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Abstract TimSort is the main sorting algorithm provided by the Java standard library and
many other programming frameworks. Our original goal was functional verification of Tim-
Sort with mechanical proofs. However, during our verification attempt we discovered a bug
which causes the implementation to crash by an uncaught exception. In this paper, we identify
conditions under which the bug occurs, and from this we derive a bug-free version that does
not compromise performance. We formally specify the new version and verify termination
and the absence of exceptions including the bug. This verification is carried out mechani-
cally with KeY, a state-of-the-art interactive verification tool for Java. We provide a detailed
description and analysis of the proofs. The complexity of the proofs required extensions and
new capabilities in KeY, including symbolic state merging.

Keywords Program verification · Specification · Case study · Theorem proving

1 Introduction

Among the arguments that are routinely invoked against the usage of formal software verifi-
cation one can find the following: it is expensive, it is not worthwhile (compared to its cost),
it is less effective than bug finding (e.g., by testing, static analysis, or model checking), it
does not work for “real” software. In this article we present a case study in formal verification
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94 S. de Gouw et al.

demonstrating that none of these arguments holds up in general and, on the contrary, formal
specification and verification of real software is possible and can very well pay off.

We perform functional verification with mechanical proofs of TimSort, the sorting algo-
rithm for generic collections in the Java standard library. Because of the complexity of the
code under verification, it is essential to break down the problem into sub-tasks ofmanageable
size. This is achieved with contract-based deductive verification [4], where the functional-
ity and the side effects of each method are precisely specified with expressive first-order
contracts. In addition, each class is equipped with an invariant that has to be re-established
by each method upon termination. These formal specifications are expressed in the Java
Modeling Language (JML) [14].

We use the state-of-art Java verification tool KeY [1], a semi-automatic, interactive the-
orem prover, which covers nearly full sequential Java. KeY typically finds more than 99%
of the proof steps automatically (see Sect. 5), while the remaining ones are performed inter-
actively by a human expert. This is facilitated by the use in KeY of symbolic execution
plus first-order reasoning as its proof paradigm. It results in a close correspondence between
proof nodes and symbolic program states which brings the experience of program verification
somewhat close to the activity of debugging.

The work presented here was motivated by our recent success to verify executable
Java versions of counting sort and radix sort in KeY with manageable effort [12]. As a
further challenge, we planned to verify a complicated sorting algorithm taken from the
widely used OpenJDK core library. It turns out that the default implementation of Java’s
java.util.Arrays.sort() and java.util.Collection.sort() methods is
an ideal candidate: it is based on a complex combination of merge sort and insertion sort
[15,19]. It had a bug history (see www.bugs.java.com/view_bug.do?bug_id=8011944), but
was reported as fixed as of Java 8. We decided to verify the actual implementation with only
two minor modifications: we stripped the code of generics and we modified one execution
path that is irrelevant to the sorting result (see Sect. 7 for details). Otherwise, the verified Java
code is identical to the library code and fully executable. The implementation is described
in detail in Sect. 2.

During our verification attempt we discovered that the fix to the bug mentioned above
is in fact not working [13] and that the “fixed” version crashes with an uncaught top-level
exception on certain inputs. We succeeded to identify conditions under which the bug occurs
(Sect. 3). From our analysis we could derive a bug-free version that does not compromise
performance. The bug as reported in [13] led to different kinds of fixes in different languages,
including Java, Android and Python. We review the reactions in Sect. 4.1, and then provide
a detailed description of the proof that the fixed Java code terminates properly and does not
raise any exception in Sect. 4.3. This includes two auxiliary methods that could not be proven
correct in [13]. The Android community provided an alternative fix, which we proved to be
correct as well, as reported in Sect. 4.4.

We provide a detailed account of the proof statistics in Sect. 5. They show that the symbolic
state merging technique recently implemented in KeY [22] can successfully mitigate state
explosion during symbolic execution. In addition, we analyze the nature of user interactions,
thereby providing indicators where prospects for automation lie and how the individual style
of proof engineers can influence efficiency of the proof effort.

In Sect. 6 we draw lessons from our experience of proving TimSort. These concern the
development of formal specifications, the choice of integer semantics and how to deal with
state explosion. While our case study shows that formal specification and verification of
real Java library code is possible and pays off, it also highlighted a number of limitations to
current verification technology. These are discussed in Sect. 7.
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Verifying OpenJDK’s Sort Method for Generic Collections 95

In addition to fixing the bug, our verification effort exhibited further potential issues with
TimSort. We point out some recommendations to the maintainers of TimSort in Sect. 8.
Related work is discussed in Sect. 9 and in Sect. 10 we draw conclusions.

This paper is a revised and extended version of [13]. The extension includes amore detailed
description and (statistical) analysis of the proofs, including a comparison between the old
proof and several new proofs based on branch merging techniques; a (mechanic) proof for all
methods, including mergeLo and mergeHi, which only became possible after several new
techniques (branch merging, a new do-while rule) were added to KeY; and a mechanic
proof of the Android version.

2 Implementation of TimSort

The default implementation of java.util.Arrays.sort for non-primitive types is
TimSort, a hybrid sorting algorithmbasedonmerge sort and insertion sort. The algorithmsorts
a specified segment of the input array incrementally from left to right based on consecutive
(disjoint) runs: segments of the array that are already sorted. If these runs are not large
enough, they are extended using binary insertion sort. The starting positions and the lengths
of the generated runs are stored on a stack. During execution some of these runs are merged,
triggered by a condition on the top elements of the stack. In the end, all runs are merged,
yielding a sorted array.

Now we explain the algorithm in detail, focusing on the central parts of the Java imple-
mentation. The interface of TimSort is given by the two static methods on lines 1 and 29
of Listing 1. The main method of TimSort is shown in Listing 1 (with original comments),
where a is the input array. The parameters lo and hi are the lower bound (inclusive) and
upper bound (exclusive) of the part of a that must be sorted. To sort the entire array, they can
be omitted, see lines 29–31.

The stack of runs is encapsulated by the object variable ts which is constructed in line 5.
It is represented by two instance variablesrunBase and runLen of the object ts, that refer
to arrays of integers. These arrays runBase and runLen contain respectively the starting
positions and the lengths of the runs on the stack.1 The (variable) size of the stack is kept in
the instance variable stackSize. The allocated length of these arraysrunBase.length
and runLen.length is determined in the constructor of ts based on the length of the
input array.

Listing 1 Main sort() method of TimSort.

1 static void sort(Object[] a, int lo, int hi, Comparator c) {
2 (. . .)
3 int nRemaining = hi−lo;
4 (. . .)
5 TimSort ts = new TimSort(a, c);
6 int minRun = minRunLength(nRemaining);
7 do {
8 // Identify next run
9 int runLen = countRunAndMakeAscending(a, lo, hi, c);
10 // If run is short, extend to min(minRun, nRemaining)
11 if (runLen < minRun) {
12 int force = nRemaining <= minRun ? nRemaining : minRun;
13 binarySort(a, lo, lo+force, lo+runLen, c);
14 runLen = force;
15 }

1 Note that the main loop also contains a local variable runLen, which is used to keep the length of the
currently processed segment.
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96 S. de Gouw et al.

16 // Push run onto pending−run stack, and maybe merge
17 ts.pushRun(lo, runLen);
18 ts.mergeCollapse();
19 // Advance to find next run
20 lo += runLen;
21 nRemaining −= runLen;
22 } while (nRemaining != 0);
23 // Merge all remaining runs to complete sort
24 assert lo == hi;
25 ts.mergeForceCollapse();
26 assert ts.stackSize == 1;
27 }
28
29 static void sort(Object[] a, Comparator c) {
30 sort(a, 0, a.length, c);
31 }

In each loop iteration, the next run is constructed. In line 9 a maximal run from the
current positionlo is constructed by identifying amaximal descending or ascending segment,
reversing the order in case of a descending one. If the resulting run is too short (that is, less
than minRun) then it is extended to a run of length minRun using binary insertion sort
(“binary” refers to the fact that it uses binary search). The variable nRemaining denotes
the number of elements yet to be processed. In line 17 the starting position and the length of
the run is pushed onto the stack of the object variable ts by method pushRun in Listing 2.

Listing 2 Method pushRun() of TimSort.

1 private void pushRun(int runBase, int runLen) {
2 this.runBase[stackSize] = runBase;
3 this.runLen[stackSize] = runLen;
4 stackSize++;
5 }

In line 18, the method mergeCollapse is called, which repeatedly merges runs until
the top three elements of the stack satisfy the conditions given in lines 4 and 5 of Listing 4,
for i = stackSize. Actual merging is done by a call to mergeAt(n), which merges the
two runs whose lengths are represented respectively by runLen[n] and runLen[n+1].
Without going into detail, we note that mergeAt (see Listing 3) features an optimisation
that identifies parts of the two runs that do not need to be considered for merging, and then
merges either from left to right or from right to left (by a call to mergeLo or mergeHi
respectively), using a temporary array holding a copy of the smaller of the two.

Listing 3 Method mergeAt(int) of TimSort.

1 private void mergeAt(int i) {
2 assert stackSize >= 2;
3 assert i >= 0;
4 assert i == stackSize − 2 || i == stackSize − 3;
5
6 int base1 = runBase[i];
7 int len1 = runLen[i];
8 int base2 = runBase[i + 1];
9 int len2 = runLen[i + 1];
10 assert len1 > 0 && len2 > 0;
11 assert base1 + len1 == base2;
12
13 /∗ Record the length of the combined runs; if i is the 3rd−last
14 ∗ run now, also slide over the last run (which isn’t involved
15 ∗ in this merge). The current run (i+1) goes away in any case. ∗/
16 runLen[i] = len1 + len2;
17 if (i == stackSize − 3) {
18 runBase[i + 1] = runBase[i + 2];
19 runLen[i + 1] = runLen[i + 2];
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Verifying OpenJDK’s Sort Method for Generic Collections 97

20 }
21 stackSize−−;
22
23 /∗ Find where the first element of run2 goes in run1. Prior elements
24 ∗ in run1 can be ignored (because they’re already in place). ∗/
25 int k = gallopRight(a[base2], a, base1, len1, 0, c);
26 assert k >= 0;
27 base1 += k;
28 len1 −= k;
29 if (len1 == 0) return;
30
31 /∗ Find where the last element of run1 goes in run2. Subsequent elements
32 ∗ in run2 can be ignored (because they’re already in place). ∗/
33 len2 = gallopLeft(a[base1 + len1 − 1], a, base2, len2, len2 − 1, c);
34 assert len2 >= 0;
35 if (len2 == 0) return;
36
37 // Merge remaining runs, using tmp array with min(len1, len2) elements
38 if (len1 <= len2)
39 mergeLo(base1, len1, base2, len2);
40 else
41 mergeHi(base1, len1, base2, len2);
42 }

We describe the merging pattern of mergeCollapse. To simplify the notation, let
runLen[n-1] = C , runLen[n] = D, and runLen[n+1] = E , representing the
lengths of the top three runs on the stack (observe that n = stackSize-2 at the beginning
of each iteration). The condition to be established is that C > D + E and D > E . The loop
achieves this by distinguishing the following cases:

1. If C ≤ D + E and C < E then the runs at n-1 and n are merged.
2. If C ≤ D + E and C ≥ E then the runs at n and n+1 are merged.
3. If C > D + E and D ≤ E then the runs at n and n+1 are merged.
4. If C > D + E and D > E then the loop exits.

