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ORIGINAL RESEARCH • BREAST IMAGING

Breast cancer screening with mammography is consid-
ered effective in reducing breast cancer–related mortal-

ity (1,2). However, the large number of women screened 
and the use of double reading of examinations in some 
countries creates a high workload that poses a threat to 
efficiency, especially considering the increasing scarcity 
of screening radiologists (3). Moreover, it is important to 
minimize misses and interpretation errors of visible lesions 
at digital mammography, which contribute to at least 25% 
of detectable cancers being missed (4–7).

Computer-aided detection (CAD) systems were intro-
duced as an aid for radiologists trying to improve human de-
tection performance. Although some studies indicated that 
single reading plus CAD could be an alternative to double 
reading (8–11), few, if any, have identified the actual benefit 
of using single reading plus CAD versus single reading alone 
(ie, the actual benefit on radiologists’ performance in screen-
ing) (12). In general, the benefit of using CAD in screening 
is still unclear. Most evidence shows no clear improvement 
in the cost-effectiveness of screening, mainly because of the 
low specificity of most traditional CAD systems (12–14).

However, substantial improvements in artificial intelli-
gence (AI) with deep convolutional neural networks (com-
monly known as deep learning algorithms) are reducing 
the difference in performance between humans and com-
puters in many medical imaging applications (15), includ-
ing breast cancer detection (16). Therefore, this new gen-
eration of deep learning–based CAD systems may finally 
allow for an improvement in the performance of breast 
cancer screening programs (17). Apart from the evolution 
of AI algorithms, the aid that the AI system provides can 
also help improve screening. Previous studies have shown 
that using CAD concurrently as a decision support tool 
helps radiologists more than does the traditional approach 
with prompts for assessing soft-tissue lesions (18,19).

The benefit, if any, of interactive AI-based systems on 
radiologists’ performance remains to be assessed in terms 
of overall diagnostic performance and efficiency. The pur-
pose of this study was to compare breast cancer detection 
performance of radiologists reading mammographic im-
ages unaided versus supported by a commercially avail-
able AI system.
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Purpose: To compare breast cancer detection performance of radiologists reading mammographic examinations unaided versus sup-
ported by an artificial intelligence (AI) system.

Materials and Methods: An enriched retrospective, fully crossed, multireader, multicase, HIPAA-compliant study was performed. 
Screening digital mammographic examinations from 240 women (median age, 62 years; range, 39–89 years) performed between 
2013 and 2017 were included. The 240 examinations (100 showing cancers, 40 leading to false-positive recalls, 100 normal) were 
interpreted by 14 Mammography Quality Standards Act–qualified radiologists, once with and once without AI support. The read-
ers provided a Breast Imaging Reporting and Data System score and probability of malignancy. AI support provided radiologists 
with interactive decision support (clicking on a breast region yields a local cancer likelihood score), traditional lesion markers for 
computer-detected abnormalities, and an examination-based cancer likelihood score. The area under the receiver operating charac-
teristic curve (AUC), specificity and sensitivity, and reading time were compared between conditions by using mixed-models analy-
sis dof variance and generalized linear models for multiple repeated measurements.

Results: On average, the AUC was higher with AI support than with unaided reading (0.89 vs 0.87, respectively; P = .002). 
Sensitivity increased with AI support (86% [86 of 100] vs 83% [83 of 100]; P = .046), whereas specificity trended toward 
improvement (79% [111 of 140]) vs 77% [108 of 140]; P = .06). Reading time per case was similar (unaided, 146 seconds; 
supported by AI, 149 seconds; P = .15). The AUC with the AI system alone was similar to the average AUC of the radiologists 
(0.89 vs 0.87).

Conclusion: Radiologists improved their cancer detection at mammography when using an artificial intelligence system for support, 
without requiring additional reading time.
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a single block of examinations acquired between Janu-
ary 2014 and February 2015 was retrieved. Examinations  
from each type (cancer, false-positive, normal) were con-
secutively collected until the numbers defined above were 
met. A total of 546 digital mammographic examinations 
were collected (110 showing cancer, 76 with false-positive 
recalls, and 360 with normal results). For each collected ex-
amination, a case report form was obtained, detailing pa-
tient demographic characteristics, lesion characteristics, and 
histopathologic features (Fig 1).

