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Abstract. Cryptographic hashing modes come in many flavors, including Merkle-
Damgård with various types of strengthening, Merkle trees, and sponge functions. As
underlying primitives, these functions use arbitrary functions, permutations, or block
ciphers. In this work we provide three simple proofs, one per primitive type, that
cover all modes where the input to the primitive consists of message bits, chaining
value bits, and bits that only depend on the mode and message length. Our approach
generalizes and simplifies over earlier attempts of Dodis et al. (FSE 2009) and Bertoni
et al. (Int. J. Inf. Sec. 2014). We prove tight indifferentiability bounds for modes
using each of these three primitive types provided that the mode satisfies some easy
to verify conditions.
Keywords: Hash functions · tree hashing · generalization · sufficient conditions ·
indifferentiability · tight

1 Introduction
Cryptographic hash functions are amongst the most-studied and most-used cryptographic
functions. Their first appearance dates back to the 70s, when Rabin introduced his iterative
hash function design [Rab78] and Merkle his ideas on tree hashing [Mer79], two ideas that
later became the predominant approaches in hash function design. Iterative hashing modes
of a fixed-input-length compression functions were further investigated and popularized by
Merkle and Damgård [Mer89,Dam89]. Taking a compression function that maps 2n bits
to n bits, Merkle-Damgård partitions an arbitrary length message into pieces of n bits and
compresses these pieces one-by-one into an n-bit state. A Merkle tree [Mer79,Mer92,Mer87]
likewise partitions the message into pieces of n bits, but places all messages at the leaves
of a tree with in-degree two and evaluates the compression function for every branch. The
security analysis of both approaches initially focused on preservation of collision resistance:
if the underlying compression function is collision resistant, then the hash function is
collision resistant as well.

The design and analysis of cryptographic hashing modes has subsequently conceived
notable generalizations along three axes:

• The first axis is the generalization of the mode of use. Merkle-Damgård has
been considered with “strengthening” or suffix-free encoding [LM92], with prefix-
free [CDMP05] or HAIFA [BD07] encoding, with truncation [CDMP05,Luc05], with
intermediate transformations [HPY07], with enveloping [BR06], and so on. Merkle
trees have likewise seen various generalizations [BR97,SS01,LCL+03,LCL+05,Sar07],
and have found adoption in and popularization through the blockchain methodology
behind, for example, Bitcoin [Nak08,GKL15]. Tree hashing is also proposed for

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2018, No. 4, pp. 197–228
DOI:10.13154/tosc.v2018.i4.197-228

mailto:joan@cs.ru.nl
mailto:b.mennink@cs.ru.nl
mailto:gilles.vanassche@st.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tosc.v2018.i4.197-228


198 Sound Hashing Modes of Arbitrary Functions, Permutations, and Block Ciphers

efficiency purposes. E.g., ParallelHash, defined in NIST SP800-185 [KCP16] is a par-
allelizable hash function using SHAKE128 or SHAKE256 as underlying compression
function.

• The second axis is the diversification of the underlying primitives. Earlier construc-
tions assumed a collision resistant fixed-input-length compression function, but such
functions are not readily available and need to be instantiated with something that
actually can be built. Rabin [Rab78] already suggested to use a block cipher as
compression function, F (h,m) = DESm(h), but it was not collision resistant and
hence collision resistance preservation was void. This gave rise to the Davies-Meyer
construction, basically the addition of a feedforward to remove invertibility, later
generalized by Preneel, Govaerts, and Vandewalle in their seminal PGV classifi-
cation [PGV93, BRS02, Sta09, BRSS10]. Merkle on the other hand constructed
a compression function from a truncated permutation in his hash function SNE-
FRU [Mer90]. The work was followed up by theoretical approaches (most prominently,
Black et al. [BCS05]), but also practical constructions were proposed, such as the
sponge construction [BDPV07] that underlies SHA-3 winner Keccak.

• The third axis is the type of security analysis. Initial security analyses focused on
preservation of collision resistance, and later also of preimage resistance. Rogaway
and Shrimpton [RS04] gave a general treatment of security properties of hash
functions. Maurer et al. [MRH04] introduced the “indifferentiability framework”
that was applied to hash functions by Coron et al. [CDMP05]. It allows to measure
the likeness of a hash function to a random oracle assuming a random underlying
primitive. A hash function secure in the indifferentiability framework “behaves like”
a random oracle, and can replace it in almost all single-stage settings (see Ristenpart
et al. [RSS11]). It implies resistance against collision and (second) preimage attacks,
among others. As customary, we call a hashing mode “indifferentiable” if there is a
proof that the success probability of differentiating the mode from a random function,
usually a random oracle, is very close to the birthday bound in the length of the
chaining value (CV).

Indifferentiability is a powerful security notion for a hashing mode, but proofs are often
complex and error-prone. In addition, in light of the plenitude of hashing modes (axis
1) and generic instantiations (axis 2), every hashing mode comes with its own dedicated
indifferentiability proof. For example, rewinding to the SHA-3 competition, indifferentia-
bility of the modes underlying the five finalists BLAKE, Grøstl, JH, Keccak, and Skein
was proven in [ALM12,CNY11], [AMP10], [BMN10,MPS16], [BDPV08], and [BKL+09],
respectively (see also [AMPŠ12]). The indifferentiability framework does support compos-
ability, so an approach to limit the proliferation of dedicated proofs would be to construct
an indifferentiable compression function from an underlying primitive such as a block
cipher or permutation, and then just apply an indifferentiable mode to that compression
function. There are however two problems with this approach. First, most of the proposed
compression function constructions, including PGV, simply cannot be proven indifferen-
tiable [KM07]. Second, this two-level approach induces a cost that can be avoided in a
dedicated proof. For example, Dodis et al. [DRRS09] proved an indifferentiable bound of a
b-to-n-bit compression function built from a b-bit permutation by truncating its output to
n bits, but it requires fixing q bits of its input. For achieving indifferentiability, b must be
at least 2n and q at least n/2. Hence, this approach wastes n/2 bits of every compression
function call.
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1.1 Sound Hashing
This systemization of knowledge article is inspired by Dodis et al. [DRRS09], Bertoni et
al. [BDPV14b], and Daemen et al. [DDV11]. Dodis et al. [DRRS09] derived five conditions
required for a generalized version of the MD6 hashing mode to be secure. Bertoni et
al. [BDPV14b] derived three quite general sufficient conditions for sound hashing and proved
a tight indifferentiability bound for hashing modes taking a compression function modeled
as an arbitrary function (a function that behaves as a random oracle, possibly restricted
to having fixed input and/or output length). Daemen et al. [DDV11] demonstrated that a
condition must be added if the compression function is a truncated permutation. We revisit,
re-factor, and generalize the sufficient conditions of Bertoni et al., in such a way that they
are a bit cleaner and slightly extend the more hashing modes. Moreover, by the application
of the H-coefficient technique we prove the same bound with a significantly shorter proof.
We extend this result in a natural way to hashing modes of truncated permutations and
block ciphers (possibly truncated, too), without the Davies-Meyer feedforward. Using the
additional condition of Daemen et al. [DDV11], we prove indifferentiability with simple
proofs that are incremental to the one for modes of an arbitrary function.

Our sufficient conditions cover all hashing modes where the compression function
inputs are concatenations of chaining values, message bits, and frame bits. The latter are
bits whose values are independent of the message content, such as padding bits and bits
encoding the presence of message blocks or chaining values. The inputs to the compression
function in a hash function evaluation can be arranged in a so-called hash tree where the
children of a node are the compression function inputs that lead to the chaining values in
that node, and the root of the hash tree is the compression function input that maps to the
final hash result. The three conditions that are sufficient for indifferentiability of modes of
an arbitrary function are subtree-freeness, radical-decodability, and message-decodability.
Subtree-freeness prevents generalizations of length extension attacks by requiring that
a hash tree cannot be a subtree of another hash tree. Radical-decodability rules out
the existence of hash function collisions in the absence of compression function collisions.
Message-decodability ensures that different messages cannot give rise to the same hash
tree by requiring that the message can be fully recovered from the compression function
inputs. For modes of a truncated permutation or block cipher, the additional condition is
leaf-anchoring. Leaf-anchoring prevents collision attacks exploiting inverse permutation or
block cipher calls by reserving part of the permutation input or block cipher data input to
a chaining value for non-leaf nodes and to an initial value for leaf nodes.

The indifferentiability bounds that we derive for hashing modes satisfying these three,
resp. four, conditions are given in Table 1. We define the conditions and compare those
with the ones of [DRRS09,BDPV14b,DDV11] in Section 3, state the formal security results
in Section 4, and provide the corresponding proofs in Sections 5-7.

