
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/201106

Please be advised that this information was generated on 2019-06-02 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/200780361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/201106

1

Maintenance of Smart Buildings using Fault Trees

NATHALIE CAUCHI, Department of Computer Science, University of Oxford

KHAZA ANUARUL HOQUE, Department of Computer Science, University of Oxford

MARIELLE STOELINGA, Formal Methods and Tools Group, University of Twente, The Netherlands; De-

partment of Software Science, Radboud University, The Netherlands

ALESSANDRO ABATE, Department of Computer Science, University of Oxford

Timely maintenance is an important means of increasing system dependability and life span. Fault Maintenance trees

(FMTs) are an innovative framework incorporating both maintenance strategies and degradation models and serve as a good

planning platform for balancing total costs (operational and maintenance) with dependability of a system. In this work, we

apply the FMT formalism to a Smart Building application and propose a framework that e�ciently encodes the FMT into

Continuous Time Markov Chains. This allows us to obtain system dependability metrics such as system reliability and mean

time to failure, as well as costs of maintenance and failures over time, for di�erent maintenance policies. We illustrate the

pertinence of our approach by evaluating various dependability metrics and maintenance strategies of a Heating, Ventilation

and Air-Conditioning system.
1

CCS Concepts: •Computer systems organization→ Maintainability and maintenance;

Additional Key Words and Phrases: Fault Maintenance Trees, Formal modelling, Probabilistic Model checking, Reliability,

Building Automation Systems, PRISM

ACM Reference format:
Nathalie Cauchi, Khaza Anuarul Hoque, Marielle Stoelinga, and Alessandro Abate . 2018. Maintenance of Smart Buildings

using Fault Trees. ACM Trans. Sensor Netw. 1, 1, Article 1 (January 2018), 25 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Internet-of-things has enabled a new type of buildings, termed Smart Buildings, which aim to deliver useful

building services that are cost e�ective, reliable, ubiquitous and ensure occupant comfort and productivity (thermal

quality, air comfort). Smart buildings are equipped with many sensors such that a high level of intelligence is

achieved: light and heating can be switched on automatically; �re and burglar alarms can be more sophisticated;

and cleaning services can be connected to the occupancy rate. Maintenance is a key element to keep smart

buildings smart: without proper maintenance (cleaning, replacements, etc.), the bene�ts of achieving greater

e�ciency, comfort, increased building lifespan, reliability and sustainability are quickly lost.

In this paper, we consider an important element in smart buildings, namely the heating, ventilation and

air-conditioning (HVAC) system, responsible for maintaining thermal comfort and ensuring good air-quality in

buildings. One way of improving the lifespan and reliability of such systems is by employing methods to detect

1
Parts of this paper have been published in the 4th ACM International Conference on Systems of Energy-E�cient Build Environments

(BuildSys 2017) [6].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from

permissions@acm.org.

© 2018 ACM. 1550-4859/2018/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

ar
X

iv
:1

80
6.

05
17

4v
2

 [
cs

.S
Y

]
 2

2
Ju

n
20

18

1:2 • N.Cauchi et al.

faults and to perform preventive and predictive maintenance actions. Techniques for fault detection and diagnosis

for Smart Building applications have been developed in [4, 25]. Predictive and preventive maintenance strategies

are devised in [3, 7, 21]. Moreover, a reliability-centered predictive maintenance policy is proposed in [28]. This

policy is for a continuously monitored system which is subject to degradation due to imperfect maintenance.

However, these techniques neglect reliability measurements and focus only on synthesis of maintenance policies

in the presence of degradation and faults. The current industrial standard for measuring a system’s reliability is

the use of Fault trees, where the focus is on �nding the root causes of a system failure using a top-down approach

and do not incorporate degradation of system components and maintenance action [1, 20, 23]. [22] presents the

Fault Maintenance Tree (FMT) as a framework that allows to perform planning strategies for balancing total

costs and reliability and availability of the system. FMTs are an extension of FT encompassing both degradation

and maintenance models. The degradation models represent the di�erent levels of component degradation and

are known as Extended Basic Events (EBE). The maintenance models incorporate the undertaken maintenance

policy which includes both inspections and repairs. These are modelled using Repair and Inspection modules in

the FMT framework.

In literature, analysis of FMTs is performed using Statistical Model checking (SMC) [22], which generates

sample executions of a stochastic system according to the distribution de�ned by the system and computes

statistical guarantees based on the executions [19]. In contrast, Probabilistic Model Checking (PMC) provides

formal guarantees with higher accuracy when compared with SMC [27], at a cost of being more memory intensive

and may result in a state space explosion. PMC is an automatic procedure for establishing if a desired property

holds in a probabilistic system model which encodes the probability of making a transition between states. This

allows for making quantitative statements about the system’s behaviour which are expressed as probabilities

or expectations [18]. Probabilistic model checking has been successfully applied in a di�erent domains so far

including: aerospace and avionics [13], optical communication [24], systems biology [9] and robotics [10]. In this

paper we tackle the FMT analysis using PMC. Our contributions can be summarised as follows:

(1) We formalise the FMT using Continuous Time Markov Chain (CTMCs) and the dependability metrics

of a Heating, Ventilation and Air-Conditioning (HVAC) system, using the Continuous Stochastic Logic

(CSL) formalism, such that they can be computed using the PRISM model checker [17].

(2) To tackle the state space explosion problem, we present an FMT abstraction technique which decomposes

a large FMT into an equivalent abstract FMT based on a graph decomposition algorithm. This involves

an intermediate step where the large FMT is transformed into an equivalent direct acyclic graph and

decomposed into a set of small sub-graphs. Each of these small sub-graphs are converted to an equivalent

smaller CTMC and analysed separately to compute the required metric, while maintaining the original

FMT hierarchy. Using our framework, we are able to achieve a 67% reduction in the state space size.

(3) Finally, we construct a FMT that identi�es failure of an HVAC and illustrate the use of the developed

framework to construct and analyse the FMT. We also evaluate relevant performance metrics using

the PRISM model checker, compare di�erent maintenance strategies and highlight the importance of

performing maintenance actions.

This article has the following structure: Section 2 introduces the heating, ventilation and air-conditioning

(HVAC) set-up under consideration together with the maintenance question we are addressing. This is followed

by Section 3, which presents the fault maintenance trees and probabilistic model checking frameworks. Next, we

present the developed methodology for modelling FMT using CTMCs and perform model checking in Section 4.

The framework is then applied to the HVAC system in Section 5.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:3

2 PROBLEM FORMULATION
We consider the heating, ventilation and air-conditioning (HVAC) system setup found within the Department of

Computer Science, at the University of Oxford. A graphical description is shown in Figure 1. It is composed of

two circuits - the air �ow circuitry and the water circuit. The gas boiler heats up the supply water and transfers

the supply water into two sections - the supply air heating coils and the radiators. The rate of water �owing in

the heating coil is controlled using a heating coil valve, while the rate of water �ow in the radiator is controlled

using a separate valve. The outside air is mixed with the air extracted from the zone via the mixer. This is fed

into the heating coil, which warms up the input air to the desired supply air temperature. This air is supplied

back, at a rate controlled by the Air Handling unit (AHU) dampers, into the zone via the supply fan. The radiators

are directly connected to the water circuitry and transfer the heat from the water into the zone. The return water,

from both the heating coils and the radiators, is then passed through the collector and is returned back to the

boiler.

Fig. 1. High level schematic of an HVAC system.

The correct maintenance of this system is essential to ensure that the building operates with optimum e�ciency

while user comfort is maintained. The choice on the type of maintenance depends on several factors, including

the di�erent costs of maintenance and failures, and the practical feasibility of performing maintenance. To this

end, we aim to address the following maintenance questions: (1) what is the optimal maintenance strategy that

minimises system failures?; (2) what is the best trade-o� between cost of inspections, operation and maintenance,

vs the system’s number of expected failures?; (3) how frequently should the di�erent maintenance actions such

as performing a cleaning or a replacement be performed?; and (4) what is the e�ect of employing maintenance

over a speci�c time horizon vs not performing maintenance?

