term (9c). 
With these values of endomorphism parameters, for the pure grav-
ity case, the four terms of the left hand side conspire to yield

1

(4π)2

(
89

18
− 101

47
r

)
(21)

which, of course, solves then the equation for the fixed function 
for the parameters g�

0 and g�
1 given in eq. (17).

The usefulness of the above considerations becomes immedi-
ately clear when adding fermions, i.e., when adding

−2ND

(4π)2

(
1 + (αM

D + 1

6
) r

)
. (22)

A global quadratic solution can be now easily obtained by keeping 
the ratio g�

1/g�
2 and thus rmin fixed. One simply keeps the values of 

the endomorphism parameters in the gravity sector and substitutes

g�
0 → g�

0 − ND

2

g�
1 → g�

1 − (αM
D + 1

6
)ND

= g�
1 +

⎧⎨
⎩

1
12 ND type II reg.

− 1
6 ND type I reg.

(23)

g�
2 → g�

2 + 1

2rmin
(αM

D + 1

6
)ND

= g�
2 − 1

2rmin

⎧⎨
⎩

1
12 ND type II reg.

− 1
6 ND type I reg.

This proves to be always possible independent of whether the 
coefficient of the linear term is negative as, e.g., for the type I reg-
ulator, or positive as, e.g., for the type II regulator. However, in the 
latter case the value of g�

1 will change sign, and thus the solution 
becomes unphysical.

If one uses now the type-II regulator for the fermions there will 
be a critical value of ND where g�

1 becomes positive, for the solu-
tion (16) this value is ND = 14.1 whereas for the solution (17) it 
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is ND = 12.9. If these values are exceeded the minimum turns to 
a maximum (but stays at the same location) and the values of g�

1
and g�

2 change sign. Therefore, if a type-II regulator is used for 
fermions one can add only a finite number of them and keep a 
physically meaningful solution in agreement with the results ob-
tained already in the polynomial approximation [2].

Adding now scalar and/or vector fields it turns out that one 
cannot fix the parameters αM

S = αM
V 2 = 0 and αM

V 1 = −1/4, i.e., to 
their respective type-II values. Although then no new singularities 
arise in the matter sector one can easily convince oneself that one 
obtains then for the numerator polynomial the degree six, and thus 
seven equations for six variables because the expressions T scalar

and T vector in (10) are of quadratic order. A similar situation arises, 
namely eight equations for seven variables etc., if one fixes only 
one or two of the three parameters to the respective type-II value. 
Basically the same remark applies for fixing to type-I values.

Exploring the possibility of adjusting the parameters αM
S

and αM
V 1,2 to keep a global quadratic solution one notes first 

that adding fermions is always straightforward by applying the 
rule (23). For finding the endomorphism parameters which lead 
to a quadratic solution it proves to be easier to add scalar then 
vector fields. To obtain a solution with the standard model field 
content the following strategy has been used: first, add 45/2 Dirac 
fields (according to standard model matter content) with type-I 
regulator by applying (23) to the solution (16) and verify this nu-
merically. Second, on the top of this four scalar fields are added 
and the corresponding parameter αM

S is determined. From there 
on one increases NV in small steps until the standard model value 
12 was reached. The results for pure gravity, gravity plus fermions, 
gravity plus fermions and scalars as well as for gravity plus stan-
dard model matter content are displayed in Tables 1 and 2. In all 
cases one obtains αM

S = αM
V 2.

It has to be emphasised that a solution with a positive value for 
Newton’s constant could be found because the type-I value αM

D = 0
was used for the fermionic term. The stabilising effect of the type-
I regulated fermions is very much needed. E.g., the solution with 
no fermions at all but four scalars and twelve vectors which fol-
lows from the ones given in Table 1 possesses a negative value for 
Newton’s constant. For the solution (17) one obtains an interesting 
effect of the fermions for the critical exponents: the pure grav-
ity solution has a large critical exponent which we estimate to be 
around 16. Adding now type-I regulated fermions brings this one 
down to three (which also restores the order such that the critical 
exponent 4 related to the cosmological constant is the largest one). 
Adding scalars on top of gravity and fermions slightly increases the 
values of the second critical exponent but has overall not much ef-
fect. The same can be said about the vector fields. All other critical 
exponents 2,3,... are always negative, respectively, possess a neg-
ative real part.