1.2 Application
We map our sufficient conditions to practice in Section 8. First, on the constructive side,
we describe minimalistic sequential and tree hashing modes that satisfy our criteria in
Section 8.1. By economical use of frame bits, these solutions are more efficient than what
is usually proposed. For example, as we explain later on in Section 8.5, our minimalistic
example processes more data per primitive evaluation than MD6, and is thus more efficient.
In Section 8.2, we discuss an observation on the role of the IV, namely the possibility to relax
subtree-freeness in the presence of leaf-anchoring. This observation is subsequently used in
the projection of our sufficient conditions to suffix-free Merkle-Damgård and Enveloped
Merkle-Damgård in Sections 8.3 and 8.4. Suffix-free Merkle-Damgård turns out not to
satisfy subtree-freeness and our indifferentiability results do not apply. This should not come
as a surprise—it re-confirms a result by Coron et al. [CDMP05]—but it does indicate that
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Table 1: Indifferentiability bounds for hashing modes of an arbitrary function, a truncated
permutation or a (truncated) block cipher. The conditions SF, RD, MD, and LA stand for
subtree-freeness, radical-decodability, message-decodability, and leaf-anchoring, respectively.
q is the adversarial complexity expressed as the number of primitive queries either direct
or indirect, n the CV length, and b ≥ n the width of the permutation resp. the block
length of the block cipher.

compression function type SF+RD+MD LA bound reference

arbitrary function X —
(
q
2
)

2n Theorem 1

truncated permutation X X

(
q
2
)

+ 1
2n +

(
q
2
)

2b Theorem 2

truncated block cipher X X

(
q
2
)

+ 1
2n +

(
q
2
)

2b Theorem 3

block cipher X X
2
(
q
2
)

+ 1
2n Theorem 3

subtree-freeness cannot be loosened much. Enveloped Merkle-Damgård [BR06] satisfies the
conditions, and similar conclusions can be drawn for HAIFA [BD07,BMN09], various types
of Merkle trees [Mer79,Mer87], and ParallelHash as defined in NIST SP800-185 [KCP16],
among others.

In Section 8.5 we discuss various tree hashing modes in the wild, in Section 8.6 we
give an overview of the Sakura encoding [BDPV14a] relative to our modes and conditions,
and in Section 8.7 we consider an application of our conditions to build a message
authentication code (MAC) function that for short messages is a factor 4 faster than
HMAC [KBC97,Bel06].

Interestingly, our results show that a cryptographic hashing mode of a block cipher
does not need a feedforward for satisfying indifferentiability as long as the mode itself
satisfies our sufficient conditions (see also Section 8.1). Moreover, it covers truncation with
n ≤ b, i.e., taking chaining values shorter than the block length of the block cipher. This
allows to have a sound hashing mode without the burden of including frame bits into the
key input of the block cipher (see also Section 8.7). On the other hand, a feedforward
turns a block cipher into a non-invertible compression function and hence may allow to
relax the leaf-anchoring condition. This yields a tradeoff between spending n input bits
on an IV to ensure leaf-anchoring and using extra state due to the feedforward. Notably,
most standard hash functions, including MD5 [Riv92], SHA-1, and SHA-2 [SHA08]—but
not SHA-3 [FIP15]—have both an initial value and a feedforward.

In this paper, we limit ourselves to modes that build the inputs to the underlying
primitive by concatenation of chaining values, message bits, and frame bits. This rules
out two popular constructions. The first one is the Davies-Meyer construction, where the
data input to the underlying block cipher is added to the block cipher output to form
the chaining value. The second one is the sponge construction that builds the input to
the underlying permutation as the bitwise sum of a permutation output and a message
block [BDPV07]. Indifferentiability of the sponge was proven by Bertoni et al. [BDPV08],
and a generalized treatment in the indifferentiability framework was presented by Andreeva
et al. [AMP12]. Canteaut et al. [CFN+12] considered indifferentiability of sequential
hashing based on the broadened Stam block cipher based compression function [Sta09].
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2 Parameterized Hashing Mode
Following Bertoni et al. [BDPV14b], we consider parameterized hashing modes. These
take as input a message M of arbitrary length and an assignment of parameter values
A in some space A that can be seen as instructions on how to perform the hashing. For
example, in a tree hashing mode, A may include chunk length and tree depth. According
to the parameter values A, the message bits are distributed over a number of strings and
presented to the compression function F . The corresponding outputs of F are called
chaining values (CV) and are possibly combined with message bits, subject to yet other
calls to F . Finally, the hash result is the output of the application of F to a string that
depends on all the bits of the message, either directly or via chaining values. Note that
this definition also covers hashing modes that take no parameters, by just having for A
the empty set.

We define the computation of a hash according to some mode T of a compression
function F as a two-stage process. For a set of parameters A, the hash function T [F ] :
Z∗2 ×A → Zn2 is defined as

T [F ](M,A) = h, where Z = Z(|M |, A)
h = Y[F ](M,Z) ,

where Z is the template construction function (formalized in Section 2.1) and Y is the
template execution function (formalized in Section 2.2). So T consists of a sequential
evaluation of:

• A template construction function Z that is a deterministic algorithm that makes no
evaluations of the compression function F and is specific for a given mode T .

• A template execution function Y that evaluates the compression function F and is
generic, i.e., the same for all possible modes T .

In case F is an arbitrary function, T [F ] may get as additional input ` ∈ N indicating
the requested length of the response, a parameter relayed to Y[F ]. There is no a priori
limitation on the number of evaluations of F made by T [F ].

We adopted the split of hash function processing in template construction and execution
from Bertoni et al. [BDPV14b]: it allows us to reason about mode-level processing that
is independent from the compression function and the content of the input. This split is
conceptual: it is essential for the definition of our conditions (see also the comparison of
our conditions with those of Dodis et al. [DRRS09] in Section 3.5), but does not exist in
actual implementations.

2.1 Template Construction
The template construction Z takes as input the length |M | of the message and parameter
assignment A ∈ A, and provides a tree of virtual strings, or template nodes, for hashing
the message: a tree template Z. We write Z = Z(|M |, A). The nodes in this tree are
recipes that specify how to transform the message chunks and chaining values into bit
strings to be processed by F . These strings contain three types of virtual bits:

• frame bits: bits with values fully determined by |M | and A. These include padding,
IV blocks, and other bits that make the mode compliant to the conditions we will
define later on.

• message pointer bits: each such bit specifies a bit of the messageM . During template
execution a message pointer bit is replaced by the bit in the specified position in the
message.
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• chaining pointer bits: each such bit specifies a CV bit resulting from earlier evaluations
of F . Note that the tree will be evaluated in a hierarchic manner where the output
of F applied to a node is included in a node at a higher level.

A chaining pointer bit has two attributes: the CV index and the bit offset. Chaining
pointer bits with the same CV index point to the same CV and in a mode with n-bit CVs
there shall be n of them. We will only consider tree hashing modes and their special case
of sequential hashing modes. In tree hashing the n bits of a CV are in the same node, and
there is exactly one bit for each of the n indices. An example tree template is given in
Figure 1a. Further examples of tree templates will be given in Section 8, where we will also
link them with the sufficient conditions of Section 3 and the security results of Section 4.

Node x is a child of node y (and y is the parent of x) if y contains chaining pointer
bits pointing to the CV of node x. Node x is a descendant of node y if the parent of x is
either y or a descendant of y. In a tree template, every node may have a unique parent
node, and an arbitrary amount of children nodes. A leaf node is a node with no children
(i.e., a node that does not contain chaining pointer bits) and the final node is the unique
node that has no parent.

2.2 Template Execution
The template interpreter Y takes as input a message M and a tree template Z, and
executes it using F to obtain the output h. Starting from the leaves, it instantiates all
nodes to obtain the corresponding input string to F and subsequently evaluates F . In this
process, it replaces message pointer bits by the bits at the specified offset in the message
and chaining pointer bits by the appropriate CV bits. The template execution renders a
tree S: S = Y[F ](M,Z). The final step in the template execution is to evaluate the final
node final(S) using F : h = F(final(S)). In case T [F ] supports variable output length, h
is truncated to the requested length. An example tree is given in Figure 1b.

We represent a tree S (or a subtree thereof) as a list of couples (x, α), each representing
a node. The first member of a node x is the binary string as built from the template
execution and the second member α identifies the node and the bit positions within that
node where the CV F(x) can be found. Clearly, each α points to a node earlier in the
list. The CV of the final node of S does not figure in S, and we indicate this with having
⊥ as second member. In this representation, attaching a node to a tree S comes down
to adding a couple (x′, α′) to the list, where α′ points to a node of S. The list of couples
corresponding to the example tree of Figure 1b is given in Figure 1c.

2.3 Definitions of Sets of Hashing Trees
The split in template construction and template execution allows us to define a number of
sets of hashing trees that are useful to specify and reason about sufficient conditions. We
start by defining the set of tree templates Z and trees S that can potentially arise from a
given mode T .

Definition 1 (tree template set [BDPV14b]). For a mode of operation T , we define the
tree template set ZT as the set of all tree templates that can be generated by T :

ZT = {Z | ∃(µ,A) ∈ N×A such that Z = Z(µ,A)} .

We subsequently define tree and subtree sets.

Definition 2 ((sub)tree set [BDPV14b]). A tree S complies with a template Z if it has
the same tree topology, the corresponding nodes have the same length, and the values of
the frame bits in Z match those in S.