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 • N.Cauchi et al.

3 PRELIMINARIES

3.1 Fault trees
Fault trees (FT) are directed acyclic graphs (DAG) describing the combinations of component failures that lead to

system failures. It consists of two types of nodes: events and gates.

De�nition 3.1 (Event). An event is an occurrence within the system, typically the failure of a subsystem down

to an individual component. Events can be divided into basic events (BEs) and intermediate events. BE occur

spontaneously and denote the component/system failures while intermediate events are caused by one of or more

other events. The event at the top of the tree, called the top event (TE), is the event being analysed, modeling the

failure of the (sub)system under consideration (both type of events are highlighted in Figure 2).

De�nition 3.2 (Gates). The internal nodes of the graph are called gates and describe the di�erent ways that

failures can interact to cause other components to fail i.e. how failures in subsystems can combine to cause a

system failure. Each gate has one output and one or more inputs. The gates in a FT can be of several types and

these include the AND gate, OR gate, k/N-gate [22]. The output of a gate triggers an event which shows how

failures propagate through the fault tree.

Figure 2 depicts a fault tree were the basic events are shown using circles, top and intermediate events are

depicted by a rectangle.

Fig. 2. Example of a FT with five basic events (1-5), two intermediate events (B1,B2) and top event A; failures are propagated
by the gates (G1 −G3).

3.2 Fault maintenance trees
Fault maintenance trees (FMT) extend fault trees by including maintenance (all the standard FT gates are also

employed by the FMTs). This is achieved by making use of:

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:5

(1) Extended Basic Events (EBE) - The basic events are modi�ed to incorporate degradation models of the

component the EBE represents. The degradation models represent di�erent discrete levels of degradations

the components can be in and are a function of time. The timing diagram showing the progression

of degradation within an EBE is shown in Figure 3. The presented EBE had N discrete degradation

levels, initially the EBE is its new state and it gradually moves from one degradation levels, based on the

underlying distribution describing the degradation, to the next until the faulty level N is reached.

Fig. 3. Timing diagram of degradation within an EBE.

(2) Rate Dependency Events - A new gate, introduced in [22] and labelled as RDEP, accelerates the degradation

rates of n dependent child nodes and is depicted in Figure 4. When the component connected to the input

of the RDEP fails, the degradation rate of the dependent components is accelerated with an acceleration

factor γ . The corresponding timing diagram is shown in Figure 5. When the input signal is enabled

(input = 1), the child EBE moves to the next degradation levels at a faster rate.

RDEP
input

Children (n)

Fig. 4. RDEP gate with 1 input and dependent components also known as children.

(3) Repair and Inspection modules - The repair module (RM) performs cleaning or replacements actions.

These actions can be either carried out using �xed time schedules or when enabled by the inspection

module (IM). The RM module performs periodic maintenance actions (clean or replace), independently of

the IM. The IM performs periodic inspections and when components fall below a certain degradation

threshold a maintenance action is initiated by the IM and performed by the RM (outside of the RM’s

periodic maintenance cycle). The IM and RM modules are depicted in Figure 6. The e�ect of performing

a maintenance cleaning or replacement action on the EBE is illustrated in Figure 7. When a cleaning

action is performed the EBE moves back to its previous degradation level, while when a replacement is

performed the EBE moves back to the initial level.

A visual rendering of an FMT is given in Figure 8. It is composed of �ve EBEs located at the bottom of the tree,

one RDEP with one dependent child, three gates, one repair and inspection module and three events which show

the di�erent fault stages.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 • N.Cauchi et al.

Fig. 5. Degradation level evolution of child EBE showing e�ect of RDEP on degradation rate. Note, when the input is equal
to 1 the curve representing the degradation rate to go from one degradation level to the next (e.g. going from degradation
level 2 to 3) is steeper vs previous degradation level transitions (e.g. going from 0 to 1 or 1 to 2).

‘

Fig. 6. High-level description of the inspection and repair modules. The repair module performs maintenance actions
periodically (clean or replace). The inspection module performs inspections periodically and when the degradation level of
an EBE reaches thresh level, it triggers the repair module to perform a maintenance action immediately.

Fig. 7. Degradation level progression of EBE for di�erent maintenance actions.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:7

Fig. 8. Example of a fault maintenance tree.

3.3 Probabilistic model checking
Model checking [8] is a well-established formal veri�cation technique used to verify the correctness of �nite-state

systems. Given a formal model of the system to be veri�ed in terms of labelled state transitions and the properties

to be veri�ed in terms of temporal logic, the model checking algorithm exhaustively and automatically explores

all the possible states in a system to verify if the property is satis�able or not. Probabilistic model checking
(PMC) deals with systems that exhibit stochastic behaviour and is based on the construction and analysis of a

probabilistic model of the system. We make use of CTMCs, having both transition and state labels, to perform

stochastic modelling. Properties are expressed in the form of Continuous Stochastic Logic (CSL) [16], a stochastic

variant of the well-known Computational Tree Logic (CTL) [8] which includes reward formulae. Note, a system

can be modelled using multiple CTMCs which represent di�erent sub-components within the whole. Transition

labels are then used to synchronise the individual CTMCs representing di�erent parts of a system and in turn

obtain the full CTMC representing the whole system.

De�nition 3.3. The tuple C = (S, s0,TL,AP,L,R) de�nes a CTMC which is composed of a set of states S , the

initial state s0, a �nite set of transition labels TL, a �nite set of atomic propositions AP, a labelling function

L : S → 2
AP

and the transition rate matrix R : S × S → R≥0. The rate R(s, s ′) de�nes the delay before which a

transition between states s and s ′ takes place. If R(s, s ′) , 0 then the probability that a transition between the

states s and s ′ is de�ned as 1 − e−R(s,s ′)t where t is time. No transitions will trigger if R(s, s ′) = 0.

The logic of CSL speci�es state-based properties for CTMCs, built out of propositional logic (with atoms

a ∈ AP) , a steady-state operator (S) that refers to the stationary probabilities, and a probabilistic operator (P) for

reasoning about transient state probabilities. The state formulas are interpreted over states of a CTMC, whereas

the path formulas are interpreted over paths in a CTMC. The syntax of CSL is:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | S∼p [Φ] | P∼p [ϕ]
ψ ::= X ϕ | Φ U

≥T Φ

where ∼∈ {<, ≤,=, ≥, >}, p ∈ [0, 1],T ∈ R≥0 is the time horizon, X is the next operator and U is the until operator.

The semantics of CSL formulas is given in [16]. S∼p [Φ] asserts that the steady-state probability for a Φ-state

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 • N.Cauchi et al.

meets the bound ∼ p whereas P∼p [Φ U
≤t Φ] asserts that with probability ∼ p, by the time t a state satisfying

Φ will be reached such that all preceding states satisfy Φ. Additional properties can be speci�ed by adding the

notion of rewards. The extended CSL logic adds reward operators, a subset of which are [16]:

R∼r [C≤T] | R∼r [F Φ]

where r , t ∈ R≤0 and Φ is a CSL formula. A state s satis�es R∼r [C≤T] if, from state s, the expected reward

cumulated up until T time units have elapsed satis�es ∼ r and R∼r [F Φ] is true if, from state s , the expected

reward cumulated before a state satisfying Φ is reached meets the bound ∼ r .