Mammogram selection.—To ensure appropriate image qual-
ity, all 546 collected examinations were reviewed by one radi-
ologist (R.M.M., with 13 years of experience with digital mam-
mography) who did not participate in the observer study. Nine 
cancer examinations were excluded during this revision (three 
because of poor image quality, three because it was not possible 
to link the case report form findings to the digital mammogra-
phy examination, and three because the examinations showed 
extremely obvious signs of breast cancer). From the remaining 
data, a randomized selection was performed to meet the pre-
defined distribution of examinations. The same number of ex-
aminations was included from each collection center.

Population characteristics.—The characteristics of the popu-
lations and the digital mammographic examinations included 
for the observer study are shown in Table 1. All digital mam-
mographic examinations were bilateral and contained two 
views (craniocaudal and mediolateral oblique). The digital 
mammographic examinations were performed with two dif-
ferent systems: a Lorad Selenia unit (Hologic, Bedford, Mass) 
at collection center A and a Mammomat Inspiration unit (Sie-
mens Healthineers, Erlangen, Germany) at collection center B. 
Previous digital mammographic examinations were included 
for evaluation if available (192 women underwent previous 
examinations: 76 of those with cancer, 37 with false-positive 
results, and 79 with normal results).

Cancers were verified by means of histopathologic evaluation 
(Table 2), and false-positive findings were verified with histo-
pathologic evaluation (n = 11) or with negative follow-up find-
ings for at least 1 year (n = 29). All normal examinations had at 
least 1 year of negative follow-up findings. Seventy cancers mani-
fested as soft-tissue lesions (including mass lesions, architectural 
distortions, and asymmetries, which were grouped together be-
cause of the relatively low number of the latter two categories) 
and 35 as calcifications (five lesions presented both soft-tissue 
lesions and calcifications).

The reference standard for each digital mammographic ex-
amination was established by an experienced breast radiologist 
(R.M.M.) with access to the case report form. Each examina-
tion was defined as showing cancer, a false-positive result, or 
a normal result. The location in all views (lesions were delin-
eated) and characterization (morphologic appearance and his-
tologic features) of cancers and of findings that led to false-pos-
itive recalls was recorded. According to the reference standard, 
the median size of the cancers at mammography was 13 mm2 
(interquartile range, 4–22 mm2).

Abbreviations
AI = artificial intelligence, AUC = area under the ROC curve, BI-RADS =  
Breast Imaging Reporting and Data System, CAD = computer-aided 
detection, POM = probability of malignancy, ROC = receiver operating 
characteristic

Summary
Radiologists had improved diagnostic performance for detection of 
breast cancer at mammography when using an artificial intelligence com-
puter system for support, with no additional reading time required.

Implications for Patient Care
 n An artificial intelligence support system for mammography im-

proved radiologists’ breast cancer detection, without lengthening 
their reading time.

 n Improvement was observed for all breast density categories and 
was independent of lesion type and vendor image quality.

Materials and Methods
This retrospective study was compliant with the Health In-
surance Portability and Accountability Act. Our study was 
performed with anonymized, retrospectively collected digital 
mammographic images obtained from screening examina-
tions. Women were included from two institutions: one in the 
United States (collection center A) and one in Europe (collec-
tion center B). The requirement to obtain informed consent 
and ethical approval to use anonymized data was waived after 
review of the institutional review board at collection center A 
and under national law at collection center B. The study was 
financially supported by ScreenPoint Medical (Nijmegen, the 
Netherlands). The authors who were not employees of or con-
sultants for ScreenPoint Medical had control of the data and 
information submitted for publication at all times.