For a mode of operation T , we define the following sets:
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M0..5 00

M6..11 00

M12..17 00

M18..2010∗ 00
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11 h

(a)

01
10

10
11

01
01

10
10

10
11

0

011010 00

110101 00

101010 00

110 10∗ 00

110 001 10

010 111 10

000 011 11 0101 . . .

F

F

F

F

F

F

F

(b)
1 : (00001111,⊥)
2 : (11000110, 1‖0..2)
3 : (01011110, 1‖3..5)
4 : (01101000, 2‖0..2)
5 : (11010100, 2‖3..5)
6 : (10101000, 3‖0..2)
7 : (11010000, 3‖3..5)

(c)

Figure 1: (a) Schematic example of a tree template Z, (b) its corresponding instantiation S
for a specific input messageM , and (c) its corresponding list of couples. For figures (a) and
(b): white blocks contain frame bits, light gray blocks contain message pointer bits, and
dark gray chaining blocks contain chaining pointer bits. For figure (c): “(11000110, 1‖0..2)”
means that the evaluation of F on 11000110 is represented by bits 0..2 of line 1.

• ST is the set of all trees that comply with a template in ZT :

ST =
⋃

Z∈ZT

{S | S complies with Z} .

• Ssub
T is the set of all proper subtrees of trees in ST :

Ssub
T =

⋃
S∈ST

{S′ | S′ is proper subtree of S} .

These are trees that can be constructed as follows. Take a tree S in ST and select
one if its nodes. That will be the root of the subtree S′. Then for each of the child
nodes of this node, include it or not. Do this recursively for all child nodes of the
included nodes. There must be at least one node in S that is not in S′.

• S leaf
T is the subset of Ssub

T of trees S′ that have the following property: ∃S ∈ ST with
S′ a proper subtree of S, and containing a node in S and all its descendants.

• Sfinal
T is the subset of Ssub

T of trees S′ that have the following property: ∃S ∈ ST
with S′ a proper subtree of S, and containing the root of S.

An illustration of the (sub)tree instance sets is given in Figure 2.
A concept that is central to our reasoning is that of a radical, and we will illustrate its

idea through an example. Consider a tree S′ ∈ Ssub
T obtained by taking a tree S ∈ ST and

removing a leaf node. The CV that is the hash of that leaf node is still present in S′ but
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Figure 2: Example of a tree S ∈ ST , along with an identification of three subtrees. The
subtree with a dashed line is a leaf subtree, and the one with a solid line is a final subtree.
The subtree with a dotted line is neither leaf nor final.

has become a mere stub. If this is the case for all trees S ∈ ST that S′ is a subtree of, we
call this a radical CV. A radical is the position in S′ of such a radical CV. We now give a
more formal definition.

Definition 3 (radical). A radical α in a tree instance S′ ∈ Ssub
T identifies a node and a

set of bit positions in that node such that, for any tree S ∈ ST , of which S′ is a subtree of
S, the bits identified by α form a CV that has a node attached to it in S but not in S′. A
radical CV is the value located at a radical α and is denoted S′[α].

3 Sufficient Conditions
We formulate three conditions for a tree hashing mode T to satisfy in order to be indifferen-
tiable: subtree-freeness, radical-decodability, and message-decodability (in Sections 3.1-3.3,
respectively). In Section 3.4, we formulate a fourth condition, leaf-anchoring, that is
relevant if the compression function is a truncated permutation or block cipher. It prevents
the adversary to perform length extension attacks at the leaves using inverse permutation
of block cipher queries.

The first three conditions are very similar to the three sufficient conditions for sound
tree hashing introduced by Bertoni et al. [BDPV14b] in 2014: tree-decodability, message-
completeness, and final-node separability. The fourth condition, leaf-anchoring, is taken
from Daemen et al. [DDV11]. We will discuss the relation between our conditions and those
of [BDPV14b,DDV11] along the way. A summary of the comparison of the conditions
is given in Section 3.5, where we will also relate them to the five conditions of Dodis et
al. [DRRS09].

3.1 Subtree-Freeness
This property ensures the absence of trees S that are both in ST and in Ssub

T . If violated,
an adversary may use a tree S in ST ∩Ssub

T to mount a length extension attack, by building
a tree that has S as a leaf subtree and/or by attaching one or more trees to leaf node(s) of
S.

Definition 4 (subtree-free). A mode of operation T is subtree-free if

ST ∩ Ssub
T = ∅ . (1)
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Ssub
T

S leaf
T Srad

T

Sfinal
T

ST

Figure 3: Venn diagram of the sets S leaf
T , Sfinal

T , Srad
T , Ssub

T , and ST .

This condition was not explicitly present in Bertoni et al. [BDPV14b], but it is implied
by those: their tree-decodability explicitly states ST ∩ Sfinal

T = ∅, and their final-node
separability implies ST ∩ (Ssub

T \ Sfinal
T ) = ∅.

Subtree-freeness covers all possible length extension attacks but is not strictly necessary:
as we will explain in Section 8.2, in the presence of leaf-anchoring (of Section 3.4) one can
relax subtree-freeness slightly, as leaf-anchoring assures that leaves can be identified and
no length extension attack can be performed by prepending data.

3.2 Radical-Decodability
This property ensures that any tree S ∈ Sfinal

T contains a radical and that this radical can
be found efficiently.

Definition 5 (radical-decodability). A mode of operation T is radical-decodable if there
exists a set Srad

T such that all trees S ∈ Srad
T have a radical, and there exists an efficient

deterministic function radical() that returns a radical upon presentation of an S ∈ Srad
T ,

and ⊥ otherwise. The set Srad
T must satisfy Sfinal

T ⊆ Srad
T ⊆ Ssub

T \ S leaf
T .

Definition 5 deals with four sets: S leaf
T , Sfinal

T , Srad
T , and Ssub

T , where S leaf
T ∩ Srad

T = ∅
and S leaf

T ∪ Srad
T ⊆ Ssub

T . See also the Venn diagram in Figure 3. By requiring that a
radical can be found in any final subtree, we rule out the existence of multiple trees in ST
with the same final node, except if they include a collision in the compression function. It
is easy to see why this is the case. Assume that S and S′ are two trees with the same final
node, and let S′′ be the largest tree that is a subtree of both. Due to radical-decodability,
S′′ has a radical, and due to the assumption that S′′ is the largest common subtree, the
nodes in S and S′ that hash to the corresponding radical value must be different and thus
represent a compression function collision.

The conditions radical-decodability and subtree-freeness overlap, but one does not
imply the other. For seeing that subtree-freeness does not imply radical-decodability,
consider a simple hashing mode that only takes three message blocks and only allows for
the two templates as given in Figure 4. It is easy to verify that the mode of operation is
subtree-free but not radical-decodable. Namely, the common final subtree indicated in
Figure 4 has no radical, namely a set of bits that corresponds to a CV in all trees in ST it
is a subtree of. Note that the hashing mode permits collision attacks, as an adversary can
choose message blocks in one mode that match the chaining values in the other mode. Also,
radical-decodability does not imply subtree-freeness: a radical-decodable mode where the
intersection of ST and S leaf

T is not empty would clearly not be subtree-free. An example
of such a mode is a sequential mode like Merkle-Damgård with a frame bit at the end of
each node indicating whether it is a leaf or not.
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Figure 4: Example of a hashing mode that is subtree-free but not radical-decodable. The
hashing mode only allows for the two depicted templates with three message blocks. The
subtree with a solid line is a common final subtree.

When building a mode that is radical-decodable, the designer has some freedom in
choosing Srad

T . One extreme is choosing Srad
T = Sfinal

T . In that case, the function radical()
must return a radical for any single-node tree consisting of a final node and return ⊥ for
any single-node tree consisting of a non-final node. This can only be achieved by domain
separation between final and non-final nodes, hence the condition of final-node separability
by Bertoni et al. [BDPV14b]. Indeed, their tree-decodability maps to the combination of
our subtree-freeness and radical-decodability with Srad

T = Sfinal
T . At the other end of the

spectrum, one may choose Srad
T = Ssub

T \ S leaf
T . This option has the advantage that domain

separation between final and non-final nodes is not required, but has the disadvantage
that there must be domain separation between leaf and non-leaf nodes and that any single
non-leaf node that can occur in any valid tree in ST must have a radical that is easy to
identify.

3.3 Message-Decodability
This property states that from a tree S that is the result of the hashing process of an
input (M,A), the message M can be recovered. We formalize this condition by message-
decodability.

Definition 6 (message-decodability). A mode of operation T is message-decodable if
there is an efficient function extract() that on input of S ∈ ST returns the template Z it
complies with and the message M , and on input of S 6∈ ST returns ⊥.

Clearly, by Definition 2, for any S ∈ ST there is at least one message that could have
resulted in S. If message-decodability is not satisfied, there must be two distinct messages
M,M ′ resulting in the same tree instance S. This, in particular, happens if the mode of
operation T does not process all bits of its input message.

3.4 Leaf-Anchoring
This condition states that all leaves have an IV at some fixed position and non-leaf nodes
have a CV at that position.

Definition 7 (leaf-anchoring). A mode of operation T is leaf-anchored if for every template
Z ∈ ZT , the first n bits of every leaf node encode IV as frame bits and the first n bits of
every non-leaf node are chaining pointer bits.