Examples of a CSL property with its natural language translation are: (i) P≥0.95[F complete] - “The probability

of the system eventually completing its execution successfully is at least 0.95". Each state (and/or transition) of

the model is assigned a real-valued reward, allowing queries such as: (ii) R=?[F success] - “What is the expected

reward accumulated before the system successfully terminates?" Rewards can be used to specify a wide range of

measures of interest, for example, the total operational costs and the total percentage of time during which the

system is available.

4 FORMALIZING FMTS USING CTMCS

4.1 FMT Syntax
To formalise the syntax of FMTs using CTMCs, we �rst de�ne the set F , characterizing each FMT element by

type, inputs and rates. We introduce a new element called DELAY which will be used to model the deterministic

time delays required by the extended basic events (EBE), repair module (RM) and inspection module (IM). We

restrict the set F to contain the EBE, RDEP gate, OR gate, DELAY, RM and IM modules since these will be the

components used in the case study presented in Section 5.

De�nition 4.1. The set F= {EBE,RDEP ,OR,DELAY ,RM, IM} of FMT elements consists of the following tuples.

Here, n,N ∈ N are natural numbers, thresh, in, trig ∈ {0, 1} take binary values, Tcln , Trplc , Tr ep ,Toh , Tinsp ∈ R≥0
are deterministic delays, Tdeд ∈ R≥0 is a rate and γ ∈ R≥0 is a factor.

• (EBE,Tdeд ,Tcln ,Trplc ,N) represent the extended basic events with N discrete degradation levels, each of

which degrade with a time delay equal toTdeд . It also takes as inputs the time taken to restore the EBE to

the previous degradation level Tcln when cleaning is performed and the time taken to restore the EBE to

its initial state Trplc following a replacement action.

• (RDEP ,n,γ , in,Tdeд) represents the RDEP gate with n dependent children, acceleration factor γ , the input

in which activates the gate and Tdeд the degradation rate of the dependent children.

• (OR,n) represents the OR gate with n inputs. When either one of the inputs reaches the state labelled

with f ailed , the OR gate returns a true signal.

• (RM,n,Tr ep ,Toh ,Tinsp ,Tcln ,Trplc , thresh, trig) represents the RM module which acts on n EBEs (in our

case, this corresponds to all the EBEs in the FMT). The RM can either be triggered periodically to perform

a cleaning action, everyTr ep delay, or a replacement action, everyToh delay, or by the IM when the delay

Tinsp has elapsed and the thresh condition is met. The time to perform a cleaning action isTcln , while the

time taken to perform a replacement is Trplc . The trig signal ensures that when the component is not in

the degraded states, no unnecessary maintenance actions are carried out.

• (IM,n,Tinsp ,Tcln ,Trplc , thresh) represents the IM module which acts on n EBEs (in our case, this corre-

sponds to all the EBEs in the FMT). The IM initiates a repair depending on the current state of the EBE.

Inspections are performed in a periodic manner, every Tinsp . If during an inspection, the current state of

the EBE does not correspond to the new or failed state (i.e. the degradation level of the inspected EBE is

below a certain threshold), the thresh signal is activated and is sent to the RM. Once a cleaning action is

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:9

performed the IM moves back to the initial state with a delay equal to Tcln or Trplc depending on the

maintenance action performed.

• (DELAY ,T ,N) represents the DELAY module which takes two inputs representing the deterministic

delay T ∈ {Tdeд , Tcln ,Trplc ,Tr ep ,Toh ,Tinsp } to be approximated using an Erlang distribution with N
states. This DELAY module can be extended by inclusion of a reset transition label, which when triggered

restarts the approximation of the deterministic delay before it has elapsed. The extended DELAY module

is referred to as (DELAY ,T ,N)ext .

The FMT is de�ned as a special type of directed acyclic graph G = (V ,E) where the vertices V represent the

gates and the events which represent an occurrence within the system, typically the failure of a subsystem

down to an individual component level, and the edges E which represent the connections between vertices. The

vertices V are labelled instances of elements in F i.e. V may contain multiple elements of the same component

obtained from the set Fwhich are identi�ed by their common element label. Events can either represent the

EBEs or intermediate events which are caused by one or more other events. The event at the top of the FMT

is the top event (TE) and corresponds to the event being analysed - modelling the failure of the (sub)system

under consideration. The EBE are the leaves of the DAG. For G to be a well-formed FMT, we take the following

assumptions (i) vertices are composed of the OR, RDEP gates, (ii) there is only one top event, (iii) RDEP can only

be triggered by EBEs and (iv) RM and IM are not part of the DAG tree but are modelled separately This DAG

formulation allows us to propose a framework in Subsection 4.5 such that we can e�ciently perform probabilistic

model checking.

De�nition 4.2. A fault maintenance tree is a directed acyclic graph G = (V ,E) composed of vertices V and

edges E.

4.2 Semantics of FMT elements
Next, we provide the semantics for each FMT element, which are composed using the syntax of CTMC (cf.

De�nition 3.3). These elements are then instantiated based on the underlying FMT structure to form the

semantics of the whole FMT. We obtain the semantics of the whole FMT via synchronisation of transition

labels between the di�erent CTMCs representing the individual FMT elements. This is further explained in

subsection 4.3.

DELAY. We de�ne the semantics for the (DELAY ,T ,N) element using Figure 9 and describe the corresponding

CTMC using the set of states given by D = {d0,d1, . . . ,dN+1}, the initial state d0, the set of transitions labels

TL = {trigger, move}, the set of atomic propositions AP = {T }with L(d0) = · · · = L(dN) = ∅, and L(dN+1) = {T }.
The rate matrix R becomes clear from Figure 9 and

Ri j =

µ i = 0 ∧ j = 1,
N
T ((i ≥ 1 ∨ i < N + 1) ∧ j = i + 1) ∨ (i = N + 1 ∧ j = 1),
0 otherwise,

(1)

with i representing the current state, j is the next state and µ is a �xed large value corresponding to introducing

a negligible delay, which is used to trigger all the DELAY modules at the same time (cf. De�nition 3.3). In

Figure 10 we de�ne the semantics of (DELAY ,T ,N)ext . This results in the CTMC described using the state space

D = {d0,d1, . . . ,dN+1}, the initial state d0, the set of transition labels TL = {trigger, move, reset}, the set of

atomic propositions AP = {T }, the labelling function L(d0) = L(d1) = · · · = L(dN) = ∅, and L(dN+1) = {T } and

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 • N.Cauchi et al.

the rate matrix R where

Ri j =

µ i = 0 ∧ j = 1,

1 (i ≥ 2 ∨ i < N + 1) ∧ j = 1,
N
T ((i ≥ 1 ∨ i < N + 1) ∧ j = i + 1) ∨ (i = N + 1 ∧ j = 1),
0 otherwise,

(2)

with i representing the current state and j is the next state. In both instances, the deterministic delays is

approximated using an Erlang distribution [12] and all DELAY modules are synchronised to start together using

the trigger transition label. The extended DELAY module have the transition labels reset which restarts the

Erlang distribution approximation whenever the guard condition is met at a rate of 1 × Rsync where Rsync is

the rate coming from the use of synchronisation with other modules causing the reset to occur (as explained in

Subsection 4.3). This is required when a maintenance action is performed which restores the EBE’s state back to

the original state and thus restart the degradation process, before the degradation time has elapsed.

Remark 1. A random variable Z ∈ R+ has an Erlang distribution with k ∈ N stages and a rate λ ∈ R+,Z ∼
Erlanд(k, λ), if Z = Y1 + Y2 + . . .Yk where each Yi is exponentially distributed with rate λ. The cumulative density
function of the Erlang distribution is characterised using

f (t ;k, λ) = 1 −
k−1∑
n=0

1

n!
exp(−λt)(λt)n for t , λ ≥ 0, (3)

and for k = 1, the Erlang distribution simpli�es to the exponential distribution. In particular, the sequence Zk ∼
Erlanд(k, λk) converges to the deterministic value 1

λ for large k . Thus, we can approximate a deterministic delay T
with a random variable Zk ∼ Erlanд(k, kT) [5, 14]. Note, there is a trade-o� between the accuracy and the resulting
blow-up in size of the CTMC model for larger values of k (a factor of k increase in the model size) [12]. In this work,
the Erlang distribution will be used to model the �xed degradation rates, the maintenance and inspection signals.
This is a similar approach taken in [22] where degradation phases are approximated by an (k,λ)-Erlang distribution.