Study Population
The flowchart of collection and final selection of digital mam-
mographic examinations is detailed in Figure 1. First, the sample 
size and examination type distribution for our observer evalua-
tion study population were estimated on the basis of the results 
of a similar previous study (18), by using the unified method 
proposed by Hillis et al (20), to yield a study power greater 
than 0.8. This resulted in a target data set of 240 digital mam-
mographic examinations (100 showing cancer, 40 with false-
positive results, and 100 with normal results).

Mammogram collection.—To ensure there were enough 
digital mammographic examinations from which to select 
the final sample, at least 55 examinations showing cancer, 
30 examinations with false-positive results, and 60 exami-
nations with normal results were set to be collected by each 
collection center. For collection, the single inclusion crite-
rion was women presenting for screening with no symp-
toms or concerns. Women with implants and/or a history of 
breast cancer were excluded. Digital mammographic exami-
nations were consecutively collected: From collection center 
A (performed by K.S.), examinations were retrieved over 
several blocks of samples between June 2013 and March 
2017; from collection center B (performed by S.H.H.) 
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examination (craniocaudal and mediolateral 
oblique views of both breasts).

The system uses deep learning convolu-
tional neural networks and features classifi-
ers and image analysis algorithms to depict 
calcifications (21,22) and soft-tissue lesions 
(16,23–25) in two different modules. Soft-
tissue and calcification findings are later 
combined to determine suspicious region 
findings. A value between 1 and 100 is as-
signed to each region, representing the level 
of suspicion that cancer is present (with 100 
indicating the highest suspicion). Finally, 
proprietary algorithms are used to combine 
the scores of all detected regions in cra-
niocaudal and/or mediolateral oblique 
right and/or left breast images into the 
examination-based score (the Transpara 
score), which ranges from 1 to 10 (with 10 
indicating the highest likelihood that can-
cer is present on the mammogram). The 
Transpara score is calibrated such that the 
number of mammograms in each category 
is roughly equal in a screening setting (eg, 
10% of screening mammograms fall into 
category 1, 10% in category 2).

The AI system is trained, validated, and 
tested by using a database containing more 
than 9000 mammograms with cancer 
(one-third of which are presented as lesions 
with calcifications) and the same number 
of mammograms without abnormalities. 
The mammograms originate from devices 
from four different vendors (Hologic, Sie-
mens, GE Healthcare [Waukesha, Wis], 
and Philips Healthcare [Sölna, Sweden]). 
The AI system is validated on an indepen-
dent internal multivendor data set that has 
not been used for training or validation of 
the algorithms. The mammograms used in 
this study have never been used to train, 
validate, or test the algorithms.

In practice, when using this system for 
support, radiologists can use an interactive 
decision support mode as well as traditional 
CAD. Interactive decision support can be 
activated for any specific breast region by 
clicking on it. The system then displays its 

level of suspicion (on a scale of 1 to 100) if something in that 
area has been detected (otherwise nothing is displayed except 
for a small cross indicating the clicked location). Traditional 
CAD is available to display calcification and soft-tissue lesion 
markers, with the false-positive rate of the prompts set lower 
for soft-tissue lesions than for calcifications (0.02 and 0.2 per 
image, respectively). In addition, on a whole-examination ba-
sis, the system always displays a proprietary examination score 
(Transpara score) between 1 and 10.

AI Support System
The AI computer system used by the radiologists for sup-
port was Transpara (version 1.3.0, ScreenPoint Medical). This 
system is designed for automated breast cancer detection in 
mammography and breast tomosynthesis. The system works 
on processed mammograms, is compatible with examinations 
performed with digital mammography and/or breast tomosyn-
thesis systems from different vendors, and analyzes informa-
tion across the four standard views of a digital mammographic 

Figure 1: Flowchart of examination selection. CRF = case report form.