Leaf-anchoring is necessary if the compression function allows efficiently computing
collisions or pre-images of a CV. That is the case for a truncated permutation or block
cipher as this can easily be done by making inverse queries to the primitive. The former
trivially allows finding message pairs leading to equal hash results while the latter allows
extending a tree at its leaves. By fixing part of the permutation input or the data part
input of the block cipher to an IV, inverse queries are only harmful if they hit the IV, and
this is hard. Leaf-anchoring is not a necessary condition in the strict sense of the word,
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as alternative strategies (like requiring that IV is encoded at a different position or in a
different manner) work as well. We consider the current definition of leaf-anchoring to be
the simplest and most intuitive choice.

3.5 Detailed Comparison with Earlier Conditions

As we have explained in the previous sections, our conditions of subtree-freeness and radical-
decodability correspond, in the special case Srad

T = Sfinal
T , to the earlier tree-decodability

and final-node separability from Bertoni et al. [BDPV14b]. The conditions are more
general and cleaner. Message-decodability is identical to their message-completeness (but
we have re-named it to better reflect what it stands for), and leaf-anchoring is identical to
Daemen et al. [DDV11]’s leaf-node anchoring. These are summarized in Table 2.

Dodis et al. [DRRS09] listed five properties required for sound hashing modes of an
arbitrary function that has fixed input and output length and do not take parameters.
Bertoni et al. compared these with their own conditions and we will here consider how the
conditions compare to ours, and summarize the relations in Table 2.

First, the property of unique parsing is similar to, but more specific than, Bertoni et
al.’s tree-decodability. In detail, unique parsing requires that it is possible to identify frame
bits, message pointer bits, and chaining pointers bits with just access to the node instance,
making it de facto a restricted case of tree-decodability.

Second, the property of root predicate is identical to Bertoni et al.’s final-node separa-
bility. As such, the conditions of unique parsing plus root predicate of Dodis et al. are
comparable to our definitions of subtree-freeness plus radical-decodability.

Third, the property of message reconstruction is equivalent to our condition of message-
decodability.

Fourth, final output processing says that the output of applying the inner hash function
to the final node is transformed using an “efficiently computable, regular function” ζ for
which for each h “the set of all preimages ζ−1(h) must be efficiently sampleable.” It seems
that this function is introduced as generalization of truncation, in order to cover the case
that the outer hash function has a different output length than the inner hash function.
In our description, the compression function F may have arbitrary output length, and the
need for such a condition does not appear.

Fifth, Dodis et al. pose the condition of straight-line program structure, roughly meaning
that the mode of operation can be properly evaluated by a sequential evaluation of the
underlying primitive. There is no equivalence of the notion in the conditions of Dodis et
al. and ours. Rather, it corresponds to our definition of a tree hashing mode in Section 2:
the slightly more elaborate definition of tree hashing (compared to Dodis et al.) is just a
matter of presentation. We distinguish two parts in the input to the mode of operation: a
message M that only impacts the tree template through its length, and parameter values
A that together with |M | determines the tree template. The generalized treatment allows
for more flexibility and covers a larger amount of modes of operation.

4 Security of Hashing Modes

In this section we formulate indifferentiability bounds for hashing modes for three types of
compression function: an arbitrary function in Section 4.2, a truncated permutation in
Section 4.3, and a block cipher in Section 4.4. We start by discussing the security model
in Section 4.1.
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Table 2: Sufficient conditions from Dodis et al. [DRRS09], Bertoni et al. [BDPV14b],
Daemen et al. [DDV11], and current work. The order of the conditions in the earlier works
is reshuffled for sake of comparison.

[DRRS09] [BDPV14b,DDV11] current work
unique parsing =⇒ tree-decodability

}
=⇒

{
subtree-freeness

root predicate ⇐⇒ final-node separability radical-decodability
message reconstruction ⇐⇒ message-completeness ⇐⇒ message-decodability

— leaf-node anchoring? ⇐⇒ leaf-anchoring?
final output processing?? — —

straight-line program structure?? — —

? only needed if the compression function is a truncated permutation or block cipher. The
work of [DRRS09] focuses on hashing modes of arbitrary functions (with fixed input and
output length) and the issue did not apply.
?? the condition does not appear in [BDPV14b,DDV11] and ours, but is implicit in the
description of the hashing mode.

4.1 Security Model
Preliminaries. In our setup we assume random primitives. For the case of an arbitrary
function, it corresponds to the original definition of random oracle by Bellare and Rog-
away [BR93]. For the permutation case, we assume the random permutation P : Zb2 → Zb2
with width b to be selected uniformly from the set of all b-bit permutations perm(b). For
the block cipher case, we assume the random block cipher E : Zκ2 × Zb2 → Zb2 with key
length κ and block length b to be selected uniformly from the set of all block ciphers of
those dimensions, bc(κ, b). For a bit string x of size at least n bits, the function bxcn
outputs the n first bits of x. The uniform random drawing of an element x from a finite
set X is denoted x $←− X.

Indifferentiability Framework. Maurer et al. [MRH04] introduced the indifferentiability
framework to capture the security of a function whose underlying primitives are publicly
available as a random function, and Coron et al. [CDMP05] adapted it to hash functions.
Indifferentiability measures the distance between a mode of operation T of a random
componentR and a random oracleRO. In our case, R is either a function F , a permutation
P, or a block cipher E .

The mode of operation T takes a message M and a parameter assignment A, and
returns independent responses for different messages, but for the same message hashed
under different parameters the responses may be equal. The reason for this is that the
parameters tell how to shape the tree, but not all parameters are significant in all cases:
e.g., the maximum height of the tree may not be reached for short messages. So the
parameters should not be seen as additional input but rather instructions on how to
perform the hashing process, and we tolerate the hash function in the simulated world
to return equal responses for different input pairs (M,A) and (M,A′). Recalling that T
consists of a sequential evaluation of a deterministic template construction function Z
(that makes no evaluations of the compression function) and a template execution function
Y (that does evaluate the compression function F), we formalize this by “encapsulating”
the deterministic function Z into D. Rather than making arbitrary construction queries of
the form (M,A) to T , the distinguisher makes construction queries of the form (M,Z) to
Y, with the restriction that any such query satisfies that Z = Z(|M |, A) for some A.

Formally, we consider a distinguisher D that has oracle access to either the real world
(Y [R],R) or the simulated world (RO,S[RO]), where S is a simulator : an algorithm with
the same interface as R, with query access to RO, and that aims to behave in such a
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Y R SRO

D

M,Z x M,Z x

x M,Z

Figure 5: The indifferentiability setting. Distinguisher D is confined to making construc-
tion queries (M,Z) such that Z = Z(|M |, A) for some A. The labels indicate the input to
the oracles. Oracle R/S receives as additional input the requested length of the response
(if it is an arbitrary function), the direction of the query (if it is a permutation), or the
key input and the direction of the query (if it is a block cipher).

way that the real world and simulated world are hard to distinguish. The goal of the
distinguisher is to guess which world it is conversing with. It can make two kinds of queries:

• Construction queries on input of a tuple (M,Z) return an n-bit string. In the case
of a mode of an arbitrary function the caller may specify the length ` of the response
and the response is an `-bit string.

• Primitive queries depend on the type of primitive:

– For an arbitrary function, the input is an arbitrary-length string x and the
requested length ` of the response, and the output is an `-bit string.

– For a permutation, the input is a b-bit string x and an indicator whether the
permutation or its inverse must be applied, and the output is a b-bit string.

– For a block cipher the input is a κ-bit string k, a b-bit string x, and an indicator
whether the block cipher or its inverse must be applied, and the output is a
b-bit string.

The formal definition is given below.

Definition 8. Let T be a hashing mode of a random primitive R. We denote its template
construction function by Z and template execution by Y. Let RO be a random oracle
with the same domain and range as Y , and let S be a simulator with oracle access to RO.
The indifferentiability advantage of a distinguisher D is defined as

Advdiff
T [R],S(D) =

∣∣∣Pr
[
DY[R],R = 1

]
− Pr

[
DRO,S[RO] = 1

]∣∣∣ ,
where D is confined to only making construction queries (M,Z) such that Z = Z(|M |, A)
for some A.

Note that the model is formally applied to Y [R], but the subscript of Adv still includes
T [R]. This is for completeness and clarity of reasoning.

Patarin’s H-Coefficient Technique. We make use of the H-coefficient technique by
Patarin [Pat08,CS14]. Consider any information-theoretic deterministic distinguisher D
whose goal it is to distinguish O1 :=

(
Y [R],R

)
from O2 :=

(
RO,S[RO]

)
. Assume that it

makes a finite amount of queries and these are gathered in a transcript, or view, ν. Denote
by DO1 the probability distribution of views of interactions with O1, and likewise by DO2

the probability distribution of views of interactions with O2. A view ν is called attainable
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if Pr [DO2 = ν] > 0, i.e., if it can be attained in the simulated world, and we denote by
V the set of attainable views. Patarin’s H-coefficient technique states the following for
Advdiff

T [R],S(D):

Lemma 1 (H-coefficient Technique [Pat08, CS14]). Let O1 :=
(
Y[R],R

)
and O2 :=(

RO,S[RO]
)
. Consider a fixed deterministic distinguisher D, and let V = Vgood ∪ Vbad

be a partition of the set of views into good and bad views. Let ε ≥ 0 be a rational number
such that for all ν ∈ Vgood,

Pr [DO1 = ν]
Pr [DO2 = ν] ≥ 1− ε . (2)

Then, Advdiff
T [R],S(D) ≤ ε+ Pr [DO2 ∈ Vbad].

