
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/200483

 

 

 

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

http://hdl.handle.net/2066/200483


Towards an independent observer of
screening mammograms:
detection of calcifications

Jan-Jurre Mordang



This book was typeset by the author using LATEX2ε.

Copyright © 2018 by Jan-Jurre Mordang. All rights reserved. No part of this pub-
lication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and re-
trieval system, without permission in writing from the author.

ISBN: 978-94-92896-79-7

Printed by Ipskamp, Nijmegen



Towards an independent observer of screening

mammograms:

detection of calcifications

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op dinsdag 11 december 2018
om 12:30 uur precies

door

Jan-Jurre Mordang

geboren op 8 april 1988
te ’s-Hertogenbosch



Promotoren: Prof. dr. N. Karssemeijer
Prof. dr. G.J. den Heeten
AMC Amsterdam

Co-promotor: Dr. M. Broeders

Manuscriptcommissie: Prof. dr. E. Marchiori
Prof. dr. P.J.F. Lucas
Dr. M. Lobbes
Maastricht Universitair Medisch Centrum

The research described in this thesis was carried out at the Diagnostic Image Analy-
sis Group, Radboud University Medical Center (Nijmegen, the Netherlands).
This work was funded by grant KUN 2012-5577 of the Dutch Cancer Society and
supported by the Foundation of Population Screening Mid West.

Financial support for publication of this thesis was kindly provided by the Faculty
of Science, Radboud University Nijmegen.



Table of Contents

Page

CHAPTER 1
Introduction 1

I Improvements of the calcification
CAD system

CHAPTER 2
A deep learning approach for the detection of calcification candidates 21

CHAPTER 3
Automatic selection of women with breast arterial calcifications 31

CHAPTER 4
Removal of breast arterial calcifications as CAD findings in mammograms 41

CHAPTER 5
Removal of obvious false positive calcification findings in mammograms 63



vi TABLE OF CONTENTS

II Evaluation of CAD and breast
cancer screening

CHAPTER 6
Assessment of the screening sensitivity for detection of malignant calcifications 89

CHAPTER 7
Performance of a standalone CAD system and 109 radiologists 101

Summary 111

General discussion 117

Samenvatting 123

Publications 129

Bibliography 133

Dankwoord 151

Curriculum Vitae 157



Introduction

1



1

2 Introduction

1.1 Breast cancer

Cancer is the most deadly type of disease in the world with an estimated 8.2 million
cancer-related deaths and 14.1 million new cases worldwide in 2012. An overview
of the estimated number of deaths and new cases for the different kinds of cancers is
shown in Figure 1.1. Of all cancers, breast cancer is one of the leading causes of death
and has the highest incidence in women1,2. In the Netherlands, more than 14,500
women are diagnosed with invasive breast cancer and more than 2,000 women with
Duct Carcinoma In-Situ (DCIS)3,4 Furthermore, more than 3,200 women decease be-
cause of breast cancer each year3,4. By the year 2020, the incidence is estimated to
increase to 17,500 new cases, while the breast cancer-related deaths will decrease
gradually due to detection of breast cancer at an earlier stage with breast cancer
screening and improved treatment of breast cancer5–8.

Figure 1.1: Estimates of new cancer cases and deaths in 2012 (source: GLOBOCAN

20121).

Malignancy can grow within all types of breast tissue, but in the classical sense,
breast cancer originates in either the milk-ducts, in which breast milk is transported
to the nipple, or the lobules, where breast milk is produced. A schematic drawing
of the anatomy of the breast is shown in Figure 1.2. Several types of breast cancer
can arise in other parts of the breast as well, but are less common (<8% of all breast
cancers). As long as the cancers cells remain confined within the basal membrane
of the ducts, they are defined as DCIS and are not yet harmful although the cancer
cells as such can be malignant9. When the cancer invades into the stroma (i.e. the
surrounding tissue), the cancer becomes invasive and harmful to the patient10. After
invasion of the stroma, a significant part of the cancers can progress to the lymph
nodes and can metastasize further into the body.
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Figure 1.2: Anatomy of the breast (source: cancer.org).

An important measure for breast cancer is the grade of the cancer cells in the
breast. Grading can be divided into three grades, where the highest grade (grade
III) is the most aggressive form of cancer cells11. Low-grade (grade I) DCIS cells
are slow growing cancer cells and can grow so slowly that they, in general, will not
become invasive during the patients lifetime. In contrary to low-grade DCIS, high-
grade DCIS cells tend to grow more quickly and, therefore, patients with high-grade
DCIS have a higher risk to develop an invasive cancer. Additionally, the recurrence
of breast cancer within five years is more likely for high-grade DCIS compared to
low-grade DCIS12. In general for each individual breast cancer lesion, although the
breast cancer stage (specified with the TNM staging method13) can change over time,
the grading remains the same during the existence of the tumor.

1.1.1 Calcifications

The earliest radiological manifestations of DCIS are calcifications. These small cal-
cium deposits originate in the ducts and lobules and can be a signal of malignancy.
However, not all calcifications that can be found in the breast accompany malignan-
cies. Various types of benign calcifications can arise at different locations within the
breast and each type can have a different origin and appearance. These types are
not related to breast cancer. In Figure 1.3, an overview is shown of typically benign
types of calcifications. Although these calcifications are benign in terms of breast
cancer, the presence of benign calcifications can be a sign for other types of patholo-
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gies. For instance, various studies have analyzed the relation between breast arterial
calcifications (BACs), i.e. calcifications located in the blood vessel walls, and car-
diovascular disease.14–25. Furthermore, BACs have also been related to several other
pathologies26–30.

Figure 1.3: Typically benign calcifications that can be present in a mammogram

(source: radiologyassistant.nl).

For malignancy, suspicious calcifications can be identified by their individual
morphology and their distribution within the breast. In Figure 1.4, an overview
is given of possible types of suspicious calcifications. Calcifications are suspicious
when they have an amorphous or coarse heterogeneous shape. However, although
these calcifications are suspicious, they are not always malignant. Calcifications
which are fine pleomorphic, thin, linear or curvilinear irregular calcifications (also
known as fine-linear, or fine-linear branching calcifications), are considered to have
a high probability of malignancy31.

1.1.2 Soft-tissue lesions

When DCIS develops into an invasive cancer, the breast cancer becomes a soft-tissue
lesion, which is the term for masses, architectural distortions and asymmetrical den-
sities within the breast. Most soft-tissue lesions have the main appearance of masses
and consist of cancer cells that are more densely packed together and invades the
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Figure 1.4: Suspicious calcifications that can be present in a mammogram (source:

radiologyassistant.nl).

Figure 1.5: Example of a malignant soft-tissue lesions in mammography.

surrounding tissue, which consists mainly of fatcells and fibrous tissue. The bound-
ary of this type of lesion can vary between circumscribed, indistinct or spiculated.
The latter type, are stellated patterns of lines that are directed towards the center of
the mass. These spiculations are an important sign for malignancy of the lesion. Ar-
chitectural distortions are a disruption of the normal pattern in the breast without a
visible mass and are less often an invasive cancer. The asymmetrical densities, a mis-
match between the density pattern between the left and right breast or acquisitions
at different view angels of the breast, are also less often a malignancy. An example
of a malignant soft-tissue lesion with spiculations is shown in Figure 1.5.
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1.2 Breast cancer screening

Breast cancer is best treatable when detected as early as possible32,33. Therefore, early
detection of this disease is essential to decrease breast cancer mortality34,35. To ac-
complish this, breast cancer screening programs are implemented in many devel-
oped countries where women from a certain age are periodically invited for a breast
cancer examination. It is important to underline that the positive effects of screen-
ing are mainly due to the principle of repetition. For this reason, the first round
should be considered differently from the repeated rounds and monitored and re-
ported separately. Between 20% and 50% of non-palpable DCIS develops into in-
vasive breast cancer36–38, and because non-palpable DCIS can only be detected with
medical imaging, screening examinations are done with mammography. This ap-
proach has proven to be a cost effective measure for the early detection of breast
cancer39,40.

In the Netherlands, women between the age of 50 and 75 are biennially invited
for a breast cancer screening exam. During this exam, a full-field digital mammo-
gram (FFDM) is acquired with a mammography system. An example of a mammog-
raphy system is shown in Figure 1.6. Each mammogram consists of two mammo-
graphic images of the left and right breast that are acquired during one screening
examination. The two views that are acquired are called: the Medio-Lateral Oblique
(MLO) and the Cranio-Caudal (CC) view. The MLO is acquired with the X-ray tube
rotated 45 °medially and the CC is acquired from the top of the breast along the
line of gravity, respectively41. A schematic drawing of both views is shown in Fig-
ure 1.7. The four acquired images are read by two in principle independent read-
ers. In this double reading, two radiologists assess the mammogram and score both
breasts consecutively. Scoring of the mammogram is performed according to the
Breast Imaging-Reporting And Data System (BI-RADS)31,42 in which guidelines are
presented to consistently score and report breast cancer lesions41.

1.3 Computer-aided detection

The advancement of medical imaging over the past decades results in a tremen-
dous amount of medical images, substantially increasing the workload of radiolo-
gists43–47. Especially in screening programs such as breast cancer screening, where
millions of medical images are acquired each year. Besides the increasing workload,
the interpretation of medical images is subjective to the individual skills of (screen-
ing) radiologist and depends also on experience and their compliance with reporting
guidelines. For consistent reporting different reporting systems are available for spe-
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Figure 1.6: An example of a mammography system, commonly used in breast cancer

screening.

L LRR

Figure 1.7: A schematic drawing of the the Medio-Lateral Oblique and the Cranio-

Caudal views acquired during a breast cancer screening exam.
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cific diseases and modalities such as the Lung-RADs48, the PI-RADS49, and the BI-
RADS31 for lung, prostate, and breast imaging, respectively. The difference in read-
ing quality between radiologists can result in a difference in the diagnosis of a patient
and can have a big impact on the number detected cancers. For instance, a sensitiv-
ity difference varying between 18% and 40% has been observed when mammograms
are read by individual breast cancer screening radiologists50–53. Therefore, in many
European countries, double reading has been introduced to reduce the variability in
breast cancer screening performance and to increase sensitivity53–56. However, dou-
ble reading demands additional radiologists which increases their workload even
more and increases costs.

To reduce the radiologists’ workload and to improve quality of reading medical
images, Computer-aided detection (CAD) systems have been developed and have
been extensively explored for the past decades57–59. In these systems, various (semi-
)automatic algorithms are used to analyze medical images and give a response to aid
the radiologist. In general, there are two types of responses and, consequently, two
types of CAD systems. In a CADe (computer-aided detection) system, the general
aim of the system is to detect abnormalities in medical images. Therefore, the out-
put of a CADe system are marks (or findings) of potential locations of abnormalities
within the image. This type of system is mainly used to reduce the number of abnor-
mal regions that could potentially be overlooked by the radiologist. Additionally,
many of these systems supply a score with the supplied findings to show how cer-
tain the system is about a specific location to be abnormal. The second type of CAD
systems are Computer-aided diagnosis (CADx) systems. These systems are devel-
oped to be an aid for the radiologist in the interpretation of abnormal regions. For
example, CADx systems can help in the interpretation and classification of benign
and malignant disease in various diseases and imaging modalities such as lung can-
cer in CT-scans60, breast cancer in mammography61,62, and prostate cancer in MRI
and ultrasound imaging63.

The implementation of a CAD system into the daily workflow of radiologists
can be done with different setups. For instance, a CAD system can be used during
reading of medical images where usage of the system is regulated by the radiol-
ogists themselves. In this setup, the aid of the system can be either aimed at the
detection of abnormalities (CADe) or as a interactive decision support for the evalu-
ation of found abnormalities (CADx). In a detection support system, CAD findings
can be prompted on the image when desired to check if certain regions were not
overlooked. In the decision support system, CAD findings are only shown when
the radiologists wants to know if a certain region is found to be suspicious by the
CADx system64,65. In another setup, a CAD system can be used as a completely in-
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dependent reader of medical images (also mentioned as CADr66). For instance in
mammography screening, the system can be used as a first reader where only im-
ages with abnormalities are shown to the radiologist or as a second reader were the
images are checked for potentially overlooked abnormal regions. Furthermore, the
system can be a substitute of one radiologists in double reading.

1.3.1 Mammography CAD in breast cancer screening

The implementation of a CAD system in mammography screening is not a novel
idea and, in the United States, CAD systems are already widely used in screening
practice for almost two decades67. Since then, a lot of effort has been put in further
development of these systems to approach human performance in reading mam-
mograms. A mammography CAD system generally consists of two separate CAD
systems: a system for detecting calcifications and a system for detecting masses. As
this thesis mainly focusses on calcification CAD systems in breast cancer screening,
we will discuss this type of system more thoroughly and the mass CAD system will
only be discussed briefly.

Calcification CAD system

In the past decades, much research has been done in the development of calcification
CAD systems and it is still a prominent research subject to this day61,62,68–72. The main
reason why this development is still ongoing is due to the number of false positive
locations that are marked by the system which is still around 100 times higher than
the number of false positives marked by radiologists in screening73. The baseline
CAD system used in this thesis is based on a calcification CAD system developed by
Bria et al74 (2013). In their paper, a calcification CAD system was presented that can
compete with high-end commercial CAD systems. The strategy for the detection of
suspicious calcifications in mammograms consists of four main steps: 1) the image
will be processed with a filter to increase and equalize the contrast in the image, 2)
a pixel detector is applied to detect pixel-candidates for potential calcifications, 3)
calcifications are segmented and clustered based on the mapping of potential can-
didates and, 4) a cluster classifier is applied on the clustered calcifications to reduce
the number of false positive clusters. These steps of the baseline CAD system will be
discussed in the next subsections.

1) Pre-processing - The first step in the whole CAD pipeline is the segmentation
of the breast such that no other structures are present in the image75. Furthermore in
digital mammography, a dominant source of noise in the mammograms is quantum
noise which is unavoidable in X-ray imaging76. However, a filter can be applied to
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equalize the noise across the image. Together with a rescaling of the pixel values, the
following formula can be used:

T (y) =
Tmax√
ymax

√
y (1.1)

where, Tmax is the maximum intensity of the transformed scale, e.g. for a 16 bit-
s/pixel image this would be 65,535, ymax is the maximum intensity of the original
mammogram, e.g. 14 bits/pixel (ymax= 16,363) and y is the value of each individual
pixel in the image.

2) Calcification candidate detector - The main challenge for a pixel classifier in
detecting locations of calcifications is the huge class-imbalance between pixels be-
longing to calcifications and pixels belonging to other breast tissue, considering that
calcifications can consist of only few pixels (∼10 pixels) where a group of only three
calcifications can already be suspicious and the millions of pixels belonging to other
breast tissue. Additionally, a pixel classifier should be able to process millions of pix-
els in a reasonable time as the system, when implemented in breast cancer screening,
should be able to process millions of mammograms yearly. Consequently, the pre-
requisites for a suitable pixel classifier are that it should be able to overcome a large
class-imbalance and cannot be too complex.

A suitable classifier is the cascade classifier77 which consists of series of nodes
containing very simple classifiers that are subsequently applied on fast computable
features. The rationale behind the cascade is that pixels that would be easily dis-
missed as calcifications will be removed from the candidate list by one of the first
nodes. Classifiers in the subsequent nodes can focus on the differentiation between
calcifications and more difficult samples of other breast tissue. The classifier in
our cascade classifier is a GentleBoost classifier78 which is trained on Haar-like fea-
tures79,80. To classify each pixel in the image, a nxn pixel patch (e.g. 13x13) is ex-
tracted for all pixels. On each patch, various Haar-like features groups are calculated
at various scales and locations within the patch. Examples of the Haar-like feature
groups are shown in Figure 1.8. In each node of the cascade, pixels are classified and
pixels with a classification score below a certain threshold are removed for further
classification in the subsequent nodes. In the last node, each remaining pixel, i.e. a
pixel classified as a positive pixel in all nodes, receives a final classification score.
This score is the output of the last classifier, all other pixels receive the value zero.
An example of the output of the classifier is shown in Figure 1.9(b).

Several parameters should be set while training the GentleBoost classifiers in each
node. The most important are the minimum detection rate and maximum false pos-
itive rate of the individual classifiers in the cascade. Sensible values for these two
settings would be a detection rate of 0.99 and a false positive rate of 0.3 which for
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Figure 1.8: Haar-like feature groups, each feature group consists of features at all

possible scales and translations within an nxn pixel patch.

a cascade with 5 nodes would yield (in theory) a detection rate of 0.995 = 0.95 and
a false positive rate of 0.35 = 0.002. During training, Haar-like features are selected
by the GentleBoost classifier until these two criteria are met. Because in the begin-
ning very easy differentiable samples can be filtered out, the first nodes will need
fewer selected features compared to the later ones. The final number of nodes can
be controlled by several factors such as a pre-specified overall detection rate of the
system and false positive rate, the number of training samples that are still available
in the later nodes, or when adding nodes does not improve the overall performance
of the cascade anymore. Training of the cascade classifier takes more time than ap-
plying it to new images because, during training, all Haar-like features have to be
calculated for all samples. For example, around 40,000 samples are used (with a
class-imbalance of around 1:5) for training each node and for a single patch of 13x13
more than 45,000 Haar-like features are calculated. While when the cascade classifier
is applied to a new image, only few Haar-like features are calculated (<10 features
in the first node up to <50 in the later nodes) which are quite fast to calculate (∼10
seconds for a whole image).

3) Calcification segmentation and clustering - After the candidate detector, calci-
fications are segmented and clustered together in groups. To segment calcifications,
a connected component analysis is applied on the output image of the candidate
detector resulting in a set of components. Then, a threshold is set (Tcalc) and com-
ponents with less than 2 pixels above Tcalc are removed and the remaining compo-
nents are defined as detected calcifications. To remove macrocalcifications, which
are typically benign, bounding boxes are calculated for each detected calcification
and calcifications with a bounding box that is larger than 1mm in both horizontal
and vertical direction are removed. Additionally, detected calcifications that have
an overlapping bounding box with or lie within 2 pixels of a macrocalcification are
removed as well. The remaining detected calcifications are then clustered together
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by grouping them according to their distance to one another where the maximum
distance between individual detected calcifications is set to 10mm. An example of
groups with detected calcifications is shown in Figure 1.9(c).

4) False positive removal - Not all groups with detected calcifications will con-
tain suspicious calcifications but also typically benign calcifications or noise might
be detected. Therefore, to reduce the number of false positives, a cluster classifier is
trained on detected groups of calcifications to differentiate suspicious calcifications
from benign calcifications. This classifier uses various features, which are calculated
either at an individual calcification level within the groups and at the level of the
whole groups itself. These features are based on shape, topology, probability, and
texture and are described in Bria et al74 (2013) and Veldkamp et al81 (1999). After
classification, each detected calcification group receives a score reflecting how confi-
dent the system is that the group is suspicious. In Figure 1.9(d), an example is shown
of the final output of the baseline calcification CAD system.

Soft-tissue lesion CAD system

The development of CAD systems for the detection of soft-lesions is still an ongoing
research field82–88. The soft-tissue lesion detection system used in this thesis has the
following design. After pre-processing the image, each pixel in the image is analyzed
by a pixel classifier to generate a likelihood image for potential candidates83. To
obtain the location of potential soft-tissue lesions, local maxima are determined in
the likelihood image and the lesions are segmented with dynamic programming89.
Additionally, patches are made from the segmented lesions. These patches, together
with a list of features calculated on the segmented lesions83, are classified with a
convolution neural network (CNN)88. The output of the soft-lesion CAD system
is a segmented lesion together with a suspiciousness score supplied by the CNN.
Examples of the intermediate results are shown for respectively the output of the
candidate detector and the lesion segmentation.

1.3.2 Evaluation of CAD

When a new CAD system is developed, its performance should be validated. The
validation strategy should be done as properly as possible to be able to compare the
performance of the new proposed system to other CAD systems. In this section, the
evaluation methods are described which are used throughout this thesis.

Commonly, a CAD system is validated on a reference dataset (or ground truth)
that is created based on the diagnostic findings of radiologists and the histopatho-
logical findings after diagnostic follow up. Based on these findings, annotations are
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(a)

(b) (c) (d)

Figure 1.9: Examples of intermediate results of the calcification CAD system; (a) the

input screening mammographic image and a zoomed in region, (b) the calcification

candidate selection, the black pixels represent locations of the calcification candidates,

(c) the detected groups after calcification segmentation and clustering, and (d) the

remaining calcification group after the false positive removal.
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Figure 1.10: An example of a ROC curve.

drawn capturing the malignant lesion (i.e. calcifications or soft-tissue lesions) in the
image. The CAD system is applied on this dataset and the percentage of detected
malignancies (the true positive rate or sensitivity) and the percentage of detected
normals (the false positive rate or 1 - specificity) are calculated. Because the findings
produced by the CAD system have a classification score, Receiver Operating Char-
acteristics (ROC) analysis can be performed. With ROC analysis, all samples in the
dataset are ranked according to their classification score. To obtain an ROC curve,
various thresholds (Tgroup) are set on the classification scores and at each threshold
the number of true positives (detected malignancies) and false positives (detected
non-malignancies) are calculated to determine the operating point, i.e. the combina-
tion of the sensitivity and specificity at a given Tgroup. When various thresholds are
set, various operating points can be calculated and a ROC curve can be plotted, an
example of an ROC curve is shown in Figure 1.10. Often the Area Under the Curve
(AUC) of the ROC curve is calculated to give an overall metric of the performance.
The value of the AUC lies in the range of 0 and 1 where an AUC of 1 means perfect
performance, i.e all malignancies are detected without any false positives.