In summary, two solutions have been found with endomor-
phism parameters adjusted such that a global quadratic solution 
exist for matter up to the Standard Model matter content. This 
worked because a type-I regulator for the fermions has been used. 
At least for the type of solutions discussed here type-II regulated 
fermions quite efficiently lead to a change of sign of Newton’s con-
stant and thus outside the class of physically accepted solutions. It 
should, however, be emphasised that the (non-)existence of phys-
ical solutions for this very specific type of global solutions do not 
provide any argument in favour or against type-I and/or type-II 
regulators.

3.3. Asymptotic behaviour for large curvature

Studying the asymptotic behaviour for large curvature r serves 
within this investigation two purposes. On the one hand, this 

knowledge will be employed when numerically solving for a fixed 
function. On the other hand, it will allow to identify a destabilising 
influence of matter fields without actually searching for a numeri-
cal solution.

As shown below the possible leading asymptotic behaviour for 
r � 1 is either ∝ r2 or ∝ r2 ln r (cf., ref. [9]) depending on the val-
ues of the endomorphism parameters. The left hand side of eq. (8)
at the NGFP reduces to a constant plus linear term if ϕ�(r) is a 
quadratic function due to a cancellation (see footnote 1), and it 
becomes a quadratic polynomial if a term proportional to r2 ln r is 
added.

Quite obviously cancellations in differences between terms play 
a significant role. Therefore the most straightforward way to pro-
ceed is to infer the large curvature behaviour term by term. In 
this respect the simplest term is T Dirac (10b). It is, in the pres-
ence of a non-vanishing quadratic term on the left hand side of 
the flow equation, subleading because it is a linear function in r. 
As the scalar matter term T scalar and the contribution from the 
gauge ghost behave identical they can be discussed together. One 
clearly sees a qualitative difference for αM

S 	= 0, resp., αM
V 2 	= 0

for which the asymptotic behaviour of the corresponding terms 
is linear, versus for vanishing parameter (which includes type-I 
and type-II coarse graining) for which the asymptotic behaviour 
is quadratic. In the first case these two terms provide singularities 
at r = −1/αM

S and r = −1/αM
V 2, respectively. In the latter case one 

has, of course, no singularities.
As for the transverse vector matter fields one has to distinguish 

between the type-II case αM
V 1 = −1/4 for which there is no sin-

gularity but a quadratic contribution, and all other cases with a 
singularity at r = −1/(αM

V 1 + 1/4) and a leading linear asymptotic 
behaviour. A completely analogous discussion applies to the gravi-
tational ghost term T ghost with the only difference that the type-II 
corresponds to αG

V = +1/4, and in a similar way to the first line 
in (9a) (type II corresponds to αG

T = −1/6).
Last but not least, in order to obtain a global solution the 

moving singularities in the second line of (9a) and in both ex-
pressions in (9b) need to cancel against the numerators (Frobenius 
method). Even if this is arranged then these three terms have lead-
ing quadratic behaviour. However, there is one way to avoid this: 
if ϕ� ∝ r2 then ϕ� ′′′ → 0 for r → ∞, and the remaining two terms 
can be tuned to cancel.

To summarise this discussion, especially with respect to the 
impact of matter on the asymptotic behaviour, one notes that 
for type-II coarse-graining the generic leading behaviour on the 
right hand side of the flow equation is quadratic. Noting that 
the solution of the differential equation 4ϕ(r) − 2rϕ′(r) = cr2 is 
ϕ = 1

2 cr2 ln r + O(r2) this implies that the leading behaviour is 
then ϕ� ∝ r2 ln r for r � 1. As an advantage one has that then 
matter does not introduce any new singularities, i.e., the same 
counting of conditions with respect to the solubility and the num-
ber of solutions for this non-linear differential equation applies. 
For generic endomorphism parameters the leading asymptotic be-
haviour of the matter contributions is linear, and thus will not 
qualitatively change the leading asymptotic behaviour of the so-
lution in the pure gravity case. On the other hand, one introduces 
(even if one sets αM

S = αM
V 2 right away) one or two new singular-

ities which will make without fine-tuning (e.g., to push them to 
values of r in which one is not interested, foremost to negative 
values) the differential equation only locally solvable. Note that for 
the transverse vectors and for the Dirac fermions type-I endomor-
phism parameters behave for this purpose alike general values.