ExtendedBasic Events (EBE). The EBE are the leaves of the FMT and incorporate the component’s degradation

model. EBE are a function of the total number of degradation steps N considered. Figure 11 shows the semantics

of the (EBE,Tdeд ,Tcln ,Tr ep ,N = 3). The corresponding CTMC is described by the tuple ({s0, s1, s2, s3}, s0,TLEBE ,
APEBE ,LEBE ,REBE) where s0 is the initial state ,

TLEBE = {degradei ∈{0, ...,N }, perform_clean, perform_replace},
the atomic propositions APEBE = {new, thresh, failed}, the labelling function L(s0) = {new}, L(s1) = L(s2) =
{thresh},L(s3) = { f ailed} and

REBE =

0 1 0 0

1 0 1 0

1 1 0 1

1 0 1 0

 .
The deterministic time delays taken as inputs are modelled using three di�erent DELAY modules:

(1) an extended DELAY module approximatingTdeд with the transition label move replaced with degradeN such

that synchronisation between the two CTMCs is performed (explained in Subsection 4.3). WhenTdeд has

elapsed the transition labelled with degradeN is triggered and the EBE moves to the next state at a rate
2

2
This is a direct consequence of synchronisation and corresponds to R × REBE . Refer to Subsection 4.3

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:11

d0

start

d1 d2 d3 . . . dN+1
trigger,µ

move,NT move,NT move,NT move,NT

move,NT

Fig. 9. CTMC representing DELAY with N states used to approximate a delay equal to T approximated using Erlanд(N , NT).
The transition labels TL = {trigger, move} are shown on each of the transitions. The state labels are not shown and the
initial state of the CTMC is pointed to using an arrow labelled with start.

d0

start

d1 d2 d3 . . . dN+1
trigger ,µ

move ,NT move ,NT move ,NT move ,NT

reset,1

reset,1

reset,1

reset,1

Fig. 10. CTMC representing the extended DELAY with N states used to approximate a delay equal toT . Delay approximated
using Erlanд(N , NT). The transition labels TL = {trigger, move, reset} are shown on each of the state transitions, while
the state labels are not shown.

s0

start

s1 s2 s3

degrade
1
, λ degrade

2
, λ degrade

3
, λ

perform_clean, 1perform_clean, 1
perform_clean, 1

perform_replace, 1

perform_replace, 1

perform_replace, 1

Fig. 11. CTMC representing the EBE with N = 3 with the transition labels TLEBE = {degradei ∈{1,2,3},
perform_clean, perform_replace} on each of the state transitions. For clarity, the state labels are not shown. The
deterministic delays contained represent the transition label that is triggered when the delay generated by the corresponding
DELAY module has elapsed. The degradation rate is equal to λ = N

MTT F where MTTF is the components mean time to
failure.

equal to
N

Tdeд
× 1. The reset transition label and the corresponding transitions are replicated in extended

DELAY module and replaced with perform_clean and perform_replace. When the the previous state

(if cleaning action is carried out) or to the initial state (if replace action is performed).

(2) a DELAY module approximatingTcln with the transition label move replaced with perform_clean. When

Tcln has elapsed the transition with transition label perform_clean is triggered and the EBE moves to

the previous state at a rate equal to
N

Tcln
.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 • N.Cauchi et al.

(3) a DELAY module approximating Trplc with the transition label move replaced with perform_replace.

When Trplc has elapsed the transition label perform_replace is triggered and the EBE moves to the

initial state at a rate equal to
N

Trplc
.

The transition labels perform_clean and perform_replace cannot be triggered at the same time and it is

assumed thatTcln , Trplc . This is a realistic assumption as only one maintenance action is performed at the same

time.

RDEP gate. The RDEP gate has static semantics and is used in combination with the semantics of its n
dependent EBEs. When triggered (input = 1), the associated EBE reaches the state labelled failed, the degradation

rate of the n dependent children is accelerated by a factor γ . We model the input signal using

input =

{
1 L(s) = failed,
0 otherwise,

(4)

where L(s) is the label of the current state of the associated EBE (cf. Figure 5). Similarly, we map the RDEP gate

function using

RA =

{
γTdeд1 , . . . ,γTdeдn input = 1,

Tdeд1 , . . . ,Tdeдn otherwise,
(5)

where Tdeдi , i ∈ 1, . . .n corresponds to the degradation rate of the n dependent children.
3

OR gate. The OR gate indicates a failure when either of its input nodes have failed and also does not have

semantics itself but is used in combination with the semantics of itsn dependent input events (EBEs or intermediate

events). We use

FAIL =

{
0 E1 = 1 ∧ · · · ∧ En = 1,

1 otherwise,
(6)

where Ei = 1, i ∈ 1 . . .n corresponds to when the n events (cf. Def. 3.1), connected to the OR gate, represent a

failure in the system. In the case of EBEs, E1 = 1 occurs when the EBE reaches the failed state .

Repair module (RM). Figure 12 shows the semantics of (RM,n, Tr ep ,Toh ,Tinsp , Tcln , Trplc , thresh, trig). The

CTMC is described using the state space {rm0, rm1}, the initial state rm0, the transition labels

TLRM = {inspect, check_clean, check_replace, trigger_clean, trigger_replace},
the atomic propositions AP = {maintenance}, the labelling function L(rm0) = {∅}, L(rm1) = {maintenance} and

with

RIM =

[
1 1

1 0

]
.

For brevity in Figure 12, we used the transition labels check_maintenance and trigger_maintenance. The

transition label check_maintenance and corresponding transitions are replicated and the transition labels

replaced by check_clean or check_replace to allow for both type of maintenance checks. Similarly, the

transition label trigger_maintenance and corresponding transitions are duplicated and the transition labels

replaced by trigger_clean or trigger_replace to allow the initiation of both type of maintenance actions to

be performed. Due to synchronisation, only one of the transitions may trigger at any time instance (as explained

in Subsection 4.3). The transition labels trigger_clean or trigger_replace correspond to the transition label

trigger within the DELAY module approximating the deterministic delays Tcln and Trplc respectively. The

3
Note, this e�ectively results in changing the deterministic delay being modelled by the DELAY module to a new value if input = 1.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:13

deterministic delays which trigger inspect, check_clean or check_replace correspond to when the time

delays Tinsp ,Tr ep and Toh respectively, have elapsed. All these signals are generated using individual DELAY

modules with the move transition label for each module replaced using inspect, check_clean or check_replace
respectively. The thresh signal is modelled using

thresh =

{
1 L(sj,1) = thresh ∨ · · · ∨ L(sj,n) = thresh,
0 otherwise,

(7)

where L(sj,i), j ∈ 0 . . .N , i ∈ 1 . . .n correspond to the label of the current state j of each of the n EBE. Similarly,

we model the trig signal using

trig =

{
1 L(sj,1) , new ∨ · · · ∨ L(sj,n) , new,
0 otherwise.

(8)

Both signals act as guards which when triggered determine which transition to perform (cf. Fig. 12).

rm0start rm1

inspect,thresh =0,1

check_maintenance, trig =0,1

check_maintenance, trig=1,1

inspect, thresh =1,1

trigger_maintenance,1

Fig. 12. CTMC representing the RM with TLRM = {inspect, check_maintenance, perform_maintenance} shown on the
state transitions. The guard condition trig = 0/1 or thresh = 0/1 must be satisfied for the corresponding transition to trigger
when it is activated via synchronisation with the transition label.