However, to obtain a ROC curve it should be specified clearly when a finding of
the CAD system is a true positive or a false positive, i.e. a detected malignancy and
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Figure 1.11: The four measures to calculate specificity and sensitivity.

a detected non-malignancy, respectively. In Figure 1.11, a schematic visualization is
shown for the definitions of the CAD findings. Various criteria can be specified for
the definition of a true positive and depend on the evaluation of the CAD system. In
this thesis, two different criteria were used: 1) a finding is defined as true positive
when at least two detected calcifications are located within the reference annotation
and 2) the distance between the center of the CAD finding and the center of the ref-
erence annotation are used where a finding was marked as a true positive when this
distance was<10mm. Throughout this thesis, a false positive is defined as each find-
ing that is detected in the images of an exam that has not been recalled in screening (a
normal exam), assuming that these images do not contain any abnormalities. More-
over, often exam-based ROC analysis is performed. When exam-based ROC analysis
is carried out, the same definitions for true positive and false positive findings are
used. However to obtain exam-based scores, the true positive with the highest score
in all images of the exam was taken for exams with a malignancy. For the normal
exams, the finding with the highest score in all images of an exam was taken as the
false positive score.

Furthermore, another analysis that can give a good insight in the performance of
a CAD system is Free-response ROC (FROC). Similar to ROC analysis, the number
of true positives and false positives are calculated at various classification scores and
the definitions are the same. However, instead of plotting the sensitivity in terms of
the specificity, it is plotted in terms of the number of false positives per (normal) im-
age (FP/I). In this thesis, the sensitivity for FROC analysis is calculated exam-based,
identical as in ROC analysis, and the number of false positives per image are cal-
culated by taking all findings detected in normal images and ranking them to their
classification score. To obtain the FROC curve, Tgroup is set at various values and
for each value the number of false positives is determined and divided by the total
number of normal images in the test set. An example of an FROC curve is shown
in Figure 1.12, in this graph it can be seen that for instance at a sensitivity of 88%,
the CAD system produces one false positive in every five images (FP/I = 0.2). Note
that FROC curves are commonly plotted on a logarithmic scale. Calculating these
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operating points for a FROC curve makes it possible to see how the CAD system
would fit in a screening environment as a CADe system because it directly shows
the number of false positive marks it will generate at a certain sensitivity.
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Figure 1.12: An example of a FROC curve.

Besides directly comparing (F)ROC curves between different systems, a statistical
comparison is also relevant for evaluation. To compare two systems bootstrapping
can be used90–93. Bootstrapping is a non-parametric method to obtain confidence in-
tervals for each (F)ROC curve. The bootstrapping method consists of resampling the
reference dataset with replacement n-times (commonly, n>1000), for each sampled
set an (F)ROC curve is calculated for each system and are compared. Statistical com-
parison is often done by calculating the AUC of the (F)ROC curve for each sampled
set and derive the p-value from the differences in AUC. Moreover, when a certain
range is of interested, e.g. the high specificity range between 0.8 and 1.0, the partial
AUC (pAUC) can be calculated for each bootstrap and compared between systems.
In general, it is assumed that two systems are statistical different at a p<0.05.

1.4 Thesis outline

Several reader studies have shown that the detection rate of individual radiologists
increases when a CADe system is used73,94–96, at the cost of a slight increase in re-
call rate73,97–100. However, there is no convincing evidence yet that the incorporation
of CAD systems into the mammography reading workflow contributed to an over-
all improvement of screening performance in daily practice98,101. It is not clear why
there is a discrepancy between the positive results of reader studies where a CAD
system was used in reading sessions compared to the less positive results observed
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by incorporating a CAD system in the daily work flow of breast cancer screening.
An important factor that can play a role in this disappointing result might be ex-

plained by the relatively high number of false positives that are marked by CAD
systems. These false positives arise because a high sensitivity is desired to ensure
that lesions are not missed and, consequently, CAD systems have to operate at a
low specificity, which is not yet optimal for current systems. The high number of
false positives can lead to an increase in the number of women being unnecessarily
recalled for a clinical follow-up73,96,97, an increase in interpretation time of the mam-
mograms102, and a loss in confidence in the CADe system102. All of these drawbacks
can have a negative effect on the usage of a CAD system and can result in a refusal
of using it during the daily work flow of screening. Consequently, it is difficult to as-
sess if CAD marks are actually judged by the radiologist or generally ignored when
CAD is available to them and the usage CAD is reimbursed103. Therefore, instead
of using a CAD system as an aid for radiologist during mammography screening, a
better solution might be to use the system as a completely independent observer. In
this setup, the CAD system can serve as a stand-alone system and its output can be
combined with the grading of the radiologists. However, before employing CAD as
an independent observer, the number of false positives should still be reduced and
should be compared to the performance of radiologists.

Therefore, the main goal in this thesis is to reduce the number of false positives
produced by the calcification CAD system to achieve a comparable performance as
achieved by screening radiologists. This thesis consists roughly of two parts. In
the first part, improvements on the baseline CAD system will be discussed and in
the second part, the screening sensitivity of detecting calcifications is assessed and
the stand-alone CAD system is evaluated. The first part consists of chapters 2-5: in
Chapter 2, an improvement is proposed of the initial candidate detector of the base-
line system. In this chapter, a deep-learning approach has been implemented where
a convolutional neural network was trained and compared to the cascade classifier.
In Chapter 3, a case-based selection stage has been to select cases with breast-arterial
calcifications, one of the most common false positives produces by the CAD system.
In Chapter 4, a breast-arterial reduction stage has been applied on the selected cases
to reduce the number of false positives and increase the performance of the CAD
system. In Chapter 5, a framework is presented to remove obvious false positives,
these are false positive CAD findings that would be easily dismissed by the radi-
ologist. The second part consists of chapters 6-7: in Chapter 6, the performance of
radiologists in detecting malignant calcifications in breast cancer screening has been
assessed where the exams prior to screen-detected and interval cancers have been
retrospectively evaluated together with a CAD system. In Chapter 7, the calcifica-
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tion CAD has been merged with a mass CAD to assess the overall performance of
the mammography CAD system as an independent observer. The performance of
the stand-alone CAD system is compared to 109 screening radiologists.



Part I

Improvements of the calcification CAD system





A deep learning approach for the detec-
tion of calcification candidates

2

Jan-Jurre Mordang, Tim Janssen, Alessandro Bria, Thijs Kooi, Albert
Gubern-Mérida and Nico Karssemeijer

Original title: Automatic microcalcification detection in multi-vendor
mammography using convolutional neural networks

Published in: Breast Imaging, 2016



22

22 A deep learning approach for the detection of calcification candidates

Abstract

Convolutional neural networks (CNNs) have shown to be powerful for classifica-
tion of image data and are increasingly used in medical image analysis. Therefore,
CNNs might be very suitable to detect calcifications in mammograms. In this study,
we have configured a deep learning approach to fulfill this task. To overcome the
large class imbalance between pixels belonging to calcifications and other breast tis-
sue, we applied a hard negative mining strategy where two CNNs are used. The
deep learning approach was compared to a current state-of-the-art method for the
detection of calcifications: the cascade classifier. Both methods were trained on a
large training set including 11,711 positive and 27 million negative samples. For
testing, an independent test set was configured containing 5,298 positive and 18 mil-
lion negative samples. The mammograms included in this study were acquired on
mammography systems from three manufactures: Hologic, GE, and Siemens. Re-
ceiver operating characteristics analysis was carried out. Over the whole specificity
range, the CNN approach yielded a higher sensitivity compared to the cascade clas-
sifier. Significantly higher mean sensitivities were obtained with the CNN on the
mammograms of each individual manufacturer compared to the cascade classifier
in the specificity range of 0 to 0.1. To our knowledge, this was the first study to use
a deep learning strategy for the detection of calcifications in mammograms.
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2.1 Introduction

Convolutional Neural Networks (CNNs)104,105 have been shown to be very power-
ful in the classification of large image databases106,107. Moreover, CNNs are also
increasingly applied in medical image analysis, e.g. included in CADe systems, and
have shown to achieve cutting edge performances108–110. Another great advantage
of applying CNNs is that the networks themselves determine the most descriptive
features to separate the positive from the negative class while current CADe systems
use pre-determined features which can lead to a loss of information or an increase of
processing time. Therefore, CNNs might be very suitable for detecting calcifications
in mammograms.

One of the main difficulties in the detection of calcifications in mammograms is
that the positive class, i.e. pixels belonging to calcifications, is very small compared
to the negative class, i.e. other breast tissue. This large class imbalance is a big im-
pediment for most classification strategies and make them unsuitable for this task.
A previous study about applying CNNs to a class imbalanced dataset yielded very
good results108. Additionally, a single mammogram consists of millions of pixels to
be analyzed. Therefore, a CADe system should operate very fast. A CADe system
with high-complexity classifiers and/or features can lead to a very slow system and
consequently become useless to process millions of images. An additional benefit of
CNNs is that they can be applied with a very high computation speed.

The purpose of this study is to implement and study the performance of a deep
learning approach with CNNs to detect calcifications in mammograms. The pro-
posed system is compared to a current state-of-the-art calcification detection ap-
proach. Another important aspect for a CADe system to be applicable in breast
cancer screening is their compatibility with mammograms acquired with mammo-
graphic units developed by different vendors. Each vendor has its own detector type
for making mammograms which can result in a substantial variation in noise char-
acteristics and appearance. Therefore, we used a heterogeneous dataset consisting
of mammograms acquired with mammographic units developed by three different
manufacturers.

2.2 Methods

2.2.1 Materials

For this study, we collected a multi-vendor and multi-center dataset consisting of 490
mammograms acquired with Hologic digital mammography systems (Hologic, Bed-
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Dataset configuration

Manufacturer # cases # exams # mammograms

Hologic 104 132 490

GE 255 268 1044

Siemens 23 23 72

Table 2.1: Overview of the dataset.

ford, Massachusetts, United States), 1044 mammograms acquired with GE Senographe
systems (GE, Fairfield, Connecticut, United States), and 72 mammograms acquired
with Siemens Mammomat Inspiration systems (Siemens, Erlangen, Germany). In
the dataset all available medio-lateral oblique and cranial caudal views of the left
and right breast were included. All mammograms were acquired with standard
clinical settings and unprocessed raw FFDM images were used in this study. The
data acquired with the Hologic digital mammography systems were obtained from
women whom participated in a national screening program (Bevolkings Onderzoek
Midden-West, The Netherlands) and were referred for diagnostic follow up. The
other mammograms were acquired in our own institution after referral in screening.
An overview of the dataset is shown in Table 2.1. In all mammograms, individ-
ual calcifications were annotated based on the diagnostic reports. Annotations were
made by marking the center of each calcification.

2.2.2 Convolutional neural networks

The general aim for a calcification detector is to classify each pixel in the mammo-
gram in one of two classes: calcification or non-calcification. We propose a hard neg-
ative mining strategy to overcome the large class imbalance between the calcification
and non-calcification classes. First, a CNN is trained on a small dataset. Second, the
trained CNN is applied to the whole dataset to remove the easy samples. Finally, a
second CNN is trained on a larger dataset which contains the hard negative samples,
i.e. samples that are more difficult to differentiate from calcification pixels than easy
classifiable samples. For new samples such as those in the test set, only the second
CNN is applied.

To train a CNN, patches, sub-images centered around the pixel of interest, are ob-
tained from both the positive and negative class. These patches are then fed into the
first convolutional layer. In each layer, filters are trained to divide the data in sep-
arate classes. This approach uses all information within the patch that is supplied
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to the CNN and determines its most descriptive features between the two groups
by itself. Training of the CNN is an iterative process, where in each iteration (or
epoch) network parameters and discriminative parameters are optimized. In each
epoch, the CNN minimizes a cost function by updating its parameters via back-
propagation.

A CNN consist of several layers, the most commonly used layers are the convo-
lutional layers, the pooling layers and the fully connected layers. The convolutional
layers consist of a set of learnable 2D rectangular filters. These filters are convolved
with the input patch and the activations are passed through an activation function.
The pooling layers reduce the spatial size of the input by sub-sampling the output of
the previous layer. Commonly, the maximum activation is taken over a sub window
with a specified stride and are called max-pooling layers. The third type of mainly
used layers are the fully connected layers. These layers have full connections to all
activations in the previous layer. This type of layers are commonly used in regular
neural networks. The final layer is a fully connected layer with two output neurons,
one for each class.

The CNN structure in our study is inspired by the OxfordNet111. This structure
consists of repetitions of two convolutional layers, with 32 filters each, followed by
a max-pooling layer of size 2x2 and a stride of 2. Additionally, fully connected lay-
ers are used as final layers and a soft-max function calculates the final output. The
two CNNs used in this study consist of 2 repetitions followed by three fully con-
nected layers. An overview of the CNN architecture used for both CNNs used in
this study is shown in Table 2.2. To reduce over fitting, dropout is applied for each
fully connected layer during training of the CNNs112.

2.2.3 Cascade classifier

A current state-of-the-art method for the detection of calcifications is the cascade
classifier74. This cascade classifier consist of a sequence of nodes where in each node
an independent, single classifier classifies the patches. In each node, patches with a
classification score below a specific threshold, which is determined during training,
are filtered out and receive a final score of zero. Patches which remain in the last
node receive the score of the last classifier. GentleBoost classifiers are used as single
classifiers and regression stumps are used as weak classifiers78. These GentleBoost
classifiers are trained on straight77 and 45°rotated80 Haar-like features.

During training, each GentleBoost classifier is optimized on a validation set. This
optimization is based on two criteria: the detection and false positive rate on the
validation set. The validation set is classifier by the GentleBoost classier after adding
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CNN Architecture

Layer Layer Type Filter Size Input size Output size

1 Convolutional 3x3 1x13x13 32x13x13

2 Convolutional 3x3 32x13x13 32x13x13

3 Max-pooling 2x2 (stride = 2) 32x13x13 32x6x6

4 Convolutional 3x3 32x6x6 32x6x6

5 Convolutional 3x3 32x6x6 32x6x6

6 Max-pooling 2x2 (stride = 2) 32x6x6 32x3x3

7 Fully connected 256 32x3x3 256

8 Fully connected 256 256 256

9 Fully connected 2 256 2

Table 2.2: Overview of the convolutional neural network architecture. The input for

the convolutional layers are zero padded to preserve the input size.

a weak classifier. If the criteria are not met, another weak classifier is added to the
GentleBoost classifier. Training of the node finishes when the criteria are met or the
maximum number of weak classifiers is reached. After each node, all samples in
the training set are classified by the newly formed node and samples are removed
when they received a classification score below the trained threshold. Training of
the whole cascade is stopped when there are too few negative samples left in the
training set.

2.2.4 Experiments and evaluation

From the dataset two sets were created, a training set and a test set. For each annota-
tion, a patch was extracted from the mammogram and were considered as positives.
Each patch had a size of 13 x 13 pixels with the individual calcification centered in
the patch. From the Hologic and GE data 80% of these positives were included in the
training set. The remaining 20% of the Hologic and GE positives together with all
positives obtained from the Siemens data were included in the test set. Additionally,
negative patches were randomly taken from all mammograms (excluding the posi-
tive locations). For the training set, up top 35,000 negative patches were extracted
from each mammogram in the Hologic data and up to 17,500 from each mammo-
gram of the GE data. For the test set, up to 70,000 negative patches were extracted
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Samples per dataset

Manufacturer Training set Testing set

# Positives # Negatives # Positives # Negatives

Hologic 5,744 13,321,334 1,868 7,244,003

GE 5,967 14,625,465 1,652 6,842,428

Siemens - - 1,778 4,234,545

Total 11,711 27,946,799 5,298 18,320,976

Table 2.3: Overview of the training and test sets.

per mammogram in the Hologic and Siemens data and 35,000 per mammogram in
the GE data. An overview of all samples in each training and test set is shown in
Table 2.3.

The CNNs were trained on the training set. During training, the learning rate
was initially set to 0.01 and linearly decreased to 0.0001 over the maximum number
of epochs. For the first CNN, the maximum number of epochs was set to 1500 and
to 750 for the second CNN. However, an early stopping criterion was set to prevent
the CNN from over fitting: when the validation loss did not change over 100 epochs,
training of the first CNN was stopped. For the second CNN early stopping was set
to 50 epochs.

Training of the first CNN was performed on a balanced dataset containing 10
times the number of positives (each positive was taken 10 times) and an equal amount
of negatives randomly sampled from the training set. In total, 117,110 negatives and
117,110 positives were used to train the first CNN. The second CNN was trained on
a dataset containing 1 million samples. All 11,711 positive samples were included
in this set together with 988,289 negative samples. The negative samples were ob-
tained by weighted sampling of the whole training set according to the classification
scores obtained with the first CNN. Furthermore, to create more positive samples
for training the second CNN, positive samples were augmented. Augmentation was
performed by flipping the positive samples horizontally and vertically and by rotat-
ing the patches 90°, 180°, and 270°. In each mini-batch the number of positives and
negatives were balanced.

For evaluation, the performance of the (second) CNN was compared to a current
state-of-the-art method for calcification detection: the cascade classifier74. The cas-
cade classifier consists of several nodes with one single GentleBoost classifier. For
training of the cascade classifier, all positives and all negatives in the training set
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were used. Subsequently, both systems were applied to the test set and Receiver Op-
erating Characteristics (ROC) analysis was performed to compare the two systems.
Furthermore, the mean sensitivity of the ROC curve in the specificity range on a
logarithmic scale was calculated and compared. The mean sensitivity is defined as:

S(i, j) =
1

ln(j)− ln(i)

∫ j

i

s(f)

f
df (2.1)

Where i and j are the lower and upper bound of the false positive fraction and were
set to 0.000001 to 0.1, respectively, and s(f) is the sensitivity at the false positive
fraction f .

Statistical comparison was performed by means of bootstrapping90. On the test
set, average ROC curves were calculated over 1000 bootstraps. Additionally, the
mean sensitivity was calculated for each bootstrap and p-values were computed for
testing significance113,114. Differences were considered to be significant for p-values
<0.05.

2.3 Results

The mean sensitivity obtained from the ROC analysis are shown in Table 2.4. In this
table, the mean sensitivity is shown for each individual vendor as well as on the
whole test set. For each dataset, the CNN obtained a higher mean sensitivity for
all datasets. On the complete test set, containing Hologic, GE, and Siemens data,
the CNN achieved a significantly higher mean sensitivity compared to the cascade,
0.6914±0.0041 (mean±stdev) versus 0.6381±0.0038 (p<0.001). ROC curves were cal-
culated on the whole test set for both methods and are shown in Figure 2.1. The ROC
curves are plotted on a logarithmic scale to show the difference between the two
methods at high specificity. In Figure 2.1, it can be seen that the CNN yields a higher
sensitivity over the whole specificity range. All positive samples were detected at
a specificity of 0.71 by the CNN while the cascade detects all positive samples at a
specificity of 0.02. At a false positive fraction of 0.1, 0.01, 0.001, and 0.0001, the CNN
detected 99.92%, 99.58%, 95.17%, and 74.63% of the positive samples, respectively.
At the same false positive fractions, the cascade classifier detected 98,90% 95.79%,
90.85%, and 63.89% of the positives, respectively.

2.4 Discussion

Automated computer aided detection systems of calcifications in mammography
have the potential to aid radiologists in reading mammograms. These systems are
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Mean sensitivities

Dataset CNN Cascade p-value

Hologic 0.7035±0.0068 0.6534±0.0062 <0.001†

GE 0.7015±0.0069 0.6499±0.0069 <0.001†

Siemens 0.6726±0.0069 0.6180±0.0064 <0.001†

Hologic + GE + Siemens 0.6914±0.0041 0.6381±0.0038 <0.001†

Table 2.4: Mean sensitivities in the false positive fraction range of 0.000001 and 0.1

for the individual datasets. † Results are significantly different between the CNN and

the cascade classifier (p<0.05).
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Figure 2.1: Average ROC curves of the calcification detection with the cascade clas-

sifier and the convolutional neural network of 1,000 bootstraps. The ROC curves are

plotted on a logarithmic scale.
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often designed into two stages: (1) detection of calcification candidates in the whole
mammogram and (2) classifying calcification groups into benign and malignant. In
this study, we focused on the detection of calcification candidates and we imple-
mented a convolutional neural network for this task. To our knowledge, this is the
first study where a deep learning strategy is developed for this task. The convolu-
tional neural network was compared to a current state-of-the-art method, the cas-
cade classifier. The comparison showed that the CNN outperforms the cascade clas-
sifier in terms of sensitivity in the whole specificity range. Additionally, the mean
sensitivity in a false positive fraction range of 0.000001 to 0.1 was significantly higher
with the CNN in the classification of all datasets acquired with three different mam-
mography unit manufacturers.
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Abstract

For the automatic detection of malignant calcification clusters in screening mammo-
grams a computer aided detection (CADe) system has been developed. The most
frequent false positives of this system are breast arterial calcifications (BACs). The
purpose of this study was to construct a method for selecting cases with BACs in
mammographic screening data as part of a procedure to reduce false positives of the
CADe system. To automatically select cases containing BACs, a GentleBoost classi-
fier was trained. For composing the training set, the CADe system was applied on
10,000 normal cases. From these cases, 400 cases with the most significant false posi-
tives were included in the training set and an additional 200 cases with less obvious
false positives. For testing, an independent test set was created by cluster detection
of 1,000 normal cases and 95 malignant cases. After cluster detection 342 normal
cases contained false positives and in 93 malignant cases true positive clusters were
detected. In the training set, 244 cases showed signs of BACs and in the test set 95
cases. A total of 102 case-based features were calculated to train the classifier. A ROC
curve was calculated of the classification of the test set bootstrapped 5000 times. The
area under the curve of the ROC was 0.92 and already 44% of the cases with BACs
were detected without any false positives. Furthermore, 90% of the cases with BACs
were detected at a false positive rate of 20%. The performance of the proposed selec-
tion method implies a good feasibility to classify cases with BACs at high specificity.
By using this selection we will be able to apply dedicated methods for false positive
reduction due to BACs.
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3.1 Introduction

Calcification clusters in the breast are a biomarker for breast cancer. For the pur-
pose of automatic detection of these malignant clusters a computer aided detection
(CADe) system has been developed. However, not all calcifications in the breast are
malignant as benign calcifications can be observed in mammograms as well. The
most frequent benign calcification clusters that are marked with a high malignancy
likelihood by the current CADe system are breast arterial calcifications (BACs) (ex-
ample shown in Figure 3.1). Therefore, by adding an additional false positive re-
moval classification to our CADe system, specified on detecting BACs, might im-
prove the system. Selecting cases with BACs and removal of false positive clusters
in only these cases can prevent the removal of malignant clusters and ultimately lead
to a more specific system for the detection of malignant calcification clusters. There-
fore, the purpose of this study was to construct a method for selecting cases with
BACs in mammographic screening data.