For a given view ν = {(x1, y1), . . . , (xq, yq)}, an oracle O is said to extend ν, denoted
O ` ν, if O(xi) = yi for all i = {1, . . . , q}.

4.2 Mode of an Arbitrary Function
We consider a mode T of an arbitrary function F , where for chaining values the output is
truncated to n bits and for hashing the final node, the output is truncated to the number
of bits requested by the caller.

Theorem 1. Consider a hashing mode T of a random arbitrary function F , and assume
that it is subtree-free, radical-decodable, and message-decodable. There exists a simulator
S such that for any distinguisher D with total complexity at most q,

Advdiff
T [F ],S(D) ≤

(
q
2
)

2n .

The simulator S makes at most q queries to RO.

The total complexity of D is counted as the number of evaluations of F both in
construction and primitive queries, noting that any evaluation of Y[F ] corresponds to a
certain amount of evaluations of F . Multiple queries to Y [F ] or F for the same input but
different requested output lengths count as one query (namely, for the maximum of the
lengths). We prove this theorem in Section 5.

To see that the bound of Theorem 1 is tight, consider a mode and an input length |M |,
where the tree has at least one chaining value with corresponding leaf node x that contains
a message chunk mi. An attacker can make q queries to the primitive F for different leaf
nodes x by taking different values for the message chunk mi. The probability of finding a
collision in the chaining value is

(
q
2
)
/2n for two different values of message chunk mi, say

α and β. In the real world, any pair of messages of given length |M | that has values α and
β respectively in mi and are equal for the remainder, must collide in a construction query.
In the ideal world, construction queries are presented to a random oracle and different
inputs collide with negligible probability.

4.3 Mode of a Truncated Permutation
We consider T with its compression function F : Zb2 → Zn2 being a truncated permutation
P $←− perm(b) for b ≥ n:

F(s) = bP(s)cn . (3)
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Theorem 2. Consider a hashing mode T of a truncated permutation with P $←− perm(b),
and assume that it is subtree-free, radical-decodable, message-decodable, and leaf-anchored.
There exists a simulator S such that for any distinguisher D with total complexity at most
q,

Advdiff
T [P],S(D) ≤

(
q
2
)

+ 1
2n +

(
q
2
)

2b .

The simulator S makes at most q queries to RO.

We prove this theorem in Section 6.

4.4 Mode of a Block Cipher
We consider T with its compression function F : Zκ+b

2 → Zn2 being a truncated block
cipher E $←− bc(κ, b) for b ≥ n. The (b+ κ)-bit compression function input s is parsed as
s = sdata‖skey with |sdata| = b and |skey| = κ and the compression function is defined as:

F(s) = F(sdata‖skey) = bE(skey, sdata)cn , (4)

noting that the IV/CV in the first n bits of input s to F is in sdata to prevent abuse of
inverse block cipher queries.

Theorem 3. Consider a hashing mode T of a block cipher E $←− bc(κ, b), and assume that
it is subtree-free, radical-decodable, message-decodable, and leaf-anchored. There exists a
simulator S such that for any distinguisher D with total complexity at most q,

Advdiff
T [E],S(D) ≤

(
q
2
)

+ 1
2n +

(
q
2
)

2b .

The simulator S makes at most q queries to RO.

We prove this theorem in Section 7. The expression of the bound is identical to that of
Theorem 2. This is because the proof of Theorem 2 considers a simulator that responds
uniformly at random for every query (allowing accidental collisions), and as such the idea
generalizes to Theorem 3 almost verbatim. In the case of a permutation, however, b is the
width of the full permutation input, while in the case of a block cipher, b is only the data
part of the input and the full width is κ+ b.

5 Proof of Theorem 1: Mode of an Arbitrary Function
We specify a simulator in Section 5.1. Next, we refine the distinguisher to suit our analysis
in Section 5.2, and summarize what views look like in Section 5.3. Finally, in alignment
with Patarin’s H-coefficient technique, we analyze bad views in Section 5.4 and good views
in Section 5.5.

5.1 Simulator
Simulator S has an arbitrary function interface and its main feature is to be consistent
with the construction oracle RO the same way F does with Y[F ]. In other words, the
simulator should behave in such a way that the joint distributions of

(
RO,S[RO]

)
and(

Y[F ],F
)
are close.
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Algorithm 1 radicalExtend[Ł](S) and radicalValue[Ł](x)
Interface: radicalExtend[Ł](S)
if radical(S) returns ⊥ then

return S
end if
S′ ← S . default return value if radical CV not found in Ł
for all (x, y) ∈ Ł : bycn = S[radical(S)] do

S′ ← radicalExtend[Ł](S ∪ {(x, radical(S))})
if radical(S′) returns ⊥ then return S′ . stop as soon as no more radical

end for
return S′ . ultimately return the last tree found

Interface: radicalValue[Ł](x)
S ← radicalExtend[Ł]({(x,⊥)})
return S[radical(S)]

It maintains an initially empty list Ł to store all of its query-response tuples, and for
(x, y) ∈ Ł, we write Ł(x) = y. The input value ` specifying the requested length of the
response is implicit in the elements. We denote

domŁ = {x | ∃y such that (x, y) ∈ Ł} ,
rngŁ = {y | ∃x such that (x, y) ∈ Ł} .

In Algorithm 1, we define a recursive function radicalExtend[Ł](S) that extends a tree
with nodes constructed from elements in Ł:

S ← radicalExtend[Ł](S) .

For each query (x, `) the simulator receives, it applies radicalExtend[Ł](·) to the single-
node tree (x,⊥), with abuse of notation denoted as radicalExtend[Ł](x). This function
then recursively extends (x,⊥) through radicals. Each extension step consists of adding
{(x′, radical(S))}, where x′ is taken from an entry (x′, y) ∈ Ł with bycn equal to the radical
CV in S, or more formally with bycn = S[α] and α = radical(S). The function radical(S),
in turn, exists by virtue of radical-decodability (see Definition 5): it returns a radical for
any tree in Srad

T and ⊥ otherwise. If there are multiple entries in Ł that are compliant
to the radical CV, all possibilities are explored in a tree search fashion.1 The algorithm
returns the first tree S it encounters that is not in Srad

T . If all trees it encounters are in
Srad
T , this implies that all trees have a radical. In that case it returns the tree S that it

last visited.
Our simulator is given in Algorithm 2. It is inspired by Bertoni et al. [BDPV14b]

but is simpler. Consider any query S(x, `) for which either x /∈ domŁ or |Ł(x)| < `. The
simulator only checks whether or not x forms the final node of a tree in ST with all
descendant nodes in Ł by performing radical extension radicalExtend[Ł](x). To avoid
ambiguities in this radical extension, it always generates and stores at least n bits in Ł(x).
If x (radical-)extends to a tree in ST , S extracts the message M and tree template Z, and
queries its random oracle on input (M,Z).2 Otherwise, it generates uniformly random
bits and returns those. In case x was queried before, the new random bits are appended
to the old response so as to guarantee self-consistency: old queries are never overwritten.

1So this is a tree of trees.
2Formally, it already calls extract(S) to efficiently learn whether S ∈ ST .
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Algorithm 2 Simulator for proof of Theorem 1
Interface: S : Z∗2 → Z∞2 , (x, `) 7→ y
if x /∈ domŁ then

Ł ∪←− {(x, emptystring)}
end if
`′ = max{`, n} . generate `′ ≥ n bits
if |Ł(x)| < `′ then

S ← radicalExtend[Ł](x) . radical-extend tree from single node
if S ∈ ST then . query completes tree

(M,Z)← extract(S) . extract message and tree template
z1‖z2 = z ← RO(M,Z, `′) . |z1| = |Ł(x)|
Ł(x)← Ł(x)‖z2

else . query does not complete tree
z

$←− Z`′2 . at most `′ bits need to be generated
Ł(x)← Ł(x)‖z

end if
end if
return bŁ(x)c`

5.2 Distinguisher
Consider any distinguisher D against the indifferentiability of T [F ]. We build a distin-
guisher D′ on top of D. Distinguisher D′ operates exactly as D: it makes the same
queries, in the same order, and outputs the same decision at the end. However, before D′
outputs its final decision, it takes each construction query-response tuple (M,Z, h) that D
made, and makes all primitive queries to F resp. S corresponding to the computation of
Y[F/S](M,Z). Clearly, as we are considering total complexity only, this change is only
administrative, the total complexity of D′ matches that of D. In addition, as D′ relays the
decision by D, its advantage is unchanged:

Advdiff
T [F ],S(D′) = Advdiff

T [F ],S(D) .