Listing 4 Method mergeCollapse() of TimSort

1 /∗∗
2 ∗ Examines the stack of runs waiting to be merged and merges
3 ∗ adjacent runs until the stack invariants are reestablished:
4 ∗ 1. runLen[i − 3] > runLen[i − 2] + runLen[i − 1]
5 ∗ 2. runLen[i − 2] > runLen[i − 1]
6 ∗ This method is called each time a new run is pushed onto the stack,
7 ∗ so the invariants are guaranteed to hold for i < stackSize upon
8 ∗ entry to the method.
9 ∗/
10 private void mergeCollapse() {
11 while (stackSize > 1) {
12 int n = stackSize − 2;
13 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1]) {
14 if (runLen[n − 1] < runLen[n + 1])
15 n−−;
16 mergeAt(n);
17 } else if (runLen[n] <= runLen[n + 1]) {
18 mergeAt(n);
19 } else {
20 break; // Invariant is established
21 }
22 }
23 }

After exiting the main loop in Listing 1, the entire input array has been processed, but
there may still be pending runs on the stack. These runs are finally merged by the call to
mergeForceCollapse (Line 25 of Listing 1), which repeatedlymerges runs on the stack (either
the top two or the two below it) until only a single run remains, representing the sorted array.
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3 Breaking the Invariant

Asexplained in the previous section, themethodmergeCollapse establishes the following
postcondition:

1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]/
2. runLen[i - 2] > runLen[i - 1]

for i = stackSize. However, as the comments in lines 1–9 of Listing 4 suggest, the
intention is that the above conditions are “re-established” by mergeCollapse for all
i <= stackSize. More precisely, the above conditions for i <= stackSize should
be a loop invariant of the main loop of the sort method (Listing 1). After the call to
pushRun in the sortmethod (line 17) the loop invariant is temporarily broken (for the case
i = stackSize), and the intention is that it is restored by the call to mergeCollapse
(line 18).

The above loop invariant is fundamental to TimSort, hencewe sometimes refer to it simply
as the invariant. We shall also refer to specific elements of runLen satisfying the (element)
invariant, meaning that such an element is greater than the next one and greater than the sum
of the next two.

The invariant is used to compute the length of runLen, as explained in more detail in
Sect. 3.1. However, the method mergeCollapse does not re-establish the invariant in
general, contrary to what is suggested in the comments. To see this, consider the situation
where runLen consists of

120, 80, 25, 20, 30

on entry of mergeCollapse, directly after the entry 30was added bypushRun. In the first
iteration of the mergeCollapse loop there will be a merge at entry 25, since 25 ≤ 20+30
and 25 < 30, resulting in (Listing 4, conditions in lines 13 and 14 are evaluated to true
causing lines 15 and 16 to be executed):

120×, 80, 45, 30.

We annotate an entry with the superscript × if it does not satisfy the element invariant. In
the second iteration the element invariant is satisfied at entries 80 and 45 (i.e., conditions at
lines 13 and 17 are evaluated to false and line 20 is executed), because 80 > 45 + 30 and
45 > 30, so mergeCollapse terminates. The element invariant does not hold at entry
120, however, since 120 ≤ 80+45. Thus, mergeCollapse has not fully restored the loop
invariant of sort.

More generally, an error (a violation of the invariant) can only be introduced by merging
the third-to-last and second-to-last element and requires precisely four elements after the
position of the error, i.e., at runLen[stackSize-5]. Indeed, suppose runLen consists
of four elements A, B,C, D satisfying the invariant. We add a fifth element E to runLen
using pushRun, after which mergeCollapse is called. The only possible situation in
which an error can be introduced, is when C ≤ D + E and C < E . In this case, C and D
will be merged, yielding the stack

A, B, C + D, E .

Then mergeCollapse checks whether the invariant is satisfied by the new three top ele-
ments. But A is not among those, so it is not checked whether A > B + C + D. As shown
by the above example, this latter inequality need not hold in general.
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3.1 The Length of runLen

The invariant affects the maximal size of the stack of run lengths during execution; recall that
this stack is implemented by runLen and stackSize. The length of runLen is declared
in the constructor of TimSort, based on the length of the input array a and, as shown below,
on the assumption that the invariant holds. For performance reasons it is crucial to choose
runLen.length as small as possible (but so that stackSize never exceeds it). The
original Java implementation is shown in Listing 5 (the number 24 replaced the previous
value of 19 in a later update, see Sect. 3.2):

Listing 5 Bound of runLen based on length of the input array a

1 private TimSort(Object[] a, Comparator c) {
2 (. . .)
3 int len = a.length;
4 (. . .)
5 int stackLen = (len < 120 ? 5 :
6 len < 1542 ? 10 :
7 len < 119151 ? 24 : 40);
8 runBase = new int[stackLen];
9 runLen = new int[stackLen];
10 }

We explain the bounds, assuming the invariant to hold. Consider the sequence (bi )i≥0,
defined inductively by b0 = 0, b1 = 16 and bi+2 = bi+1+bi +1. The number 16 is a general
lower bound on the run lengths bi , and b0, . . . , bn are lower bounds on the run lengths in an
array runLen of length n that satisfy the invariant; more precisely, bi−1 ≤ runLen[n-i]
for all i with 0 < i ≤ n.

LetrunLenbe a run length array arising during execution, assume it satisfies the invariant,
and let n = stackSize. We claim that for any number B such that 1 + ∑B

i=0 bi >

a.length we have n ≤ B throughout execution. This means that B is a safe bound, since
the number of stack entries never exceeds B.

The crucial property of the sequence (bi ) is that throughout the whole execution
we have

∑n−1
i=0 bi <

∑n−1
i=0 runLen[i] using that b0 = 0 < runLen[n-1] and

bi−1 ≤ runLen[n-i]. Moreover, we have
∑n−1

i=0 runLen[i] ≤ a.length since the
runs in runLen are disjoint segments of a. Now for any B chosen as above, we have∑n−1

i=0 bi <
∑n−1

i=0 runLen[i] ≤ a.length < 1 + ∑B
i=0 bi and thus n ≤ B. Hence, we

can safely take runLen.length to be the least B such that 1 + ∑B
i=0 bi > a.length.

If a.length < 120 we thus have 4 as the minimal choice of the bound, for a.length <

1542 it is 9, etc. This shows that the bounds used in OpenJDK (Listing 5) are slightly sub-
optimal (off by 1). The default value 40 (39 is safe) is based on the maximum 231 − 1 of
integers in Java.

3.2 Breaking TimSort

We saw that the invariant is not restored by mergeCollapse, contrary to what is stated
in the comments, while the bound of runLen in the constructor of TimSort is based on the
assumption that the invariant holds. It is possible to exploit the fact that the invariant breaks
by construction of a “bad” case [13]. In fact, as sketched in [13], this actually gives rise to
the worst case, meaning that for a given input length the construction yields an input array
that reaches the largest possible stackSize during execution.

We implemented this construction of worst case inputs. The required stack sizes for the
worst case in terms of the input length are shown in Table 1. Note in particular that these
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Table 1 Required stack size versus declared bounds on runLen

Generated array size 64 128 160 65536 131072 67108864 1073741824

Required stack size 3 4 5 21 23 41 49

runLen.length 5 10 10 19 (24) 40 40 40

inputs require a greater bound on runLen than is obtained by the analysis in the previous
subsection (which assumed the invariant to hold). The third row shows the declared bounds
in the TimSort implementation (see Listing 5). The bound 19 was updated to 24 after a bug
report.2

For instance, the worst case of length 160 requires a stack size of 5, and thus the declared
runLen.length = 10 suffices. Further observe that 19 does not suffice for the worst case
for arrays of length 65536, whereas 24 does.3 For the worst case of length 67108864, the
declared bound 40 does not suffice, and running TimSort yields the unpleasant result shown
in Listing 6.

Listing 6 Exception during execution of TimSort

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:386)
at java.util.TimSort.sort(TimSort.java:213)
at java.util.Arrays.sort(Arrays.java:659)
at TestTimSort.main(TestTimSort.java:18)

4 Verification of a Fixed Version

We discuss possible approaches to fix TimSort and describe how one of these fixes was
formally verified. To be specific, we proved mechanically that TimSort terminates normally
for any input, i.e., no ArrayIndexOutOfBoundsException is thrown, see Listing 7.
Wehave not proven that TimSort ensures the sortedness and permutation properties.However,
as will become clear in Sect. 4.3 below, even the proof of absence of top-level exceptions
required verification of a considerable amount of non-trivial functional specifications (500+
lines, see Table 2). The reason is that ensuring that the exception is never thrown depends
on a complex wellformedness property that must be maintained. Hence, we do not think this
specification and verification effort could have been achieved with “lightweight” verification
tools [6].

Listing 7 Top-level contract of TimSort

1 /∗@ normal_behavior
2 @ requires
3 @ a != null && 0 <= lo && lo <= hi && hi <= a.length;
4 @ ensures
5 @ true;
6 @∗/
7 static void sort(/∗@ nullable @∗/ Object[] a, int lo, int hi,
8 Comparator/∗<? super T>∗/ c);

2 http://bugs.java.com/view_bug.do?bug_id=8011944.
3 The increase to 24 had not been propagated to Android when [13] was written. Thus breaking the invariant
and triggering the bug in Android was possible for relatively small arrays of size 65536.
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4.1 Different Ways to Fix TimSort

In [13] we suggested two possible fixes of the TimSort bug. The first was to use larger stack
sizes based on an operational pen-and-paperworst case analysis of the implementation.While
the code change is trivial (modification of a few integer numbers in the allocation table), we
did not favor this solution as it fixes the symptom, but not the underlying problem that the
fundamental invariant of TimSort is broken. In short, when adopting this fix (as done in the
Java OpenJDK), one uses an algorithm that by itself is not fully understood why and how it
works. We do not know how to formulate a correct invariant for the original implementation
of the algorithm.