Table 1: Characteristics of the Population and Digital Mammographic 
Examinations Selected for the Study

Variable
Collection  
Center A (n = 120)

Collection  
Center B (n = 120)

Total  
(n = 240)

Patient age (y)
 Mean 61 60 61
 Median 62 61 62
 Range 39–89 50–70 39–89
 Interquartile range 47–72 56–64 53–66
Median breast  
  thickness (mm)*

58 (48–66) 55 (48–64) 57 (48–65)

BI-RADS breast density†

 a 6 (5) 22 (18) 28 (12)
 b 78 (65) 55 (46) 133 (55)
 c 30 (25) 34 (28) 64 (27)
 d 6 (5) 9 (8) 15 (6)
Mean glandular dose  
  (mGy)*

1.60 (1.39–1.93) 1.18 (0.97–1.37) 1.38 (1.14–1.64)

Note.—BI-RADS = Breast Imaging Reporting and Data System.
* Numbers in parentheses are the interquartile range.
† Data are numbers of examinations, with percentages in parentheses.
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Imaging and Communications in Medicine Grayscale Stan-
dard Display Function. Readers could adjust window and level 
settings and could zoom and pan. Ambient lights were set to 
approximately 45 lux. Half the readers used the AI system in-
tegrated in the reading workstation (at evaluation center A), 
and the other half used the AI system on a separate screen from 
the workstation (Microsoft Surface Pro [Redmond, Wash], at 
evaluation center B).

Statistical Analysis
The main end points of the study were to compare the area un-
der the receiver operating characteristic (ROC) curve, sensitiv-
ity and specificity, and reading time between reading unaided 
or reading with AI support. Secondary analyses (explained in 
the next section) were also performed to obtain detailed knowl-
edge of the effect of using AI system for support in reading 
mammograms. The reported P values of the secondary end 
points were not adjusted for testing multiple hypotheses, and 
therefore we refrain from claims about the significance of sec-
ondary end points. Instead, the secondary analyses are meant 
only to be supportive of our main hypotheses. Areas under the 
ROC curve (AUCs), specificity and sensitivity, and radiolo-
gists’ reading time were compared between reading conditions 
by using mixed-model analysis of variance and generalized lin-
ear models for multiple repeated measurements.

Statistical analysis was performed with SPSS software (ver-
sion 24; IBM, Armonk, NY), and open-access Obuchowski-
Rockette and Dorfman-Berbaum-Metz software (version 2.5; 
Medical Image Perception Laboratory–University of Iowa, 
Iowa City, Iowa; available from http://perception.radiology.
uiowa.edu/).

ROC performance.—ROC curves and their AUCs were 
computed by using the POM score. The Obuchowski-Rockette 
and Dorfman-Berbaum-Metz mixed-model analysis of vari-
ance yielded a P value for rejecting the null hypothesis that 
readings performed unaided or with AI support have equal 
performance (26–29). P , .05 was indicative of a statisti-
cally significant difference between both reading conditions. 
Secondarily, to identify possible strengths and weaknesses 
of the study as a function of the different types of mam-
mograms and readers used, five subgroup subanalyses were 
also performed: (a) subgroups of examinations according to 
lesion type (soft tissue or calcifications); (b) subgroups of 
examinations according to digital mammography system used 
(Hologic or Siemens); (c) subgroups of examinations accord-
ing to breast density (lower density [BI-RADS categories a 
and b] or higher density [BI-RADS categories c and d]); (d) 
equal subgroups of radiologists based on years of experience 
(lower 50% vs higher 50%); and (e) subgroups of radiologists 
based on the use of the AI system integrated in the worksta-
tion or on a separate viewer.

Similarly, in a separate secondary subanalysis, the location of 
the reader’s findings was considered to avoid the possibility that 
readers were rewarded for detecting a cancer when they marked 
the wrong location. In this analysis, if a reader did not annotate 
a malignant lesion within 1.5 cm from the center of the ground 

Observer Evaluation
A fully crossed, multireader, multicase evaluation with two ses-
sions (separated by at least 4 weeks) was performed to test both 
reading conditions: unaided or with AI support. The evalua-
tion was performed at two different centers (evaluation centers 
A and B, both in the United States).