Inspection module (IM) . The semantics of the (IM,n,Tinsp , Tcln ,Trplc , thresh) is depicted in Figure 13. The

CTMC is de�ned using the tuple ({im0, im1}, im0,TLIM ,APIM ,LIM ,RIM). Here,

TLIM = {inspect, perform_clean, perform_replace},

APIM = {∅}, with L(s0) = L(s1) = ∅ and

RIM =

[
1 1

1 0

]
.

The thresh signal corresponds to same signal used by the RM, given using (7). In Figure 13, for clarity, we use

the transition label perform_maintenance. This transition label and corresponding transitions are duplicated

and the transition labels are replaced by either perform_clean or perform_replace to allow for both type

of maintenance actions to be performed when one of them is triggered using synchronisation. The same

DELAY modules used in the RM and EBE to represent the deterministic delays are used by the IM. The DELAY

module used to represent the deterministic delays Tcln and Trplc triggers the transition labels perform_clean or

perform_replace. This represents that the maintenance action has completed.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 • N.Cauchi et al.

im0start im1

inspect, thresh =0,1

inspect, thresh =1,1

perform_maintenance ,1

Fig. 13. CTMC representing the IM with TLIM = {inspect, perform_maintenance} shown on the state transitions. The
guard condition trig = 0 and thresh = 1 must be satisfied for the corresponding transition to trigger when it is activated via
synchronisation with the transition label.

4.3 Semantics of composed FMT
Next, we show how to obtain the semantics of a FMT from the semantics of its elements using the FMT syntax

introduced in Subsection 4.1. We de�ne the DAG G by de�ning the vertices V and the corresponding events E.

The leaves of the DAG are the events corresponding to the EBE. The events E are connected to the vertices V ,

which trigger the corresponding auxiliary function used to represent the semantics of the gates. The Events
connected to the RM and IM are initiated by triggering the auxiliary functions thresh and trig given using (7)

and (8) respectively. Based on the structure of G, we compute the corresponding CTMC by applying parallel

composition of the individual CTMCs representing the elements of the FMT. The parallel composition formulae

are derived from [11] and de�ned as follows,

De�nition 4.3 (Interleaving Synchronization). The interleaving synchronous product of C1 = (S1, s01, TL1,
AP1,L1,R1) and C2 = (S2, s02,TL2,AP2,L2,R2) is C1 | |C2 = (S1 × S2, (s01, s02),TL1 ∪ TL2,AP1 ∪ AP2,L1 ∪ L2,R)
where R is given by:

s1
α1,λ1−−−−→ s ′

1

(s1, s2)
α1,λ1−−−−→ (s ′

1
, s2)
, and

s2
α2,λ2−−−−→ s ′

2

(s1, s2)
α2,λ2−−−−→ (s1, s ′

2
)
,

and s1, s
′
1
∈ S1, α1 ∈ TL1, R1(s1, s ′1) = λ1, s2, s ′2 ∈ S2, α2 ∈ TL2, R2(s2, s ′2) = λ2.

De�nition 4.4 (Full Synchronization). The full synchronous product of C1 = (S1, s01,TL1,AP1,L1,R1) and

C2 = (S2, s02,TL2,AP2,L2,R2) is C1 | |C2 = (S1 × S2, (s01, s02),TL1 ∪ TL2,AP1 ∪ AP2,L1 ∪ L2,R) where R is given

by:

s1
α,λ1−−−→ s ′

1
and s2

α,λ2−−−→ s ′
2

(s1, s2)
α,λ1×λ2−−−−−−→ (s ′

1
, s ′

2
)
,

and s1, s
′
1
∈ S1, α ∈ TL1 ∧ TL2, R1(s1, s ′1) = λ1, s2, s ′2 ∈ S2, α2 ∈ TL2, R2(s2, s ′2) = λ2.

For any pair of states, synchronisation is performed either using interleaving or full synchronisation. For full

synchronisation, as in De�nition 4.3, the rate of a synchronous transition is de�ned as the product of the rates for

each transition. The intended rate is speci�ed in one transition and the rate of other transition(s) is speci�ed as

one. For instance, the RM synchronises using full synchronisation with the DELAY modules representing Tinsp ,

Tr ep and Trplc and therefore, to perform synchronisation between the RM and the DELAY modules, the rates of

all the transitions of RM should have a value of one (cf. Fig. 12), while the rate of the DELAY modules represent

the actual rates (cf. Fig 9 and Fig 10). The same principle holds for the EBEs and the IM. We refer the reader to

Table 1 to further understand the synchronisation between the FMT components and the method employed for

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:15

parallel composition. Consider a simple example showing the time signals and synchronisations required for

Component Synchronised with component Transition label Synchronisation method
DELAY representing Tdeд DELAY modules representing Tcln ,Trplc ,Tinsp trigger Full synchronisation

RM DELAY module representing Tr ep trigger_clean Full synchronisation

RM DELAY module representing Toh trigger_replace Full synchronisation

EBE DELAY representing Tdeд degradeN Full synchronisation

DELAY representing Tcln RM, EBE check_clean Full synchronisation

DELAY representing Trplc RM, EBE check_replace Full synchronisation

DELAY representing Tinsp RM, IM inspect Full synchronisation

DELAY representing Tr ep RM, IM, EBE perform_clean Full synchronisation

DELAY representing Toh RM, IM, EBE perform_replace Full synchronisation

EBE RM,IM, all DELAY modules, other EBEs - Interleaving synchronisation

Table 1. Performing synchronisation between the di�erent FMT components and the synchronisation method used.

modelling an EBE and the RM and IM. The EBE has a degradation rate equal toTdeд and we limit the functionality

of the RM and IM by allowing only the maintenance action to perform cleaning. We also need the corresponding

DELAY modules generating the degradation rates, Tdeд and the maintenance rates Tcln ,Tinsp ,Tr ep . The resulting

CTMC is obtained by performing a parallel composition of the componentsCall = CEBE | | CTdeд | |CRM | |CIM | |CTcln
| |CTinsp | |CTr ep . The resulting state space is then Sall = SEBE × STdeд × SRM × SIM × STcln × STinsp × STr ep . The

synchronisation between the di�erent components is shown in Figure 14 and proceeds as follows:

(1) All the DELAY modules (except Tcln) start at the same time using the trigger transition label.

(2) When the extended DELAY module generating theTdeд time delay elapses, the corresponding EBE moves

to the next state through synchronisation with the transition label degradeN .

(3) The clock signals Tr ep ,Tinsp represent periodic maintenance and inspection actions and when the deter-

ministic delay is reached, through synchronisation with the transition label check_clean or the inspect,

the RM or IM modules are triggered (cf. Fig. 12 and 13). If RM triggers a maintenance action, the DELAY

representing Tcln is triggered using the synchronisation labels trigger_clean. Once the deterministic

delay Tcln elapses, the EBE, the extended DELAY module representing Tdeд (where the reset transition

label within the extended DELAY module is replaced with perform_clean) and the IM are reset using

the transition label perform_clean.

Remark 2. One should note that performing synchronisation results in a large state space, which is a function of
the number of states used to approximate the deterministic delays. In order to counteract this e�ect we propose an
abstraction framework in Subsection 4.5.

4.4 Metrics
We use PRISM to compute the metrics of the model described in Subsection 3.2. The metrics can be expressed

using the extended Continuous Stochastic Logic (CSL) as follows:

(1) Reliability : This can be expressed as the complement of the probability of failure over the time T ,

1 − P=?[F≤T f ailed].
(2) Availability: This can be expressed as R=?[C≤T]/T , which corresponds to the cumulative reward of the

total time spent in states labelled with okay and thresh during the time T .