We favored the second suggestion which is to formalize the invariant as originally
intended and to fix the code of the method mergeCollapse that is responsible for re-
establishing the invariant. We were able to formally and mechanically prove that this fixed
version of the algorithm is correct in the sense that the stack lengths are sufficient and no
ArrayIndexOutOfBoundsException is thrown. We describe this fix and its verifica-
tion in Sect. 4.3 below.

In the aftermath of our discovery, it turnedout that the bugwas present in several implemen-
tations of TimSort. Besides in (Open)JDK,4 the bug was present in (1) its original Python
implementation,5 (2) Android,6 (3) an independent Java implementation used by Apache
Lucene,7 as well as (4) a Haskell implementation.8

All of these projects fixed the bug within a short time frame. The OpenJDK project was
the only one where the bug was fixed by just increasing the allocated array lengths, which
is in our opinion sub-optimal, and there is no machine checked proof of that fix. All other
projects implemented our second suggestion and fixed the underlying problem. Notably, the
Android fix varies from our proposal, but we were able to mechanically verify their fix with
only minor modifications to the specifications and proofs of our fix. We discuss the Android
fix in detail in Sect. 4.4. We do not know the reason for the alternative fix as the comment
discussing their solution refers to an internal Google issue tracker.

4.2 Verification in KeY

Before we start to explain the verification of TimSort in detail, we briefly sketch the veri-
fication process in KeY. In particular, we clarify the notion of proof obligation and explain
its generic form. We start by explaining that KeY is based on symbolic execution rather
than on verification condition generation. For each method a formula in Java Dynamic Logic
(JavaDL) is generated, which is valid if and only if the implementation adheres to its speci-
fication. The formula is then given to KeY’s theorem prover to be proven valid. The formula
contains the source code of the method to be verified as first class citizen and the calculus
rules concerned with program elimination implement a symbolic interpreter, i.e., the whole
program elimination is an integral part of the logic calculus itself and not an external entity.
The advantage of integrating symbolic execution and first-order reasoning into a logic calcu-

4 See https://bugs.openjdk.java.net/browse/JDK-8072909.
5 See http://bugs.python.org/issue23515.
6 See comment at line 409 at https://android.googlesource.com/platform/libcore/+/android-6.0.1_r77/luni/
src/main/java/java/util/TimSort.java.
7 See https://issues.apache.org/jira/browse/LUCENE-6293.
8 See https://github.com/timjb/haskell-timsort/commit/d9c3e1e454c7d338320f8c2aa12e882921d42828.
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lus is that first-order reasoning and symbolic execution rules can be seamlessly interleaved.
This allows KeY to simplify intermediate states eagerly and to close infeasible paths early.

The simplified form of a proof obligation for a method m is

(pre ∧ inv) → 〈m(args); 〉(post ∧ inv)

with pre, post and inv being the method precondition, postcondition and the class invariant,
respectively. In JML, the specification language used by KeY, a precondition is given by a
requires clause, and a post-condition is given by ensures. To avoid manually adding
the class invariant at all these points, JML offers an invariant keyword which implicitly
conjoins the class invariant to all pre- and post-conditions.

The formula expresses that, if a methodm is invoked in a state where the precondition and
invariant hold, then m terminates normally (not throwing an exception) and in its final state
the postcondition and the class invariant holds. This dynamic logic formula is equivalent to
the Hoare triple

{pre ∧ inv} m(args) {post ∧ inv}
plus termination.

Such formulas had to be proven valid for all methods of TimSort. Roughly, during veri-
fication the method body of m is symbolically executed to translate the above formula into
a pure first order formula. When symbolic execution requires to execute a method call state-
ment, the contract of the invoked method was used instead of inlining its implementation.
Using a contract involves to show that at the point the precondition of the called method as
well as the invariant of the receiver object holds. Symbolic execution then continues with the
next statement after the method invocation, assuming that the method’s postcondition and
the class invariant holds.

We conclude this section with a brief overview of the required proof-obligations for verifi-
cation of TimSort, and their interplay. Figure 1 provides a (simplified) call graph. For each of
the methods we have to prove that they adhere to their specification and in particular preserve
the invariant. Themethods directly relevant for the bug are themethodspushRun (where the
exception was thrown) and mergeCollapse, which failed in its original implementation
to re-establish the invariant. The specification and verification of these methods is explained
in detail in Sects. 4.3 and 4.4.

Fig. 1 Call dependencies of TimSort methods (excluding methods: minRunLength, rangeCheck and
invocation of Java library methods like System.arraycopy)
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The methods mergeLo/Hi do not change the runLen array or other program locations
occurring in the invariant at all and thus cannot invalidate the invariant. Their verification
proved surprisingly challenging because of their complex control flow which caused the
number of symbolic paths to explode. In order to be able to prove these methods, extensions
to theKeYverification systemwere necessary, namely, an improved rule to verifydo-while
loops (see Sect. 5.1) and state-merging (see Sect. 6.3).

The verification of thesemethods wasmostly necessary to exclude the presence of implicit
run-time exceptions and only a few of the listed methods mentioned in the previous two
paragraphs modify fields occurring in the invariant. Their method contracts serve mostly to
ensure that no NullPointerExceptions are thrown and that accesses to the array to
be sorted are within bounds.

4.3 Verification of the Code that Re-establishes the Invariant

In Sect. 3 we showed that mergeCollapse does not fully re-establish the invariant,
which led to an ArrayIndexOutOfBoundsException in pushRun. Now we fix
mergeCollapse so that the invariant of the main sorting loop (Listing 1) is re-established,
formally specify the new implementation in JML and provide a correctness proof, focus-
ing on the most important specifications and proof obligations. (In the specification listings
shown below we omitted some irrelevant lines; the specifications are otherwise unaltered).
This formal proof has been fully mechanized in the theorem prover KeY [1]. Statistics of the
verification effort and insights drawn from it are discussed in Sects. 5 and 6.

Listing 8 Fixed version of method mergeCollapse()

1 private void mergeCollapse() {
2 while (stackSize > 1) {
3 int n = stackSize − 2;
4 if ( n >= 1 && runLen[n−1] <= runLen[n] + runLen[n+1]

5 || n >= 2 && runLen[n-2] <= runLen[n] + runLen[n-1] ) {
6 if (runLen[n−1] < runLen[n+1])
7 n−−;
8 } else if (runLen[n] > runLen[n+1]) {
9 break; // Invariant is established
10 }

11 mergeAt(n);

12 }
13 }

Listing 8 shows the fixed version of mergeCollapse. Themain idea is to check validity
of the element invariant on the top four elements of runLen (lines 4–5 and 8), instead of
only the top three, as in the original implementation. The question arises: why is checking the
last four runs sufficient? Initially, the precondition of mergeCollapse guarantees that all
but the last three runs satisfy the element invariant. After mergeAt, the entry of runLen
at index stackSize-2 or stackSize-1 may be modified, but runs at earlier indices
remain intact. Thus the element invariant of runLen[stackSize-4] might not hold
after merging, but the element invariant of earlier runs is not affected by the merging. This
is the basis for checking the element invariant on the last four runs. Merging continues until
the top four elements satisfy the invariant, at which point we break out of the merging loop
(line 9). We prove below that this ensures that all runs satisfy the invariant.

To obtain a human readable specification and a feasible (mechanized) proof, we introduce
suitable abstractions using the following auxiliary predicates:
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Predicate name Predicate definition

elemBiggerThanNextTwo(arr, idx) (0 ≤ idx ∧ idx + 2 < arr.length) →
arr [idx] > arr [idx + 1] + arr [idx + 2]

elemBiggerThanNext(arr, idx) 0 ≤ idx ∧ idx + 1 < arr.length →
arr [idx] > arr [idx + 1]

elemLargerThanBound(arr, idx, v) 0 ≤ idx < arr.length → arr [idx] ≥ v

elemInv(arr, idx, v) elemBiggerThanNextTwo(arr, idx)∧
elemBiggerThanNext(arr, idx)∧
elemLargerThanBound(arr, idx, v)

The predicate elemInv(+runLen+,i, 16) holds when runLen[i] satisfies the element
invariant as defined in Sect. 3, and has length at least 16 (the lower bound on the minimal run
length). Aided by these predicates we are ready to express the formal specification, beginning
with the main sorting loop, which contains the fundamental invariant of TimSort.

Invariant ofMain Sorting Loop Wenow specify themain sorting loop (Listing 1), formalising
the invariant discussed in Sect. 3. Listing 9 shows the loop invariant in JML (note the use of
the JML keyword loop_invariant). The crucial lines 6–10 express that all elements in
runLen satisfy the invariant.

The local variable lo points to the index in the input array a of the first element that
has yet to be processed, thus a has been partitioned into runs from index9 old(lo) to lo.
Since JML by default uses Java integer types, which can overflow, we need to make sure
this does not happen by casting those expressions that potentially can overflow to \bigint
(the \bigint type represent mathematical integers). Furthermore nRemaining counts
the number of elements still to be processed. This explains line 4 and 5. Line 11–12 specify
that if there are remaining elements, all runs in runLen have a length of at least 16.

Listing 9 Specification of the main loop of TimSort

1 /∗@ loop_invariant
2 @ (0 < ts.stackSize && ts.stackSize <= ts.runLen.length)
3 @ && (0 <= nRemaining && minRun >= 16)
4 @ && ((\bigint)lo + nRemaining == hi)
5 @ && (lo == \old(lo) + (\sum int i; 0<=i && i<ts.stackSize; ts.runLen[i]))
6 @ && (\forall int i; 0<=i && i<ts.stackSize−2;
7 @ elemInv(ts.runLen, i, 16))
8 @ && elemBiggerThanNext(ts.runLen, ts.stackSize−2)
9 @ && elemLargerThanBound(ts.runLen, ts.stackSize−2, 16)
10 @ && elemLargerThanBound(ts.runLen, ts.stackSize−1, 1)
11 @ && (nRemaining > 0 ==>
12 @ elemLargerThanBound(ts.runLen, ts.stackSize−1, 16))
13 @ && (\forall int i; 0<=i && i<ts.stackSize−1;
14 @ (\bigint)ts.runBase[i] + ts.runLen[i] == ts.runBase[i+1]);
15 @∗/

The class invariant is formalised next. It is roughly a weaker version of this loop invariant.