Fourteen Mammography Quality Standard Act–qualified 
radiologists performed the evaluation. Three were general radi-
ologists and 11 were dedicated breast radiologists. The median 
experience with Mammography Quality Standard Act qualifi-
cation was 9.5 years (range, 3–25 years), and the approximate 
mean number of mammograms read per year during the past 2 
years was 5900 (range, 1200–10 000).

During each session, radiologists read half the examinations 
with AI support and half unaided. Radiologists were blinded to 
any information about the patient, including previous radiology 
and histopathology reports. Before the first session, each radiolo-
gist was individually trained in a session with 45 examinations 
not included in the final evaluation. The training was intended 
to familiarize radiologists with the evaluation workstation, the 
evaluation criteria, and the AI support system (eg, to understand 
how to use all its functionalities). Readers were also informed 
that the study data set was enriched with cancer mammograms 
with respect to the standard prevalence seen in screening.

For each examination, radiologists provided a forced Breast 
Imaging Reporting and Data System (BI-RADS) score (range, 
1–5) and assigned a probability of malignancy (POM) between 
1 and 100 (with 100 indicating highly suspicious for malig-
nancy). During training, radiologists were instructed to use the 
full extent of the POM scale with anchor points as a guide. For 
instance, transition from BI-RADS category 2 to BI-RADS cat-
egory 3 was recommended at a POM of 40, transition from BI-
RADS category 3 to BI-RADS category 4 was recommended 
at a POM of 60, and transition from BI-RADS category 4 to 
BI-RADS category 5 was recommended at a POM of 80.

The evaluation was performed with an in-house–developed 
workstation by using a 12-MP mammographic display (Coro-
nis Uniti; Barco, Kortrijk, Belgium) calibrated to the Digital 

Table 2: Characteristics of the 100 Malignant Cancers

Characteristic No. of Examinations
Histologic type
 Invasive ductal carcinoma 64
 Ductal carcinoma in situ 13
 Invasive lobular carcinoma 18
 Invasive tubular carcinoma 6
 Other 3
Lesion type
 Mass 54
 Calcifications 35
 Asymmetry 10
 Architectural distortion 6

Note.—Five examinations showed both calcifications and mass 
lesions, and four examinations showed two histologic cancer 
types (eg, invasive ductal carcinoma and invasive lobular 
carcinoma).
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changes in AUC ranged from 0.0 to 0.05 and were higher 
with AI support for 12 of the 14 radiologists (there was no 
change in AUC for the other two readers). The AUC was 
higher with AI support in all subgroup scenarios, with a simi-
lar effect of 0.02 (Table 3).

Sensitivity and Specificity
On average, sensitivity was 3 percentage points higher with 
AI support (P = .046); specificity also trended toward im-
provement (2 percentage points higher with AI support; P = 
.06) (Table 4). Examples of examinations in which the total 
number of correct recall assessments across readers changed 
between reading conditions are shown in Figures 3 and 4. 
In total, there was a disagreement (ie, at least three radiolo-
gists changed their assessment between reading conditions) 
in 32 examinations: In 72% of examinations (23 of 32) there 
was an increase in the number of readers making the right 
interpretation when using AI support, whereas the opposite 
occurred in the other 28% of examinations (nine of 32).

Reading Time
On average, reading time per case was similar in the unaided 
sessions (146 seconds; 95% confidence interval: 143 seconds, 
149 seconds) and the sessions with AI support (149 seconds; 
95% confidence interval: 146 seconds, 152 seconds); the dif-
ference was not significant (P = .15). Reading time increased 
for nine of 14 radiologists (range, 0.5%–10%) and decreased 
for five (range, 0.3%–22%) (Fig 5a). Of all reading times, 
2.7% (181 of 6720) were defined as outliers and were ex-
cluded from this analysis.

The reading times were closer to each other between read-
ing unaided and reading with AI support during the second 
block of sessions (2 seconds; not significant at P = .70) than 
in the first (5 seconds; not significant at P = .09).