The transition from D to D′ simplifies our analysis significantly, in that all queries that D
makes to the construction or primitive oracle, are summarized in just the primitive oracles
made by D′. The idea of this transition has appeared before in [CN08,MPN10,MP15],
among others.

5.3 Views
We denote by M = {(M1, Z1, h1), . . . , (Mr, Zr, hr)} the view seen by D′ on interaction
with the construction oracle, and by Ł = {(x1, y1), . . . , (xq, yq)} the view seen by D′ on
interaction with the primitive oracle. For i = 1, . . . , q, we denote by `i = |yi| the amount
of bits learned by D′ in primitive query i. Split Ł into

Lrad = {(xi, yi) ∈ Ł | S = radicalExtend[Łi−1](xi) ∈ Srad
T },

Lother = Ł \ Lrad .

Denote ν = (M,Lrad,Lother). The set V denotes any attainable view that can be observed
by D′.

An attainable view ν is called bad if:

(i) There exist distinct (xi, yi), (xj , yj) ∈ Lrad with byicn = byjcn;
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(ii) There exist distinct (xi, yi), (xj , yj) ∈ Lother with byicn = byjcn;

(iii) There exist (xi, yi) ∈ Lrad and (xj , yj) ∈ Lother with i < j such that byjcn =
radicalValue[Łi−1](xi).

The first badness condition assures that the simulator’s evaluation of the procedure
radicalExtend[Ł](x) is efficient, the second condition assures that incomplete trees never
collide, and the third condition assures that if a tree has a radical, it never gets extended
in a later query.

We will analyze Pr [DO2 ∈ Vbad] in Section 5.4 and Pr[DO1 =ν]
Pr[DO2 =ν] for good views ν ∈ Vgood

in Section 5.5, and the bound of Theorem 1 immediately follows.

5.4 Analysis of Bad Views
Badness condition (i) is satisfied with probability

(|Lrad|
2
)
/2n, badness condition (ii) is sat-

isfied with probability
(|Lother|

2
)
/2n, and badness condition (iii) is satisfied with probability

at most |Lrad| · |Lother|/2n. As |Lrad|+ |Lother| = |Ł| = q, the probability of a bad view in
the simulated world is hence easily computed as

Pr [DO2 ∈ Vbad] ≤
(|Lrad|

2
)

+
(|Lother|

2
)

+ |Lrad| · |Lother|
2n =

(|Ł|
2
)

2n =
(
q
2
)

2n .

5.5 Analysis of Good Views
Consider any good view ν = (M,Lrad,Lother).

In the real world O1 =
(
Y[F ],F

)
, for each evaluation Y[F ](Mi, Zi, |hi|) distinguisher

D′ has made all primitive queries individually. This means that Ł contains all queries to
“construct” Y[F ](Mi, Zi, |hi|), i.e., such that

bŁ(final(Si))c|hi| = hi ,

where Si is the tree coming from the evaluation of Y[F ](Mi, Zi, |hi|). Therefore,M does
not contain additional information relative to Ł. We obtain that

Pr [DO1 = ν] = Pr [F ` Ł ∧ Y[F ] ` M] (i)= Pr [F ` Ł] =
q∏
i=1

1
2`i ,

where the randomness is taken over the drawing of F , where (i)= holds asM is properly
represented by Ł, and where we recall that |yi| = `i for i = 1, . . . , q.

We will prove that also in the simulated world O2 =
(
RO,S[RO]

)
the list M does

not contain extra information relative to Ł. Notice that this de facto boils down to
demonstrating that the primitive queries made by D′ do not conflict with those that D
already made by itself (the queries may overlap, though).

Lemma 2. For every tuple (Mi, Zi, hi) ∈ M with Si being the tree coming from the
evaluation of Y[S[RO]](Mi, Zi, |hi|),

bŁ(final(Si))c|hi| = hi . (5)

Proof. Consider any tuple (Mi, Zi, hi) ∈M. Clearly, hi = RO(Mi, Zi, |hi|). Distinguisher
D′ made all primitive queries corresponding to this construction query tuple, and particu-
larly, final(Si) ∈ domŁ for Si the tree coming from the evaluation of Y [S[RO]](Mi, Zi, |hi|).

Write xi = final(Si). Consider an evaluation S′ = radicalExtend[Łi−1](xi) on input of
xi, where S′ ∈ ST . We can distinguish between the following cases.
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(1) S′ 6= Si. This implies that there are two complete trees of two distinct (Mi, Zi) and
(M ′, Z ′) whose final nodes collide: final(Si) = final(S′) = xi. This is impossible by
radical-decodability and badness condition (ii).

(2) S′ = Si. In this case, write (M ′, Z ′)← extract(Si). We can distinguish between the
following cases.

(a) (M ′, Z ′) 6= (Mi, Zi). This means that the message and tree template have not
been properly extracted from Si (impossible due to message-decodability).

(b) (M ′, Z ′) = (Mi, Zi). We can distinguish between whether or not the value of Ł(xi)
is already defined at the point of querying xi.
• Ł(xi) was not defined yet. By Algorithm 2, at the point of querying xi, the

simulator obtains the correct (Mi, Zi) and queries its RO in a correct way so
that (5) is satisfied.
• Ł(xi) was already defined. If the definition of Ł(xi) was done by consultation
of RO, by Algorithm 2, Ł(xi) was defined by proper consultation of RO, as
it extracted (Mi, Zi) correctly. (This case happens, for example, if D already
made all primitive queries corresponding to a construction query, and D′ then
duplicates these queries.) On the other hand, if the definition of Ł(xi) was
done without consultation of RO, this means that at the point of defining
the response to xi, radicalExtend[Łi−1](xi) did not return a complete tree.
This necessarily means that a radical CV must have been hit at some point
(impossible by badness condition (iii)) or that there are two leaved subtrees
with colliding root (impossible by badness condition (ii)).

We obtain for the simulated world O2 =
(
RO,S[RO]

)
that

Pr [DO2 = ν] = Pr [S[RO] ` Ł ∧RO `M] (i)= Pr [S[RO] ` Ł] =
q∏
i=1

1
2`i ,

where the randomness is taken over the coins of S[RO] (and thus, implicitly, in part RO),
we use that primitive tuples never get overwritten, and where (i)= holds due to Lemma 2.
We conclude that

Pr [DO1 = ν]
Pr [DO2 = ν] = 1 ,

and we can set ε to 0.

6 Proof of Theorem 2: Mode of a Truncated Permutation
The simulator for the proof of Theorem 2 is given in Section 6.1, a re-modeling of the
distinguisher in Section 6.2, a summary of views in Section 6.3, analysis of bad views in
Section 6.4, and of good views in Section 6.5.

6.1 Simulator
F is defined in terms of a random permutation P $←− perm(b) as

F(a) = bP(a)cn ,

and the simulator S is expected to have the same interface as P. This forces us to
deal with two additional issues: (i) the adversary can make inverse queries to S and
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Algorithm 3 Simulator for proof of Theorem 2
Interface: S : Zb2 → Zb2 , x 7→ y
if x /∈ domŁ then

S ← radicalExtend[Lfwd](x) . radical-extend tree from single node
if S ∈ ST then . query completes tree

(M,Z)← extract(S) . extract message and tree template
z

$←− Zb−n2
y ← RO(M,Z)‖z

else . query does not complete tree
y

$←− Zb2
end if
Ł(x)← y

end if
return Ł(x)

Interface: S−1 : Zb2 → Zb2 , y 7→ x
if y /∈ rngŁ then

x
$←− Zb2

Ł−1(y)← x
end if
return Ł−1(y)

construct collisions and preimages for F , and (ii) the adversary can check for permutation
inconsistency. We deal with the latter by simply generating random responses and labeling
(the rare) accidental collisions as bad events. For the former issue, the key idea of S is
that inverse queries rarely contribute to a tree in ST and that the simulator ignores them
in the radical-extension process radicalExtend. Indeed, an inverse query would only be
valuable to the distinguisher if it hits the IV or if it would extend a leaf subtree.

The simulator now maintains two lists Lfwd and Linv, storing queries (x, y) made in
forward or inverse direction, respectively. We define Ł = Lfwd ∪ Linv, and write domŁ
and rngŁ as before. If the simulator gets as input a query (x 7→ y in forward or y 7→ x in
inverse direction) that is multiply defined in Ł, it just responds with one of those (in this
case, the simulator has failed; it will be covered by a bad event). Our simulator for the
proof of Theorem 2 is given in Algorithm 3. Its changes from Algorithm 2 are in the fact
that radicalExtend is evaluated on Lfwd only, in the straightforward implementation of
an inverse interface and in the fact that we no longer have to deal with variable length
responses.

6.2 Distinguisher
Consider any distinguisher that has total complexity q. Note that any construction query
by D entails a certain amount of primitive queries. Our goal is to bound Advdiff

T [P],S(D)
(see Definition 8).

We build a distinguisher D′ along the same lines as Section 5.2. After D is finished, D′
makes forward permutation queries corresponding to all construction queries made by D.
As before, it has equal advantage and equal complexity.