Class Invariant As mentioned above, a class invariant is a property that all instances of a
class should satisfy and which must be preserved by each instance method, i.e., if it holds
before a method invocation then it must also hold after termination of the method.10 This
means the class invariant is implicitly contained in a method’s pre- and postcondition.

9 The JML expression \old(e) refers to the value of the expression e at the time of entry into a method.
10 We chose our class invariant in such a way that all instance methods preserve it. However, it is also
customary to allow private methods to temporarily break the invariant, as opposed to public methods. JML
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A seemingly natural candidate for the class invariant states that all runs on the stack satisfy
the element invariant and have a length of at least 16, like lines 6–10 of the sort(..)
loop invariant. The method pushRun critically relies on this invariant, to ensure that
runLen is sufficiently long to push a new run on the stack (otherwise, it throws the
ArrayIndexOutOfBoundsException). However, this class invariant is not preserved
by pushRun. Further, inside the loop of mergeCollapse (Listing 8) the mergeAt
method is called, so the class invariant must hold after it. But the merge could result in a new
entry at the one-but-last index stackSize-1 in runLen, thus the element invariant for
the last four runs might be broken after mergeAt. Finally, the last run pushed on the stack
in the main sorting loop (Listing 1) can be shorter than 16 if fewer items remain. The class
invariant given in Listing 10 addresses all this.

Listing 10 Class invariant of TimSort

1 /∗@ invariant
2 @ runBase.length == runLen.length
3 @ && (a.length < 120 ==> runLen.length==4)
4 @ && (a.length >= 120 && a.length < 1542 ==> runLen.length==9)
5 @ && (a.length>=1542 && a.length<119151 ==> runLen.length==18)
6 @ && (a.length >= 119151 ==> runLen.length==39)
7 @ && (runBase[0] + (\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i]) <= a.length)
8 @ && (0 <= stackSize && stackSize <= runLen.length)
9 @ && (\forall int i; 0<=i && i<stackSize−4; elemInv(runLen, i, 16))
10 @ && elemBiggerThanNext(runLen, stackSize−4)
11 @ && elemLargerThanBound(runLen, stackSize−3, 16)
12 @ && elemLargerThanBound(runLen, stackSize−2, 16)
13 @ && elemLargerThanBound(runLen, stackSize−1, 1)
14 @ && elemLargerThanBound(runBase, 0, 0)
15 @ && (\forall int i; 0<=i && i<stackSize−1;
16 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1]);
17 @∗/

Lines 3–6 specify the length of runLen in terms of the length of the input array a. Line 8
formalize the property that the length of all runs together (the sum of all run lengths) does not
exceed a.length. Line 8 contains bounds for stackSize. Line 9 expresses that all but
the last four elements satisfy the element invariant. The properties satisfied by the last four
elements are specified on lines 10–13. Lines 14–16 say that run i starts at runBase[i]
and extends for runLen[i] elements.
The pushRun method.

This method adds a new run of length runLen to the stack starting at index runBase.11

Lines 4–5 of Listing 11 express that the starting index of the new run (runBase) directly
follows after the end index of the last run (at index stackSize-1 in this.runLen
and this.runBase). The assignable clause indicates which locations can be modified; it
entails that previous runs on the stack are unchanged.

Listing 11 Contract of method pushRun()

1 /∗@ normal_behavior
2 @ requires
3 @ 0 < runLen && runLen <= a.length && runBase >= 0
4 @ && (stackSize > 0 ==> runBase ==
5 @ (\bigint)this.runBase[stackSize−1]+this.runLen[stackSize−1])
6 @ && ((\bigint)runLen + runBase <= a.length)

provides additional flexibility by means of the helper keyword, which allows one to mark those methods
that need not preserve the class invariant.
11 The parameters runLen and runBase of pushRun shadow instance variables with the same name. In
JML, to refer to the instance variables in specifications one prefixes this, just like in Java.
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7 @ && (\forall int i; 0<=i && i<(\bigint)ts.stackSize−2; elemInv(ts.runLen,i,16))
8 @ && elemBiggerThanNext(ts.runLen, (\bigint)ts.stackSize−2)
9 @ && elemLargerThanBound(ts.runLen, (\bigint)ts.stackSize−1, 16)
10 @ ensures
11 @ this.runBase[\old(stackSize)] == runBase
12 @ && this.runLen[\old(stackSize)] == runLen
13 @ && stackSize == \old(stackSize)+1;
14 @ assignable
15 @ this.runBase[stackSize], this.runLen[stackSize], this.stackSize;
16 @∗/
17 private void pushRun(int runBase, int runLen)

The mergeCollapse method. The new implementation of mergeCollapse restores
the invariant at all elements in runLen; this is stated in lines 6–7 of Listing 12. Since the
method mergeCollapse only merges existing runs, the sum of all run lengths should be
preserved (lines 8–9). Line 10 expresses that the length of the last run on the stack after
merging never decreases (merging increases it). This is needed to ensure that all runs, except
possibly the very last one, have length ≥ 16.

Listing 12 Contract of mergeCollapse

1 /∗@ normal_behavior
2 @ requires
3 @ stackSize > 0 && elemInv(runLen, (\bigint)stackSize−4, 16)
4 @ && elemBiggerThanNext(runLen, (\bigint)stackSize−3);
5 @ ensures
6 @ (\forall int i; 0<=i && i<(\bigint)stackSize−2; elemInv(runLen, i, 16))
7 @ && elemBiggerThanNext(runLen, (\bigint)stackSize−2)
8 @ && ((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])
9 @ == \old((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])))
10 @ && (runLen[(\bigint)stackSize−1] >= \old(runLen[(\bigint)stackSize−1]))
11 @ && (0 < stackSize && stackSize <= \old(stackSize));
12 @∗/
13 private void mergeCollapse()

The loop invariant of mergeCollapse is given in Listing 13. As discussed above,
merging preserves the sum of all run lengths (lines 2–3). Line 4 expresses that all but the last
four runs satisfy the element invariant: amerge at indexstackSize-3 (beforemerging) can
break the invariant of the run at index stackSize-4 after merging (beware: stackSize
was decreased). Lines 5–8 state the conditions satisfied by the last four runs. Lines 9–10
specify consistency between runLen and runBase. Line 11 states that stackSize can
only decrease through merging.

Listing 13 Loop Invariant of mergeCollapse

1 /∗@ loop_invariant
2 @ ((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])
3 @ == \old((\sum int i; 0<=i && i<stackSize; (\bigint)runLen[i])))
4 @ && (\forall int i; 0<=i && i<(\bigint)stackSize−4; elemInv(runLen, i, 16))
5 @ && elemBiggerThanNext(runLen, (\bigint)stackSize−4)
6 @ && elemLargerThanBound(runLen, (\bigint)stackSize−3, 16)
7 @ && elemLargerThanBound(runLen, (\bigint)stackSize−2, 16)
8 @ && elemLargerThanBound(runLen, (\bigint)stackSize−1, 1)
9 @ && (\forall int i; 0<=i && i<stackSize−1;
10 @ (\bigint)runBase[i] + runLen[i] == runBase[i+1])
11 @ && (runLen[(\bigint)stackSize−1] >= \old(runLen[(\bigint)stackSize−1]))
12 @ && (0 < stackSize && stackSize <= \old(stackSize));
13 @∗/

In order to prove the contract of mergeCollapse we make use of the contract of
mergeAt in Listing 14. The postcondition formalizes the first three cases of the merging
pattern of mergeCollapse as described in Sect. 2. It allows us to formally prove that,
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by repeated application of this merging pattern, the loop invariant of mergeCollapse in
Listing 13 is established again.

Listing 14 Contract of mergeAt()

1 /∗@ private normal_behavior
2 @ requires
3 @ stackSize > 1 && i >= 0
4 @ && (i == (\bigint)stackSize − 2 || i == (\bigint)stackSize − 3);
5 @ ensures
6 @ stackSize == (\bigint)\old(stackSize)−1
7 @ && runLen[i] == \old((\bigint)runLen[i] + runLen[(\bigint)i+1])
8 @ && (i == (\bigint)\old(stackSize)−3 ==>
9 @ ( runLen [(\bigint)i+1] == \old(runLen [(\bigint)i+2])
10 @ & runBase[(\bigint)i+1] == \old(runBase[(\bigint)i+2])))
11 @ && (tmp != \old(tmp) ==> \fresh(tmp));
12 @∗/
13 private void mergeAt(int i) {

To prove that each method satisfies its contract, several verification conditions must
be established. We discuss the two most important ones. The first states that on entry of
pushRun, the stackSize must be smaller than the stack length:

\requires(pushRun) && class inv. ==>stackSize < this.runLen.length

This is a crucial property: the ArrayIndexOutOfBoundsException of Listing 6 was
caused by its violation.

Proof Line 8 of the class invariant implies stackSize ≤ this.runLen.length.
We derive a contradiction from stackSize = this.runLen.length by consider-
ing four cases: a.length < 120, or a.length ≥ 120 && a.length < 1542, or
a.length ≥ 1542 && a.length < 119151, or a.length ≥ 119151. We detail the
case a.length < 120, the other cases are analogous. Since a.length < 120, line 3 of
the class invariant implies stackSize = this.runLen.length = 4.

Let SUM = this.runLen[0] . . . + this.runLen[3]. Suitable instances of lines
15–16 of the class invariant imply this.runBase[3] + this.runLen[3] =
this.runBase[0] + SUM. Together with line 14 of the class invariant and lines 4–5
of the pushRun contract we get runLen + SUM < 120. But the \requires clause
of pushRun implies runLen > 0, so SUM < 119. The \requires clause also
implies runLen[3] ≥ 16 (line 9), runLen[2] ≥ 17 (line 8), runLen[1] ≥ 34 and
runLen[0] ≥ 52 (line 7). So SUM ≥ 16 + 17 + 34 + 52 = 119, a contradiction. 	


The second verification condition arises from the break statement in the loop of themethod
mergeCollapse (Listing 8, line 9). At that point the guards on lines 4–5 are false, the one
on line 8 is true, and the \ensures clause of mergeCollapse (which implies that the
invariant holds for all runs in runLen) must be proven:

⎛

⎜
⎜
⎜
⎝

loop invariant of mergeCollapse && n = stackSize-2

&& n > 0 ==> runLen[n-1] > runLen[n] + runLen[n+1]

&& n > 1 ==> runLen[n-2] > runLen[n-1] + runLen[n]

&& n >= 0 ==> runLen[n] > runLen[n+1]

⎞

⎟
⎟
⎟
⎠

==> \ensures(mergeCollapse)

(1)

Proof Preservation of sums (lines 8–9 of \ensures) follows directly from lines 2–3 of the
loop invariant. Lines 10–11 of \ensures are implied by lines 11–12 of the loop invariant.
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The propertyelemBiggerThanNext(runLen,stackSize-2) follows directly from
n >= 0 ==> runLen[n] > runLen[n+1]. We show by cases that

\forall int i; 0<=i && i<stackSize-2; elemInv(runLen, i, 16).