Figure 3.1: Example of calcification cluster detection in 2 mammograms containing

BACs, macrocalcifications and a malignant calcification cluster. The malignant cluster

is denoted with the solid arrow. A false positive due to a macrocalcification is denoted

with the dashed arrow. All other annotations are false positives due to BACs.

3.2 Methods

The framework for the selection of cases with BACs consists of four stages. The first
stage is the selection of the calcification candidates in raw screening mammograms
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with a cascade classification scheme. In the next stage, the selected calcification can-
didates are clustered. And in the third stage, false positive clusters are removed
with a trained classifier. The last stage consists of a case-based approach for the se-
lection of cases with BACs. The first three stages are based on the work of Bria et
al74. Therefore, these stages will only be touched very briefly in the next section.
The fourth stage will be discussed in more detail in the subsequent section. A full
flowchart of the framework is visualized in Figure 3.2.

Figure 3.2: Flowchart of the whole framework. There are 4 main stages: i) calcification

candidate selection, ii) clustering, iii) false positive cluster removal, and iv) classifica-

tion of cases with BACs. Type of classification is denoted in italic and (intermediate)

results are underlined.

3.2.1 Calcification cluster detection

For the detection of calcifications in raw mammograms, a cascade classifier is trained77.
After preprocessing,for each pixel in the mammogram a patch is made with a dimen-
sions of 13 x 13 pixels where the pixel lies in the center of the patch. This patch goes
through 4 stages where in each stage the patch is classified by a GentleBoost classi-
fier78. Features for each stage are determined during training from a total of 8 groups
of Haar-like features79. These feature groups are be scaled and translated within the
patch. Examples of these groups are shown in Figure 3.3. Patches classified as neg-
ative in one of the first three stages are removed and the remaining patches obtain
a probability score in the last classification stage. For the four stages 3, 6, 11, and 51
haar-like features were calculated, respectively.
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Figure 3.3: Examples of the haar-like features groups.

Calcification candidate classification in a mammogram leads to an image where
each pixel corresponds to a probability score or zero if the patch is removed in an
early stage of the cascade classifier. In these probability images, calcifications are
segmented with connected component analysis. Macrocalcifications, calcifications
larger than 1mm, are removed as well as calcifications that lie within 2 pixels from
a macrocalcification. Furthermore, a calcification is kept when at least 2 pixels have
a probability above a preset threshold. Clusters are made of calcifications within a
distance of 10mm to each other. Clusters containing less than 3 calcifications are dis-
carded.

To remove false positives, a GentleBoost classifier is trained. For each cluster,
features are calculated on the calcifications within the cluster and the cluster itself.
These features ware based on shape, topology, probability, and texture. The Gen-
tleBoost classifier was trained on 100 regression stumps. As a result each detected
cluster obtains a likelihood score.

3.2.2 Selection of cases with BACs

To determine cases with BACs, a multi-view classification procedure is carried out.
In this procedure, all views of a case are analyzed, i.e. medio-lateral oblique and
cranio-caudal views of the right and left breast. In these views, the calcification clus-
ter detection is performed resulting in detected clusters with a likelihood score. For
the multi-view analysis only likelihood scores above a specified threshold are con-
sidered. This threshold is set a the highest case-based sensitivity for malignant cases
in the calcification cluster detection (100% detection rate at 33% false positive rate).

Features are calculated on a case level. These features are based on shape, topol-
ogy, probability, texture, and vesselness115. For each cluster in each view a total of
24 cluster features are calculated. For each case (containing 2 or 4 views) the mean,
standard deviation, maximum and minimum of all cluster features in each view are
taken. Additionally, 6 case-based features are calculated based on the number of
clusters in each view and the number of views. This leads to a total of 102 features
per case. Table 3.1 shows the whole list of features for training of the classifier. On
these features a GentleBoost classifier is trained using 50 regression stumps as weak
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learners. The output of the classifier is a probability score for the presence of BACs
in the case.

3.2.3 Performance evaluation

Several datasets were obtained from the Dutch Breast Cancer Screening Program
(Bevolkings Onderzoek Midden-West, The Netherlands). For the calcification candi-
date selection and cluster detection, 2 datasets were composed. One dataset where
individual calcification centers were annotated containing 129 abnormal cases (70
benign and 59 malignant). The second dataset contained cases where the contour
was annotated of calcification clusters. This set included 186 abnormal cases (134
benign and 52 malignant) and 315 normal cases. The first dataset was used for train-
ing the classifier for calcification selection and the second dataset for training of the
cluster classifier.

Two datasets were composed for the selection of cases with BACs. For the train-
ing set, cluster classification was carried out on 10,000 normal cases. From these
cases a group of 400 normal cases with the most significant false positives and a
group of 200 normal cases with less obvious false positives were included. In this
training set, a researcher experienced in reading mammograms labeled each case if
it contained BACs. The test set consisted of 1,000 normal and 95 malignant cases.
In this set, cases with BACs were labeled by a resident of the radiology department.
The normal cases in the training and test set were randomly selected from a database
containing over 50,000 normal cases.

To evaluate the performance of the selection of cases with BACs, the trained clas-
sifier, trained on the training set, was tested on the test set. After classification, each
case obtained a probability score. Of the classified dataset a Receiver Operating
Characteristic (ROC) curve was made. The sensitivity is calculated by determining
the number of cases with BACs labeled as positive divided by the total number of
cases with BACs. The specificity is calculated by dividing the number of cases with-
out BACs labeled as negative by the total number cases without BACs. The ROC
curve was generated by bootstrapping the test set 5000 times.

3.3 Results

In the training set, 208 of the 400 cases with the most significant false positives
showed signs of BACs and 36 cases in 200 cases with less obvious false positives. The
test set contained 10 malignant and 98 normal cases with BACs. And after cluster
detection, 342 normal cases were left over in the test set of which 87 cases contained
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Cluster features

cls Area The area of the cluster.

cls Eccentricity
Ixx+Iyy−

√
(Ixx−Iyy)2+4I2xy

Ixx+Iyy+
√

(Ixx−Iyy)2+4I2xy
where Ixx, Iyy and Ixy are

the moments of inertia.

cls Ellipse The ratio between the long axis and the short
axis of a fitted ellipse.

cls Number The number of calcifications in the cluster.

cls Coverage
∑n

i=1

AmCi

Acls
where AmCi

is the area of the calcifica-
tion i, n the number of calcifications within Acls,
the cluster area.

cls Density 2|E|
n(n−1) where E is the number of edges of the
graph.

cls Orientation The orientation of the cluster with respect to the
xy-plane.

cls Distance to skin/air The distance of the center of the cluster to the
skin air boundary.

cls Probability Cluster probability from the cluster detection.

cls Hessian (5) The Hessian-based vesselness filtered image at
varying scale (0.2 ≤ σ ≤ 1.0, steps of 0.2)

cls Tubeness (5) kline(λ1, λ2) = λ2−λ1
λ2

where λ1 ≤ λ2, the absolute
eigenvalues calculated at varying scale (0.2 ≤ σ

≤ 1.0, steps of 0.2)

cls Lambda (5) The highest absolute eigenvalue λ2 at varying
scale (0.2 ≤ σ ≤ 1.0, steps of 0.2)

Case features

Case total cls The number of clusters in the case.

Case cls per view (4) The number of clusters per view. (Mean, stan-
dard deviation, maximum and minimum)

Case number of views The number of views.

Table 3.1: Features for classifier training for the case-based selection of cases with

BACs.
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BACs. From the 95 malignant cases in the test set 93 cases were detected of which 8
cases contained BACs.

Figure 7.1 shows the ROC curve of the selection of cases with BACs plotted with
95% confidence intervals. The area under the curve of the ROC was 0.92. Further-
more, these results show that a sensitivity 0.44 is reached with no false positives up
to a sensitivity of 0.90 at a specificity of 0.80.
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Figure 3.4: ROC curve of the classification of cases with BACs, bootstrapped 5000

times. 95% confidence intervals are plotted with the dashed lines.

3.4 Discussion

The percentage of cases with BACs found by the resident in the test set (9.7%) corre-
sponds with the percentages found in literature116–118. Although BACs are of no in-
terest in breast cancer screening, the presence of BACs is associated with atheroscle-
rosis and cardiovascular disease19,22,119. Selection of these cases with the proposed
method can also be used for the detection of diseases other than breast cancer.

Analysis of the 400 selected cases with the most significant false positives in the
training set resulted in 32 cases (8%) with true false positives (e.g. obvious detection
errors), 109 cases with calcifications (27%), 51 cases with macrocalcifications (13%),
and 208 cases with BACs (52%). Showing that BACs are the most frequent false pos-
itives in our CADe system.

Several studies are done on automatic detection of vascular calcifications in the
breast120,121. However, these studies are evaluated on the individually detected BAC
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clusters. While the proposed method is based on the case-based selection method.
This makes it difficult to compare the different methods. Nonetheless, false positive
reduction in the cases with BACs, selected by the proposed system, still has to be
done as a future work. An example of the flowchart for future work is shown in
Figure 3.5.

Figure 3.5: Flowchart of the framework for future work. The solid blocks and ar-

rows are proposed in this study, The dashed blocks and arrows will be done in future

studies.

The proposed framework shows a good performance for the selection of cases
with breast arterial calcifications. By using this selection we will be able to apply
dedicated methods for false positive reduction due to BACs while minimizing the
risk of removing relevant true positive calcification clusters.
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Abstract

Purpose: In the past decades, Computer-Aided Detection (CADe) systems have been
developed to aid screening radiologists in the detection of malignant calcifications.
These systems are useful to avoid perceptual oversights and can increase the radi-
ologists’ detection rate. However, due to the high number of false positives marked
by these CADe systems, they are not yet suitable as an independent reader. Breast
Arterial Calcifications (BACs) are one of the most frequent false positives marked by
CADe systems. In this study, a method is proposed for the elimination of BACs as
positive findings. Removal of these false positives will increase the performance of
the CADe system in finding malignant calcifications.
Methods: A multistage method is proposed for the removal of BAC findings. The
first stage consists of a calcification candidate selection, segmentation and group-
ing of the calcifications, and classification to remove obvious false positives. In the
second stage, a case-based selection is applied where cases are selected which con-
tain BACs. In the final stage, BACs are removed from the selected cases. The BACs
removal stage consists of a GentleBoost classifier trained on calcification features
describing their shape, topology, and texture. Additionally, novel features are intro-
duced to discriminate BACs from other positive findings.
Results: The CADe system was evaluated with and without BACs removal. Here,
both systems were applied on a validation set containing 1088 cases of which 95
cases contained malignant calcifications. After bootstrapping, FROC and ROC anal-
ysis was carried out. Performance between the two systems was compared at 0.98
and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to
52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial
areas under the curve in the specificity range of 0.8 to 1.0 were significantly differ-
ent between the system without BACs removal and the system with BACs removal,
0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitiv-
ity at one false positive per 50 cases and one false positive per 25 cases increased
as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respec-
tively. Additionally, the CADe system with BACs removal reduces the number of
false positives per case by 29% on average. The same sensitivity at one false positive
per 50 cases in the CADe system without BACs removal can be achieved at one false
positive per 80 cases in the CADe system with BACs removal.
Conclusions: By using dedicated algorithms to detect and remove breast arterial cal-
cifications the performance of CADe systems can be improved, in particular at false
positive rates representative for operating points used in screening.
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4.1 Introduction

Breast cancer is one of the leading types of cancer among women in terms of new
cases and deaths39,122. Early detection of this disease is essential to decrease mor-
tality34,35. Therefore, breast cancer screening programs are implemented in many
countries to detect breast cancer at an early stage. This has proven to be a success-
ful approach in a number of wealthy countries39. In mammography, which is the
imaging modality used for screening, the presence of calcifications is a sign for Duc-
tal Carcinoma-In-Situ (DCIS). Early detection of calcifications associated with DCIS
is important because of the relative high risk that DCIS will develop into invasive
breast cancer32,33 which occurs in over 40% of nonpalpable breast cancer cases36.
However, the detection of calcifications in mammograms and their characterization
is a tedious task. Calcifications might be subtle and can be easily overlooked, while
sometimes it is hard to determine whether calcifications are really present or that
patterns similar to calcifications are simulated by noise or specific image processing
algorithms. Furthermore, various types of calcifications can be present in the breast
of which many represent benign disease123. This makes it difficult for screening ra-
diologists to decide whether a woman should be recalled or not66.

To aid screening radiologists in finding calcifications, and helping them to im-
prove the positive predictive value of their recalls, Computer-Aided Detection (CADe)
systems have been developed. These systems automatically analyze mammograms
and mark locations which are suspicious for abnormalities. During screening, the
radiologists’ attention is drawn to these locations which prevents that abnormal re-
gions are overlooked. In the past decades, much research has been done in the
development of CADe systems and it is still a prominent research subject to this
day61,62,68–72. Current CADe algorithms for calcification detection have a good sensi-
tivity at a cost of around two false positive findings per screening mammogram. A
normal screening mammogram consists of four mammographic images, a Cranial-
Caudal (CC) and a Medial-Lateral Oblique (MLO) view of each breast. The benefit
of using a CADe system in screening has been analyzed in several studies. It has
been found that, when CADe is used in daily screening practice the detection rate
of radiologists increases73,94–96. However, the recall rate increases as well due to the
high number of false positive marks of the CADe system73,97–100. These studies show
that, although CADe systems are useful to avoid perceptual oversights of the radi-
ologist, they are not yet suitable to serve as an independent observer66,124. In order
to consider the use of CADe as an independent reader, the recall rate of the system
should be in the order of what is achieved in breast cancer screening programs. In
Europe, for example, the recall rate is less than 5% and in the United States it is



44

44 Removal of breast arterial calcifications as CAD findings in mammograms

Figure 4.1: An example of a case with BACs. BACs can be observed in both views

and are denoted by the white arrows.

around 10%. Approximately a third of the recalled cases contains calcifications125,126.
These numbers indicate that the number of false positive marks of CADe systems
should decrease by one or two orders of magnitude.

Most false positive findings in the detection of calcifications arise from various
types of benign calcifications in the breast. One of the most frequent false positives
detected by a CADe system originates from Breast Arterial Calcifications (BACs)127.
These benign calcifications are small calcium deposits in the vessel wall of the ar-
teries. An example of a case containing BACs is shown in Figure 4.1. Although
they may occasionally resemble intraductal calcifications, for a screening radiologist
BACs are generally easily dismissed as non-suspicious calcifications. For a CADe
system to dismiss BACs is more difficult and many of them are still detected. Re-
moval of BACs as positive findings is essential in order to increase the performance
of automated detection systems. The aim of this paper is to contribute to the de-
velopment of a CADe system which performs as good as or better than a screening
radiologist. This means that the system has to operate at a very high specificity (e.g.
one false positive per 50 cases) while maintaining a high sensitivity for finding ma-
lignant calcifications.

The main purpose of this study was to develop and validate a CADe system in
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which BACs are detected and removed as positive findings. We have chosen to re-
move BACs after the detection of calcifications. An alternative approach would be to
remove vascular structures with a curvilinear detector before the calcification detec-
tion128. This could be done by applying a vessel mask to exclude vascular regions.
However, segmentation of vascular structures is a challenging task because vessels
appear as non-continuous structures throughout the whole breast. In fact, often they
can only be recognized visually due to presence of BACs. Therefore, we did not
follow this approach. Instead, we aimed at classifying CADe findings into BACs
or malignant findings using a supervised learning strategy where classifiers were
trained on a dataset containing 900 cases. In the literature, several classifiers have
been used for this task such the linear discriminant classifier129, the Support Vector
Machine classifier130,131, artificial neural networks132, and several boosting classifiers
such as AdaBoost, RankBoost, and GentleBoost74,133. Due to its fast optimization and
its resistance to overfitting, GentleBoost classifiers are used in this study. For vali-
dation, a large independent set with 1088 cases was used, of which 95 cases contain
malignant calcifications.

4.2 Methods

4.2.1 Calcification detection

The CADe system that is under development in this paper is based on the CasCADe
system proposed by Bria et al74. This system uses a multistage method for the detec-
tion of calcifications and can be applied to Full Field Digital Mammograms (FFDMs).
In this paper, we will only discuss this system very briefly. The calcification detec-
tion system consists of three stages, i) calcification candidate selection, ii) calcifica-
tion segmentation and grouping, and iii) calcification group classification. From this
point, the calcification detection system will be referred to as the initial CADe sys-
tem. Before the calcification candidate selection, a noise equalization method134,135 is
applied to each mammogram and the breast is segmented from the background.

Calcification candidate selection

In this stage, each pixel in the segmented breast tissue region in a mammographic
image is classified with a cascade classifier77. The cascade classifier consists of sev-
eral nodes where in each node a GentleBoost78 classifier is trained. Each GentleBoost
classifier is trained on regression stumps78 and Haar-like79,80 features are used for
classification. To classify each pixel in the image, a 13x13 pixel patch is extracted
for all pixels. On each patch, various Haar-like features groups are calculated with
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Figure 4.2: Haar-like feature groups, each feature group consists of features at all

possible scales and translations within a 13x13 pixel patch window.

various scales and at various locations within the patch. Examples of the Haar-like
feature groups are shown in Figure 4.2. In every node of the cascade, each pixel is
classified and pixels with a classification score below a certain threshold are removed
for further classification in the subsequent nodes. In the last node, each remaining
pixel, i.e. a pixel classified as a positive pixel in all nodes, receives a final classifica-
tion score. This score is the output of the last classifier. All other pixels receive the
value zero. An example of the output of the classifier is shown in Figure 4.3(b).

Calcification segmentation and grouping

Calcifications are segmented by applying a connected-component analysis to all pix-
els with a final classification score obtained from the cascade. To remove macrocalci-
fications, components larger than 1mm are deleted. After segmentation, groups are
formed by clustering calcifications which are located within 10mm from each other.
Groups containing less than three calcifications are removed. In Figure 4.3(c), an
example is shown of the detected calcification groups.

Group classification

A classification step is carried out to remove the most obvious false positive groups.
In this classification, a single GentleBoost classifier, trained on 100 regression stumps,
classifies all detected calcification groups. The features described in Bria et al74 and
Veldkamp et al81 are used for this purpose. After classification, each detected calci-
fication group receives a score reflecting how confident the system is that the group
is suspicious. A threshold (TGroup) is applied on these scores to obtain the final result
of the CADe system. Groups with a low confidence score, i.e. with a score below
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(a)

(b) (c) (d)

Figure 4.3: Examples of intermediate results of the calcification detection; (a) the input

screening mammographic image and a zoomed in region, (b) the calcification candi-

date selection, the black pixels represent locations of the calcification candidates, (c)

the detected groups after calcification segmentation and grouping, and (d) the re-

maining calcification group after classification.

TGroup, are not considered for further analysis. An example of a detected calcification
group after the group classification stage is shown in Figure 4.3(d).

4.2.2 Selection of cases with BACs

A method to select cases which have a high likelihood of containing BACs is used in
this study. The selection stage is of importance because only a relatively low percent-
age (9 - 24%) of the western population shows signs of arterial calcifications116–118. By
adding this stage we reduce the risk that malignant calcifications are erroneously re-
moved in cases that do not contain any BACs. The selection method consists of a
case-based classification process in which the whole mammogram of a case is con-
sidered. This approach is chosen because often the presence of BACs is more evident
due to their appearance in multiple mammographic views, while individual BACs
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may be hard to characterize as such. The selection method is previously proposed
by Mordang et al127.

For all available views of a single case, group features are calculated of all calcifi-
cation groups with a score above TGroup. A total of 24 group features are calculated.
These are based on shape, topology, probability, texture, and vesselness. Then, for
each of the 24 features the mean, standard deviation, maximum and minimum are
calculated of all groups and used as case features. Six additional case features are
calculated based on the number of groups in all the images of a case and their distri-
bution within the views. In the end, a total of 102 case features are used. Each case is
classified by a GentleBoost classifier with 50 regression stumps and receives a score
which represents the confidence of the classifier that a case contains BACs. To select
cases with BACs, a threshold (TCase) is set on the confidence scores.