6.3 Views
We denote by M = {(M1, Z1, h1), . . . , (Mr, Zr, hr)} the view seen by D′ on interaction
with the construction oracle, and by Ł = {(x1, y1), . . . , (xq, yq)} the view seen by D′ on
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interaction with the primitive oracle. Recall the split of Ł into Lfwd and Linv. We further
split Lfwd into

Lrad = {(xi, yi) ∈ Ł | S = radicalExtend[Łi−1](xi) ∈ Srad
T },

Lother = Lfwd \ Lrad .

Denote ν = (M,Lrad,Lother,Linv). The set V denotes any attainable view that can be
observed by D′.

An attainable view ν is called bad if:

(i) There exist distinct (xi, yi), (xj , yj) ∈ Lrad with byicn = byjcn;

(ii) There exist distinct (xi, yi), (xj , yj) ∈ Lother with byicn = byjcn;

(iii) There exist (xi, yi) ∈ Lrad and (xj , yj) ∈ Lother with i < j such that byjcn =
radicalValue[Łi−1](xi);

(iv) There exist (xi, yi) ∈ Linv such that bxicn = IV;

(v) There exist (xi, yi) ∈ Linv and (xj , yj) ∈ Lfwd such that bxicn = byjcn;

(vi) There are distinct (xi, yi), (xj , yj) ∈ (Lfwd ∪ Linv) with xi = xj or yi = yj .

The first three conditions are identical to those in Section 5. Conditions (iv) and (v) cover
issues that may arise from omitting inverse queries in radical-extension. Badness condition
(vi), finally, is triggered if the primitive responses do not appear like a permutation.

We will analyze Pr [DO2 ∈ Vbad] in Section 6.4 and Pr[DO1 =ν]
Pr[DO2 =ν] for good views ν ∈ Vgood

in Section 6.5, and the bound of Theorem 2 immediately follows.

6.4 Analysis of Bad Views

The analysis of badness conditions (i)-(iii) is identical to that of Section 5.4, and the
probability that any of them is violated is at most

(|Lfwd|
2
)
/2n. Badness condition (iv) is

satisfied with probability |Linv|/2n, badness condition (v) with probability |Linv| · |Lfwd|/2n,
and badness condition (vi) with probability at most

(|Ł|
2
)
/2b, where we recall that b ≥ n is

the width of the permutation. As |Lrad| + |Lother| = |Lfwd| and |Lfwd| + |Linv| = q, the
probability of a bad view in the simulated world is hence easily computed as

Pr [DO2 ∈ Vbad] ≤
(|Lfwd|

2
)

+ |Linv|+ |Linv| · |Lfwd|
2n +

(|Ł|
2
)

2b

=
(|Ł|

2
)
−
(|Linv|

2
)

+ |Linv|
2n +

(|Ł|
2
)

2b

=
(
q
2
)

2n +
−
(|Linv|

2
)

+ |Linv|
2n +

(
q
2
)

2b .

One can observe that −
(|Linv|

2
)

+ |Linv| ≤ 1 for any |Linv|, and we obtain

Pr [DO2 ∈ Vbad] ≤
(
q
2
)

+ 1
2n +

(
q
2
)

2b .
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6.5 Analysis of Good Views
The derivation is very similar to that of Section 5.5, with the difference that the primitive
is now invertible. Consider any good view ν = (M,Lrad,Lother,Linv).

As before, the real world O1 =
(
Y[P],P

)
satisfies thatM does not contain additional

information relative to Ł. We obtain that

Pr [DO1 = ν] = Pr [P ` Ł ∧ Y[P] ` M] (i)= Pr [P ` Ł] = (2b − q)!
2b! ,

where the randomness is taken over the drawing of P $←− perm(b), and where (i)= holds as
M is properly represented by Ł.

Also in the simulated world O2 =
(
RO,S[RO]

)
the list M does not contain extra

information relative to Ł.

Lemma 3. For every tuple (Mi, Zi, hi) ∈ M with Si being the tree coming from the
evaluation of Y[S[RO]](Mi, Zi),

bŁ(final(Si))cn = hi . (6)

Proof. The proof is identical to that of Lemma 2, in addition using that by leaf-anchoring
and badness condition (iv) and (v) inverse queries do not play a role in the construction of
trees. Badness condition (vi), finally, assures permutation consistency and that there are
no colliding (sub-)trees.

We obtain for the simulated world O2 =
(
RO,S[RO]

)
that

Pr [DO2 = ν] = Pr [S[RO] ` Ł ∧RO `M] (i)= Pr [S[RO] ` Ł] = 1
2bq ,

where the randomness is taken over the coins of S[RO] (and thus, implicitly, in part RO),
and where (i)= holds due to Lemma 3. We conclude that

Pr [DO1 = ν]
Pr [DO2 = ν] = (2b − q)!2bq

2b! ≥ 1 ,

and we can set ε to 0.

7 Proof of Theorem 3: Mode of a Block Cipher
The proof is identical to that of Theorem 2, barring some additional bookkeeping (the
simulator maintains a family of 2κ lists Łk, one for every key input k to E), and the
analysis of good views. The reason is that in the proof of Theorem 2 we considered a
simplified simulator that responds uniformly at random (without maintaining permutation
consistency) on every query. We leave notational changes implicit, and fast-forward to
the analysis of good views. For k ∈ Zκ2 , define by qk the number of tuples in Ł having key
input k. We have for O1 =

(
Y[E ], E

)
:

Pr [DO1 = ν] = Pr [E ` Ł ∧ Y[E ] ` M] (i)= Pr [E ` Ł] =
∏
k∈Zκ2

(2b − qk)!
2b! ,

where the randomness is taken over the drawing of E $←− bc(κ, b), and where (i)= holds as
M is properly represented by Ł. The simulated world O2 =

(
RO,S[RO]

)
satisfies

Pr [DO2 = ν] = 1
2bq
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as before. As
∑
k∈Zκ2

qk = q, we conclude that

Pr [DO1 = ν]
Pr [DO2 = ν] =

∏
k∈Zκ2

(2b − qk)!2bqk
2b! ≥ 1 ,

and we can set ε to 0.

8 Applications
We start by presenting minimal examples of sound modes in Section 8.1. We elaborate
on the role of the IV in practice in Section 8.2. We subsequently apply our conditions
and results to two existing modes from literature, namely suffix-free Merkle-Damgård in
Section 8.3 and Enveloped Merkle-Damgård in Section 8.4. We finally discuss some tree
hashing modes that are used in practice in Section 8.5, give an overview of the Sakura
encoding [BDPV14a] in the context of our modes in Section 8.6, and apply our analysis to
message authentication in Section 8.7.

8.1 Minimal Sequential and Tree Hashing Modes
The simplest sequential hashing mode that meets subtree-freeness, radical-decodability,
and message-decodability is the following. Consider a compression function F : Zb2 → Zn2 .
Each node ends with 2 frame bits: the first one is 0 in the leaf nodes and 1 in all other nodes
and the second one is 1 in the final node and 0 in all other nodes. The leaf node consists
of b− 2 message pointer bits; the subsequent nodes (except for the final node) consist of
n chaining pointer bits and b − n − 2 message pointer bits, and the final node consists
of n chaining pointer bits, and the remaining message pointer bits (at most b − n − 3)
followed by a frame bit 1 and up to b− n− 3 frame bits with value 0. The tree template
is illustrated in Figure 6a.

It is relatively easy to verify that the three sufficient conditions are satisfied:
• Subtree-freeness can easily be explained by contradiction. Assume S′ a subtree of S

and both are in ST . As only the root in S′ ends in 11 and only the root in S ends in
11, they must be equal. Then, the child node of this root in both trees must be the
same and this argument can be extended recursively until the leaf node, that must
be reached simultaneously in both S′ and S due to its ending in 00 rather than 10.
So S′ and S must be equal.

• For radical-decodability we can take Srad
T = Ssub

T \ S leaf
T . Any tree in this set has a

node without a child that ends in 10 and the radical is its first n bits.

• For message-decodability, reconstructing the template from the tree is trivial and
the message consists of the concatenation of the message blocks in all nodes.

If the underlying primitive is a permutation or a block cipher (as in Sections 4.3 or 4.4),
we in addition need leaf-anchoring. This can be achieved by putting an n-bit IV at the start
of the leaf node. The adjusted template is depicted in Figure 6b. The introduction of the
IV does not impact the other three conditions. It is interesting to note that the function
does not need a feed-forward to overcome the invertibility property of the underlying
primitive.

As for tree hashing, the template of Figure 1a can be considered as a minimal example:
although it is described for a message of four blocks, the example straightforwardly stretches
in the vein of the minimal sequential mode and demonstrating that the three properties are
satisfied can be done with similar arguments. If the compression function is a truncated
permutation or block cipher, one additionally needs to include an IV at the start of every
leaf.
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00 10 10 10∗ 11 h

(a)

IV 00 10 10 10∗ 11 h

(b)

Figure 6: Tree template of a minimal sequential hashing mode of (a) an arbitrary function
and (b) a truncated permutation or block cipher. White blocks contain frame bits, light
gray blocks contain message pointer bits, and dark gray chaining blocks contain chaining
pointer bits. See Section 8.2 on the possibility of omitting the first frame bit in case (b).