– i < stackSize-4: from line 4 of the loop invariant.
– i = stackSize-4: from line 3 of the premise. The originalmergeCollapse imple-

mentation (Listing 4) did not cover this case, which was the root cause that the invariant
elemInv(runLen, i, 16) could be false for some i.

– i = stackSize-3: from the line 4 of the premise. 	


Preservation of the Main Loop Invariant The final proof obligation we discuss states that
the loop invariant (Listing 9) of the main sorting loop (Listing 1) is preserved by the loop
body. Line 2 follows from line 11 of the contract of mergeCollapse (Listing 12) and line
8 of the class invariant (Listing 10). Line 3 follows from the contract of minRunLength
and and line 9–14 of the main loop. Line 4 follows from line 20, 21 of the main loop. For
line 5, notice that pushRun increases the sum of run lengths with (the local variable passed
as parameter) runLen (see line 12–15 of its contract, Listing 11); this sum is preserved by
mergeCollapse (line 8 and 9 of its contract); finally in line 20 of the main loop, lo is
incremented with the value of runLen.

Line 6–7, formalising the crucial part of the invariant, follow from line 6 of the contract of
mergeCollapse. Line 8 follows from line 7 of the contract of mergeCollapse. Lines
12–13 follow from lines 12–13 of the class invariant. Lines 11-12 follow from lines 11–15
and 21 of the main loop. Finally, lines 13–14 follows from lines 15–16 of the class invariant.

Of course, all proof obligations described above (plus all others) were formally shown in
KeY.

4.4 The Android Fix

In the Android implementation of TimSort, the bug was corrected by adapting the method
mergeCollapse in a different way than proposed in Listing 8.We discuss this new version
and its correctness, which we have proved in KeY.

Listing 15 Fixed version of method mergeCollapse() in Android

1 private void mergeCollapse_android() {
2 while (stackSize > 1) {
3 final int n = stackSize − 2;
4 if (n > 0 && runLen[n−1] <= runLen[n] + runLen[n+1]) {
5 if (runLen[n−1] < runLen[n+1]) {
6 mergeAt(n−1);
7 if (n > 2 && runLen[n−3] <= runLen[n−2] + runLen[n−1]) {
8 mergeAt(n−1);
9 }
10 } else {
11 mergeAt(n);
12 }
13 } else if (runLen[n] <= runLen[n+1]) {
14 mergeAt(n);
15 } else {
16 break; // Invariant is established
17 }
18 }
19 }

The above method also checks that the last four elements of runLen satisfy the invariant,
but at a different time than the corrected version in Listing 8. Suppose that on entry of the loop,
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the last five elements of runLen are A, B,C, D, E . As explained in Sect. 3, the invariant
can be broken at (the run of length) A by merging the runs C and D, which would happen in
line 6. But in this case, the abovemethod immediately checks whether the invariant holds at A
(i.e., whether A > B+C +D), and if not, it merges the last two runs, yielding the run length
stack A, B,C +D+ E . Hence, the appropriate invariant for mergeCollapse_android
ensures that the invariant holds at all but the last three elements of runLen. Indeed, it is
obtained from the invariant of mergeCollapse in Listing 13 by replacing lines 4–5 by
the following:

\forall int i; 0<=i && i<stackSize-3; elemInv(runLen, i, 16)
(2)

This is the only required change: the contract of mergeCollapse_android is the same
as the contract of mergeCollapse. Hence, similar to the explanation of the correctness
of mergeCollapse, the main verification condition arises from the break statement at
line 16.At that point, the guards at line 4 and 13 are false, hencewemust prove the following:

⎛

⎜
⎝

loop invariant of mergeCollapse_android && n = stackSize-2

&& n > 0 ==> runLen[n-1] > runLen[n] + runLen[n+1]

&& runLen[n] > runLen[n+1]

⎞

⎟
⎠

==> \ensures(mergeCollapse_android)

The invariant of mergeCollapse_android implies that of mergeCollapse, and,
because of (2), it implies the left-hand side of the verification condition (1) discussed above
in the correctness of mergeCollapse. Finally, since we have that

\ensures(mergeCollapse) = \ensures(mergeCollapse_android)

(their contracts are identical), the above verification condition follows from (1).

5 Proof Statistics

Our analysis resulted in one of the largest case studies carried out so far in KeY, with
nearly 3 million proof steps in total.12 The KeY proof targets the actual implementation in
the OpenJDK standard library, rather than an idealized model of it. That implementation
uses low-level bit-wise operations, abrupt termination of loops and arithmetic overflows.
Our proof effort motivated several improvements to KeY, such as improved support for
reasoning about operations on bit-vectors. Table 2 shows some general statistics about the
proof.

Before discussing the proof statistics in detail, we briefly explain the automated proof
search in KeY. KeY provides a semi-automated theorem prover that allows the user to work
on the same proof representation as the automated part of the prover. This means that, in case
the automation fails, the user can inspect the proof situation and apply some rules interactively
to steer the proof search in the right direction and then restart the proof search strategies. The
default strategy is cost based and implements a number of reasoning techniques with support
for theories like integers (linear and to some part non-linear arithmetics) or finite sequences.
The user can choose to run the strategies as-is or to use proof macros which constrain the

12 The proofs are available at www.key-project.org/timsort/.
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Table 2 Lines of code and specification and proof statistics for TimSort methods

Method Rule apps Interact Call Loop Q-inst Merges Spec LoC

mergeLo 1,455,918 20,204 11 3 713 12 66 88

mergeHi 460,409 3312 13 3 478 5 62 92

mergeCollapse 348,774 1849 4 1 409 4 48 13

sort(a,lo,hi,c) 152,752 359 10 1 41 1 42 52

binarySort 92,593 323 2 2 10 0 27 35

mergeAt 63,309 794 4 0 155 6 32 39

pushRun 42,142 129 0 0 72 0 18 5

mergeForceColl 58,567 475 3 1 27 2 39 10

Other (sum) 292,058 1346 67 18 147 13 174 171

Total 2,966,522 28,791 114 29 2052 43 508 505

Rule Apps: Total number of rule applications
Interact: Number of interactively (manually) applied rules
Call/Loop/Q-inst/Merges: Numbers of encountered method calls/loop invariants/quantifier instantiations/
merge rule applications (interactive and automatic rule apps. count).
Spec and LoC: Lines of Specification / Code

strategies such that, in case of failed proof attempts, the result can be easier understood by a
human. KeY also allows to invoke SMT solvers. In that case, a successful invocation closes
the corresponding proof goal by referring to the SMTprover, but KeY does not checkwhether
the obtained result is correct.

One reason for the large number of proof steps is their fine granularity. However, notice
that only a relatively small number of steps was applied manually (column “Interact”). Most
of the manual interactions are applications of elementary weakening rules (hiding large
irrelevant formulas) to guide the automated proof search. Application of the majority of the
elementary weakening rules could be automated by extending the current strategies to more
aggressively detect subsumption and in particular, by allowing the strategies to eliminate
equations of the kind c

.= t where c is a constant symbol not occurring anywhere else in the
sequent.

Approximately 5–10% of the interactive proof steps required some ingenuity, such as
introducing lemmas and finding suitable quantifier instantiations (column “Q-inst”). The
columns “Call” and “Loop” show the number of rule applications concerning calls and loops
encountered in symbolic execution paths (in total, i.e. both interactive and non-interactive
applications count). Since multiple paths can lead to the same call, this is higher than the
number of calls in the source code. The last two columns show the number of lines of
specification and code (without comments).

In the proofs of some of the methods, we employed a novel symbolic state merging
technique [22] for mitigating the path explosion problem during the symbolic execution
(column “Merges”). In the remainder of this section, we describe the effect of state merging
on the proof size (Sect. 5.1), and discuss the required user interactions in greater detail
(Sect. 5.2).
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Fig. 2 Comparison of proof sizes with and without state merging. Only proofs where state merging has been
applied are considered

5.1 Proof Size Reduction by State Merging

One of the main bottlenecks of symbolic execution is the path explosion problem [9]. It
stems from the fact that symbolic execution must explore all symbolic paths of a program to
achieve high coverage (in testing), respectively, soundness (in verification). The number of
paths from the root to the leaves in a symbolic execution tree is usually exponential in the
number of static branches of the executed program. By merging suitable proof nodes arising
during symbolic execution, this problem can be mitigated (in Sect. 6.3, we describe the state
merging framework implemented in KeY in some more detail.)

In [13], we used symbolic execution without state merging for proving the absence of
exceptions in TimSort. For the present paper, we redid all the proofs in a version of KeY that
features state merging techniques. Figure 2 shows a comparison of the proof sizes with and
without state merging for all methods where merging has been applied. On average, we were
able to reduce the proof sizes by 39%, with a maximum reduction of almost 80% in the case
of mergeAt.

In most cases, we employed a state merging technique requiring very little human inter-
action and preserving full precision. The technique essentially combines differing values in
the merged states to a value summary (so-called “if-then-else merging”). In the value sum-
mary, all differing values for a variable are remembered precisely, and are constrained by the
path conditions of the nodes in the execution tree they originated from. For two methods,
mergeForceCollapse and ensureCapacity, the number of proof nodes increased
when applying merge techniques. This can be explained by the relatively small size of those
proofs; the saved redundancy is insufficient for compensating the increased complexity in the
merged nodes. By using a predicate abstraction merging technique, where differing values
are abstracted from by user-supplied unary predicates, we managed to decrease the proof
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Table 3 Interactive versus total number of rule applications (per method)

Method Rule apps Interactive rule
apps

Interactive rule
apps (%)

mergeLo 1,455,918 20,204 1.39

mergeHi 460,409 3312 0.72

newMergeCollapse 348,774 1849 0.53

sort(a,lo,hi,c) 152,752 359 0.24

binarySort 92,593 323 0.35

gallopLeft 88,332 511 0.58

gallopRight 78,034 476 0.61

mergeForceCollapse 58,567 475 0.81

ensureCapacity 50,707 321 0.63

pushRun 42,142 129 0.31

countRunAndMakeAscending 38,087 0 –

ensureCapacity-PredAbstr 37,943 343 0.90

invAccessible 15,202 38 0.25

TimSort 11,812 0 –

rangeReverse 7304 0 –

mergeAt 6330 794 12.54

minRunLength 2096 0 –

sort(c) 259 0 –

rangeCheck 225 0 –

Average 155,131 1533 (0.99)

Median 42,142 323 (0.77)

The average and median for the percentage of interactive rule applications is computed from the total average
and median of (interactive) rule applications

size by 15% through the choice of abstraction predicates tailored to the specific problem in
ensureCapacity.