For the scalars and the gauge ghosts the type-I and type-II en-
domorphism parameters coincide, αM

S = αM
V 2 = 0. Therefore, the 

“dangers” of type-II apply for the related two terms also for 
type-I coarse-graining. At this point, it is interesting to note that, 
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Fig. 1. Displayed are the fixed functions (black lines) for the case of pure gravity (left panel) and with standard model matter content (right panel). The respective polynomial 
approximations of order 14 using r = 0 as an expansion point [2] are shown as dashed lines for comparison.

had one employed an interpolation scheme based on the Euler–
MacLaurin formula, the scalar term had simplified very much alike 
the fermionic one does in the here used averaging interpolation 
[2,3]:

T scalar = N S

2

1

(4π)2
(1 + (αM

S + 1
3 )r) . (24)

With this behaviour the contributions of the scalars would be as 
easily and semi-analytically taken into account as the ones for the 
fermions here.

3.4. Numerical solutions for global fixed functions

In this section two examples for a numerical solution will be 
presented, one for pure gravity and one for standard model matter 
content. Given the fact that type-II coarse graining with standard 
model matter content will lead to physically unacceptable solu-
tions one may want to employ as coarse graining operator only 
the Laplacian (type-I). However, then already in the pure gravity 
case the flow equation will not possess a solution for all positive 
curvatures r.

The flow equation is a third order equation, and it is only 
then not over-constraint if there are a most three singularities [9]. 
Therefore, if the solution had no extremum, and there were no 
moving singularity one can allow for positive r at most three 
fixed singularities. However, the physical condition of a positive 
Newton constant and thus a negative g1 implies that ϕ(r) de-
creases at small values of the curvature. On the other hand, at 
large curvatures the function ϕ(r) should assume a positive value 
to make the functional integral well-defined which is achieved by 
ϕ(r) → +∞ for r → ∞. Consequently, ϕ�(r) must possess at least 
one minimum, and one can allow for at most two fixed singulari-
ties. However, for type-I one has four additional fixed singularities 
at rsing

2 = 0, rsing
3 = 6/5, rsing

4 = 3 and rsing
ghost = 4, where the last 

one originates from the ghost term T ghost. Searching for solutions 
for strictly positive curvature one does not require a condition at 
rsing

2 = 0. The ghost singularity we move to negative values of r
by choosing αG

V = 1/2 which is well within the allowed range of 
parameters [2,5]. This is then the least modification of the flow 
equation as compared to the one in type-I coarse graining which 
allows for a numerical solution.

Analysing the flow equation for large r one can infer the be-
haviour

ϕ�(r) ∝ (2 ln r − 1) r2 +O
(

r2

ln r
, r (ln r)2

)
, (25)

which fulfils the orders r2(ln r)3 and r2(ln r)2 simultaneously. How-
ever, this asymptotic behaviour only becomes reasonably precise at 
extremely large values of r and is thus only of limited use in the 
numerics.

To obtain numerical solutions a multi-shooting method will be 
employed. As for the pure gravity case: to this end a minimum at 
the zero of the second summand in T TT (9a) at r = 3/2 is enforced. 
Shooting to the left one can then construct the solution left and 
right from the singularity by matching it at rsing

3 ± 10−4 = 6/5 ±
10−4 such that a singularity of the third derivative is avoided. The 
result is displayed in the left panel of Fig. 1.

When adding the standard matter model content (N S = 4, 
ND = 22.5 and NV = 12 and type-I coarse graining) a polynomial 
approximation is used as an Ansatz in the differential equation for 
the fixed function to estimate at which position the minimum of 
ϕ�(r) has to be located. This estimate is then iteratively improved 
by repeating the analogous procedure as in the gravity case.

The result is displayed in the right panel of Fig. 1. First, one 
observes clearly the absence of any structure, the global fixed func-
tions are very close to parabolas, i.e., all their features can be 
captured a quadratic expression with only three coefficients. Sec-
ond, the agreement with the polynomial approximation extends 
until r ≈ 2. For the pure gravity case this implies that the position 
of the minimum coincides with the one of the polynomial approx-
imation within numerical accuracy. For the matter-gravity system 
the minimum is slightly shifted from r = 2.05 to r = 2.15.