(3) Expected cost: This can be expressed using R=?[C≤T], which corresponds to the cumulative reward of the

total costs (operational, maintenance and failure) within the time T .

(4) Expected number of failure: This can be expressed using R=?[C≤T], which corresponds to the cumulative

transition reward that counts the number of times the top event enters the failed state within the time T .

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 • N.Cauchi et al.

Fig. 14. Block diagram showing the synchronisation connections between one component and the other, together with the
corresponding transition label which triggers synchronisation.

4.5 Decomposition of FMTs
The use of CTMC and deterministic time delays results in a large state space for modelling the whole FMT (cf.

Remark 2). We therefore propose an approach that decomposes the large FMT into an equivalent abstract CTMC

that can be analysed using PRISM. The process involves two transformation steps. First we convert the FMT

into an equivalent directed acyclic graph (DAG) and split this graph into a set of smaller sub-graphs. Second, we

transform each sub-graph into an equivalent CTMC by making use of the developed FMT components semantics

(cf. Subsec. 4.2), and performing parallel composition of the individual FMT components based on the underlying

structure of the sub-graph. The smaller sub-graphs are then sequentially composed to generate the higher level

abstract FMT. Figure 15 depicts a high-level diagram of the decomposition procedure.

Fig. 15. Overall developed framework for decomposition of FMTs into the equivalent abstract CTMCs.

Conversion of the original FMT to the equivalent graph. The FMT is a DAG (cf. Subsection 4) and in this

framework we need to apply a transformation to the DAG in the presence of an RDEP gate, such that we can

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:17

perform the decomposition. The RDEP causes an acceleration of events on dependent children nodes when the

input node fails. In order to capture this feature in a DAG, we need to duplicate the input node such that it is

connected directly to the RDEP vertex. This allows us to capture when the failure of the input occurs and the

corresponding acceleration of the the children. This is reasonable as the same RM and IM are used irrespective of

the underlying FMT structure.

Graph decomposition. We de�ne modules within the DAG as sub-trees composed of at least two events

which have no inputs from the rest of the tree and no outputs to the rest except from its output event [20]. We

can divide the graph into multiple partitions based on the number of modules making up the DAG. We de�ne the

following notations to ease the description of the algorithm:

• Vo indicates whether the node is the top node of the DAG.

• Vд indicates the node where the graph split is performed.

• Modules correspond to sub-graphs in DAG.

We set Vo when we construct the DAG from the FMT and then proceed with executing Algorithm 1. We �rst

identify all the sub-graphs within the whole DAG and label all the top nodes of each sub-graph i as VT i . We loop

through each sub-graph and its immediate child (the sub-graph at the immediate lower level) and at the point

where the sub-graph and child are connected, the two graphs are split and a new node Vд is introduced. Thus,

executing Algorithm 1 results in a set of sub-graphs linked together by the labelled nodes Vд . For each of the

lower-level sub-graphs, we now proceed to compute the mean time to failure (MTTF). This will serve as an input

to the higher-level sub-graphs, such that metrics for the abstract equivalent CTMC can be computed.

ALGORITHM 1: DAG decomposition algorithm

input :DAG G = (V ,E)
output :Set of sub-graphs with one of the end nodes labelled as Vд .

1 Identify sub-graphs using ‘depth-�rst’ traversal

2 Label all top nodes of each sub-graph i as VTi
3 forall select the top node of every sub-graph and the child de�ned at the immediate lower level do
4 if label VT already found in one of the leaf nodes of the sub-graph then
5 Split sub-graph

6 Insert new node Vд which will be used as input from connected sub-graph

7 end
8 end

PMC of sub-graphs. We start from the bottom level sub-graphs and perform the conversion to CTMC using

the formal models presented in Subsection 4.2. The formal models have been built into a library of PRISM modules

and based on the underlying components and structure making up the sub-graph, the corresponding individual

formal models are converted into the sub-graph’s equivalent CTMC by performing parallel composition (cf.

Subsec. 4.3). For each sub-graph, we compute the probability of failure De (T) at time T , from which we calculate

the MTTF [23] using

MTTF =
ln(1 − De (T))

−T .

The MTTF serves as the input to the higher level sub-graph at timeT . The new node in the higher-level sub-graph,

now degrades with the new time delay Tdeд = MTTF , which is fed into the corresponding DELAY component.

This process is repeated for all the di�erent sub-graphs until the top level node Vo is reached. Figure 16 depicts

the steps needed to perform PMC for one of the sub-graphs.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 • N.Cauchi et al.

Fig. 16. PMC of sub-graphs.

PMC of �nal equivalent abstract CTMC. On reaching the top level nodeVo , we compute the metrics for the

equivalent abstract CTMC for a speci�c time horizonT . For di�erent horizons, the previous step of computing the

MTTF for the underlying lower level sub-graphs needs to be repeated. Using this technique, we can formally verify

larger FMTs, while using less memory and computational time due to the signi�cantly smaller state space of the

underlying CTMCs. Next, we proceed with an illustrative example comparing the process of directly modelling

Fig. 17. The original FMT and the abstract FMT corresponding to the equivalent abstract CTMC generated by the developed
framework. The MTTF for the F’ is computed based on the probability of failure of the heating coil.

the large FMT using CTMCs versus the de-compositional modelling procedure. Figure 17 presents the FMT

composed of two modules and the corresponding abstracted FMT. The abstract FMT is a pictorial representation of

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:19

the model represented by the equivalent abstract CTMC obtained using the developed decomposition framework

(cf. Fig. 15). For both the large FMT and the equivalent abstract FMT a comparison between the total number of

states for the resulting CTMC models, the total time to compute the reliability metric and the resulting reliability

metric is performed. All computations are run on an 2.3 GHz Intel Core i5 processor with 8 GB of RAM and

the resulting statistics are listed in Table 2. The original FMT has a state space with 193543 states, while the

equivalent abstract CTMC has a state space with 63937 states. This corresponds to a 67% reduction in the state

space size. The total time to compute the reliability metric is a function of the �nal time horizon and a maximal

73% reduction in computation time is achieved. Accuracy in the reliability metric of the abstract model is a

function of the time horizon and the number of states used to approximate the deterministic delay representing

the computed MTTF. The larger the number of states the more accurate the representation of the MTTF, but this

comes at a cost on the size of the underlying CTMC model. In our case, N = 4 is chosen. The accuracy of the

reliability metric computed by the abstract FMT results in a maximal reduction of 0.61%.

Time Original FMT Abstracted FMT
Horizon Time to compute Reliability Time to compute Total Reliability

metric MTTF metric Time

(years) (mins) (mins) (mins) (mins)

5 0.727 0.9842 0.142 0.181 0.223 0.9842

10 1.406 0.8761 0.219 0.309 0.528 0.8769

15 2.489 0.3290 0.292 0.622 0.914 0.3270

Table 2. Comparison between the original large FMT and the abstracted FMT.

5 CASE STUDY
We apply the FMT framework to a Heating, Ventilation and Air-conditioning (HVAC) system used to regulate a

building’s internal environment (cf. Sec. 2). Based on this HVAC system we construct the corresponding FMT

shown in Figure 18. The FMT structure follows the structure of the underlying HVAC system, as can be seen from

the colour shading used in Figure 18. The leaves of the tree are EBE with discrete degradation rates computed

using Table 3, approximated by the Erlang distribution where N is the number of degradation phases (k = N for

the Erlang distribution) and MTTF is the expected time to failure with MTTF = 1/λ (cf. Remark 1). We choose

an acceleration factor γ = 2 for the RDEP gate. The system is periodically cleaned every Tr ep months and a

major overhaul with a complete replacement of all components is carried out once every Toh years. Inspections

are performed every Tinsp months and return the components back to the previous state, corresponding to a

cleaning action. The total time to perform a cleaning action is 1 day (Tcln = 1 day), while performing a total

replacement of components takes 7 days (Trplc = 7 days). The time timing signals {Tr ep ,Toh ,Tinsp ,Tcln ,Trplc } are

all approximated using the Erlang distribution with N = 3. All maintenance actions are performed simultaneously

on all components.