Our experience with TimSort (and some smaller examples) is that the application of “if-
then-else”-based statemerging ismost suitable when (1) there is a reasonably large remaining
program left for execution after the merge, and (2) the merged states do not differ too much.
If these criteria are not met, it can happen that the overhead introduced by the more complex
expressions arising from themerging cancels the advantages. In this case, the proof sizemight
increase (as in the case of mergeForceCollapse and ensureCapacity) and the
resulting proof nodesmight be harder to understandbyhumanusers.We therefore recommend
to use state merging as early and locally as possible. Predicate abstraction is generally very
likely to reduce the proof size; however, inferring suitable abstraction predicates is not an
easy task.

5.2 User Interaction

While KeYwas able to handle six out of 19 methods of the TimSort class fully automatically,
the remaining methods required user interaction. Table 3 shows the relation between the
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Fig. 3 Proportions of interactive rule applications (grouped by type) for all TimSort methods and excluding
mergeLo

number of user interactions and the total number of rule applications in those proofs. On
average, 0.99% of all rule applications were performed manually.

Clearly, not all interactions were really necessary for finishing the respective proof obliga-
tions. Figure 3 illustrates the proportions of the types of manually applied calculus rules, once
for all TimSortmethods andonce excluding themethodmergeLo. (Wediscuss the particular-
ities of this method in the subsequent paragraphs.) The categories of cut and quantifier-related
rules sum up to roughly 3% (7% without mergeLo); 90% (84%) of user interactions reside
in the categories “Hiding” and “Simplification”. Hiding refers to the removal of formulas
in sequents that (could) distract the automatic strategies; simplification covers, for instance,
arithmetic rewriting rules and non-splitting propositional simplification. That not all interac-
tions are strictly necessary is partially caused by the fact that users tend to hide and simplify
more formulas than absolutely necessary after the automatic strategies timed out on a proof
branch.

Relevant input for investigating the effect of different “proving styles” of KeY proof engi-
neers can be obtained from the data for themethodsmergeLo andmergeHi. Thosemethods
were, due to explosion of symbolic execution branches, unfeasible without state merging,
and thus not proven in [13]. Listing 16 contains an excerpt of the code for both methods.
It illustrates their complexity with nested loops, label breaks, and several method calls, but
also their similarity. The code is entirely symmetric and performs the same operations for
merging two adjacent “runs”; merely for optimization purposes, mergeLo is supposed to be
called when the first run is smaller than the second one, while mergeHi is called otherwise.
It would be reasonable to assume that the proof sizes and effort for both methods roughly
coincide; however, the proof for mergeLo is more than three times as large as the one
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1private void mergeHi
2 (int base1, int len1,
3 int base2, int len2) {
4

5 // Copy second run into temp array
6 Object[] a = this.a; // For performance
7 //...
8

9 // Move last element of first run and
10 // deal with degenerate cases
11 a[dest−−] = a[cursor1−−];
12 //...
13

14 outer: while (true) {
15 /∗ Do the straightforward thing until
16 ∗ (if ever) one run starts
17 ∗ winning consistently. ∗/
18 do {
19 if (c.compare(tmp[cursor2],
20 a[cursor1]) < 0) {
21 a[dest−−] = a[cursor1−−];
22 count1++; count2 = 0;
23 if (−−len1 == 0)
24 break outer;
25 } else {
26 // ...
27 if (−−len2 == 1)
28 break outer;
29 }
30 } while ((count1 | count2) < minGallop);
31

32 /∗ One run is winning consistently:
33 ∗ Try galloping. ∗/
34 do {
35 count1 = len1 − gallopRight(
36 tmp[cursor2], a, base1, len1,
37 len1 − 1, c);
38 if (count1 != 0) {
39 dest −= count1; cursor1 −= count1;
40 len1 −= count1;
41 System.arraycopy(a, cursor1 + 1, a,
42 dest + 1, count1);
43 if (len1 == 0)
44 break outer;
45 }
46 // ...
47 if (−−len1 == 0)
48 break outer;
49 minGallop−−;
50 } while (count1 >= MIN_GALLOP |
51 count2 >= MIN_GALLOP);
52

53 // ...
54 } // End of "outer" loop
55

56 // ...
57 }

1private void mergeLo
2 (int base1, int len1,
3 int base2, int len2) {
4

5 // Copy first run into temp array
6 Object[] a = this.a; // For performance
7 //...
8

9 // Move last element of first run and
10 // deal with degenerate cases
11 a[dest++] = a[cursor2++];
12 //...
13

14 outer: while (true) {
15 /∗ Do the straightforward thing until
16 ∗ (if ever) one run starts
17 ∗ winning consistently. ∗/
18 do {
19 if (c.compare(a[cursor2],
20 tmp[cursor1]) < 0) {
21 a[dest++] = a[cursor2++];
22 count2++; count1 = 0;
23 if (−−len2 == 0)
24 break outer;
25 } else {
26 // ...
27 if (−−len1 == 1)
28 break outer;
29 }
30 } while ((count1 | count2) < minGallop);
31

32 /∗ One run is winning consistently:
33 ∗ Try galloping. ∗/
34 do {
35 count1 = gallopRight(
36 a[cursor2], tmp, cursor1, len1,
37 0, c);
38 if (count1 != 0) {
39 System.arraycopy(tmp, cursor1,
40 a, dest, count1);
41 dest += count1; cursor1 += count1;
42 len1 −= count1;
43 if (len1 <= 1)// len1==1 || len1==0
44 break outer;
45 }
46 // ...
47 if (−−len1 == 1)
48 break outer;
49 minGallop−−;
50 } while (count1 >= MIN_GALLOP |
51 count2 >= MIN_GALLOP);
52

53 // ...
54 } // End of "outer" loop
55

56 // ...
57 }

Listing 16: The methods mergeHi() and mergeLo() (excerpt)

for mergeHi. The proofs were done by different teams, following different strategies. In
the case of mergeHi, the strategy was to do a careful preparation of proof sequents by
using hiding, simplification and useful cuts and quantifier instantiations early; whenever the
strategies went into a disadvantageous direction, the proof was pruned back to keep it small.
In the case of mergeLo, the automated search strategies were used more extensively. The
consequence, however, was the necessity of even more simplification and hiding steps in the
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Fig. 4 Number of interactive rules in mergeHi/mergeLo (grouped by type)

Fig. 5 Distribution of interactive rules in mergeHi/mergeLo (grouped by type)

end. The effect of these different interaction strategies is visualized in Figs. 4 and 5 which
depict the absolute and relative number of interaction types for both methods. Through the
normalization by the total number of interactive rule applications, Fig. 5 provides some
insights which do not immediately emerge from Fig. 4; for instance, it emphasizes the higher
effort spent on “complicated” rules such as cuts, splitting and quantifier instantiation in
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Table 4 Verification effort for Android’s fix of method mergeCollapse()

Method Rule apps Interactive steps Interactive steps (%)

mergeCollapse_android
(Android version)

122,710 825 0.007

newMergeCollapse (our
version)

348,774 1849 0.53

mergeHi, while in the case of mergeLo, hiding is significantly more prominent. The latter
can be explained by the chosen approach of relying more on the automatic strategies, which
then inferred much more “disturbing” numeric equations etc.

Such considerations permit the conclusion that the shape of proofs may, especially for
very complex proof obligations, depend much on the experience of the proof engineer. In
either case, however, KeY’s built-in search strategies usually perform at least 99% of all rule
applications automatically.

A further manifestation of different interaction strategies, and the efficiency of the proof
engineer can be observed in Table 4. It compares the proof statistics of mergeCollapse
for the Android fix (method mergeCollapse_android) and our fix (method
newMergeCollapse). The Android version was proven by the same team as mergeHi,
while the new Java version (newMergeCollapse) was proven by the mergeLo team.
The shorter proof for Android’s fix is despite the fact that the Android version involves a
slightly more complex specification. (All other proofs did not need to be changed and are
thus identical.)

In terms of person-months, the specification and verification for all methods excluding
mergeLo and mergeHi took around three person-months. This was the proof effort for the
analysis reported in [13].A large part of this effort focusedon iterating specifying andproving,
until the right specifications were found. Afterwards, the new branch merging technique was
implemented in KeY, which made another attempt at mergeLo and mergeHi feasible. Due
to backwards compatibility issues (see Sect. 7 for details) the original proofs for the other
methods had to be proven again in this new version of KeY. This had the benefit that it allowed
us to analyze the effect of the branch merging technique. We exploited the branch merging
technique extensively in the new proofs (see above). In terms of person-months, reproving
all methods with the branch merging technique (i.e., excluding mergeLo and mergeHi)
took around a week, compared to three person-months originally. The twomain reasons were
that no “specifying and proving” iterations were needed anymore (the specifications could
just be reused from the original effort), and the use of the branch merging technique, which
significantly reduced the proof effort.

For mergeLo and mergeHi, as reported above, they were proven by different teams
using different strategies. The effort for mergeHi was around 2.5 person-days in total (this
includes the proof as well as the specification). For mergeLo, the estimated effort is about
30 days in total, i.e., 12 times as much. The verification of those methods was mostly done
independently of each other, while the specifications are as symmetric as the actual code.
This emphasizes the impact of the level of experience and the decisions made by human users
on the performance of semi-automatic program verification when it comes to very complex
programs. To perform the task of a verification engineer requires substantial training, even
if systems like KeY handle a lot of the work automatically.
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6 Lessons Learned for Verification

We describe the problems encountered during the case study and how we overcame them.
We outline how these experiences motivated to improve the KeY system. Some of these
improvements had been added already in [13], some others only since then.

6.1 Incremental Development of Specifications

Our aim was to formally verify library code used in the real world, so the analysed code was
not written with design for verification [23] in mind. As a consequence, it contains many
performance optimizations that tend to make verification harder: loop break-outs, redundant
non-modular code that causes some highly complex control flow, aswell as integer operations
relying on Java’s integer overflow semantics.

Another obstacle was that only informal specifications were available, either in the form
of natural language inside source code comments or in the algorithm description found in
timsort.txt.13 These texts were sufficient to understand the ideas behind the algorithm
and to comprehend the source code. The intended (but, as it turned out, insufficient) invariant
was even explicitlymentioned. However, the descriptionswere incomplete for a formal proof.