8.2 Role of the IV
When leaf-anchoring is applied, one can identify nodes as non-leaf with certainty by the
absence of the IV and leaf nodes with high probability by the presence of the IV. This
allows for relaxing subtree-freeness slightly, and a subtree S ∈ Ssub

T that has an IV as
radical CV can also be in ST . When receiving the final node of such a tree, radical-
extension that is aware of the IV will consider the CV with value IV as a leaf node and
will not look further. This may lead to an incorrect simulator query to the random oracle,
but that is not a problem as a CV that happens to be an IV is a rare event that can be
taken into account by treating views that contain forward queries with bycn = IV as bad
views. This increases the probability of a bad view by a term at most q/2n, basically
turning

(
q
2
)
/2n to

(
q+1

2
)
/2n. Concluding, in the presence of leaf-anchoring, one can slightly

relax the condition of subtree-freeness by excluding from ST nodes that have a CV with
the IV-value. This typically allows saving a frame bit: instead of having a frame bit for
distinguishing leaf nodes from non-leaf node, the presence or absence of the IV is sufficient.
For the concrete example of Figure 6b, the first frame bit (0 for the leaves and 1 for the
non-leaves) can be omitted.

If the compression function is a truncated permutation or block cipher, applying leaf
anchoring is quite natural and this optimization makes sense. However, sequential modes
applied in former industry standard MD5 and true standards SHA-1 and SHA-2 all use
leaf-anchoring, and several flavors of Merkle-Damgård (MD) also use leaf-anchoring, most
notably suffix-free MD, prefix-free MD, and Enveloped MD. In MD5, SHA-1, SHA-2,
and suffix-free MD the leaf-anchoring does not help: as already demonstrated by Coron
et al. [CDMP05], any tree S can be extended by adding a node at the end, a weakness
widely known as length extension (see also Section 8.3). In prefix-free MD and Enveloped
MD, leaf-anchoring does help as the final node can be identified unambiguously from the
leaf node. This confirms earlier indifferentiability proofs on prefix-free Merkle-Damgård
by Coron et al. [CDMP05], Chang et al. [CLNY06], Bhattacharyya et al. [BMN09], and
Bellare and Ristenpart [BR06]. We detail the case of Enveloped MD in Section 8.4.

8.3 Suffix-Free Merkle-Damgård
Suffix-free Merkle-Damgård gets as input an arbitrarily sized message M ∈ Z∗2 and outputs
a digest h ∈ Zn2 using a compression function F : Zb2 → Zn2 for b > n. First, the message
M is padded into (b− n)-bit message blocks M1‖ . . . ‖M` = pad-sf(M) using a suffix-free
padding function pad-sf: it satisfies the property that there do not existM,M ′, X such that
X‖pad-sf(M) = pad-sf(M ′). It can be achieved by ending with a fixed-length encoding of
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the message length. Next, the function F is iteratively evaluated as

CVi = F(CVi−1‖Mi)

for i = 1, . . . , `, where CV0 := IV is an initial value that is customary included, and the
output of the hash function is defined as h = CV`.

Suffix-free Merkle-Damgård is obviously not subtree-free (Definition 4) due to the
possibility of a simple length extension attack: it is possible to derive three non-empty
messages M,M ′, X such that pad-sf(M)‖X = pad-sf(M ′). Our indifferentiability results
do therefore not apply to the mode. Non-surprisingly, differentiability of suffix-free Merkle-
Damgård was already demonstrated by Coron et al. [CDMP05], using the length extension
attack.

8.4 Enveloped Merkle-Damgård
Enveloped Merkle-Damgård [BR06] gets as input an arbitrarily sized message M ∈ Z∗2 and
outputs a digest h ∈ Zn2 using a compression function F : Zb2 → Zn2 for b ≥ 2n+ 64. First,
the messageM is injectively padded into (b−n)-bit message blocksM1‖ . . . ‖M` = pad(M).
Next, the function F is iteratively evaluated as

CVi = F(CVi−1‖Mi)

for i = 1, . . . , `, where CV0 := IV1 is an initial value that is customary included. The
output of the hash function is defined as

h = F(IV2‖CV`‖〈|M |〉64) ,

where 〈|M |〉64 is the 64-bit encoding of the message length (this also causes the presence
of “64” in the condition b ≥ 2n+ 64).

We will verify whether the mode satisfies the three sufficient conditions. Clearly, any
tree instance S ∈ ST is of the form

(IV1‖M1) −→ (CV1‖M2) −→ · · · −→ (CV`−1‖M`) −→ (IV2‖CV`‖〈|M |〉64) ,

where M1‖ . . . ‖M` = pad(M).

• Subtree-freeness is satisfied provided that none of the chaining values CVi collides
with IV1 or IV2. In other words, the mode is not unconditionally subtree-free, but
the condition is satisfied with high probability (see Section 8.2).

• For radical-decodability, we have Srad
T = Ssub

T \ S leaf
T . Consider any S ∈ Srad

T . A
single-node final subtree has a node without a child of the form (IV2‖CV`‖〈|M |〉64)
and any subtree that is not final or has more than one node has a node without a
child of the form (CV‖Mi). In the single-node final subtree case the presence of IV2
points to the radical CV` and in the other case, the fact that the first n bits of the
node are not IV1 or IV2 allows to conclude that they form a radical. Clearly, also
radical-decodability is conditional on chaining values not colliding with IV1 and IV2.

• For message-decodable, the function extract() takes M1‖ . . . ‖M` and strips off the
injective padding pad(). The message length encoding 〈|M |〉64 is redundant.

8.5 Tree Hashing Modes in the Wild
Bitcoin [Nak08,GKL15] is a peer-to-peer electronic cash system that make use of tree
hashing based on Merkle trees [Mer79]. Remarkably, the employed tree hashing mode
satisfies none of the three main conditions, and it is easy to generate collisions or perform
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length extension attacks. However, abusing these properties seems to be made infeasible
by the higher-level layers of the protocol.

The Tree Hash Exchange (THEX) format is proposed for assisting in checking the
integrity of exchanged files, allowing arbitrary subranges of bytes to be verified before the
entire file has been received [CM03]. It is not subtree-free, hence it is vulnerable to length
extension attacks. This may not be a problem for the typical use cases.

The generalization and simplification over the five required properties of Dodis et
al. [DRRS09] suggests that the mode of MD6 [ABC+09] can be made more efficient and
simpler without sacrificing security. In particular, MD6 satisfies its sufficiency conditions
at the cost of 73 frame bits per node call: a 64-bit word for the location of the node in
the tree, a single bit for indicating whether the node is final, and an 8-bit encoding of the
maximum tree height. MD6 in addition allocates 960 bits per compression function call to
a constant Q, in order to prove indifferentiability of this compression function and to make
generic composition go through [ABC+09,DRRS09]. As we showed in Sections 8.1 and
8.2, a single frame bit per node and an additional n-bit IV per leaf node (with n twice the
targeted security strength, so typically n = 256) would have been sufficient.

8.6 Sakura
Sakura [BDPV14a] is not a tree hashing mode itself but rather an encoding that allows
a wide range of tree hashing modes of arbitrary functions. It specifies how to encode
message fragments and chaining values in nodes, and this encoding ensures the conditions
subtree-freeness, radical-decodability, and message-decodability. The encoding is performed
by having a frame bit at the end of each node indicating whether it is a final node or not,
and by making each node decodable into a message chunk and chaining values.

One may see Sakura as a layer within the template generation processing: The mode-
specific processing would map the message length and parameters into a pre-template
that specifies the tree topology and where the message chunks go and that is on a higher
abstraction level as a template. The encoding of this pre-template into a template is
then done according to Sakura. A hash function that makes use of Sakura encoding is
KangarooTwelve [BDP+18]. This hash function uses a tree structure to exploit parallelism,
and its underlying arbitrary function is a variant of Keccak.

8.7 Application to Message Authentication
Another interesting application is the definition of a MAC function construction that would
form an alternative for SHA-256 HMAC [KBC97,Bel06]. This function computes a MAC
on an n-byte message that requires dn+9

64 e+ 3 calls of the SHA-256 compression function.
Using the insights of this paper, we can build a MAC function that offers the same security
strength, but only requires dn+33

64 e calls to the SHA-256 compression function (without
the Davies-Meyer feedforward). This mode would be purely sequential and simply take, in
the compression function input, a bit indicating whether the node is final or not, a 255-bit
CV or IV (for the leaf node), and bits from the concatenation of the key and message
after padding with a single 1 and 0s. For messages shorter than 32 bytes this MAC takes
1 compression function call instead of 4.

Note that SHA-256 HMAC achieves security based on the assumption that the SHA-256
block cipher is ideal in a three-step reduction: HMAC assumes an underlying hash function
that is secure (tolerating length-extension), SHA-256 is collision resistant if the underlying
compression function is collision resistant, and the SHA-256 compression function is
collision resistant if the underlying block cipher is ideal. In our approach the security
reduction only has a single level: the hash function is secure if the underlying block cipher
is ideal.
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