4.2.3 Removal of BACs

This section focuses on the detection and removal of BACs. To do this, a false positive
removal procedure is applied on only cases which are likely to have BACs, i.e. have
a confidence score higher than TCase. In each selected case, the detected calcification
groups are classified by a GentleBoost classifier trained with 50 regression stumps.
This classifier aims to discriminate between calcification groups of BACs and groups
without BACs (non-BACs). The latter group includes malignant calcifications, be-
nign calcifications, and other false positives detected by the system. To train the
classifier, 14 feature types are calculated for each detected calcification group. These
feature types, with a brief description, are shown in Table 4.1. Many of these features
are already described in the literature74,81. Therefore, we will only discuss the novel
features which are designed for the classification of BACs.

When radiologists determine if calcifications are located in the arteries, they look
at their distribution and their location in a blood vessel. Because BACs are located
in the arterial wall, their distribution will be elongated along the vessel. There-
fore, novel features are proposed which are designed to distinguish the elongated
distribution of BACs from the more concentrated distribution of other calcification
types. An example of each of the two calcification distributions is shown in Fig-
ure 4.4. One of the novel features is the elongatedness of a calcification distribution.
The elongatedness is defined as the ratio between the overall length and width of the
calcification group. To determine the elongatedness, a piece-wise linear analysis is
performed. Here, the calcification group is divided into subgroups with a radius of
1cm. Then, eigenvectors are calculated of each subgroup with Principle Component
Analysis (PCA). For each subgroup, the ratio between the two eigenvalues is com-
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Group-based features

Area The area of the convex hull136 fitted on the calcifica-
tions within the group.

Eccentricity
Ixx+Iyy−

√
(Ixx−Iyy)2+4I2xy

Ixx+Iyy+
√

(Ixx−Iyy)2+4I2xy
where Ixx, Iyy and Ixy are the

moments of inertia.

Ellipse The eccentricity of a fitted ellipse on the detected
group. Ellipse is

√
1− ds2/dl2 where ds and dl are the

short side and long side, respectively.

Number The total number of calcifications in the group.

Coverage
∑n

i=1

AmCi

Acls
where AmCi

is the area of the calcification i,
n the number of calcifications within Acls, the group
area.

Density137 2|E|
n(n−1) where E is the number of edges of the graph.

Orientation The orientation of the group with respect to the xy-
plane.

Distance to skin/air The distance of the center of the group to the skin air
boundary.

Probability Probability from the group classification.

Elongatedness The ratio of the eigenvalues calculated with principle
component analysis on subgroups with 1cm radius

Circle coverage The ratio of the group surface area and the area of the
minimum enclosing circle

Hessian (5 feature values) The Hessian filtered image at varying scale (0.2 ≤ σ ≤
1.0, steps of 0.2)

Tubeness (5) kline(λ1, λ2) = λ2−λ1
λ2

where λ1 ≤ λ2, the absolute eigen-
values calculated at varying scale (0.2 ≤ σ ≤ 1.0, steps
of 0.2)

Lambda (5) The highest absolute eigenvalue λ2 at varying scale
(0.2 ≤ σ ≤ 1.0, steps of 0.2)

Table 4.1: Proposed features for the detection of BACs.
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BACs Non-BACs 

Figure 4.4: Example images of two types of calcification distributions and their

schematic representation. On the left side, an example of BACs. On the right side,

an example of non-vascular calcifications. Every dot in the schematic drawings rep-

resents the center of a calcification.
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Figure 4.5: Schematic drawings of the elongatedness feature for a BAC and a non-

BAC distribution. Each calcification group is split up into subgroups (denoted by the

dotted lines). For each subgroup, the eigenvectors are calculated with PCA (denoted

by the arrows). The elongatedness feature is the average ratio between the eigenval-

ues of all subgroups.

puted where the largest eigenvalue is divided by the smallest. The elongatedness is
determined by calculating the average ratio of all subgroups. In Figure 4.5, an exam-
ple is shown of the elongatedness feature. Because the shape of the BAC distribution
is elongated, one eigenvalue is bigger than the other resulting in a very large ratio. A
more concentrated calcification distribution will have almost equal eigenvalues and,
consequently, have an elongatedness value close to 1.

One shortcoming of the elongatedness feature is that it fails when BACs are settled
in a bifurcation of a vessel. Therefore, another feature is proposed which we call the
circle coverage. This feature is defined as the ratio between the area covered by the
calcifications and the area of a minimum enclosing circle fitted on the calcification
distribution. To obtain the area covered by the calcifications, on the center of each
calcification a disk is placed with a radius half of the distance to its closest neighbor-
ing calcification. The sum of all disks is taken as the coverage of the whole group. To
reduce the influence of outliers, the mean radius of all disks is calculated and disks
with a radius bigger than two times the standard deviation are ignored. The circle
coverage is defined as the ratio between the area of the minimum enclosing circle
and the coverage. An example is given in Figure 4.6.

Additionally to the two features describing the calcification distribution of BACs,



44

52 Removal of breast arterial calcifications as CAD findings in mammograms

!"#$% &'()!"#$%

Figure 4.6: Schematic drawings of the circle coverage feature for a BAC and a non-

BAC distribution. On the center of each calcification a disk is placed. A minimum

enclosing circle is fitted on the calcification group (denoted by the circles). The cir-

cle coverage value is the ratio between the total area of all disks and the area of the

minimum enclosing circle.
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three types of features are calculated which represent the likelihood that a vessel is
present at the location of the detected calcifications. These features are calculated
with image filtering techniques to enhance tube- and vessel-like structures which
are the Hessian, tubeness, and lambda filters. The Hessian feature is calculated on
the mammographic images convoluted with a Hessian138 filter. The Hessian feature
is determined by calculating the average Hessian, which is the determinant of the
Hessian matrix, of all pixel locations of the calcifications in the Hessian filtered im-
age. The Hessian filter is applied with various scales ranging from 0.2 ≤ σ ≤ 1.0

with steps of 0.2 resulting in a total of five feature values. The tubeness feature is
calculated in a similar fashion. Here, the mammographic images are filtered with a
tubeness115 filter. The tubeness feature is calculated by averaging the tubeness value
of all pixels locations of the calcifications in the tubeness filtered image. The tubeness
feature is calculated at the same five scales as the Hessian feature resulting in five
feature values. The third vascular feature is the lambda feature. On the Hessian fil-
tered image an eigenanalysis is performed and for each pixel in the image the highest
absolute eigenvalue (λ2) is taken. To determine the lambda feature, the average λ2 of
all calcification locations is calculated. The lambda feature is calculated at the same
five scales as the other two vascular features.

In summary, to eliminate BACs as positive findings, each detected calcification
group with a score above TGroup in cases with a selection score above TCase is classi-
fied. After classification, each group receives a likelihood score related to the con-
fidence of the classifier for a group to contain BACs. To remove suspected BACs,
all calcification groups above a specified threshold (TBACs) are removed as positive
findings.

4.2.4 Datasets

To train and validate the proposed system, three datasets are composed. 1) a dataset
for training the initial CADe system, 2) a dataset for training of the case-based selec-
tion stage and the BACs removal stage, and 3) a dataset to validate the new system.
There is no overlap of cases between the three datasets. All cases are selected from
a large database consisting of over 50,000 cases obtained from the Dutch Breast Can-
cer Screening Program Database (Bevolkings Onderzoek Midden-West, The Nether-
lands). The mammographic images in this database are acquired with Hologic dig-
ital mammography systems (Hologic, Bedford, Massachusetts, United States) and
have an isotropic pixel resolution of 70µm. Most cases in the database include multi-
ple screening exams. However, for all cases in this paper only one exam is included
where each exam (or mammogram) consists of all available raw screening FFDM
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images.
The first dataset contains 689 cases. 371 cases of these cases are recalled in screen-

ing and 318 are normal cases (cases which are not recalled). Biopsies or diagnostic
follow up showed that 111 malignant calcification groups and 204 benign groups
are present in the recalled cases. In 113 calcification groups, the centers of 7,787 cal-
cifications are individually annotated. Contours are drawn for the remaining 202
calcification groups. All the annotations are made based on the diagnostic reports.

The second dataset contains 900 cases. From these cases, 300 cases are recalled
in screening and 600 are normal cases. The normal cases are selected from a large
pool containing 10,000 normal cases. Selection is done by classifying the large pool
with the initial CADe system. Then, the detected calcification groups in these cases
are ranked according to their CADe scores from high to low. From this ranking, the
first 400 cases with the highest scores are selected. Additionally, 200 random cases
which contained detected calcification groups with a CADe score above TGroup are
selected and added to the dataset. Each detected calcification group in all 900 cases
of the dataset is reviewed and labeled as BACs or non-BACs. Labeling is done by a
researcher who is experienced in reading mammograms.

The third dataset, contains 1088 cases of which 95 cases contain malignant cal-
cifications and 993 normal cases. A total of 196 malignant calcification groups are
annotated in the malignant cases based on the diagnostic reports. Additionally, in
all normal cases, all detected calcifications with a CADe score above TGroup were vi-
sually assessed and labeled as BACs or non-BACs.

4.2.5 Experiments and performance evaluation

The first data set was used to train the initial CADe system. This system was then
applied on the cases in the second and third dataset resulting in detected calcifica-
tion groups and their CADe scores. The calcification groups detected in the second
dataset were used for training the case selection and the BACs removal stage. The
calcifications detected in the third dataset were used for validation of the proposed
framework.

For training and testing, TGroup was fixed throughout all the experiments. TGroup
was set to the value that achieved, at maximum specificity, a sensitivity of 100%.
To determine the value of TGroup, a 10 fold cross-validation on the dataset used for
training the initial CADe system was performed. The values of TCase and TBACs were
explored by means of a grid search where both thresholds were varied in the range
of 0.1 and 0.9 with steps of 0.1. The combination of threshold values that yielded to
the highest pAUC on the validation set was chosen. These thresholds were fixed for
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training and testing the proposed system.
For evaluation, the CADe system with BACs removal is compared to the initial

CADe system. To do this, all the cases in the validation set are processed by both
CADe systems. After processing, each detected calcification group contains a CADe
score. This score reflects the confidence of the CADe system for a group to be suspi-
cious. On the CADe scores, a case-based Receiver Operating Characteristics (ROC)
analysis is performed as well as a Free-response ROC (FROC) analysis. For the anal-
ysis, from each malignant case only the true positive with the highest score is taken
where a true positive is defined as a detected calcification group with at least two
calcifications located within an annotated malignant lesion. Malignant cases with-
out any true positive findings are defined as false negatives. From each normal case,
the detected calcification group with the highest CADe score is taken as a false posi-
tive.

To compare both systems, average ROC curves are created with bootstrapping90.
Here, the average ROC curve is calculated after bootstrapping the validation set
5,000 times. Furthermore, the partial Area Under the Curve (pAUC) is calculated
of each bootstrap where the pAUCs in the specificity range of 0.8 to 1.0 are statis-
tically compared113,114. Average FROC curves are also created with bootstrapping
the validation set 5,000 times. To statistically compare the two CADe systems, the
sensitivity at one false positive per 50 cases and one false positive per 25 cases is
calculated for each bootstrap and compared between the two systems. Additionally,
the influence of the case-selection is assessed by computing the ROC curve of the
CADe system with BACs removal but without the case-based selection, i.e. by set-
ting TCase to 0.0. The area under the ROC curve is statistically compared to the other
two systems with bootstrapping. Additionally, the influence of the case-selection is
assessed by computing the ROC curve of the CADe system with BACs removal but
without the case-based selection, i.e. by setting TCase to 0.0. The area under the ROC
curve is statistically compared to the other two systems with bootstrapping.

4.3 Results

All cases in the validation set were classified by the initial CADe system and the
CADe system with BACs removal. In total, 11 groups of malignant calcifications
were missed by the initial CADe system which lead to two missed malignant cases.
The CADe system with BACs removal missed one additional group. However, this
did not lead to a missed case because this malignant calcification group was found
in the other view. Labeling of the 900 cases in the training set resulted in 293 cases
which contained BACs. In these cases a total of 729 calcification groups were labeled
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Figure 4.7: Case-based ROC curves of the initial CADe system, the CADe system with

BACs removal and case-based selection and the CADe system with BACs removal

without the case-based selection. The ROC curve is plotted in the range of 0.7-1.0

specificity. All curves are bootstrapped 5000 times and the average curves are shown.

as BACs. In the cases without BACs, 2159 groups were labeled as non-BACs. In the
validation set, 542 calcifications groups were detected in 239 cases. Of these 542 cal-
cification groups, 215 groups in 74 cases were visually assessed as BACs. The BACs
removal approach removed 70 BACs groups in 35 cases.

In Figure 4.7, the ROC curves obtained with the initial CADe system, the pro-
posed CADe system with BACs removal and the CADe system without the case-
based selection are shown. The ROC curves show that in the range of specificity
between 0.8 and 1.0, more malignant calcification groups are detected by the CADe
system with BACs removal. At a specificity of 0.98, 37% of the malignant lesions
were detected by the initial CADe system while 52% of the lesions were detected by
the CADe system with BACs removal. Moreover, at a specificity of 0.95, more ma-
lignant lesions were detected by the CADe system with BACs removal than by the
initial CADe system, 76% versus 62%, respectively. In Table 4.2, the comparison of
the pAUC values are shown. This table shows that the pAUC of the CADe system
with BACs removal is significantly higher with and without the case-based selection
than the pAUC of the initial CADe system, 0.144 ± 0.008 and 0.141 ± 0.008 versus
0.129± 0.009 (p<0.00002 and 0.0006), respectively.

In Figure 4.8, the FROC curves are shown for the initial CADe system and the
CADe system with BACs removal. These curves show that more malignant calcifi-
cations were detected at 0.2 False Positives per Case (FP/C) or fewer by the CADe
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pAUC comparison

Mean SD p-value

Initial CADe 0.129 0.009

CADe BACs with case selection 0.144 0.008 <0.00002*

CADe BACs without case selection 0.141 0.008 0.0006*

Table 4.2: Mean pAUC values of the case-based ROC analysis for the initial CADe

system and the CADe system with BACs removal. The pAUC was calculated in the

range of 0.8-1.0 specificity. * Results are significantly different from the initial CADe

system p<0.05.

Sensitivity comparison

one FP per 50 cases one FP per 25 cases

Mean SD p-value Mean SD p-value

Initial CADe 0.37 0.09 0.58 0.07

CADe with BACs removal 0.51 0.08 0.0068* 0.67 0.07 0.029*

Table 4.3: Mean sensitivity values at two operating points obtained with the FROC

analysis and bootstrapping. The sensitivity is calculated for one false positive per

50 cases (0.02 FP/C) and one false positive per 25 cases (0.04 FP/C). * Sensitivity

is significantly different between the initial CADe system and the proposed system,

p<0.05.

system with BACs removal compared to the initial CADe system. In Table 4.3, the
sensitivity of both systems is compared at one false positive per 50 cases (0.02 FP/C)
and at one false positive per 25 cases (0.04 FP/C). At one false positive per 50 cases,
the sensitivity of the CADe system with BACs removal was significantly higher than
the sensitivity of the initial CADe system, 51% versus 37%, respectively. This can
also be observed at one false positive per 25 cases where 57% of the malignant cases
were detected by the initial CADe system and 67% by the CADe system with BACs
removal. Furthermore, at a sensitivity of 1 false positive per 50 cases (0.02 FP/C)
with the initial CADe system, the CADe system with BACs removal achieves the
same sensitivity at 1 false positive per 80 cases (0.0125 FP/C). In the range of a sensi-
tivity of 10% to 90%, the average difference in FP/C between the two curves is 29%
with a peak of 44% at a sensitivity of 25%.

The influence of the case-based selection is shown in Figure 4.7. The CADe
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Figure 4.8: Case-based FROC curves of the initial CADe system and the CADe system

with BACs removal. The FROC curve is plotted logarithmically from 1 false positive

per 1,000 cases to 1 false positive per case. The curve is bootstrapped 5,000 times and

the average curves are shown.

system without the case-based selection removed 12 additional malignant calcifi-
cation groups leading to a total of 23 missed malignant calcification groups. Con-
sequently, two additional malignant cases were missed with this system which led
to a maximum sensitivity lower than the initial CADe system. In Figure 4.9, four
missed malignant calcification groups that were missed by the CADe system with-
out case-based selection prior to the BACs removal stage are shown. The ROC curves
show that the sensitivity of the CADe system with a case-based selection stage is
higher than the CADe system over the whole specificity range. The area under the
ROC curve between the two systems was significantly different, 0.91 ± 0.01 versus
0.89±0.02 (p<0.05) over 5,000 bootstraps. Compared to the initial CADe system, the
sensitivity of the CADe system without the case selection is higher only at a speci-
ficity of 0.92 or higher. At a lower specificity, the sensitivity of the CADe system
without the case selection is lower than the initial CADe system. The area under the
ROC curve between the systems was not significantly different, with an area under
the curve of 0.90 ± 0.02 for the initial CADe system versus 0.89 ± 0.02 (p = 0.30) for
the system without case-selection over 5000 bootstraps.
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Figure 4.9: Examples of missed malignant calcification groups when the case-based

selection was not performed prior to the BACs removal stage.
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4.4 Discussion

In this study, we contributed to the development of a CADe system for the detection
of calcifications. The ultimate aim of this work is to develop a standalone system
which can compete with radiologists as an independent observer. Towards this goal,
we proposed an additional stage to the CADe system where BACs are removed.
Here, novel features are engineered to detect BACs and eliminate them as findings
from the CADe system. The CADe system with BACs removal was evaluated on
a test set which contained 3,574 mammographic images. These images came from
993 normal cases and 95 cases with malignant calcifications. The performance of
the CADe system was compared to the CADe system without BACs removal. The
results show a significant increase in sensitivity at operating points ranging from a
specificity of 0.8 to 1.0 when BACs were removed.

At high false positive rates performance of CAD did not improve, which is un-
derstandable. The purpose of this study was to improve the CADe system at a high
specificity (e.g. >0.9). Therefore, calcifications detected at a specificity of 0.75 or
lower were not considered for the case-based selection and BACs removal stage. Re-
sults show that the sensitivity increases less at operating points close to this thresh-
old value. This indicates that the false positives which are present at these relatively
high false positive rates do not originate from BACs. An increase of the performance
at higher false positive rates can be achieved when more false positives are taken
into account, i.e. by lowering TGroup. However, the causes of the false positives in
this spectrum are different and other types of calcifications will become predominant
instead of BACs.

Also at very few false positives per case (<0.004 FP/C, one false positive per 250
cases), the sensitivity of the CADe system with BACs removal does not differ from
the initial CADe system. This can indicate that the false positives with the highest
CADe scores do not originate from BACs. However, there are only few false pos-
itives in our dataset determining the performance in this part of the FROC curve,
which complicates accurate performance assessment of the CADe system.

In a previous study, the frequency of cases with BACs was assessed and it was
shown that 52% of the cases with high CADe scores contained BACs127. In a pre-
vious study, the frequency of cases with BACs was assessed and it was shown that
52% of the normal cases with high CADe scores contained BACs28. In our validation
set we found that 31% of the normal cases with CADe scores above TGroup contained
BACs. This discrepancy might arise because in the previous study, TGroup was set to
a higher value and a different dataset was used. The maximum decrease in FP/C be-
tween the CADe system with BACs removal and the initial CADe system was 44%.
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This suggests BACs removal with our system is successful in the majority of cases.
The small discrepancy may be caused by cases which contain only one (small) group
of BACs. These cases are difficult to be selected by the CADe system. Furthermore,
it is possible that in selected cases not all BACs clusters are removed in the BACs
removal stage.

There is a possibility that malignant calcification groups can incidentally mimic
BAC patterns. However, the BACs removal approach with case-based selection
missed only one additional malignant calcification group compared to the initial
CADe but this malignant calcification group was found by our system in the other
view. When the case selection approach was not applied, the number of missed ma-
lignant calcification groups increased up to 23 groups causing misclassification er-
rors of 2 additional malignant cases. These results suggest that, although malignant
calcification groups can be linearly distributed, it is quite unlikely that malignant
clusters are missed in both views by the removal process. The case-based selection
process minimizes this risk even more. However, removing malignant calcification
groups that might look like BACS can never be completely avoided. The same holds
for radiologists who may also have difficulties with such cases. A thorough investi-
gation of this issue would require a much larger database because malignant clusters
that look similar to BACs are rare.

We found that applying a case-based selection before the removal stage is bene-
ficial to prevent the removal of malignant findings. The system with the case-based
selection before the BACs removal showed a significantly better performance than
the system without a case selection. The number of cases which were analyzed by
the BACs removal stage was determined by TCase. This threshold can influence the
performance of the system. For example, setting the threshold lower makes the se-
lection less specific and more cases will go to the BACs removal stage. Additionally,
TBACs, the threshold for the BACs removal stage, also influences the system. Setting
a low TBACs might not make the BACs removal stage specific enough. After perform-
ing a grid search to optimize the two thresholds, TCase and TBACs, these thresholds
were set to 0.5 and 0.5, respectively. However, it was found that, when taking non-
extreme values for these thresholds, the end performance was very similar. There-
fore, this procedure did not cause a bias in the results.

Because BACs are not considered as significant findings in mammography screen-
ing, only few studies have been carried out for the detection and classification of
BACs120,121,139. These studies address the detectability and segmentation of BACs
and do not report the effect on overall detection performance of CADe systems.
Therefore, it is not possible to compare our results to these studies.

Although BACs are considered as irrelevant findings in breast cancer screening,
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many studies have been done on the assessment of BACs and their relation to vari-
ous pathologies. One of these pathologies is cardiovascular disease. However, there
is still some controversy about the role of BACs in the development of this dis-
ease14–25. BACs have also been related to several other pathologies26–30 and have
even been related to breast cancer140. Therefore, automated detection of BACs in
screening mammograms may be of interest outside the scope of CADe and might
in the future be applied for detection and diagnosis of other pathologies than breast
cancer.