From this starting point, a formal specification in JML was developed in an incremental
manner. After formalizing the natural language description and adding additional constraints,
we started to verify the method contracts. When we failed, we improved the specifications
based on the feedback obtained from KeY. For instance, KeY can produce symbolic counter
examples. To illustrate this, consider the following unclosable goal, generated by KeY during
an attempt to verify the original mergeCollapse implementation:

runLen[stackSize−3] > runLen[stackSize−2] + runLen[stackSize−1],
\forall int i; 0<=i && i<stackSize−4; runLen[i] > runLen[i+1]+runLen[i+2]

==> runLen[stackSize−4] > runLen[stackSize−3] + runLen[stackSize−2]

The quantified formula says: the element invariant holds except for the last five runs. The
formula in the first line establishes the invariant for the final three runs. Nevertheless, the
invariant is broken by the fourth but last run, as suggested by the fact that KeY can not prove
the formula on the right-hand side of the implication. This information pinpoints where the
invariant breaks (as analyzed in Sect. 3) and suggests how to fix the algorithm (as done in
Sect. 4): add a test for index stackSize-4 “somewhere”. Thanks to symbolic execution,
KeY produces proof trees that reflect closely the control flow of the program. This allows
one to identify also where to add the extra check.

After we had realized that the intended class invariant was not preserved and did not
hold, we scaled back our ambition to specify and verify full functional correctness of
TimSort. We abandoned the goal to verify that the resulting array is indeed sorted and a
permutation of the original, as well as the stability of the sorting algorithm. Instead we
focused on the simpler verification task that no uncaught exceptions are thrown, including
ArrayIndexOutOfBoundsException. Hence, the proposed fix actually eliminates
the bug. Even so, specification and verification remained a rather complex and non-trivial
task, as detailed in Sect. 5.

13 http://svn.python.org/projects/python/trunk/Objects/listsort.txt.

123

http://svn.python.org/projects/python/trunk/Objects/listsort.txt


118 S. de Gouw et al.

6.2 The Best Choice of Integer Semantics

We mentioned above that certain parts of the TimSort implementation rely on Java integer
overflows which are notoriously hard to reason about [8].

KeY supports three different kinds of integer semantics [1] that can be selected for a given
proof. The general path from an integer arithmetic Java expression to its logic representation
consists of unfolding complex expressions into a sequence of simpler expressions/statements
until an elementary Java expression like i + j remains, which is then translated into the
logic term javaAddInt(i,j). The axiomatisation of the function javaAddInt depends
then on the chosen integer semantics:

1. Treat Java integral types as mathematical integers. With this semantics, the term
javaAddInt(i,j) is rewritten into add(i,j), where the function add is axioma-
tized as the arithmetic addition on the integers. This semantics is neither correct nor
complete, hence it is only used for teaching or academic purposes.

2. Permit successful verification of Java code only when either no overflow can occur,
or when the value of overflowing integer operations does not influence the verification
result. In our example, this semantics rewrites the term javaAddInt(i,j) into the
conditional term

if (inInt(add(i,j))) then add(i,j) else javaAddIntOverFlow(i,j) ,

whose conditional checks if the sum ofi andj using normal arithmetic addition is within
the range of Java’s int-type. If yes, the result of the normal addition is used, otherwise an
integer typed term using the unspecified function symbol javaAddIntOverFlow is
returned. The latter means that the result is some integer but we don’t know which one.
This means a property can usually only be shown if the arithmetic operation does not
overflow or if the result of the addition does not influence the validity of the property. This
semantics is correct for the Java language specification, but not complete. It ensures that
a Java program has the verified properties, but there are correct Java programs (relying
on overflow) that cannot be proven.

3. A faithful model of the Java integer semantics with overflow and modulo operations.
In this case the term javaAddInt(i,j) is rewritten into addJint(i,j) which is
axiomatised as the Java addition with overflow. This semantics is correct and complete.

The first kind of semantics is unsuitable for our goal of verifying a real world Java library,
because a proof that uses it would have little practical relevance. We decided to alternate
between the second and third integer semantics, depending on the method under verifica-
tion. For those methods that rely on integer overflows (ensureCapacity, gallopLeft,
gallopRight), we had to use the (relatively cumbersome) third variant. We also chose
this integer semantics for methods that use bitwise operators (binarySort, mergeHi,
mergeLo, minRunLength and TimSort). For those methods, proving the absence of
overflows (as required if we had chosen the second semantics), was more cumbersome than
using the Java integer semantics. For all other methods, an overflow should not happen (and
otherwise would be a bug) and we used the second semantics. Using that, one can easily
avoid costly integer modulo operations (which cause excessive branching of the proofs) by
simple range checks on the result.

For methods where the Java integer semantics had to be used, verification became tedious
as modulo operations were then created for almost all integer expressions of that method,
even for those where an overflow could not happen. We managed to simplify the verification
task considerably by using lemmas that avoid the introduction ofmodulo operations in benign
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Fig. 6 Schema of KeY’s do-while transformation rule

cases. These lemmas permit to create non-modulo operations in case the result of an operation
is within the range of its Java integral type, or allow the easy removal of a modulo operator
which is applied to an expression already known to be within the integral’s type range and
thus being harmless, i.e., a lemma that expresses that if a + b is known to be within a range
R then (a + b) mod R is equal to a + b.

During the case study, the new lemmas were applied manually (or we relied on KeY’s
quantifier elimination strategies). In hindsight, we added the lemmas to KeY’s rule base and
tuned the proof search strategies to apply them automatically in an efficient manner.

6.3 Proof Size Explosion

The most important lessons learned originate from the methods mergeLo and mergeHi
(see Listing 16) whose proofs were elusive in [13]. They have over 100 lines of code each
and exhibit complex control flow with nested loops, six breaks, and several if-statements.
This leads to a memory overflow during proof attempts due to an explosion in the number
of symbolic execution paths. For the present paper we investigated the reasons of this proof
size explosion in greater detail. This triggered two improvements: a new symbolic execution
rule for do-while loops, and a rule that allows merging of proof nodes.
An Improved Rule for do-while Loops.

The methods mergeLo and mergeHi consist mainly of one outer loop which includes
two inner loops. The bodies of the inner loops contain several (nested) branching statements
and break statements that redirect control flow. The inner loops are do-while loops, i.e.,
their body is executed at least once. Instead of providing specific loop invariant rules for each
of Java’s loop statements (for, enhanced for, do-while and while), KeY provides
program transformation rules that translate any loop into a while loop.

The standard transformation rule for do-while loops, sketched in Fig. 6, copies the loop
body in front of a while loop.14 It turns out that this transformation hasmajor disadvantages,
caused by the duplication of the loop body. It essentially requires proving the loop body twice
(line 1 and line 4). Furthermore, if the copied loop body causes branching, the new while
loop (lines 3–5) must be proven separately in each branch.

To avoid this redundancy, we implemented an alternative transformation rule that avoids
duplication of the loop body. A Boolean variable firstIteration is declared that is
initially set to true. To ensure that the loop is executed at least once, the guard is modified
to the expression firstIteration || guard. The use of the short-circuit disjunction
operator prevents the guard from being evaluated (with possible side-effects) in the first
loop iteration. After entering the loop for the first time, the first statement in its body assigns
firstIteration the value false. The new transformation rule is shown in Fig. 7.
It has one disadvantage compared to the old transformation: the loop invariant must be
able to use the newly introduced ghost variable firstIteration which is not known a

14 The actual rule is somewhat more complex, as it has to deal correctly with breaks, continues, returns,
exceptions and local variable declarations.
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Fig. 7 New and improved do-while transformation (simplified)

priori. This can be done by entering the loop invariant manually when applying the rule. In
addition, we added (after the case study) to our variant of the specification language JML the
keyword \firstIt that can be used in do-while loop specifications to distinguish the
first iteration from other iterations. The keyword is then replaced in the transformed invariant
by the auxiliary variable firstIteration.

A Uniform Framework for Symbolic State Merging In previous work [13], we used block
contracts to reduce the number of branches following branching statements like if. Block
contracts are a generalization of method contracts which facilitate the annotation of arbitrary
blocks of Java code with pre- and post-conditions. When executing a block based on its
contract, one has to prove that the contents of the block satisfy the contract. Then, symbolic
execution proceeds with the knowledge provided by the contract, abstracting away from the
concrete behavior of the annotated block. However, this technique has two downsides: First,
the applicability of using block contracts for mitigating state explosion is limited. Loops, for
instance, can be exited at different break statements, leaving open several execution paths that
begin at the same point in the program. This behavior is exhibited frequently in TimSort, for
instance, in the methods mergeHi and mergeLo (see Listing 16). Second, block contracts
are subject to the problems arising during incremental specification (Sect. 6.1): if the contract
is invalid, this may become clear only after executing the content of the block and trying to
verify the contract. Further, if the contract is too weak, the user might not notice this before
finishing the execution of the remaining program after the block, and trying to verify the
method’s post condition. In the case of large blocks or remaining programs, this constitutes a
significant effort, and may require tedious backtracking and refinement of the block contract
if there were problems.

To address the path explosion problem in a fundamental manner, we developed a uniform
branch merging framework [22] that is highly flexible and can be applied on all nodes in
a proof that point to the same statement in the program. The framework supports differ-
ent state merging techniques of which some are abstraction-based and require the user to
choose a suitable abstract domain, while others can be applied automatically and maintain
full precision. A classic example for the application of state merging are the nodes arising
after the execution of an if statement: They differ in the variables that have been changed
in the if or the else block, and both point to the remaining program after the if state-
ment. The choice of the merging technique determines how the differing values of those
nodes are combined when merging them together. Two popular techniques are fully precise
“if-then-else” merging, where both the differing values are remembered exactly, and predi-
cate abstraction, offering an arbitrary degree of abstraction based on the chosen predicates.
State merging overcomes the discussed disadvantages of block contracts: When using the
fully precise merging technique, there is no need to provide a possibly complex specifi-
cation for the block. Instead, nodes arising after the execution of a block which share the
same remaining program to execute can be brought together without any further input by
the user. This also spares the user the efforts for incremental specification of blocks. Fur-
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thermore, state merging is more flexible than block contracts: It can be applied in a wider
range of scenarios (cf. the example of loops above), while still providing the possibility to
abstract away from uninteresting concrete behavior through the supported abstraction-based
techniques. As shown in Sect. 5, state merging effectively decreases the size of complex
proofs. It enabled the verification of mergeLo and mergeHi which was previously out of
reach.