Reading unaided and with AI support differed as a function 
of the computer Transpara score (P , .001) (Fig 5b). For the 

truth of the lesion, this reading was modified to the lowest POM 
used by that reader across our whole study.

Sensitivity and specificity.—Sensitivity and specificity for 
each reading condition (ie, with or without AI support) were 
computed by using the BI-RADS scores. The reader-averaged 
sensitivity and specificity for each modality was computed by 
using a generalized linear model (30); thus, repeated measures 
by multiple readers were taken into account. This binary logistic 
generalized linear model was built with consideration of reading 
condition, reader, and the interaction term as factors. Param-
eters were bootstrapped (n = 1000). x2 statistics and confidence 
intervals were based on the Wald test. P , .05 was indicative of 
a statistically significant difference between reading conditions.

Reading time.—The reading time per case was automatically 
measured by the workstation software used for the observer 
evaluation. Average reading times per case were compared be-
tween reading conditions with a generalized linear model simi-
lar to the one described for sensitivity and specificity but with 
use of reading time per case as the dependent variable. For this 
analysis, outliers, defined as values extending beyond 1.5 times 
the standard deviation of the data, were removed. These were 
considered unreliable because readers might have been inter-
rupted. P , .05 was indicative of a statistically significant dif-
ference between reading conditions.

A learning curve for the AI system in relation to reading time 
was evaluated. The generalized linear model analysis for read-
ing times was repeated for two subsets of the data, representing 
data from the first reading session (first-time use of AI system) 
and the data from the second reading session, after the washout 
period (second-time use of AI system).

Secondarily, reading time subanalysis was also performed in 
two scenarios: (a) differentiating between the radiologists who 
used the AI system on the workstation and those who used 
the AI system on the separate viewer and (b) as a function of 
the Transpara score (score, 1–10), creating a subgroup of low-
suspicion examinations (score, 1–5) and another one of high-
suspicion examinations (score, 6–10).

Stand-alone computer system performance.—The AUC 
of the stand-alone computer system was compared with the 
radiologists’ AUC when radiologists read mammograms in the 
unaided mode as a secondary study outcome. The ROC of 
the AI system was computed by using a continuous version 
of the Transpara score. This analysis was done by using the 
single-modality multiple-reader Obuchowski-Rockette model 
described in an article by Hillis (28). This test yields a P value 
for rejecting the null hypothesis that computer and the radiolo-
gists have equal performance.

Results

ROC Performance
Radiologists improved their detection performance when using 
AI support, with the average AUC increasing from 0.87 to 0.89  
(difference, 0.02; P = .002) (Fig 2, Table 3). Per reader, the 

Figure 2: Average receiver operating char-
acteristic (ROC) curves under two reading 
conditions: unaided and with artificial intel-
ligence (AI) support. Average is computed 
across 14 radiologists participating in this 
evaluation. Numbers in parentheses are areas 
under ROC curve.
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Stand-Alone 
Computer System
The breast cancer detec-
tion performance of the 
stand-alone AI com-
puter system was similar 
to the radiologists’ aver-
age performance (radi-
ologists’ average AUC, 
0.87; computer AUC, 
0.89; difference, 0.02; P 
= .33) (Fig 6).

Discussion
In our study, we found 
that breast radiologists had 
a higher diagnostic perfor-
mance (as measured with 
the AUC) with support 
from an AI system com-
pared with reading un-
aided. The average reading 
times per case were similar 
under both conditions. 
This improvement in 
diagnostic performance 
was observed in a cancer-
enriched data set of digital 
mammographic examina-
tions with a representative 
sample of abnormalities 
that may be observed in 
asymptomatic women 
undergoing mammo-
graphic screening. The 
improvement in diagnos-
tic performance with the 
AI system was due to an 
increase in the middle 
part of the ROC curve. 
This suggests that the AI 
system improves the eval-
uation of equivocal cases, 
suggesting the clinical rel-
evance of this tool.