In this paper, we showed a significant improvement in the detection of malig-
nant calcifications. However, with a sensitivity of 76% at a specificity of 0.95, the
performance of the CADe system does not yet seem comparable to the performance
of screening radiologists. To compare the performance of a CADe system and a
screening radiologist is not an easy task. In the first place, the recall rate based on
suspicious calcifications has to be known as well as the positive predictive value of
the recalled cases. In the second place, only exams which were recalled by the radiol-
ogists in screening were used in this study. For a fair comparison, exams prior to the
recalled exams should be present in the dataset, because some false negatives of the
radiologist might be found by the CADe system. Nevertheless, we still expect that
the performance of the CADe is not comparable to screening radiologists because
many false positives detected by the CADe system originate from benign calcifica-
tions. In this paper, we have focused on the removal of BACs while still 39% of the
false positives are caused by other types of benign calcifications. Many of these are
obvious benign calcifications which would not be classified as suspect by radiolo-
gists. Therefore, further research should be done in the detection and elimination of
these types of calcifications. A proposed method is to classify each type individually
as there might be too much variation between the types to be distinguished from
malignant calcifications as one group.

4.5 Conclusion

Breast arterial calcifications are a major cause of false positives in CADe systems. In
this paper, we have proposed a method to tackle this problem by including a case-
based classification stage and a removal stage in a CADe system. We have shown
that the removal of BACs as positive findings can reduce the number of false posi-
tives marked by the CADe system significantly.
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Abstract

Purpose: Computer-Aided Detection (CADe) systems for mammography screening
still mark many false positives. This can cause that radiologists lose confidence in
CADe, especially when many false positive are obviously not suspicious to them. In
this study we focus on obvious false positives generated by calcification detection
algorithms.
Methods: We aim at reducing the number of obvious false positive findings by
adding an additional step in the detection method. In this step, a multi-class machine
learning method is implemented in which dedicated classifiers learn to recognize the
patterns of obvious false positive subtypes that occur most frequently. The method
is compared to a conventional two-class approach, were all false positive subtypes
are grouped together in one class, and to the baseline CADe system without the new
false positive removal step. The methods are evaluated on an independent data set
containing 1,542 screening examinations of which 80 exams contain malignant calci-
fications.
Results: Analysis showed that the multi-class approach yielded a significantly higher
sensitivity compared to the other two methods (p<0.0002). At one obvious false pos-
itive per 100 images, the baseline CADe system detected 61% of the malignant exams
while the systems with the two-class and multi-class false positive reduction step de-
tected 73% and 83%, respectively.
Conclusions: Our study showed that by adding the proposed method to a CADe
system the number of obvious false positives can decrease significantly (p<0.0002).
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5.1 Introduction

Breast cancer screening programs, in which asymptomatic women are periodically
invited for a mammographic exam, have been introduced in many countries to de-
tect breast cancer at an early stage. Several studies have shown that early detection
reduces breast cancer mortality in women over the age of 40 by 30%34,35. However,
reading of screening mammograms is a tedious and difficult task, in which radi-
ologists have to read large numbers of mammograms of which only a few contain
cancers. Furthermore, early manifestations of breast cancer appearing as calcifica-
tions often have a very subtle appearance and their characteristics may be similar
to patterns commonly seen in benign disease. Therefore, radiologists have to be
very attentive and concentrated when reading mammograms. When their concen-
tration decreases due to fatigue or distraction this may have potentially serious con-
sequences, i.e. cancers may be missed141.

To decrease the workload and to assist screening radiologists in reading mam-
mograms, Computer-Aided Detection (CADe) systems have been developed. In
the US, these CADe systems are already widely used in screening practice for over
a decade67. A CADe system usually consist of two separate subsystems, one for
detecting suspicious masses and one for calcifications. Abnormalities detected by
CADe systems are marked in mammography workstations during reading sessions
to avoid that lesions are overlooked.

Although several reader studies have shown that the detection rate of individ-
ual radiologists increases when a CADe system is used73,94–96, there is no convincing
evidence yet that the incorporation of CADe systems into the mammography read-
ing workflow contributed to an overall improvement of screening performance in
daily practice98,101. This disappointing result might be explained by the fact that
CADe systems operate at a low specificity, because a high sensitivity is desired to
ensure that lesions are not missed. Consequently, many false positives are marked
by CADe systems. This can lead to (1) an increase in the number of women being
unnecessarily referred for a clinical follow-up73,96,97, (2) an increase in interpretation
time of the mammograms102, and (3) a loss in confidence in the CADe system102,
especially when locations are marked which are obviously not suspicious. CADe
marks on regions that are evidently normal can easily be dismissed by radiologists.
In this paper we will refer to them as obvious false positives (OFPs). Many OFPs
are generated during the detection of calcifications. They can be categorized in three
types: 1) macrocalcifications, 2) breast arterial calcifications (BACs), and 3) detection
errors of the baseline system. Examples of the three OFP types, together with an
example of a non-OFP, are shown in Figure 5.1.
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Figure 5.1: Examples of false positive findings. The first three examples are consid-

ered as obvious false positives, from top to bottom: macrocalcifications, breast arterial

calcifications and detection errors. The bottom example is an example of a finding that

is not an obvious false positive. Corresponding CADe findings are shown in the right

column.

To understand why OFPs are detected one has to look at the design of current
CADe systems. Most systems consist of three steps: 1) a calcification detection and
segmentation step, 2) a clustering step, and 3) a classification step in which groups
of calcifications are classified into malignant and non-malignant classes. The non-
malignant class can contain benign calcifications as well as normal tissue. A sin-
gle classifier is often used in the third step. For this purpose, various features are
calculated to describe the two classes in the best possible way. While the samples
included in the malignant class tend to have a homogeneous feature response, the
non-malignant class includes different subtypes, such as the previously described
OFPs. These have large differences in appearance causing a much more heteroge-
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neous feature response within the non-malignant class. This may lead to a classifier
which is not able to generalize well when applied to unseen test data.

In this study, we aim at improving the output of the CADe system by automat-
ically reducing the number OFPs in an additional step. We propose two methods,
1) a method consisting of a multi-class approach in which dedicated classifiers learn
the specific patterns of each OFP subtype and 2) a method with a conventional 2-
class classification strategy where all OFPs are grouped as one class. For evaluation
purposes, we incorporated the proposed method into a state-of-the-art calcification
detection system and studied its contribution on an independent data set composed
of 1,542 screening examinations.

5.2 Materials

Mammograms used in this work were collected in the Dutch Breast Cancer Screen-
ing Program (Bevolkings Onderzoek Midden-West, The Netherlands). All mammo-
grams were acquired using Hologic digital mammography systems (Hologic, Bed-
ford, Massachusetts, United States) and the “for processing” images were archived.
This allowed us to work with the raw data. For training, we used a data set con-
taining 1,837 screening exams from different women. In total, 6,119 Medio-Lateral
Oblique and Cranial-Caudal views were included. Of the 1,837 exams, 1,670 exams
did not contain any abnormalities and had at least 2 years of follow up available with
no sign of breast cancer. These exams were considered as normal. The remaining 167
exams were recalled in screening and had a biopsy proven malignancy. These exams
contained 336 groups of malignant calcifications which were all annotated based on
the diagnostic reports.

In addition to the set described above, an independent test set of 1,542 screening
exams was collected. Of these exams, 80 contained biopsy proven malignant calcifi-
cations and the remaining 1,462 screening exams did not contain any abnormalities.
In the exams with malignancies, a total of 158 groups of malignant calcifications were
annotated based on the diagnostic reports. This data set did not have any overlap
with the training data set.

5.3 Methods

5.3.1 Framework

In this work, we propose an additional step within the CADe pipeline to improve
the detection of calcifications by reducing the number of OFPs. This framework is
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Figure 5.2: The proposed framework: The input mammogram is processed by the

CADe system based on the algorithm of Bria et al74. Subsequently, three different

scores representing the likelihood of each finding being a macrocalcification, BAC or

a detection error are computed using three dedicated classifiers, respectively. The

final suspiciousness score of the multi-class method is computed by combining the

output of the three dedicated OFP systems.

shown in Figure 5.2. First, CADe findings are computed on the input mammogram
using a previously developed CADe system74 which we will refer to as the base-
line method. CADe findings are groups of calcifications with a suspiciousness score.
Next to these scores, findings also contain the location of each detected calcification
within the group and likelihood scores representing the confidence of the baseline
system that these truly are calcifications. Examples of CADe findings are shown in
Figure 5.3.

In the proposed novel step of the enhanced CADe system, for each CADe find-
ing three additional scores are computed. These respectively represent the likeli-
hood that a finding is caused by a macrocalcification, by breast arterial calcifications
(BACs), or by a detection error of the baseline system due to noise or normal tissue
patterns. These three scores are calculated using three dedicated classifiers. A fi-
nal suspiciousness score of this multi-class approach is recomputed by combing the
output of the three dedicated OFP classifiers.

5.3.2 CADe system

The baseline CADe system used in this work is based on the method described in
Bria et al74 and consists of three steps. First, calcifications are detected on the input
mammogram. Here, a probability map is generated using a cascade classifier. This
classifier consists of a series of GentleBoost142 classifiers trained on Haar-like fea-
tures79,80. Thresholding and connected component analysis is performed to obtain
segmented calcification candidates. In the second step, groups of calcifications are
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Figure 5.3: Example of CADe findings. In the image, CADe findings are shown to-

gether with their suspiciousness scores (white annotations). Additionally, an annota-

tion of malignant calcifications (yellow annotation) is shown.

created by clustering candidates that lie within 10mm from each other. Finally, a sin-
gle GentleBoost classifier is employed to differentiate malignant calcification groups
from benign groups resulting in a suspiciousness score for each group. In our study,
the baseline CADe system was trained on the same data set described in Bria et al74.

5.3.3 OFP removal step

After applying the baseline CADe system, resulting CADe findings are processed
independently by three dedicated classifiers to compute the likelihood of being an
OFP subtype. These three dedicated classifiers are trained to discriminate malignant
findings and OFP subtypes. A set of features to describe CADe findings is used.
These features can be categorized in three levels: i) calcification features, ii) calcifi-
cation group features, and iii) exam features. The set of features used in the study
was designed to describe each finding in terms of their shape, topology, probability
of the individual calcification detection step, texture and vesselness74,81,143.

The smallest scale for the calculation of features is the calcification level. Feature
values are calculated for each individual calcification within the finding. Then, fea-
ture values for the whole finding are computed as the mean, maximum, minimum
and standard deviation of the calcification feature values. The calcification features
are listed in Table 5.1. These features are designed to capture the wide variation in
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shape and intensity among calcifications and their surrounding.
The second level is at the scale of the finding itself, i.e. a group of calcifications.

Features used to characterize the groups are listed in Table 5.2. The main purpose of
these features is to capture the spatial distribution of the calcifications and the un-
derlying texture of the breast.

The highest level we consider for definition of features is the exam. Here infor-
mation of all findings in the exam is combined. The main purpose of these features
is to describe frequency and distribution patterns of findings in both breasts. The
exam features are listed in Table 5.3.

In the final step of the OFP removal approach, the output of the three classifiers
is combined to generate a suspiciousness score for each finding. Here, a single clas-
sifier was trained using the output of the three dedicated classifiers as features to
discriminate between malignant and OFP findings.

5.4 Evaluation and Experiments

5.4.1 Evaluation

For evaluation of the experiments, Receiver Operating Characteristics (ROC) and
Free-response ROC (FROC) analysis were performed at region and exam levels. At
the region level, a finding detected by the system was considered a true positive
when at least 2 of the detected calcifications within the finding where located in the
ground truth annotation. There was no linking between regions that could be seen
in multiple views and were considered as different regions. When multiple CADe
findings hit the same annotation, the finding with the highest CADe score was cho-
sen and the rest was ignored. Ground truth annotations that did not coincide with
any CADe finding were considered as false negatives. Obvious false positives were
computed as the number of CADe findings detected in normal exams which were
labeled as an OFP finding. At the exam level, a true positive exam was an exam with
at least one CADe finding hitting an annotation. If multiple annotations were hit,
the exam-based score was set to the highest scoring finding. Normal exams were
considered as false positives when at least one OFP finding was detected. Similarly,
the highest scoring OFP finding was set as the exam-based score.

Statistical comparison was performed by means of bootstrapping90. Here, the
test set was bootstrapped 5000 times and ROC and FROC analysis was carried out
for each bootstrap.113,114 Each bootstrap was constructed by sampling the data set
with replacement. From the ROC and FROC curves, areas under the curve (AUCs)
and partial areas under the curve (pAUCs) were calculated, respectively. For test-
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Calcification features

Feature Type Description
Perimeter The number of pixels that touch a background pixel with

at least one side.

Area The number of pixels belonging to a detected calcification.

Compactness p2/(4 ∗ π ∗ a), p = perimeter, a = area.

Eccentricity
Ixx+Iyy−

√
(Ixx−Iyy)2+4I2xy

Ixx+Iyy+
√

(Ixx−Iyy)2+4I2xy
where Ixx, Iyy and Ixy are the mo-

ments of inertia.

Thickness Width of the best fitting rectangle.

Ellipse Ratio between the short axis and long axis of the best fitting
ellipse.

Direction Direction in which the calcification is located viewed from
its clusters gravity center with respect to the x-axis.

Distance to centroid Distance to the center of the finding.

Distance to nearest Distance to the nearest calcification.

Distance to skin-air Distance to the skin-air boundary.81

Mean edge Mean output of a canny edge detector.

Degree Number of edges incident to the calcification.

Normalized degree Sum of the normalized weights of the edges incident to the
calcification.

Probability (4) Maximum, second maximum, mean, and standard devi-
ation of the probability map of the calcification detection
step.

Background (2) Mean and standard deviation of the background pixel val-
ues, where the background is defined as pixel thick band
surrounding the calcification.

Foreground (2) Mean and standard deviation of the foreground pixel val-
ues, i.e. pixels within the calcification.

Contrast (5) Maximum, mean, standard deviation, kurtosis, and skew-
ness of Ci = Log(yi)−Log(yb), where yi is calcification pixel
intensity of pixel i and yb is the mean background intensity.

Attenuation Maximum, mean, standard deviation, kurtosis, and skew-
ness of ∆µ = µb − µmc = Ci/di, where di is the thickness of
the calcification at location i

Image moments Seven Hu invariants144

Table 5.1: Features based on the segmented calcifications in a finding. For each find-

ing, the mean, max, min and standard deviation of the distribution of calcification

feature values are used as features for the classifier.
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Finding features

Feature Type Description

Area The area of the finding computed on the convex hull136 fit-
ted on the whole finding.

Eccentricity Eccentricity on the convex hull of the finding.

Ellipse The ratio between the long axis and the short axis of a el-
lipse fitted on the convex hull of the finding.

Calcification number The number of calcifications in the finding.

Density 2|E|
n(n−1) where E is the number of edges of the graph made
from the centers of each calcifications within the finding.

Coverage
∑n

i=1

AmCi

Acls
where AmCi

is the area of the calcification i, n the
number of calcifications within Acls, the cluster area.

Orientation The orientation of the cluster with respect to the xy-plane.

Circle coverage The ratio of the surface area of all calcifications and the area
of the minimum enclosing circle

Elongatedness The ratio of the eigenvalues calculated with principle com-
ponent analysis on subgroups with 10mm radius

Distance to skin/air The distance of the center of the cluster to the skin air
boundary.

Probability Finding probability from the cluster detection (intermedi-
ate score of the CADe system).

2nd step score The score given by the CADe system

Hessian (5) The determinant of the Hessian matrix for each pixel.

Tubeness (5) kline(λ1, λ2) = λ2−λ1
λ2

where λ1 ≤ λ2, the absolute eigenval-
ues calculated.

Lambda (5) The highest absolute eigenvalue λ2.

Vesselness (5) Vesselness image filtering technique proposed by Frangi et
al145.

Table 5.2: Features representing the spatial organization of findings. The Hessian,

Tubeness, Lambda, and Vesselness features are calculated at several scales: 0.2 ≤ σ ≤
1.0, steps of 0.2 resulting in 5 feature values per feature type.
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Exam features

Feature Type Description

Findings The number of findings in the exam.

FindingsHigh The number of findings in the exam with a suspi-
ciousness score >T.

FindingsCurrentSide The number of findings at the breast side of the
finding (left or right breast)

FindingsCurrentSideHigh The number of findings at the breast side of the
finding where only findings with a suspiciousness
score >T are considered

FindingsContralateralSide The number of findings at the breast side other
than the location of the finding (left or right breast)

FindingsContralateralSideHighThe number of findings at the breast side other
than the location of the finding where only find-
ings with a suspiciousness score>T are considered

Table 5.3: Features based on all findings within the exam.
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ing significant differences, one-way ANOVA was applied on all bootstraps and a
Bonferroni correction was performed to correct for multiple comparisons. Statisti-
cal analysis was carried out in SPSS (Version 22.0. IBM Corp. Armonk, New York,
United States). Differences were considered to be significant for p-values <0.05.

5.4.2 Visual assessment of false positive CADe findings

In the first experiment, we visually inspected the different types of false positives
generated by the baseline CADe system described in Section 5.3.2. For this purpose,
this system, which was trained on an independent data set, was applied to the study
data set. Exam-based FROC analysis was performed and a subset of the detected
false positive findings was selected by choosing an operating point on the FROC
curve. This operating point was chosen as such that the size of the selected set was
manageable for visual inspection while the sensitivity was high enough to obtain a
representative sample. The exam-based sensitivity we used was 0.91, which is simi-
lar to the sensitivity of commercially available CADe systems74.

Each of the selected false positive findings was labeled as one of the following
categories: 1) macrocalcifications: a finding containing detected calcifications which
are (part of) macrocalcifications (i.e. calcifications larger than 1mm); 2) breast arte-
rial calcifications (BACs): a finding containing detected calcifications located in an
artery; 3) detection errors: a finding that does not contain any calcifications; and 4)
other benign calcifications: groups of calcifications which contain benign calcifica-
tions other than macrocalcifications and BACs. Labeling of the false positives was
performed by a researcher with experience in reading mammograms. In this work
we focus on removing obvious false positives. Therefore, the fourth group of false
positives was not used and ignored in the rest of the experiments.

5.4.3 Obvious false positive classification

In the second experiment, we investigated the classification performance of the two
OFP removal approaches in discriminating malignant findings from OFPs. Based on
the visual assessment performed in the previous experiment, we created a data set
of CADe findings that mark malignant calcifications and OFPs.

For classification of malignant regions and OFPs, three GentleBoost classifiers,
using regression stumps78 as weak classifiers (n=100), were trained as dedicated
OFP classifiers, one for each different OFP subtype. Each individual OFPs classi-
fier was trained using all features described in Section 5.3.3. The threshold for the
exam features was set to the same operating point as the visual assessment experi-
ment. The combinator classifier was trained on the three (raw) output scores of the
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dedicated classifiers, which values range from 0.0 to 1.0. For training the combinator
classifier, several classifier types were used to investigate impact of the choice of this
classifier on the final result: a GentleBoost classifier, a linear discriminant classifier,
a Support Vector Machine146 (SVM), and a Random Forest147classifier. For the Gen-
tleBoost classifier we used 100 regression stumps and for training of the Random
Forest the maximum number of trees was set to 100 and the maximum tree depth
was taken as the square root of the number of samples. For the SVM classifiers, three
different kernels were assessed: a linear kernel, a polynomial kernel, and a radial
basis function (RBF). The parameters for the SVM classifier with a polynomial and
RBF were estimated by splitting up the training data into a training set and valida-
tion set148. Estimation was done with a grid search over C values (C = 2−5, 2−3,...,29)
and γ values (γ = 2−15,2−13,...,20). The degree of the polynomial kernel was set to
3. The classifier for the conventional two-class classification of OFPs and malignant
findings consisted of a GentleBoost classifier with 100 regression stumps.

The evaluation in this experiment consists of three parts, 1) the performance of
the two approaches in discriminating each individual type of OFP from malignant
findings, 2) the influence of the various combinator classifiers on the classification
of OFPs and malignant, and 3) classification performance comparison between the
novel multi-class approach, the conventional two-class method, and the baseline
CADe system.

For evaluation of the multi-class approach and the two-class classification method,
ROC analysis was performed with 10-fold cross-validation. Folds were made on
case-level such that there was no overlap between training and testing, i.e. images
of a given woman were either in the test or the training set but never in both. Fur-
thermore, we ensured that all malignant and OFPs findings were equally distributed
across all folds. For each fold, 9 folds were used for training of the classifiers and the
remaining fold was used for testing the classifier. Region-based ROC analysis was
applied on the output scores and AUC values were calculated.

5.4.4 CADe with obvious false positive removal

In the final experiment, we investigated the performance of the CADe system on
detecting exams with malignant calcifications when adding the OFP removal step.
First, the baseline system was applied to the independent test set. Then all findings
above the previously defined operating point were processed by the proposed OFP
removal step. On the resulting finding scores, exam-based ROC and FROC analysis
was performed. For the ROC and FROC analysis, benign calcifications that were not
categorized as OFP were ignored.
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False positive distribution

False positive type # findings (% of total)

Macrocalcifications 82 (6%)

BACs 429(29%)

Detection errors 189(13%)

Other benign calcifications 756 (52%)

Table 5.4: Distribution of false positives (n = 1456) into 4 groups after visual analysis

On the test set, pAUCs were calculated for statistical evaluation because in this
experiment only findings above the specified threshold were analyzed. The pAUCs
where calculated on 5000 bootstraps and were pairwise compared to each other. Bon-
ferroni correction was applied to correct for three comparisons: the baseline CADe
system versus the two-class method, the baseline CADe system versus the multi-
class method, and the two-class method versus the multi-class method. For the ROC
analysis, the pAUC was calculated in a specificity range of 0.77 to 1.00 to compare
the three methods. The exam-based FROC analysis was carried out to determine the
sensitivity in terms of the number of obvious false positives per image. For compar-
ison, the pAUC was calculated between 0.001 obvious false positives per image (one
obvious false positive per 1000 images) and 0.02 obvious false positives per image
(one obvious false positive per 50 images) for the three methods. We chose these
obvious false positive per image operating points because we are interested in high
specificity range and these points represent the same specificity range of radiologists
in screening.