5.1 �antitative results
In the following subsections, we employ the developed framework (cf. Subsec. 4.5) to the FMT representing the

failure of the HVAC system (cf. Fig. 18) and perform three di�erent experiments. We �rst demonstrate the use of

the developed framework by converting the FMT for the HVAC set-up into an abstract CTMC.For this abstract

CTMC we compute the metrics (cf. Sec. 4.4) using probabilistic model checking to show the type of analysis that

can be performed using the set-up. Next, we perform a comparison between di�erent maintenance strategies

applied to the same FMT. This allows the user to deduce the optimal strategy for the set-up. Last, we construct a

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 • N.Cauchi et al.

Fig. 18. FMT for failure in HVAC system with leaves represented using EBE (associated RM and IM not shown in figure). The
EBE are labelled to correspond to the component failure they represent using the fault index presented in Table 3. The EBE
and intermediate events are colour coded such that they correspond to the di�erent HVAC components thus showing how
the propagation of faults in the HVAC is reflected within the FMT.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:21

Fault Index Failure Mode N MTTF
(years)

1 Broken AHU Damper 4 20

2 Fan motor failure 3 35

3 Obstructed supply fan 4 31

4 Fan bearing failure 6 17

5 Radiator failure 4 25

6 Radiator stuck valve 2 10

7 Heater stuck valve 2 10

8 Failure in heat pump 4 20

Table 3. Extended Basic events in FMT with associated degradation rates (N, MTTF) obtained from [2, 15].

FMT which does not employ the repair and inspection module and compare it with the original FMT (includes

the maintenance modules) to further highlight the advantage of incorporating maintenance.

Applying the framework to HVAC set-up. We convert the FMT representing the failure of the HVAC

system into the equivalent abstract CTMC and perform probabilistic model checking over six time horizons

Nr = {0, 5, 10, 15, 20, 25} years with the maintenance policy consisting of periodic cleaning every Tr ep = 2 years

and inspections every Tinsp = 1 year. No replacement actions are considered. For this set-up, all the metrics

corresponding to the reliability, availability, total costs (maintenance, inspection and operational costs) and the

total expected number of failures of the HVAC systems over the time horizon are computed and are shown in

Figure 19. The total maintenance cost to perform a clean is 100 [GBP], while an inspection cost 50 [GBP]. The

maximal time taken to compute a metric using the abstract FMT is 1.47 minutes. It is deduced that the reliability

reduces over time. The availability is seen to be nearly constant, while the expected number of failures increases

until it reaches a steady state value. This shows that there is a saturation in the number of maintenance actions

which one can perform before the system no longer achieves higher performance in reliability and availability.

One can further note that, as expected, the maintenance costs increases linearly with time.

Comparison between di�erent maintenance strategies. In this second experiment, we compare all the

metrics (reliability, availability, total costs and expected number of failures) over the time horizon Nr =

{0, 5, 10, 15, 20, 25} years when considering di�erent maintenance strategies, such that we can identify the

optimal maintenance strategy that minimises cost and achieves the best trade-o� in HVAC performance (i.e. with

minimal expected number of failures and high reliability and availability). We consider �ve di�erent maintenance

strategies which are listed in Table 4.

Strategy index Tr ep Toh Tinsp

M0 2 years - 1 year

M1 5 years - 2 years

M2 2 years 5 years -

M3 2 years 10 years 1 year

M4 2 years 20 years 6 months

Table 4. Implemented maintenance strategies.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 • N.Cauchi et al.

0 5 10 15 20 25

0.85

0.9

0.95

1

Time (years)

R
e
l
i
a
b
i
l
i
t
y

0 5 10 15 20 25

1

0.9995

0.9990

Time (years)

A
v
a
i
l
a
b
i
l
i
t
y

0 5 10 15 20 25

0

0.5

1

1.5

·104

Time (years)

T
o

t
a
l

c
o

s
t
s

0 5 10 15 20 25

0

1

2

3

Time (years)

E
x
p

e
c
t
e
d

n
u

m
b

e
r

o
f

f
a
i
l
u

r
e
s

Fig. 19. Reliability, availability, total costs and expected number of failures of HVAC over time horizon Nr =

{0, 5, 10, 15, 20, 25}.

We select strategies that have a di�erent combination of repair, inspection and replacement strategies to

highlight the e�ect the di�erent maintenance actions have on the HVAC system’s performance. Figure 20 depicts

the resulting metrics for the employed strategies.

We can deduce that the worst performing strategy is when cleaning actions are carried out every 5 years with

inspection carried out bi-annually and no replacements (corresponding to strategy M1). Strategies M2 and M3

have comparable high performance but with a signi�cant increase in the total costs due to the replacement action.

We witness the highest costs using strategy M2 due to the frequent replacement of the HVAC system. Comparing

strategies M3 and M4 we can note that M3 has fewer number of failures over the whole time horizon but this comes

with higher total costs due to the replacements. Strategies M0 and M4 have similar performance with M0 having a

slightly lower availability and higher expected number of failures but with comparable maintenance costs. From

this analysis, we can deduce that the optimal strategy which gives the best trade-o� between costs and HVAC

system’s performance is strategy M0 (i.e. with annual inspections, bi-annual cleaning and no replacements).

Comparison between performingmaintenance andnomaintenance. Lastly, we compare the performance

of the HVAC system without performing any maintenance actions vs the HVAC system with annual inspections,

bi-annual cleaning and a major overhaul after 10 years. We employ the developed framework to represent the

FMT of the HVAC system, �rst without incorporating the repair and inspection modules and then incorporating

the repair and inspection modules with Tinsp = 1 year, Tr ep = 2 years and Toh = 10 years. The obtained results,

depicted in Figure 21, highlight the importance of maintenance and how appropriate maintenance strategies

are required in order to maintain a reliable and available HVAC. When no maintenance is performed, both the

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:23

M0 M1 M2 M3 M4

0 5 10 15 20 25

0.4

0.6

0.8

1

Time (years)

R
e
l
i
a
b
i
l
i
t
y

0 5 10 15 20 25

1

0.995

0.990

Time (years)

A
v
a
i
l
a
b
i
l
i
t
y

0 5 10 15 20 25

0

1

2

3

·104

Time (years)

T
o

t
a
l

c
o

s
t

0 5 10 15 20 25

0

20

40

Time (years)

E
x
p

e
c
t
e
d

n
u

m
b

e
r

o
f

f
a
i
l
u

r
e
s

Fig. 20. Comparison between di�erent number of maintenance strategies for an HVAC systems.

reliability and availability of the HVAC system are gradually reduced, while the expected number of failures

increases, as the components are degrading with time. This is in contrast to when maintenance is performed

where high performance values of reliability and availability are achieved and the expected number of failures

are low, throughout the whole time horizon. One should note, that this comes at a price, where the total costs

increase when maintenance is applied. Consequently, this further highlights the need to perform an analysis to

deduce the optimal maintenance strategy which gives the best trade-o� between costs, reliability, availability and

the expected number of failures.

6 CONCLUSION AND FUTURE WORKS
The paper presents a methodology for applying probabilistic model checking to FMTs. We model FMTs using

CTMCs which simplify the transformation of FMT into formal models that can be analysed using PRISM. We

further present a novel technique for abstracting the equivalent CTMC model. The novel decomposition procedure

tackles the issue of state space explosion and results in a signi�cant reduction in both the state space size and

the total time required to compute metrics. The framework is applied to an HVAC system and a set of di�erent

experiments to demonstrate the use of the developed framework and to highlight (i) the importance of performing

maintenance and (ii) the e�ect of applying di�erent maintenance strategies has been presented. The presented

framework can be further enhanced by adding more gates to the PRISM modules library which include the

Priority-AND, INHIBIT, k/N gates and to incorporate lumping of states as in [26].