7 Challenges and Future Work

Challenges that need to be addressed in future work are (1) realization of proof reuse tech-
niques, (2) backwards compatibility of theories, (3) deeper integration with SMT solvers,
(4) full functional correctness. Some of these issues are in parts specific to our approach and
tool, but we believe that at least the first three affect other approaches too, even though the
symptoms might differ.

Proof Reuse A recurring scenario is the interplay between specification and verification. The
most common event is that a method cannot be verified and its source code or specification
needs to be fixed or amended. In formal verification, like in software development, the cost
of fixing a bug becomes higher the later it is found. If the verification attempt was highly
interactive until the point where the problem was identified, then all of the interactive steps
have to be performed again. In its current version KeY supports only proof replay, but not
proof reuse. This means once a branch cannot be replayed anymore, all work in that branch
from this point onward is lost. The verification work for repeated proof attempts is not visible
in the statistics, as it only considers the proofs’ size once it has been completed, but none of
the proofs was done in the first iteration.

Adding proof reuse techniques that allow one to partially recover from this situationwould
reduce the verification effort considerably. Proof reuse techniques have been investigated for
instance in [21], and earlier versions of KeY came with support for proof reuse [5]. The
approach in [21] requires knowledge about all calculus rules which works only for systems
with a small rule base. The approach implemented earlier in KeY focused on being able to
reuse proofs after a program change, a scenario which did not occur in this case study, since
once the bug was discovered, we focused on the verification of the fixed version.

Backwards Compatibility of Theories This topic is closely related to proof reuse discussed
in the previous paragraph. One problem encountered when redoing the proofs from [13] was
that calculus rules for some theories had been changed tomake reasoning about those theories
more effective, but now caused failure to reload the old proofs. This poses the question of
how to establish backwards compatibility. One option would be to introduce versioning of
the theory rules and to limit strategies to a newer version, while the old rules stay around for
reloading.With time, this would increase the rule base considerably. Another option could be
to provide the possibility to backup all rules used in a proof as part of the saved proof file, thus
ensuring that these will be available when the proof is reloaded. In our case, better stability
could also be achieved by recording proof macros instead of saving the whole proof object.
Proof macros describe proof construction in a similar manner to tactics in proof assistants
such as Isabelle [18]. At the time of our case study, KeY’s proof macro framework was still in
its infancy, but has since then considerably gained support. Nevertheless, proofmacros would
not solve all relevant problems since their reliability depends on the proof search strategies.
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Deeper Integration with SMT Solvers KeY can delegate proof goals to SMT solvers. If such
a proof goal can be closed by an SMT solver, KeY closes the goal by referring to the used
SMT solver. The proofs in our case study do not include any proof goals closed by SMT
solvers. The problem is that the SMT output is used as-is and cannot be further inspected.
So the correctness relies on the implementation of the translation of proof goals into the
SMT format and there is no way to validate the outcome with KeY. To mitigate this one
could consider to implement back translation and reconstruction of SMT proofs for KeY in
a similar manner as it is done for interactive proof assistants [7].

To be able to use SMT solvers successfully, KeY first needs to simplify the proof goals
considerably. In particular, heap simplifications have to be done beforehand. The reason for
this is that KeY’s SMT translation cannot translate all kinds of rules into the SMT Lib format
and hence the heap theory passed on to the SMT solvers is not complete. In future work, the
translation should be extended to be able to translate more of KeY’s theory axiomatizations
and rules (lemmas) into the SMTLib format. In addition, it might be necessary to optimize
this generic translation, which directly translates each axiom/rule as-is to a more specific
ones that adds theories like the one for heaps in a formalisation that is easier approachable
by SMT solvers.

Full Functional Correctness Although our work initially aimed at proving sortedness and
the permutation property, we postponed these efforts after running into the specification and
verification problems that revealed the bug discussed in this paper. We have not yet resumed
work on verifying these properties. In our proofs, we also omitted a case that can only
occur if the passed comparator does not implement a correct ordering relation. This required
to slightly change the code by commenting out a branch in which an exception would be
thrown if a bad comparator was detected in the methods mergeLo and mergeHi. It does
not affect the proof that the bug is fixed, since if this branch would have been taken, execution
finishes by passing the exception to the caller of the sort method.

Other Future Work We plan to investigate the relation between design, performance and
verification effort in a systematicmanner. Amajor problem in the verification effort described
in this paper was the complex control flow of the methods mergeLo and mergeHi. As a
first step we will implement and verify a more modular version of TimSort with simpler
control flow. In particular, we are interested how this will impact the verification effort as
well as the performance in terms of run-time. In addition, we plan to investigate how to
reduce the considerable specification overhead by abstraction and specification generation
techniques.

8 Recommendations to Improve TimSort

8.1 Binary Sort Issue

The Java implementation of TimSort relies on binary insertion sort to create runs of minimal
length (see Sect. 2). During our verification effort in KeY we discovered an issue with the
implementation of binary insertion sort.

The assertion in line 2 of Listing 17 is part of the original implementation. Suppose that
lo, hi and start are all equal to 231 − 1, the maximum value of integers. The increment
of start in line 4 results in an overflow, so that start becomes negative. Then the
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loop guard start < hi evaluates to true, so that the loop is entered, which results in an
ArrayIndexOutOfBoundsException exception on line 7.

Listing 17 The method binarySort()

1 private static void binarySort(Object[] a, int lo, int hi, int start, Comparator c) {
2 assert lo <= start && start <= hi;
3 if (start == lo)
4 start++;
5 }
6 for ( ; start < hi; start++) {
7 Object pivot = a[start];
8 (. . .)
9 }
10 }

However, it does not lead to a bug, since in all places where the method is called in
TimSort, it obeys a stronger precondition (the method is not exposed as public; it is only
used internally by TimSort), hence the precondition can be sufficiently strengthened to rule
out its occurrence during execution: we added lo < hi.

8.2 Sorting of Array Segments

TimSort can be used to sort only a segment of the input array, by calling the method sort
(Listing 1) with the desired bounds lo and hi. The sortmethod then calls the constructor
of TimSort, which determines the length of runLen. However, this length is based on the
length of the entire input array rather than the length of the segment that is to be sorted (see
Listing 5, lines 5–7), which might be much shorter. This affects performance negatively.
It could be repaired by adding a parameter int len to the constructor (and removing
int len = a.length;), and instantiating this parameter to hi-lo in the call to the
constructor in the sort method.

In contrast to the length of runLen, the minimal run length is based on the length hi-lo
of the segment to be sorted, see lines 3 and 6 of Listing 1. However, as explained above, the
computation of the length of runLen is based on the general minimal run length 16, which
will never exceed the computed minimal run length in line 6. Hence, this discrepancy does
not lead to further complications.

Such a modification would require to adapt the correctness proof accordingly which,
unfortunately, includes a change of the class invariant. Indeed, the relation between the length
of a and the length of runLen expressed in lines 3–6 of the class invariant (Listing 10) no
longer holds.

There are at least two possible ways of adapting the current proof. First, one could add
len as a ghost (instance) variable, and replace a.length by len in lines 3–6 of the
class invariant. Second, one could remove lines 3–6 from the class invariant, add the relation
between len and runLen to the invariant of the loop in the sort method, and finally
add stackSize runLen.length to the precondition of pushRun. Rather than redoing
the proof from scratch, one would ideally obtain this new correctness proof by adapting the
existing one according to one of the above two options. We leave this challenge as a case
study for proof refactoring after a (minor) refactoring of the code.
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9 Related Work

Several industrial case studies have already been carried out inKeYverifying reference imple-
mentations of the Java Card API [16,17] and the real-time Java API [2]. The implementation
considered here and its proof is the most complex and one of the largest so far.

Polikarpova et al. [20] specified and verified the full functional correctness of the Eiffel-
Base2 container library using AutoProof [25]. Their work is in parts complementary to ours
and poses different challenges. To the best of our knowledge, their data structures, e.g., lists,
sets and hash tables are much more elaborate than ours (we use only arrays), and main efforts
were to relate these to proper mathematical abstractions and dealing with framing issues to
make the specifications useful for clients using the libraries. However, the algorithms them-
selves did by far not reach the complexity of the TimSort implementation for Java discussed
in this paper.

The first correctness proof of a sorting algorithm is due to Foley and Hoare [11], who
formally verified Quicksort by hand. Since then, the development and application of (semi)-
automated theoremprovers has become standard in verification. Themajor sorting algorithms
Insertion sort, Heapsort and Quicksort were proven correct by Filliâtre and Magaud [10] in
Coq, while Sternagel [24] formalized a proof of Mergesort within the interactive theorem
prover Isabelle/HOL.

De Gouw et al. [12] implemented counting and radix sort in Java and verified their imple-
mentation using KeY. They proved that the algorithms did actually sort the array and that the
result is a permutation of the original array. This concerned self-written implementations, in
contrast to the TimSort implementation discussed in this paper.

10 Conclusion

Beyond the correctness result obtained in this paper, our case study allows us to draw a
number of more general conclusions:

1. State-of-art formal verification systems allow us to prove functional correctness of actual
implementations of complex algorithms that satisfy a minimum degree of structure and
modularity.

2. Even core library methods of mainstream programming languages contain subtle bugs
that can go undetected for years. Extensive testing was not able to exhibit the bug. Sect. 3
indicates why: the smallest counterexample is an array of 67+ million elements (with
non-primitive type), and in [13] we show that it exhibits a very complex structure.

3. Software verification is often considered too expensive. However, precise formal specifi-
cation allowed us to discover that the invariant is not preserved—in an afternoon. Sect. 6.1
shows that this fact also inevitably arises during a verification attempt with KeY. The
combination of interactivity with powerful automated strategies was essential to formally
verify the fixed version.

4. Static analysis and model checking are not precise, expressive and modular enough to
fully capture the functionality of the involved methods. Expressive contracts are crucial
to break down the problem into feasible chunks.

We conclude that functional deductive verification of core libraries of mainstream pro-
gramming languages with expressive, semi-automatic verification tools is feasible. Further,
it is clearly worthwhile: the OpenJDK implementation of sort() is used daily in billions
of program runs, often in safety- or security-critical scenarios.

123



Verifying OpenJDK’s Sort Method for Generic Collections 125

The infamous Intel Pentium bug cost a lot of revenue and reputation, even though, just
as the TimSort bug, the actual occurrence of a defect due to it was extremely unlikely. Since
then, formal verification of microprocessors became standard (e.g., [3]). Isn’t it time that we
begin to apply the same care to core software components?
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