5.5 Results

5.5.1 Visual assessment of false positive CADe findings

In total, 1,456 of the 20,390 (7%) false positive findings and 265 of the 336 (76%) ma-
lignant findings had a score above the threshold, while 700 (48%) of the false posi-
tives were labeled as OFPs. The distribution of the false positives over the previously
defined subtypes is shown in Table 5.4. After excluding the benign calcifications, 965
findings remained. These were used in the experiments below.
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Figure 5.4: ROC curves for macrocalcification versus malignant findings. The average

curves are shown computed from 5000 bootstraps.

5.5.2 Obvious false positive classification

Performance on individual OFP subtype classification

For each OFP type, an individual classifier was trained. These dedicated classifiers
were compared to the output of the baseline CADe system and to the conventional
two-class classification method. The ROC curves for each OFP type are shown in
Figures 5.4-5.6. In each subfigure, three curves are plotted for the three methods.
These curves show that the sensitivity is higher in the whole specificity range for
both the two-class classification and the multi-class classification method compared
to the baseline CADe system. Additionally, the multi-class classification results in a
higher sensitivity compared to the two-class classification. The corresponding AUC
values of each ROC curve are shown in Table 5.5. Here, it can also be observed that
the two-class and multi-class classification methods result in significant higher AUC
values than the baseline CADe system (p<0.0002).

Performance of the combinator classifier

Several classifiers were trained to combine the three output scores of the individual
OFPs classifiers. We compared the AUC values from the ROC analysis on the whole
OFP finding set and malignant findings between the GentleBoost, Random Forest,
and SVM classifiers. The AUC value for each classifier type is shown in Table 5.6.
The differences in AUC values of these classifiers were not large (AUC values range
from 0.880 to 0.937). In the end, we choose the linear SVM in the next experiments
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Figure 5.5: ROC curves for BACs versus malignant findings. The average curves are

shown computed from 5000 bootstraps.
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Figure 5.6: ROC curves for detection errors versus malignant findings. The average

curves are shown computed from 5000 bootstraps.
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AUC values of individual OFP classification

Method Macrocalcifications BACs Detection errors

Baseline CADe 0.866± 0.015 0.715± 0.022 0.880± 0.017

Two-class classification 0.916± 0.018† 0.936± 0.010† 0.910± 0.015†

Multi-class classification 0.970± 0.010†‡ 0.957± 0.007†‡ 0.963± 0.009†‡

Table 5.5: Area under the ROC curve for discrimination between malignant findings

and macrocalcifications, BACs and detection errors. Average AUCs (mean±stdev)

computed from 5000 bootstraps. All p-values in all comparisons where <0.0002. †

p<0.05 when comparing two-class and multi-class classification to the baseline CADe

score.‡ p<0.05 multi-class classification compared to the two-class classification

AUC values of OFPs classification various combinator classifiers

GentleBoost LDA Random Forest SVM

Linear Polynomial RBF

0.924 0.930 0.880 0.937 0.927 0.928

Table 5.6: Area under the ROC curve for the classification of findings into malignant

or OFPs (macrocalcifications, BACs and detection errors) for all four classifier types.

Average AUCs are shown of 5000 bootstraps.

since this classifier obtained the best performance.

Classification performance comparison OFP versus malignant

In Figure 5.7, the ROC curves of the classification of all OFPs versus malignant find-
ings are shown for the three methods. The ROC curves for the two-class and multi-
class classification methods resulted in a higher sensitivity than the baseline CADe
system over the full specificity range. The corresponding AUC values are shown in
Table 5.7. The AUC values of the two-class and multi-class classification methods are
significantly different from the AUC value of the baseline CADe system: 0.777±0.018

versus 0.927± 0.010 and 0.937± 0.010 (p<0.0002 in both comparisons), respectively.
The AUC value for the multi-class classification method is higher than the two-class
method but the difference was not significant (p = 0.07).
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Figure 5.7: ROC curves for the classification of all OFPs versus malignant regions for

the three methods. Average curves are shown of 5000 bootstraps.

AUC values of OFPs classification with 3 methods

Method AUC values p-values

Baseline CADe 0.777± 0.018

Two-class classification 0.927± 0.010 <0.0002†

Multi-class classification 0.937± 0.010 <0.0002† and 0.07

Table 5.7: Area under the ROC curve the classification of malignant findings and all

OFPs (macrocalcifications, BACs and detection errors) for all three methods. Average

AUCs are shown of 5000 bootstraps. † p<0.05 when comparing two-class and multi-

class classification to the baseline CADe score.
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5.5.3 CADe with obvious false positive removal

The performance comparison for the whole data set is shown in Figure 5.8. Because
the threshold was set at a specificity of 0.77, the curves are equal at lower speci-
ficity. Therefore, the sensitivity is plotted for all three methods in a specificity range
between 0.77 and 1.0. The Figure shows that the curves for the two-class and multi-
class classification methods have a higher sensitivity over a specificity range of 0.8
to 1 compared to baseline CADe system. The pAUC in the specificity range of 0.77
to 1.0 are shown in Table 5.8. The two-class and multi-class classifiers have a sig-
nificantly higher pAUC compared to the baseline CADe system (p<0.0002 in both
comparisons). The multi-class classification resulted also in a significantly higher
pAUC compared to the two-class classification (p<0.0002).

The exam-based FROC curves are shown in Figure 5.9. It can be seen that the
two proposed methods have a higher sensitivity at 0.12 obvious false positive per
image (≈1 obvious false positive per 8 images) or less. At one obvious false posi-
tive per 100 images, the baseline CADe system has an exam based sensitivity of 61%
in malignant exams, while the other two methods have exam-based sensitivities of
73% (two-class classification) and 83% (multi-class classification), respectively. At
a sensitivity of 80%, the number of obvious false positives detected by the baseline
CADe system is 0.038 per image (≈1 per 26 images) while the two-class classification
detects 0.0135 obvious false positives per image (≈1 per 74 images) and the multi-
class classification 0.0085 obvious false positives per image (≈1 per 118 images). The
pAUC values calculated over the range of 0.001 to 0.2 obvious false positives per
image are shown in Table 5.9. These values are significantly different between the
3 methods. Both the two-class and multi-class classification methods have a signifi-
cantly higher pAUC than the one obtained by the baseline CADe system (p<0.0002
in both comparisons). The pAUC of multi-class classification is significantly higher
than the two-class classification (p<0.0002).

5.6 Discussion

In this paper, we have constructed a method for the removal of false positives which
are obviously not suspicious when observed by a screening radiologist. Two meth-
ods are proposed to remove these obvious false positives. The first method is based
on a single classifier trained specifically to discriminate between OFP and malignant
findings. The second method consists of three classifiers to individually classify each
OFP subtype and a fourth classifier to combine their outputs to discriminate between
OFP and malignant findings. These two methods were compared to the baseline
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pAUC values of the exam-based ROC with 3 methods

Method pAUC values p-values

Baseline CADe 0.183± 0.008

Two-class classification 0.199± 0.007 <0.0002†

Multi-class classification 0.205± 0.007 <0.0002† and <0.0002‡

Table 5.8: Area under the exam-based ROC curve the classification of exams with ma-

lignant findings in the range of a specificity of 0.77 to 1.0 . Average AUCs are shown

of 5000 bootstraps. † p<0.05 when comparing two-class and multi-class classifica-

tion to the baseline CADe score. ‡ p<0.05 multi-class classification compared to the

two-class classification.

Figure 5.8: Exam-based ROC curves for the classification of the whole data set for the

three methods in a specificity range of 0.8 - 1.0. Average curves are shown of 5000

bootstraps.
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pAUC values of the exam-based FROC with 3 methods

Method pAUC values p-values

Baseline CADe 0.220± 0.016

Two-class classification 0.256± 0.015 <0.0002†

Multi-class classification 0.268± 0.012 <0.0002† and <0.0002‡

Table 5.9: Area under the exam-based FROC curve the classification of exams with

malignant findings in the range of 0.001 to 0.2 obvious false positives per image. Av-

erage AUCs are shown of 5000 bootstraps.† p<0.05 compared to the baseline CADe

score. ‡ p<0.05 compared to the classifier trained on all OFPs.

Figure 5.9: Exam-based FROC curves for the classification of the whole data set for

the three methods in an obvious false positive per image range of 0.001 - 0.2. Average

curves are shown of 5000 bootstraps.
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CADe system using a large test set containing 80 exams with 158 annotated malig-
nant calcification groups and 1,462 exams without any malignancies. The results
show that the additional step helps improving the overall CADe performance.

In this study, we have only focused on the obvious false positive findings, i.e.
findings that would be easily dismissed as being benign by a screening radiologist,
because these are the false positive findings that cause loss of confidence in CADe
systems. The visual assessment performed in this study showed that approximately
half of the false positives generated by the baseline CADe system belong to this class
(48%). The other false positives were categorized as other benign calcifications. We
ignored this class because, when using CADe in combination with radiologists, this
type of benign findings can be considered as less disturbing and it might in fact be
debatable whether these benign findings should considered as true or false positives.
Note that, many of these benign calcifications might be suspicious and in practice re-
quire further investigation. However, since we develop a standalone CAD system
with high sensitivity for detection of breast cancer with as few false positives as
possible, it can be argued that in our application the detection of these benign calci-
fications should not be rewarded.

Classifying each OFP subtype with a separate classifier trained on that specific
type resulted in a higher sensitivity than training one classifier with all OFPs grouped
together. This can be explained by the fact that there is much variation between the
features computed for each OFP subtype. Such a large variation between feature
responses is challenging for a single classifier, which might have problems general-
izing among the OFP subtypes, resulting in a suboptimal classification. On a finding
scale, combining the output of the three classifiers led to a higher AUC when com-
pared to a single classifier discriminating between OFPs and malignant findings.
This difference was not found to be significant (p = 0.07). Both the multi-class and
two-class approaches significantly improved the classification compared to the base-
line CADe system (p<0.0002).

Various classifiers have been evaluated in this study to differentiate the multi-
classes such that malignant regions and OFPs are separated in the most optimal way.
However, further research can be performed in optimizing the final combinator clas-
sifier by assessing other classifiers or by applying a likelihood score scaling transfor-
mation to the output of the individual classifiers to normalize the scores for training
the combinator classifier149,150.

We found that adding a classification step to the CADe system for the removal of
OFPs leads to a significant increase in overall exam-based sensitivity, in which the
CADe finding with the highest score was taken for the whole exam (p<0.0002). At
a specificity of 0.95, the sensitivity for detecting exams with malignant findings in-
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creased from 77% up to 86% when a classifier which is trained on all obvious false
positives is added. The improvement was even higher (up to 90%) when we applied
the multi-class approach. A larger difference in sensitivity was observed at higher
specificity. The maximum difference in sensitivity can be observed at a specificity
of 0.99 where the baseline CADe system detected 34% of the malignant exams and
the two-class and multi-class classification schemes detected 62% and 70% of the
malignant exams, respectively. Since a threshold was set at a specificity of 0.77, no
differences can be observed at this operating point or at a lower specificity values.

There are similar studies presenting other classification approaches to discrimi-
nate between benign findings and detected malignant calcifications. In Veldkamp
et al. (2000)151, a k-nearest-neighbor classifier was used which resulted in an AUC
of 0.83. In this study, however, obvious false positives were excluded. Wei et al.
(2005)152 evaluated several classifiers: a SVM, a kernel Fisher discriminant, and a
relevance vector machine. The SVM method was the best performing classifier with
an AUC of 0.85. In Elan et al. (2014)153 a Circular Complex-valued Extreme Learning
Machine was used for classification and a AUC of 0.96 was reported. However, in
these studies the number of benign calcification samples was rather low and the ori-
gin of the samples in the benign class were not assessed or reported. Furthermore,
the authors did not evaluate the performance of their algorithms when applied to
a population representative of screening. It should be noted that, in our study, we
have tried to mimic a screening situation by adding a large set of normal exams in
the data set (we used a ratio of ten normals to one malignant exam).

In this study we used the algorithm presented in Bria et al. as our baseline CADe
system. In their work, the authors showed that this algorithm performed at least
as good as a widely used commercially available system on a comparable series of
cases. We showed that its performance can be significantly improved by adding the
proposed OFP classification step (p<0.0002). We believe that a similar strategy might
be suitable to improve the performance of similar CADe systems.

CADe systems currently used in clinical practice operate at around 1 false pos-
itive per exam (assuming 4 mammographic images per exam)74. The baseline sys-
tem system used in this study obtained a sensitivity of 91% at this false-positive
rate. In the FROC analysis, it can be seen that the proposed approach considerably
decreases the number of obvious false positives with a minor sensitivity loss. We
believe that this reduction in false positives is important to improve radiologists’
confidence in CADe systems. Furthermore, it should be noted that the ultimate goal
of our research is to create a CADe system that would perform equal or better than a
screening radiologist and can be used as an independent observer. In this scenario,
assuming that we aim at a recall rate of 5%125 of this system, the CADe system would
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need to operate at a specificity of approximately 98% for calcification detection, be-
cause other algorithms for detection of masses will generate false positives as well.
At this operating point, the baseline system achieves a sensitivity value of 54%. The
proposed systems significantly improve the baseline method and obtain a sensitivity
of 68% and 78% with the two-class and multi-class methods, respectively (p<0.0002
for both methods). However, this study was limited to the OFPs and the improve-
ment in performance might not be as large when other benign false positives are also
considered.

One of the limitations of our study is that we used screening data acquired on
mammographic units of only one manufacturer. Mammograms of different manu-
facturers have different characteristics. Therefore, it is easier to make a CAD system
work well on images from a single manufacturer than in a multi-vendor environ-
ment. This issue will be addressed in future research.

The performance of the system is not yet comparable to that of a single radiolo-
gist. Our proposed system detects 78% of the exams with malignant calcifications at
a specificity of 98% and this sensitivity will decrease when including all benign find-
ings in the validation. However, it should be noted that the proposed framework
was validated with malignant recalled exams from screening judged by two radiolo-
gists, because double reading is practiced in the screening program. Comparison of
our method with a single radiologist is not possible with the data we have, because
we do not have access to the reports of the individual readers. From the literature
it is known that double reading improves sensitivity by 13%55. This would mean
that the sensitivity of a single radiologist would be 87% on our dataset, which still
compares favorably to the performance of our CAD system.

5.7 Conclusion

In this paper, we have introduced a method to suppress false positive findings which
are obviously not malignant to increase the benefit of using CADe systems in breast
cancer screening. By adding our method to an existing CADe system, the number of
false positives due to the obvious false positives strongly decreased leading to less
false positives at a high sensitivity. The best results were obtained when applying
a multi-class method with dedicated classifiers that learn the characteristic of each
OFP subtype independently.
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Abstract

Purpose: The aim of this study was to assess how often women with undetected
calcifications in prior screening mammograms are subsequently diagnosed with in-
vasive cancer.
Methods: From a screening cohort of 63,895 women, exams were collected from
59,690 women without any abnormalities, 744 women with a screen-detected cancer
and a prior negative exam, 781 women with a false positive exam based on calci-
fications, and 413 women with an interval cancer. A radiologist identified cancer-
related calcifications, selected by a computer-aided detection system, on mammo-
grams taken prior to screen-detected or interval cancer diagnoses. Using this ground
truth and the pathology reports, the sensitivity for calcification detection and the
proportion of lesions with visible calcifications that developed into invasive cancer
were determined.
Results: The screening sensitivity for calcifications was 45.5%, at a specificity of
99.5%. A total of 68.4% (n=177) of cancer-related calcifications that could have been
detected earlier were associated with invasive when diagnosed.
Conclusions: Screening sensitivity for detection of malignant calcifications is low.
Improving the detection of these early signs of cancer is important, because the ma-
jority of lesions with detectable calcifications that are not recalled immediately but
detected as interval cancer or in the next screening round are invasive at the time of
diagnosis.
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6.1 Introduction

The purpose of breast cancer screening is to detect cancer as early as possible34,35.
The earliest signs of non-palpable breast cancer are calcifications, which are usually
associated with ductal carcinoma in situ (DCIS) but can also be present in invasive
cancers154. In screening programs, between 12.7% and 41.2% of women are recalled
with calcifications as the only sign of cancer73,155–157.

The Breast Imaging Reporting and Data System (BI-RADS)31 was designed by
the American College of Radiology to standardize breast imaging reporting and to
provide clarity on the interpretation of breast imaging studies. A set of guidelines is
supplied in the BI-RADS atlas for the interpretation of calcifications, aiding the ra-
diologist in distinguishing suspicious calcifications from typically benign changes,
such as vascular and skin calcifications. It is recommended to recall patients with
suspicious calcifications for further clinical assessment, such as a biopsy31,158. This
can inadvertently lead to false positive outcomes, since calcifications associated with
benign disease often look suspicious.

The vast majority of cancers detected by calcifications are DCIS, of which <20%
are low grade159,160. In the discussion about the pros and cons of breast cancer screen-
ing, detection of low grade cancers is generally regarded as overdiagnosis160,161, since
the detection of these cancers does not impact mortality reduction162. However, it is
not possible to radiologically distinguish calcifications associated with low-grade
DCIS from more aggressive forms (grade II and III) in mammography, while these
forms should be detected as early as possible162–164. Therefore, radiologists in breast
cancer screening are instructed to recall all suspicious calcifications. However, in
practice, especially in countries where screening programs pursue very low recall
rate (i.e. the percentage of screening exams that are recalled in screening)125, radiol-
ogists do not recall patients with calcifications without the reasonable likelihood that
they represent DCIS. In such scenario, interpretation of calcifications depends more
on the training, experience, and skill of the screening radiologists in a dual reading
setting.

There are many studies in which screening mammograms have been retrospec-
tively evaluated to determine the sensitivity of the screening in detecting breast can-
cer67,165–175. For instance, Vitak167 re-examined screening exams performed prior
to the diagnosis of 544 interval cancers, i.e. cancers diagnosed between screening
exams usually due to symptoms, reporting that 25% of these patients could have
been recalled based on the screening mammogram. Destounis et al.173 have found
that cancer was visible in 31% of 318 exams prior to a later screen detection, while
Burhenne et al.67 have shown that cancer was visible in 67% of 427 such cases. Broed-
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ers et al.172 have shown that half of 234 screen-detected and interval cancers were
already visible on a prior exam. Other studies have reported that around 40% of
screen-detected cancers could be detected on a previous exam 166,171,176; however,
note that all the aforementioned studies have been performed on screen-film mam-
mography results and cannot be directly compared to digital mammography, the
current acquisition standard in breast cancer screening. Several studies have shown
that recall rates and cancer detection rates resulting from suspicious calcifications
differ significantly between screen-film or digital mammography73,177. Studies by
Knox et al.174 and Weber et al.175, in which digital mammography screening perfor-
mance was assessed, have reported that between 10.5% and 31% of interval cancers
were missed in screening.

In most of these studies, no distinction was made between soft tissue lesions and
calcifications, and generally only interval cancers were evaluated to determine false
negatives. However, cancers that were detectable but missed in a prior screening
can also be considered as false negatives. In this study, we include false negatives
on prior mammograms of both screen-detected and interval cancers. We focus on
earlier detection of calcifications, which can prevent the development of invasive
disease. A better understanding of this phenomenon is not only relevant in relation
to interval cancers, but also to screen-detected cancers, independent of the threshold
used for recall.

The purpose of this study is to estimate how often malignant calcifications are not
detected in a population-based screening program with double reading, and to de-
termine the proportion of invasive cancers detected by the presence of calcifications
that were not recalled in the previous screening round. For this purpose, an accu-
rate assessment of the presence of calcifications in mammograms was performed in
a large screening cohort using a computer aided detection (CAD) system, in combi-
nation with visual inspection by an experienced radiologist. This provided a solid
ground truth for the analysis. This also allowed us to accurately assess the sensitiv-
ity of screening for calcifications associated with breast cancer, in programs equipped
with modern digital mammography systems.

6.2 Materials

All data used in this study were collected from a single region of the Dutch Breast
Cancer Screening Program (Bevolkings Onderzoek Midden-West, The Netherlands).
In the Dutch Breast Cancer Screening Program, women between the age of 50 and 74
are biennially invited for a screening exam. This database contained all of the avail-
able screening exams, consisting of medio-lateral oblique and cranial-caudal views
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Figure 6.1: Overview of the breast cancer screening database used in this study, with

data from 2003 to 2014. In this study, we include 170,878 screening exams from 63,895

women. Boxes with a grey glow were included in the ground truth for the evaluation.

of the left and right breasts, from all screened women between 2003 and 2014. All im-
ages were acquired with full-field digital mammography systems (Hologic, Bedford,
Massachusetts, United States). After acquisition, two radiologists independently as-
sessed the mammogram and scored both breasts according to the BI-RADS. When
there is a discrepancy between scores, a consensus meeting is held and when no con-
sensus is reached a third radiologist breaks the tie40. Women with BI-RADS 4 or 5
are recalled for further investigation.