As expected, the improvement in AUC with AI support 
was higher for the radiologists who were least experienced 
with mammography. We did not observe a difference in un-
aided performance on the basis of experience. As suggested 
by Hupse et al (18), some experienced radiologists might 
tend to query the decision support more times, obtaining 
most of the available prompt marks, which might reduce 
their performance. The finding is remarkably similar to the 
reported benefits in performance with the addition of digital 
breast tomosynthesis to mammography (31), which is higher 
for the least-experienced radiologists. This might imply that 

low-suspicion examinations (score, 1–5), radiologists decreased 
their average reading time per case by 11% when using the AI 
system. Conversely, reading time per case was 2% higher with 
use of AI support for the high-suspicion examinations (score, 
6–10). Assuming that in a screening population each Transpara 
score category includes the same number of examinations (and, 
therefore, that examinations with a score of 1–5 are 50% of the 
total and that those with a score of 6–10 make up the remain-
ing 50%), averaging the above-mentioned results is expected to 
lead to an overall 4.5% reduction in reading time per case with 
use of the AI system in screening.

Table 3: AUC for Each Radiologist and Reader-averaged AUCs for Reading Mammograms 
Unaided and with AI Support

Variable Unaided With AI Support Difference P Value
Radiologist No.
 1 0.87 0.90 0.04
 2 0.82 0.84 0.02
 3 0.91 0.92 0.01
 4 0.85 0.85 0.01
 5 0.79 0.85 0.05
 6 0.84 0.86 0.02
 7 0.93 0.95 0.01
 8 0.87 0.90 0.04
 9 0.87 0.87 0.0
 10 0.90 0.92 0.02
 11 0.86 0.90 0.04
 12 0.86 0.86 0.0
 13 0.87 0.90 0.03
 14 0.87 0.88 0.01
  Average 0.87 (0.83,0.90) 0.89 (0.85,0.92) 0.02 (0.01, 0.03) .002
Subgroup secondary analyses*
 Soft-tissue lesions 0.89 0.90 0.02 (0.0, 0.03) .03
 Calcifications 0.88 0.90 0.02 (0.0, 0.05) .10
 Hologic examinations 0.85 0.86 0.02 (0.0, 0.04) .09
 Siemens examinations 0.89 0.91 0.02 (0.0, 0.04) .03
 Low breast density 0.88 0.90 0.02 (0.01, 0.03) .003
 High breast density 0.83 0.85 0.02 (20.01, 0.05) .15
 Least experienced 0.87 0.89 0.03 (0.01, 0.04) .003
 Most experienced 0.87 0.88 0.01 (0.0, 0.03) .08
 AI workstation 0.87 0.89 0.02 (0.0, 0.03) .04
 AI separate viewer 0.86 0.88 0.02 (0.01, 0.04) .01
 Location specific 0.84 0.87 0.02 (0.01, 0.04) .003

Note.—AI = artificial intelligence, AUC = area under the receiver operating characteristic curve. Numbers 
in parentheses are 95% confidence intervals.
* Data are averages.

Table 4: Mean Sensitivity and Specificity across Radiologists

Variable Unaided With AI Support Difference (Percentage Points) P Value
Sensitivity (%) 83 (83/100) [81, 85] 86 (86/100) [84, 88] 3 .046
Specificity (%) 77 (108/140) [75, 79] 79 (111/140) [77, 81] 2 .06

Note.—Breast Imaging Reporting and Data System category 3 or higher was used the recall threshold. 
Numbers in parentheses are raw data, and numbers in brackets are 95% confidence intervals. 
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Figure 3: (a) Mammograms in 71-year-old woman with invasive ductal carcinoma (outlined and with level of suspicion 
score assigned by computer system). Patient was recalled (Breast Imaging Reporting and Data System [BI-RADS] score, 3) by 
four of 14 radiologists when reading unaided and by 11 of 14 radiologists using artificial intelligence (AI) system for support. 
Outlined areas and scores are shown as in viewer of AI system. (b) Mammograms in 62-year-old woman without cancer, who 
was recalled (BI-RADS score, 3) by 12 of 14 radiologists when reading unaided and by seven of 14 readers when using AI 
system for support. Outlined areas and scores are shown as in viewer of AI system.

more-experienced radiologists are less likely, or slower, to 
adopt new techniques to improve their performance.