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 • N.Cauchi et al.

With maintenace No maintenance

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Time (years)

R
e
l
i
a
b
i
l
i
t
y

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Time (years)

A
v
a
i
l
a
b
i
l
i
t
y

0 5 10 15 20 25

0

0.5

1

1.5

2

·104

Time (years)

T
o

t
a
l

c
o

s
t

0 5 10 15 20 25

0

2,000

4,000

6,000

Time (years)

E
x
p

e
c
t
e
d

n
u

m
b

e
r

o
f

f
a
i
l
u

r
e
s

Fig. 21. Comparison between incorporating the maintenance modules vs performing no maintenance.

ACKNOWLEDGMENTS
The author’s would also like to thank Carlos E. Budde and Enno Ruijters for their useful discussion and suggestions.

This work has been funded by the AMBI project under Grant No.: 324432, by the Alan Turing Institute, UK,

post-doctoral research grant from Fonds de Recherche du Quebec - Nature et Technologies (FRQNT) and Malta’s

ENDEAVOUR Scholarships Scheme.

REFERENCES
[1] Marwan Ammar, Khaza Anuarul Hoque, and Otmane Ait Mohamed. 2016. Formal analysis of fault tree using probabilistic model

checking: A solar array case study. In Systems Conference (SysCon), 2016 Annual IEEE. IEEE, 1–6.

[2] Handbook ASHRAE. 1996. HVAC systems and equipment. American Society of Heating, Refrigerating, and Air Conditioning Engineers,
Atlanta, GA (1996).

[3] Vladimir Babishin and Sharareh Taghipour. 2016. Optimal maintenance policy for multicomponent systems with periodic and

opportunistic inspections and preventive replacements. Applied Mathematical Modelling 40, 24 (2016), 10480–10505.

[4] Francesca Boem, Riccardo MG Ferrari, Christodoulos Keliris, Thomas Parisini, and Marios M Polycarpou. 2017. A distributed networked

approach for fault detection of large-scale systems. IEEE Trans. Automat. Control 62, 1 (2017), 18–33.

[5] Luca Bortolussi and Jane Hillston. 2012. Fluid approximation of CTMC with deterministic delays. In Quantitative Evaluation of Systems
(QEST), 2012 Ninth International Conference on. IEEE, 53–62.

[6] Nathalie Cauchi, Khaza Anuarul Hoque, Alessandro Abate, and Mariëlle Stoelinga. 2017. E�cient probabilistic model checking of

smart building maintenance using fault maintenance trees. In Proceedings of the 4th ACM International Conference on Systems for
Energy-E�cient Built Environments. ACM, 24.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Maintenance of Smart Buildings using Fault Trees • 1:25

[7] Nathalie Cauchi, Karel Macek, and Alessandro Abate. 2017. Model-based predictive maintenance in building automation systems with

user discomfort. Energy 138 (2017), 306–315.

[8] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. 1986. Automatic veri�cation of �nite-state concurrent systems using temporal

logic speci�cations. ACM Transactions on Programming Languages and Systems 8 (1986), 244–263.

[9] Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turber�eld. 2013. DNA walker circuits: Computational potential,

design, and veri�cation. In International Workshop on DNA-Based Computers. Springer, 31–45.

[10] Lu Feng, Clemens Wiltsche, Laura Humphrey, and Ufuk Topcu. 2015. Controller synthesis for autonomous systems interacting with

human operators. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. ACM, 70–79.

[11] Holger Hermanns and Lijun Zhang. 2011. From Concurrency Models to Numbers. In Nato Science for Peace and Security Series. IOS

Press.

[12] Khaza Anuarul Hoque, Otmane Ait Mohamed, and Yvon Savaria. 2015. Towards an accurate reliability, availability and maintainability

analysis approach for satellite systems based on probabilistic model checking. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, 1635–1640.

[13] Khaza Anuarul Hoque, Otmane Ait Mohamed, and Yvon Savaria. 2017. Formal analysis of SEU mitigation for early dependability and

performability analysis of FPGA-based space applications. Journal of Applied Logic (2017).

[14] Khaza Anuarul Hoque, O Ait Mohamed, Yvon Savaria, and Claude Thibeault. 2014. Probabilistic model checking based DAL analysis to

optimize a combined TMR-blind-scrubbing mitigation technique for FPGA-based aerospace applications. In Formal Methods and Models
for Codesign (MEMOCODE), 2014 Twelfth ACM/IEEE International Conference on. IEEE, 175–184.

[15] Faisal I Khan and Mahmoud M Haddara. 2003. Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection

scheduling and planning. Journal of Loss Prevention in the Process Industries 16, 6 (2003), 561–573.

[16] Marta Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic model checking. In International School on Formal Methods for
the Design of Computer, Communication and Software Systems. Springer, 220–270.

[17] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veri�cation of Probabilistic Real-time Systems. In Proc. 23rd

International Conference on Computer Aided Veri�cation (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.), Vol. 6806. Springer,

585–591.

[18] Marta Kwiatkowska and David Parker. 2011. Advances in Probabilistic Model Checking. (2011).

[19] Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. Statistical Model Checking: An Overview. RV 10 (2010), 122–135.

[20] ZF Li, Yi Ren, LL Liu, and ZL Wang. 2015. Parallel algorithm for �nding modules of large-scale coherent fault trees. Microelectronics
Reliability 55, 10 (2015), 1400–1403. Proceedings of the 26

th
European Symposium on Reliability of Electron Devices, Failure Physics

and AnalysisSI:Proceedings of {ESREF} 2015.

[21] Karel Macek, Petr Endel, Nathalie Cauchi, and Alessandro Abate. 2017. Long-term predictive maintenance: A study of optimal cleaning

of biomass boilers. Energy and Buildings 150 (2017), 111 – 117.

[22] Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. 2016. Fault maintenance trees: reliability centered maintenance via

statistical model checking. In Reliability and Maintainability Symposium (RAMS), 2016 Annual. IEEE, 1–6.

[23] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer
science review 15 (2015), 29–62.

[24] Umair Siddique, Khaza Anuarul Hoque, and Taylor T Johnson. 2017. Formal speci�cation and dependability analysis of optical

communication networks. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1564–1569.

[25] Ying Yan, Peter B Luh, and Krishna R Pattipati. 2017. Fault Diagnosis of HVAC Air-Handling Systems Considering Fault Propagation

Impacts Among Components. IEEE Transactions on Automation Science and Engineering 14, 2 (April 2017), 705–717.

[26] Olexandr Yevkin. 2015. An e�cient approximate Markov chain method in dynamic fault tree analysis. Quality and Reliability Engineering
International (2015).

[27] Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. 2006. Numerical vs. statistical probabilistic model checking.

International Journal on Software Tools for Technology Transfer 8, 3 (2006), 216–228.

[28] Xiaojun Zhou, Lifeng Xi, and Jay Lee. 2007. Reliability-centered predictive maintenance scheduling for a continuously monitored

system subject to degradation. Reliability Engineering & System Safety 92, 4 (2007), 530–534.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Problem formulation
	3 Preliminaries
	3.1 Fault trees
	3.2 Fault maintenance trees
	3.3 Probabilistic model checking

	4 Formalizing FMTs using CTMCs
	4.1 FMT Syntax
	4.2 Semantics of FMT elements
	4.3 Semantics of composed FMT
	4.4 Metrics
	4.5 Decomposition of FMTs

	5 Case study
	5.1 Quantitative results

	6 Conclusion and Future Works
	Acknowledgments
	References