An overview of the screening database is shown in Figure 6.1. During the study
period, 63,895 women (age: 59 ± 7) participated in the screening program (with a
total of 170,878 screening exams). In 59,690 women, no abnormalities were found
in any of their screening exams. A total of 3,792 women were recalled for diagnos-
tic follow up, of whom 979 had breast cancer. The remaining 2,813 recalled women
were false positives, of whom 781 were recalled based on calcifications only. In 413
women, an interval cancer was found between screening exams.

6.3 Methods

To construct the ground truth, we identified all women in our database with a patho-
logically proven invasive and non-invasive breast cancer for whom a negative prior
screening exam was available in addition to the screening mammogram that led to
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the detection of the cancer. Furthermore, we identified all negative screening exams
prior to interval cancers, and all exams that were recalled solely based on calcifica-
tions but were pathologically proven to be benign. Exams of women without any
abnormalities were included as well. We excluded women who were recalled mul-
tiple times (n=49) or those who were recalled and later diagnosed with an interval
cancer (n=11), to avoid complications in the analysis. The data included in this study
are highlighted in Figure 6.1.

To determine the ground truth regarding the presence of mammographically vis-
ible calcifications associated with cancer, we used radiology and pathology reports
and a retrospective review of negative prior exams by a radiologist with more than
25 years of experience in reading mammograms and more than 15 years certified
as a screening radiologist. To reduce the subjectivity and workload of the radiol-
ogist, a state-of-the-art CAD system74,178, operating at its highest sensitivity, was
first applied to all mammograms of women with a screen-detected or an interval
cancer. The CAD system was developed in house, but we took care that mammo-
grams used to train the system were not included in the study dataset to avoid bias.
This training set comprised less than 1% of the total number of normal exams in
the screening database and less than 3% of the screen-detected cancers with a prior
exam. Before the radiologist inspected the cases, an initial visual inspection by a re-
searcher with experience in reading mammograms was carried out to exclude false
positive CAD findings that were obviously not related to the recalled malignancies
such as detected noise or vascular calcifications. The radiologist visually inspected
the remaining exams to determine whether they were related to the later diagnosis
of screen-detected or interval cancer. Prior exams of screen-detected cancers were
visually inspected together with the subsequent screening mammogram and radiol-
ogy reports in which the cancer was detected. For the interval cancers, diagnostic
mammograms and radiology reports were not available because the anonymized
data in the database could not be linked to the hospitals where the assessment took
place. Only the laterality of the interval cancer was known. The visual assessment
was performed on a 12MP Coronis Uniti mammography monitor (Barco N.V., Kor-
trijk, Belgium).

In the constructed database, the number of exams with detectable calcifications
was determined for the false negative exams, which contained visible calcifications
related to the cancer prior to the diagnosis of a screen-detected cancer (nprior) or an
interval cancer (ninterval). The number of exams with detectable calcifications was
also determined for the true positive screening exams, which did not have visible
calcifications in the prior exam (nSD). In this way, each woman with malignant cal-
cifications was represented only once in the series. The screening sensitivity for de-
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tecting calcifications associated with cancer was calculated as follows:

Sensitivity =
nSD

nSD + nprior + ninterval
(6.1)

The proportion of invasive and non-invasive cancers at the time of detection was
calculated to assess how often women with calcifications at the site of the detected
cancer were diagnosed with invasive cancers. The invasive status of each cancer
was obtained from the pathology reports. Finally, to analyze tumor size at the time
of detection, the tumor stage (as T1, T2, or T3179) was also collected for all invasive
cancers.

6.4 Results

Exams of all 744 screen-detected cancers and 1,157 exams obtained prior to a screen-
detected or interval cancer were processed with the CAD system. In 536 of the 1,157
prior exams, the CAD system detected at least one instance of calcifications. Of
these, the researcher classified 112 as obvious false positives that were not related
to the cancer. CAD findings in the remaining 434 exams were visually inspected by
the radiologist, who determined that 177 exams contained calcifications related to
cancer. Figure 6.2 shows three examples of non-recalled screening exams with cal-
cifications: 1) prior to a screen-detected cancer with calcifications, 2) prior to a soft
tissue lesion, and 3) prior to an interval cancer.

By including the calcifications detectable in prior exams, we identified 325 ex-
ams with calcifications associated with malignancy in our dataset. Of these exams,
45.5% (nSD =148) had calcifications that were only detectable at the time of the recall.
The remaining 54.5% (nprior +ninterval =177) were detectable in the previous negative
mammograms: 36.3% (nprior =118) on exams prior to a positive screening exam and
18.2% (ninterval =59) on exams prior to an interval cancer. An overview of the distribu-
tion of these prior exams is shown in Table 6.1. These numbers were used to compute
the sensitivity for the detection of calcifications associated with breast cancer in digi-
tal mammogram screening; the screening sensitivity for malignant calcifications was
calculated to be 45.5%. The specificity of malignant calcification detection, which
was calculated from 166,673 exams without abnormalities and 781 false positive ex-
ams with calcifications, was 99.5%. This means that only 0.5% of the exams were
falsely recalled in screening based on calcifications alone. Table 6.2 summarizes
the invasive status of the cancers. Of the 148 screen-detected cancers detected with
calcifications, but without visible calcifications on the prior exam, 77 (52.4%) were in-
vasive. Of the screen-detected cancers with calcifications visible in the prior exams,
71 (60.2%) were invasive when they were detected in the following screening round
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Figure 6.2: Examples of calcifications detectable on prior mammograms. The top row

contains examples of exams prior to screen-detected cancer with calcifications (first

column), prior to a soft tissue lesion (second column), and prior to an interval cancer

(third column). In each exam, a radiologist identified detectable calcifications related

to the cancer. In the bottom row, the same locations are shown as above, focusing

on where the cancer and soft tissue lesions were detected (first and second column,

respectively).

Assessment of calcifications related to cancer in prior exams

Prior exams
available

Prior exams
assessed by
radiologist

Prior exams with
calcifications related
to cancer

Prior to screen-detected cancer 744 222 118

Prior to interval cancer 413 212 59

Total number of prior exams 1,157 434 177

Table 6.1: Overview of the prior exams included in the ground truth. A CAD system

was applied to each prior exam. Only the exams with calcifications found in the

same region as the cancer were visually assessed by a radiologist, who identified

calcifications related to cancer.
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Distribution of invasive and non-invasive cancers

Total num-
ber of
detectable
cancers

Invasive Non-invasive

Screen-detected calcifications 148 77 (52.4%) 71 (47.6%)

Earlier-detectable calcifications associated with cancer, prior to:

Screen-detected malignancies 118 71 (60.2%) 47 (39.8%)

Interval cancers 59 50 (84.7%) 9 (15.3%)

Total earlier-detectable cancers 177 121 (68.4%) 58 (31.6%)

Table 6.2: Distribution of invasive and non-invasive cancers for all screen-detected

calcifications and for all cancers with calcifications detectable in exams prior to screen-

detected or interval cancer diagnosis.

(i.e. two years later). Of the interval cancers with visible calcifications in the nega-
tive prior mammogram, 50 (84.7%) were invasive once they were detected. Overall,
of all the 177 detectable calcifications associated with cancer from the prior exams,
121 (68.4%) developed into an invasive disease. The tumor stage for all invasive
cancers with detectable calcifications is shown in Table 6.3. Of the screen-detected
cancers detected by calcifications with negative prior exams, 22.1% were stage T2 or
T3. For the invasive cancers detectable by calcifications on the exam prior to a recall
or prior to an interval cancer, the percentage at tumor stage T2 and T3 were 25.3%
and 40.0%, respectively. For all cancers that could have been detected earlier from
their associated calcifications, the percentage of invasive cancers at tumor stage T2
or T3 was 31.4%. The tumor stage was not available for 11 invasive cancers.

6.5 Discussion and Conclusion

In this study, we determined the sensitivity of a population-based screening pro-
gram with double reading for calcifications associated with breast cancer using dig-
ital mammography. By considering all detectable malignant calcifications visible in
exams prior to a screen-detected or an interval cancer diagnosis, we found that the
screening sensitivity for malignant calcifications in the studied program was only
45.5%, while the specificity for calcifications was 99.5%. Because double reading is
practiced in the screening program, we believe that it is unlikely that the generally
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Distribution of tumor stages

Total
number
of in-
vasive
cancers

Stage
T1
(<2cm)

Stage
T2
(2-5cm)

Stage
T3
(>5cm)

Unknown

Screen-detected cal-
cifications

77 59 (76.6%) 15 (19.5%) 2 (2.6%) 1 (1.3%)

Earlier-detectable calcifications associated with cancer, prior to:

Screen-detected ma-
lignancies

71 51 (71.8%) 17 (23.9%) 1 (1.4%)) 2 (2.8%)

Interval cancers 50 22 (44.0%) 18 (36.0%) 2 (4.0%) 8 (16.0%))

Total earlier-
detectable cancers

121 73 (60.3%) 35 (28.9%) 3 (2.5%) 10 (8.3%)

Table 6.3: Distribution of the tumor stages for invasive cancers with calcifications.

low sensitivity is caused by the oversight of the radiologists; instead, it is more likely
that these results reflect a high threshold in the judgment of the radiologists when
characterizing calcifications as suspicious or unimportant.

This high threshold for recalling calcifications as a strategy to minimize overdiag-
nosis should perhaps be revised. We found that 68.4% of the women with cancer
who had calcifications in a negative prior screening mammogram had developed an
invasive cancer by the time it was detected. This could suggest that lowering of the
threshold for recall in the national screening program is justifiable because more in-
vasive cancers could be detected earlier. The frequency of invasive disease in women
recalled with calcifications that were not detectable in prior images was 52.4%.

This finding indicates that in screening programs with a low recall rate, earlier
detection of the calcifications visible in prior exams might prevent up to 16% of can-
cers from becoming invasive. Earlier detection would also reduce the occurrence of
more advanced cancers; 31.4% of the invasive cancers with calcifications detectable
on a prior exam presented as a stage T2 or T3 disease, i.e. the cancer was larger
than 20 mm, at the time of diagnosis, compared to 22% when no calcifications were
present in the prior exam.

In this study, we found that 54.5% of the screen-detected and interval cancers
were detectable by calcifications in exams prior to diagnosis. In previous studies
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it was found that 3167% of screen-detected cancers could have been identified in
earlier mammograms and 1031% of the interval cancers were visible in prior screen-
ings67,165–175. In our study, the percentage of cancer-related calcifications detectable
on an exam prior to the later diagnosis of screen-detected cancers was 44%, and 14%
of the exams prior to interval cancer diagnoses contained detectable calcifications
related to the cancer. These percentages are within the ranges reported in literature;
however, since previous studies did not make a distinction between calcifications
and soft tissue lesions when calculating the number of cancers that could have been
detected earlier, the results cannot be compared directly. Moreover, most previous
studies were performed with screen-film mammography rather than digital mam-
mography, which can have a different effect on the recall and cancer detection rates,
especially for recalls based on calcifications73,177.

We constructed the ground truth by applying a CAD system for the detection
of calcifications in the prior mammograms, followed by visual inspection by an ex-
perienced radiologist to determine presence of calcifications related to the cancer
detected later. The main purpose of using CAD was to reduce the workload of the
radiologist and to make his judgment more objective. Because the CAD system was
very sensitive, one could argue that use of a CAD system in screening could improve
detection; however, current commercial CAD systems only provide mark regions for
further attention to avoid calcifications being overlooked. For the detection of all cal-
cifications in the ground truth, the specificity of the CAD system was only 51% when
applied to the whole screening database and for the setting at which it was used. It
should be noted that this specificity was achieved by considering all CAD marks
irrespective of their scores; therefore, increasing the threshold on these scores could
increase the specificity of the CAD system but reduce its maximum sensitivity. While
this setting may be appropriate for use of CAD as a perception aid, it leaves the dif-
ficult problem of deciding which women with calcifications the radiologists should
recall. To increase the role of CAD in calcification characterization algorithms, these
systems should be developed to find an acceptable balance between sensitivity and
specificity that would best help radiologists to stratify calcifications by risk. Previous
studies have already demonstrated that CAD algorithms outperform radiologists in
this task and there is potential to improve them considerably using new machine
learning techniques74,132,151,178,180–184.

A limitation of this study is that we do not know how many negative exams did
contain calcifications. Negative exams will contain many benign calcifications and
most likely also some malignant calcifications that did not yet result in a diagnosis
of cancer within the two-year follow-up period we used for verification. Sometimes,
benign calcifications are categorized as BI-RADS 2, but they are not always reported.
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It would be interesting to study how often benign calcifications occur that look sus-
picious but were not recalled, and to compare them to the malignant calcifications
that were missed in screening. However, in this study visual assessment of the large
number of negative exams was not performed. Therefore, we cannot assess to what
extent a higher recall of suspicious calcifications would lead to a strong increase of
false positives.

Another limitation of our study is that we did not have access to information of
all interval cancers in the period between 2013 and 2014. The absence of these cases
and the exclusion of 60 cases with multiple recalls may have had a small effect on the
results we present. The missing interval cancer information, as well as the absence of
the radiology reports for interval cancers, can only lead to an underestimation of the
number of detectable malignant calcifications and, due to this, the reported sensitiv-
ity may be slightly overestimated. Another limitation of our study is that it is based
on data from one Dutch screening center, which may not be representative of other
breast cancer screening programs. In particular, the radiologists in the center oper-
ated at a low recall rate, following the Dutch national breast cancer screening policy.
Within Europe, the recall rate varies from 2% to 6%125, with the screening program in
the Netherlands operating at a recall rate of around 2.5%. In the United States, recall
rates are substantially higher126. It is noted, however, that the interval cancer rate in
the Dutch program and the percentage of cancers visible on prior mammograms are
similar to those reported in the literatures67,165–175,185. This shows that our study data
is representative of other screening practices.

To conclude, 54.5% of calcifications associated with cancer could potentially be
detected earlier and this may substantially reduce the occurrence of invasive cancers
in the screened population. It is therefore important to develop techniques that al-
low the earlier recall of patients with calcifications without increasing false positives
and invasive diagnostic procedures to unacceptable levels.
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Abstract

Purpose: To compare the diagnostic performance of an automated Deep Learning
based (DL) system for detection of breast cancer in mammograms to that of 109 cer-
tified screening radiologists using data from a national self-assessment test.
Methods: Breast cancer detection performance of 109 Dutch screening radiologists
was evaluated with a self-assessment test in 2012. This test contains 60 mammogra-
phy cases including 35 cases without any abnormalities and 25 cases with a screen-
detected cancer. Cases were selected from a cohort in the Dutch breast cancer screen-
ing program by an expert panel consisting of three radiologists. An in-house de-
veloped DL system was applied to this dataset, resulting in a suspiciousness score
for each case. The performance of the DL system was evaluated with Receiver-
Operating Characteristics (ROC) analysis and was compared to the performance of
the individual radiologists.
Results: The average sensitivity of the radiologists was 82.1% (±13.6%) at a speci-
ficity of 92.2% (±7.3%). The area under the ROC curve for the average radiologist
was not significantly different than the automated detection system (respectively,
0.91 versus 0.89, p=0.35). However, the majority of the radiologists (95 out of 109,
87.2%) performed better than the computer system.
Conclusions: An automated system for detecting breast cancer in mammograms
performs not significantly different the average of 109 certified screening radiologists
on the study dataset. However, this data set only contains 60 cases and validation
on a larger study is necessary.
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7.1 Introduction

Early detection of breast cancer leads to a reduction in breast cancer mortality34,35.
Therefore, breast cancer screening programs have been implemented in many devel-
oped countries. In these programs, women between the age of 50 and 70 are period-
ically invited for a screening mammogram, where age range and screening interval
are depending on the screening policy which differs per country186. In most Euro-
pean screening programs, reading of these mammograms is performed with dou-
ble reading where two radiologists read each mammogram and score each breast
side. In the United States, double reading is not commonly performed. However,
Computer-aided Detection (CAD) systems are widely used in screening practice in
the United States67,101. These systems consist of computerized algorithms that can
fully automatically analyze each mammogram. After analysis, suspicious locations
in the mammograms are marked by the system. These marks can be shown on re-
quest by the radiologists during reading sessions.

The benefit of including CAD systems into breast cancer screening is that they
can prevent oversight errors and can help the radiologist to differentiate between
malignant lesions and benign lesions that looks suspicious61,62,187,188. Therefore, in
the past decades, these systems have been under development and are still a promi-
nent research topic. Several reader studies have shown that using a CAD system
to support the reading of mammograms can increase the performance of individual
radiologists73,94,95. However, there is little evidence that current routine use of CAD
in breast cancer screening results in a significant improvement of the overall breast
cancer screening performance96,98,101.

Existing CAD systems have been developed as an aid for radiologists to avoid
overlooking suspicious abnormalities. Due to limitations of algorithm performance
these systems have many false positives, which make them less suitable for use as
second reader. However, with the recent progress in machine learning better systems
can be developed, which operate at the level of an experienced radiologist. Such sys-
tems have potential to serve as an independent reader. The incorporation of CAD
as an independent observer can be done in several ways. For instance, CAD can be
used as a pre-selection tool to only select women where an abnormality is found for
double reading while cases without any found abnormalities are only shown to a
single radiologist. Another implementation of a standalone CAD system is to use
it as a replacement of one of the two radiologists in double reading or by using the
CAD system as an additional independent reader in screening programs with single
reading.

Several studies have been performed on the evaluation of a standalone CAD sys-
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tem in screening mammography65,67,88,94,189–194. In three of these studies, performed
by Hupse et al (2013)190, by Kooi et al (2016)88,195, and Becker et al194, results of CAD
were directly compared to the performance of individual radiologists. In the study
of Hupse et al190, the performance of a CAD system, aimed at detecting soft-tissue
lesions, was compared to the performance of 9 radiologists and 3 residents. Their re-
sults showed that the CAD performance was similar to the performance of certified
radiologists at a specificity of 0.95. The studies performed by Kooi et al88,192 were also
only performed with a soft-tissue lesion detection system. Their results showed that
when only regions of interest are considered a deep learning system outperformed
the average of 4 radiologists in classifying malignant and non-malignant regions. A
limitation of both studies is that calcifications were not included while these are find-
ings in screening as well. Suspicious calcifications are present in around one third
of all screen-detected breast cancers in digital mammography73,155–157. Hence, the
inclusion of calcifications is needed for an accurate evaluation of a CAD system as
an independent observer in breast cancer screening. In a study by Becker et al194, a
deep learning approach has been evaluated and compared to three radiologists194.
This study showed that their system was comparable to the radiologists. However,
the evaluation of this study was limited to few radiologist and not done on data ob-
tained from breast cancer screening. Furthermore, radiological characteristics of the
lesions included in their datasets were not published.

The purpose of this study is to evaluate a CAD system based on deep learning,
which detects both soft-tissue lesions and calcifications, as an independent observer
on population based screening data by comparing it to the performance of screen-
ing radiologists. Evaluation is performed with data from a self-assessment test for
Dutch breast screening radiologists, in which 109 certified screening radiologists par-
ticipated.

7.2 Materials

The performance of individual radiologists can be evaluated with a self-test (also
known as a proficiency test or self-assessment test) where radiologists read a set of
cases, often enriched with breast cancers196–201. In 2012, the Dutch Expert Centre for
Screening unrolled a self-test for all registered Dutch screening radiologists201.

The mammograms included in this self-test, as well as the performance measures
for each radiologist, were used in this study. The self-test dataset was composed by
an expert panel of three radiologists who were engaged in educational activities and
audits at the NETCB. Each of the radiologists within the expert panel had more than
10 years of experience in reading screening mammograms. The mammograms in
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Distribution of cases in the self test

No Abnormalities 35

Soft tissue lesion 17

Calcifications 5

Soft tissue lesion +
calcifications

3

Total number of
cases

60

Table 7.1: Overview of the self-test data set

these sets were obtained from the Dutch Breast Cancer Screening Program Mid-West
(The Netherlands) and contained the mammographic images of the medio-lateral
oblique and cranial-caudal views of each breast. Additionally, the mammographic
images of the prior screening round (two years before) were included when avail-
able, nine cases were initial screening examinations and therefore did not have a
prior screening round. All mammographic images were acquired with full-field dig-
ital mammography systems (Hologic, Bedford, Massachusetts, United States).

The breast cancer categorization in the self-test is shown in Table 7.1. The self-test
contained the exams of 60 women: 25 with breast cancer and 35 without abnormal-
ities (i.e. normal cases). All breast cancers in the dataset were histopathologically
proven. Furthermore, the radiological characteristics, i.e. soft-tissue lesion or sus-
picious calcifications, of the breast cancers were also available. The radiologists
who completed the self-test were registered in the NETCB quality registry that re-
quires the radiologist to read a minimum of 3,000 mammography screens per year.
Reading of the self-test was performed on the same diagnostic workstations that are
daily used for breast cancer screening (Hologic SecurView DX; Hologic, Bedford,
Massachusetts, United States). During reading, radiologists gave a BI-RADS score
of 0, 1, 2, 4, or 5 in an online reporting system (Ziltron software; Ziltron, Dublin,
Ireland). The sensitivity and specificity were calculated for each radiologist based
on their BI-RADS scores. True positives were defined when a case with cancer re-
ceived a BI-RADS score of 0, 4, or 5 (i.e. would have been recalled in a screening
program). When a case with cancer received a score of 1 or 2, it was considered as
a false negative. False positive cases were defined as normal cases that would have
been recalled.
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7.3 Methods

Similar to most breast cancer detection systems, the CAD system in this study con-
sists of two subsystems: a soft-tissue lesion detection system and a calcification de-
tection system, both based on deep learning88,202. The output of these two systems
is combined to generate an overall output score per exam. The CAD system was
trained with a very large database containing many exams with cancer. The exams
in the self-test were not used for training and thus never seen by the system.