Given the high workload of screening programs, from a cost-
effectiveness point of view the performance benefit of using AI 
support is further enhanced by the fact that radiologists do not 
lengthen their reading time when using this system. In fact, in a 
real screening scenario, the average reading time per case would 

actually decrease by approximately 4.5%. This means that the 
examination-based score provided by the system has the poten-
tial to make radiologists’ readings more efficient, increasing their 
attention in the most suspicious examinations while reassuring 
them in faster readings of the least suspicious examinations. 
Moreover, the observed learning curve implies that more prac-
tice with the system might yield even shorter reading times. In 
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similar to that of the radiologist with the lowest performance 
in enriched and selected data sets, but only in very limited 
scenarios (eg, only soft-tissue lesions). A study by Kim et al 
(33) found that in-house–developed AI algorithms achieved 
a sensitivity of 76% and a specificity of 89% in a screen-
ing data set. Despite the differences in data sets, our results 
support the observed trend that AI algorithms are reaching a 
performance similar to that of radiologists for breast cancer 
detection in mammography.

Our study had some limitations. The main limitation is 
that the study was performed with a highly enriched data set 
with screening-detected cancers instead of using a prospective 
assessment in screening practice. Although the readers trended 
to improve their recall when using the AI system, in some ex-
aminations the computer might have misled radiologists into 

the secondary analysis, the stand-alone performance of the 
computer system was similar to the average performance 
of the radiologists. Even though larger studies are needed 
to validate these findings, our results suggest that using 
computer systems as a stand-alone first or second reader in 
screening programs might be feasible. Given the increas-
ing lack of (experienced) breast radiologists (3), this might 
even allow the development or continuation of screening 
programs.

There is a paucity of literature about the clinical perfor-
mance of AI systems or deep learning–based traditional CAD 
systems to support reading of mammograms. So far, published 
studies have mainly evaluated the stand-alone performance 
of AI. Kooi et al (16) and Becker et al (32) found that AI 
algorithms developed in-house could achieve a performance 

Figure 4: Mammograms in 62-year-old woman without cancer who was incorrectly recalled (Breast Imaging Reporting and 
Data System score, 3) by one of 14 radiologists when reading unaided but by five of 14 radiologists when using artificial 
intelligence (AI) system for support. Outlined areas and scores are shown as in viewer of AI system.
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making false-positive assessments. Future improvements of 
the algorithms, especially those using temporal information, 
are likely to improve the benefit of AI support. Moreover, 
readers were aware of the high rate of malignancies in the case 
set, which may have resulted in a “laboratory effect” (34,35). 
Ideally, future studies should assess the benefit of AI support 
in an actual screening setting. Furthermore, our study was 
performed with radiologists from the United States only, 
whereas screening practice and recall rates vary substantially 
around the world. Consequently, the net effect of the AI sys-
tem might also vary on the basis of geographic regions and 
local policies (36–38).

In conclusion, radiologists improved their diagnostic per-
formance in the detection of breast cancer at mammography 
by using an AI computer system for support without the need 
for additional reading time. However, as promising as these 
findings may be, studies within a screening scenario should 
be performed to validate them and seize the real effect of AI 
support in screening.

Figure 5: (a) Graph shows differences in reading time per case for each radiologist (circles) and on average 
(square). (b) Bar chart shows differences in reading times as function of examination-based Transpara score assigned 
by system. AI = artificial intelligence.

Figure 6: Receiver operating characteristic (ROC) curves for (a) individual radiologists 
reading mammograms unaided and stand-alone artificial intelligence (AI) computer system 
and (b) average of radiologists and stand-alone AI computer system. Radiologists’ operat-
ing points at Breast Imaging Reporting and Data System category 3 thresholds are indi-
cated with circles. Areas under ROC curve are shown in parentheses in b.
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