In Fig. 2 the functions ϕ�(r)/r2 are plotted for two reasons. 
First, in this way one can check the asymptotic behaviour for 
large r. Amazingly, the logarithmic dependence of eq. (25) cannot 
be seen. Even up to very large values of r the extracted leading 
term is proportional to r2 within the numerical accuracy. Second, 
plotting the fixed functions in this way a comparison to the re-
sults of ref. [18] is straightforwardly possible. In this investigation 
fixed functions with a sphere as background have been calculated, 
however, using a linear split of the metric and a vertex expan-
sion. As argued in this reference the ratio ϕ�(r)/r2 is the effective 
background potential at the fixed point, and a minimum of this 
function signals a solution of the background equation of motion. 
The authors of ref. [18] found now in the pure gravity case a 
background potential without an extremum whereas after adding 
the Standard Model matter content they observed a minimum at 
r ≈ 0.1. From the present work, see Fig. 2, one obtains, on the con-
trary, a minimum for the pure gravity case and the absence of an 
extremum with Standard Model matter. In addition, in the pure 
gravity case the minimum is at a rather large value of the curva-
ture, r ≈ 1.2.
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Fig. 2. Displayed are the effective potentials ϕ�(r)/r2 (black lines) for the case of pure gravity (left panel) and with standard model matter content (right panel). The respective 
polynomial approximations of order 14 using r = 0 as an expansion point [2] are shown as dashed lines for comparison.

4. Summary and conclusions

In this letter a study of global fixed functions in the context of 
the asymptotic safety scenario for f (R)-gravity coupled to matter 
has been presented. For some well-chosen sets of coarse-graining 
parameters global quadratic solution exists. Although these choices 
can hardly be motivated by physics they explain a remarkable be-
haviour of the numerically obtained global fixed functions: for all 
studied cases the deviations from a global quadratic form are tiny. 
Given this situation one might even speculate that differences to a 
quite simple form of the global fixed functions might be only due 
to the employed truncation. In the present investigation only two 
relevant directions have been found, one of them is directly related 
to the constant term, i.e., the cosmological constant. The other one 
is with only very small contributions from higher-order terms a 
linear combination of a linear and a quadratic term.

The presented investigation emphasises once more the question 
whether a change of a coarse-graining operator by a non-trivial 
endomorphism parameter still leads to consider the same theory, 
or whether the ultraviolet completions of such quantum gravity 
models are qualitatively different. Searching for global solutions 
for the fixed functions provided further evidence for the conclu-
sion of ref. [2] based on polynomial approximations, namely, that 
the NGFPs seen in gravity-matter systems belong to (at least) two 
different classes. Such a situation deserves certainly further inves-
tigations.

When comparing the here obtained numerical solutions for the 
fixed functions with those of ref. [18] a clear difference can be 
noted. The vertex expansion used there is certainly a more so-
phisticated truncation of the flow equation than the single-metric 
background approach used in this work. On the other hand, the 
exponential split of the metric employed here might be from a 
conceptual point of view superior to the linear split, cf., also the 
recent study [20] where (using also the same gauge as in the pre-
sented calculation) a two-parameter family of parameterisations 
of the split of the metric has been applied to the pure gravity 
case. Depending on these parameters two different classes for the 
fixed functions have been found. One might now further investi-
gate whether such differences persist when matter is included, and 
how the assignment of these different classes relate to the differ-
ent classes found in ref. [2] and here.

With respect to an investigation of the truncation dependence 
of the NGFP functions one may build on the recent work of 
ref. [54]: there a flow equation has been constructed retaining the 
consistency of the fluctuation field and background field equations 
of motion even for finite RG scales. Within the background approx-
imation this leads to a modified flow equation containing some 
additional terms. It is certainly worthwhile to study whether in-

cluding these terms brings the results for the fixed functions closer 
to the ones found in a vertex expansion for background and fluc-
tuating fields.

Last but not least, the results for the fixed functions obtained 
here verify further what one has seen in practically all investi-
gations of the NGFP function for f (R)-gravity without and with 
matter: if a solution for such a function can be found it is very 
close to a polynomial of only quadratic order.
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