The soft-tissue lesion detection system consists of two steps88. In the first step, an
image processing system is applied to find a limited set of potential soft-tissue lesion
locations in every image83. At these locations, square regions of interest (patches)
are selected and potential lesions are segmented203. These patches together with
features describing the context, location, geometry, texture and contrast of the seg-
mented lesions are classified into normal or malignant by a deep learning system88.
The output of the soft-tissue lesion detection system is a region of each segmented
lesion together with a suspiciousness score supplied by the deep learning algorithm.

The calcification detection system consists of three main steps. Similar to the soft-
tissue lesion detection system, a sensitive detector is applied to each mammogram
to obtain potential calcification locations. This detector consists of a deep learning
system, which determines whether a pixel belongs to a calcification or not202. In the
second step, detected calcifications are segmented and clustered together to form
groups74. In the third and final step, calcification groups are classified as being be-
nign or malignant143. The output of the calcification detection system is a set of
calcification groups, where each group contains a suspiciousness score determined
by the group classifier.

The output of the two detection systems is combined in a final step, in which also
a classifier is trained to predict presence of a malignant process. In this classification
stage, calcification and soft-tissue lesion findings are combined when they are less
than 15 mm apart from each other. Together with their location and several exam-
based features (e.g. total number of findings found in an exam or breast side), the
final classifier is trained to provide an output score for the whole exam on a scale
from 0-100.

7.4 Evaluation

The output scores of the automated detection system were used to determine per-
formance using Receiver Operating Characteristics (ROC) analysis. To compare the
result to that of the radiologists, we first calculated the ROC curve for each indi-



777

7.5 Results 107

Area under the ROC curve

Average radiol-
ogist

Standalone
CAD system

p-value

Calcification detection
system

0.85± 0.05 0.83± 0.09) 0.44

Soft tissue lesion detec-
tion system

0.91± 0.02 0.90± 0.05 0.40

Standalone CAD system 0.91± 0.02 0.89± 0.05 0.35

Table 7.2: Area under the ROC curve for each sub-detection system and the overall

CAD system.

vidual radiologist based on their BI-RADS ratings. For this purpose, the BI-RADS
ratings were converted to a linear scale on which BI-RADS 0 ratings were set to 3204.
Subsequently, the average ROC curve of the radiologists was calculated and fitted
with a binomial distribution with R version 3.4.3 (R Foundation for Statistical Com-
puting, Vienna, Austria). Results were calculated for each sub-system individually
(i.e. the calcification detection system and soft-tissue lesion detection system) and
for the combined system. Additionally, the area under the curve (AUC) was calcu-
lated for both ROC curves calculated on the whole data set. Statistical analysis was
performed with bootstrapping90 to take variance due to the limited size of the case
sample into account, with p <0.05 considered to show significance.

7.5 Results

All cases in the self-test were successfully processed by the CAD system. Both sub-
systems, i.e. for detecting calcifications and for detecting soft-tissue lesions, detected
all breast cancers. The resulting AUC values with the confidence intervals are shown
for each individual subsystem in Table 7.2. This Table shows that both the calcifica-
tion detection system achieved a similar AUC (0.83± 0.09) compared to the average
radiologist (0.85±0.05, p=0.44) and the soft-tissue lesion detection system, 0.90±0.05

versus 0.91 ± 0.02 (p = 0.40) for the standalone CAD system and radiologist, re-
spectively. Furthermore, the overall CAD system also achieved a similar AUC for
the standalone CAD system compared to the average radiologist, 0.89± 0.05 versus
0.91 ± 0.02 (p = 0.35), respectively. Furthermore, all comparisons between the CAD
system and average radiologists were not significant.
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Figure 7.1: ROC plot for the automated detection system applied as a standalone

CAD system. Each individual blue dot represents the performance of a radiologist.

The blue line is the ROC curve of the average radiologist. The red line is the per-

formance of the detection system on the same data set. Note that the blue dots are

jittered for better visibility of overlapping points

In Figure 7.1, the ROC curve of the combined system on the self-test is shown
together with the average ROC curve for screening radiologists. Additionally, the
individual operating point for each individual radiologist is plotted. Note that for
display some jitter is added to the individual radiologists operating points to show
overlapping points. The ROC graph of the CAD system shows that the CAD system
achieves an equal or better performance than 14 (12.8%) of all 109 radiologists. The
average sensitivity of the radiologists was 82.1% (± 13.6%) at an average specificity
of 92.2% (± 7.3%). The independent CAD system achieved a specificity of 79.5%
at the radiologists‘ average sensitivity of 82.1%. The system achieved a sensitivity
of 71.2% at the radiologists‘ average specificity of 92.2%. At 100% specificity, the
sensitivity of the independent CAD system was 58.5%.

7.6 Discussion and Conclusion

In this study, we evaluated the performance of an independent automated breast
cancer detection system for reading screening mammograms using data from a na-
tional self-test. This system was compared to a total of 109 radiologists and the re-
sults show that the standalone CAD system performs not significantly different than



777

7.6 Discussion and Conclusion 109

the average radiologist. However, although there is no significant difference, the ma-
jority of the radiologists (95 radiologists, 87.2%), as well as the average radiologist,
showed a better performance than the detection system.

Although the evaluated detection system in this study is getting close to the ra-
diologists‘ performance, the results show that the performance of this system is still
not yet optimal. Further improvements of the CAD system are necessary. An im-
portant limitation of the current CAD system is that it determines its output solely
on individual mammographic views. It does not combine information from CC and
MLO views nor does it make use of prior mammograms. When radiologists read
mammograms, they use all information available to them such as the two different
views of each breast, the differences between the left and right breast, and the dif-
ference between the current and prior mammograms. This information boosts the
performance of screening radiologists205,206. In literature, several studies were per-
formed to analyze the effect of including more information in the CAD system207–217.
For example, including the information of two views for mass detection can increase
the case-based sensitivity of the CAD system with 5-14% compared to only using
one view for mass detection208,209. Furthermore, other studies have shown that in-
cluding the temporal information210–214, i.e. using prior mammograms, or including
(asymmetrical) information between the left and right breast215–217 can improve the
performance of CAD systems as well. Including this information can improve the
CAD system considerably. However, these studies were all performed on soft-tissue
lesion CAD systems and the effect is not yet evaluated on calcification CAD sys-
tems. Therefore, further research should be done to evaluate the incorporation of
multi-view and multi-exam information into the overall detection system.

Although the use of self-tests has shown to be a useful tool to evaluate the per-
formance of individual screening radiologists196–201, there are still several concerns.
These concerns are mainly about the datasets that are used. The biggest concern
is the limited number of cases (i.e. 60) in each self-test dataset, which is quite low.
In other self-test datasets the number of mammograms were 50200 and 109218. This
number of cases is important because too many cases will yield less radiologists to
participate in the self-test as this will take too much time and effort and too few
cases will limit the (statistical) power of the self-test. However, the optimal number
of cases for a self-test has not yet been studied201. Furthermore, the self-test datasets
are laboratory datasets, enriched with breast cancer cases, and not representative for
screening data. For example, the prevalence of abnormal cases can have an effect on
the performance outcomes219. Consequently, it is not known how well the radiolo-
gists and the standalone CAD system will perform in practice. The question remains
if the CAD system would perform better, worse, or similar to the 109 radiologists.
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Compared to other studies in which the performance of a standalone CAD sys-
tem was compared to the performance of radiologists88,190,194,195, the evaluated CAD
system in this study performed similar. To compare our results to the studies per-
formed by Hupse et al190 and Kooi et al88,195, only the performance of the soft tissue
detection system can be compared. In these studies, also, no significant difference
could be found between the radiologists performance and the standalone CAD sys-
tem. In the study performed by Becker et al194, the performance of the standalone
system was compared to two datasets. In one dataset their study showed a signifi-
cant lower performance of their system compared to two radiologists and one of the
radiologists showed almost equal performance. In the second dataset, performance
of their system was not significantly different from the performance of the three ra-
diologists.

In this study, we have shown that the performance of an independent automated
deep learning system is nearing the performance of individual breast cancer screen-
ing radiologists in a small and enriched set of mammograms. The performance of
the standalone CAD system was in this set not significantly different than the aver-
age radiologist computed from 109 certified screening radiologists. Further research
in more daily circumstances with a much lower prevalence of pathology and com-
parison to double reading by radiologists should be the next step. However, in those
reading programs where a second certified radiologist is not available a standalone
CAD system could be a very welcome adjunct to a screening program already.
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Breast cancer is the one of the most deadly types of cancer in the female popula-
tion1,2. In the Netherlands, 1 of every 7 women develops breast cancer during her
lifetime and early detection of this type of cancer can reduce breast cancer related
mortality34,35. Breast cancer screening programs are implemented in most devel-
oped countries, and millions of mammograms are acquired each year leading to a
substantial workload for radiologists, especially in screening programs with double-
reading. To reduce reading time and improve detection, computer-aided detection
(CAD) systems have been developed. These systems can analyze each mammo-
graphic image and localize suspicious regions. On reading workstations, these re-
gions can be shown together with a score indicating their suspiciousness.

It has been proven that these CAD systems can improve the detection rate of indi-
vidual radiologists at the cost of a slight increase in recall rate. When implemented
in breast cancer screening, however, no convincing evidence has been found for a
benefit of using these systems as an aid. One of the main reasons that might explain
this disspoint is that because CAD systems show a large amount of false positive
marks in each mammograms. These false positives arise because the CAD systems
are set to operate at a very high sensitivity such that hardly any cancers are missed,
reducing its specificity. This relatively high number of false positives can have a sub-
stantial impact on the general acceptance of these systems in the screening workflow.
For instance, it can lead to an increase in the number of women being unnecessarily
recalled73,96,97, an increase in interpretation time of the mammograms102, and a loss
of confidence in the CAD system102. In practice, it is difficult to assess if CAD marks
are actually judged by the radiologist during screening or generally ignored when
CAD is available to them and using CAD is reimbursed101,103.

A better solution might be to use the CAD system as a completely independent
observer instead of using it as an aid for the radiologists during mammography
screening. In this setup, the CAD system can serve as a stand-alone system and its
output can be, for example, used as a pre-selection tool or as an additional reader
in single reader or a replacement of one reader in double reading. When used as a
pre-selection tool, the CAD system analyzes each mammogram and selects the cases
with a detected abnormality for human reading. In this setup, the radiologists do
not have to focus on filtering out the large amount of normal exams but focus on the
more difficult tasks such as the differentiation of benign and malignant abnormal-
ities. Another setup could be to use CAD as an additional reader, either as a first
reader or second. Possibly even as a third reader, in the case of a disagreement.

In this thesis, we have focused on the development of a stand-alone CAD system
where our general goal was to optimize this system for the detection of calcifications,
the earliest signs of breast cancer in mammography.
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In the first part of this thesis we mainly focus on the improvement of a calcifi-
cation CAD system by reducing the number of false positives in mammograms. In
Chapter 2, we have improved the initial detection of calcification candidates with
a deep learning approach involving convolutional neural networks (CNNs). These
networks are highly suitable for this task because they can overcome the large class-
imbalance between the relatively few pixels belonging to calcifications and the vast
amount of pixels belonging to other breast structures. Additionally, CNNs learn the
most descriptive features from the data itself without the need of pre-configured
(“hand-made”) features and CNNs can be applied very fast to new unseen data
which is a prerequisite as millions of images have to processed each year. The newly
trained CNN was compared to the cascade classifier, a state-of-the-art candidate de-
tector in mammography. This cascade classifier consists of a sequence of individual
classifiers trained on Haar-like features where after each classifier samples are fil-
tered out such that each subsequent classifier can focus on more difficult samples.
On a database including individually annotated calcifications in mammograms ac-
quired on mammography units developed by three different vendors, the results
showed that the CNN significantly outperformed the cascade classifier independent
of mammography unit manufacturer.

In Chapters 3 and 4, we have focused on the removal of one of the most fre-
quent causes of false positives, breast arterial calcifications (BACs). Because BACs
are present in a relatively small fraction of the screening population, we have pro-
posed a framework in which we first select cases with BACs and only remove BACs
in these cases as positive CAD marks. This case selection procedure is described in
Chapter 3. In this chapter, we have trained a case-based classifier which uses fea-
tures calculated on all mammographic images per case and classifies each case as
either a case containing BACs or not. With this approach already 44% of the cases
with BACs can be selected without selecting any case without BACs and all cases
with BACs were selected a specificity of 80%. In Chapter 4, a method is proposed to
reduce the number of false positive CAD marks due to BACs in the cases, selected
by the method in the previous chapter. The BACs removal method included a novel
set of features aimed at differentiating BACs from malignant calcifications. The new
method was evaluated with and without the case selection and compared to a cur-
rent state-of-the-art calcification CAD system. In this comparison, we found that
the BACs removal increases performance of the CAD system significantly and when
adding the case selection the performance of the system increased even more.

Next to BACs, other benign calcifications types, with each a different origin, can
be detected by the CAD system as false positives. Several of CAD marks indicat-
ing typically benign calcifications would be easily dismissed by the radiologists as
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they are obviously false positives and are only bothersome when encountered dur-
ing reading. These obvious false positives (OFPs) include three different types of
CAD findings: 1) BACs, 2) macrocalcifications, and 3) detection errors such as de-
tected noise in the mammogram. Therefore, we have proposed a method to remove
these obvious false positive CAD marks in mammography screening data which is
described in Chapter 5. In this chapter, we have evaluated two approaches where in
the first one the conventional classification method is used to differentiate OFPs from
malignant calcifications. In the second approach, a multi-class method is proposed
where individual classifiers are trained for each type of OFP together with a classi-
fier combining their output scores. Both methods were evaluated on an independent
test set and compared to the baseline CAD system. The results in this chapter show
that classification of OFPs significantly improves the CAD system compared to the
baseline system. Furthermore, when dedicated classifiers are trained for each of the
three different OFP subtypes followed by a combinator classifier, the performance is
significantly better than the conventional two-class classification strategy.

In the second part of this thesis, we have evaluated the potential of CAD for im-
plementation in breast cancer screening. First, as described in Chapter 6, we have
evaluated the breast cancer screening program sensitivity in detecting calcifications
and the importance of detecting calcification early. In this chapter, we evaluated a
large breast cancer screening cohort containing the digital mammograms of 63,895
individual women who participated in the breast cancer screening program from
2003 until 2014. In this database, we have assessed the number of calcifications that
are detectable on a mammogram prior to a screen-detected or interval cancer. The
ground truth was established by applying a calcification CAD system to all these
prior mammograms and inspection of a radiologist of CAD findings to remove false
positives of CAD and to identify calcifications retrospectively related to cancer. In
this retrospective analysis, it was found that almost 55% of the detectable calcifica-
tions are visible in a prior mammogram. Furthermore, the majority (68.4%) of these
detectable calcifications became an invasive cancer (rather than remaining DCIS).
These results suggest that sensitivity of detection of calcifications in screening should
be improved.

In Chapter 7, we have evaluated a complete stand-alone CAD system, includ-
ing both a mass CAD and calcification CAD system developed in this thesis. In this
evaluation, the performance of the CAD system was determined on a dataset, which
is also used to evaluate screening radiologists of the Dutch breast cancer screening
program in a self-test. This self-test was carried out in 2012 and the performance
results of a total of 109 radiologists were available to us. The results in this chap-
ter show that the CAD system performance is not significantly different than the
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performance of screening radiologists although the majority of the radiologists, as
well as the average radiologist, outperform the standalone CAD system. However,
in breast cancer screening programs where double reading is not common or where
a second certified radiologist is not available a stand-alone CAD system could be a
very welcome adjunct to a screening program.
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Calcification CAD systems

In this thesis, several methods are described that significantly improved an existing
calcification CAD system when compared to a current state-of-the-art system. This
baseline system consists of three stages, where each of these stages can have a notice-
able effect on each other and are equally important. For instance, the initial candidate
detection, where each pixel in the image is classified as belonging to a calcification or
not, determines the maximum sensitivity of finding calcifications. In the subsequent
step, calcifications are segmented and grouped together. In the final stage, all groups
are classified to remove groups of calcifications that are not malignant, i.e. contain
benign types of calcifications or only noise. In this thesis we have mainly focused on
improving two stages of the CAD system: the (pixel-based) candidate detection step
and the false positive removal step. However, the segmentation and grouping stage
can be further developed as well. The general focus for further development of this
stage could be in making this stage more robust. At the moment, segmentation is
sensitive to the threshold that is set for defining individual calcifications such that
modifying the candidate detector stage can result in changes in the number of seg-
mented calcifications and, consequently, clusters. The biggest concern in this stage
is to find an optimal balance between detecting true calcifications and removal of
detected noise. For instance, when not all calcifications are detected this can lead to
a low sensitivity of the overall system. However the system should also be specific
enough because more noise in the clusters makes the false positive removal more dif-
ficult. In this thesis we have focused more on the detection and characterization of
groups of calcifications which has a direct influence on the performance of the CAD
system. However further research in increasing the robustness of the segmentation
and grouping is still recommended.

In recent years, medical image analysis has been more and more focused on us-
ing deep learning in detecting pathologies, segmenting medical images, or improv-
ing diagnosis108–110,220. The power of deep learning lies in its self learning abilities,
which allows developers to build powerful applications without having detailed
knowledge of the medical imaging problem they try to solve. However, many ex-
amples are needed for these deep learning systems to be trained successfully, e.g.
thousands or millions of both positive and negative examples. In this thesis, the
available amount of samples (i.e. small patches) seemed appropriate for training
the calcification candidate detection system with deep learning. For this purpose,
millions of negative samples were randomly extracted from hundreds of mammo-
grams and thousands of individually annotated calcifications were taken as positive
samples. More samples could further improve the detection. However, the num-
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ber of mammograms containing malignant calcifications is limited and annotating
individual calcifications is a time consuming and tedious task. Another approach is
to perform a whole image classification, i.e. train a deep learning algorithm on the
whole image instead of patches. However, more than thousands of images with ma-
lignant calcifications are needed otherwise training a deep learning system becomes
difficult. For the negative class, on the other hand, still enough samples could be
collected because, fortunately, there are many cases without any abnormalities in a
breast cancer screening. Up until now, only few studies have managed to train a
deep learning system for detection and characterizing breast cancer221–225. Though
these studies seem promising, further research should be done to see how these sys-
tems compare to each other and to “classical” breast cancer detection methods.

When it comes to the stand-alone performance of our developed CAD system, its
sensitivity would be acceptable with a sensitivity >90%. However this comes with
an exam specificity of <95% (see Figure 5.8) and, consequently, a large fraction of
false positives. At this operating point, approximately 5% of the screened women
will be incorrectly recalled based on calcifications alone. Keep in mind that the false
positives generated by the soft-tissue lesion CAD are not considered yet. Because
several types of benign calcifications can be present in the breast, we have focused
on the removal of (obvious) false positives detected by the calcification CAD system,
first by removal of only the arterial calcifications and second by removal of other
benign types of calcifications. This approach has proven to result in a significant
decrease in false positives compared to the baseline system. However, there are still
other types of benign calcifications that we did not yet specifically aim to remove
from the output of the CAD system. These types of calcifications should still be
removed when developing a stand-alone CAD system to obtain a more specific in-
dependent observer.

Other improvements of the CAD system are also necessary. An important limita-
tion of the current CAD system is that it analyzes only one image at the time, while
additional information can be derived from comparing the CC and MLO views and
current and prior mammograms to boost the radiologists’ performance205,206. Stud-
ies have already shown that when using such comparisons in CAD systems it can
boost their performance as well207–217. However, most of these studies were done
on soft-tissue lesion detection systems and its effect on calcifications should still be
evaluated.
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CAD systems in breast cancer screening

Detection and characterization of calcifications that develop into breast cancer are
difficult tasks, for both radiologists and computers. Radiologists operate at very
high specificity and it appears that very often screen-detected and interval cancers
with malignant calcifications are visible on the prior screening mammogram in ret-
rospect. The calcification CAD system developed in this thesis, on the other hand,
can be set to a very high sensitivity but lacks an appropriate specificity. The rela-
tively low specificity of the developed CAD system makes it not yet possible to be
used as a fully independent reader of screening mammograms.

Nevertheless, radiologists can still benefit from the developed CAD system as a
reading tool. For example during reading, CAD could be used interactively. In this
reading approach, the radioligist can query CAD results for specific locations that
are of interest65. By clicking on the region of interest, the system will show a marker
on the screen together with the CAD score. This interactive approach has shown
to be more effective compared to the “tradditional” method where CAD marks are
prompted by the radiologist65. However, the “traditional” method can still be help-
ful to radiologists because calcifications are relatively small and easy to miss. There-
fore, it could be useful to prompt calcification CAD marks to check for oversight
errors. For example, calcifications groups that contain only four calcifications or less
could still be missed by the radiologists. By prompting the calfications marks, the
group of calcifications can be brought to light. The radiologist can then examine the
detected region and, for instance, compare it to the prior exam to see if it is a new
group of calcifications. For this purpose, a suitable balance should be found between
what the CAD system shows and what the radiologist expect to see, i.e. a more sen-
sitive CAD system will show more false positives.

Although in this work, a large part of the false positives have been removed as
resulting findings of the developed calcification CAD system, there is still work to
do to further improve the quality of the system to a level where it can be accepted as
an independent reader of mammograms. The most obvious addition to the system
is that it should be combined with a detection system of soft-tissue lesions such that
it can find all types of breast cancer. In Chapter 7, we have investigated an “overall”
CAD system, but it did not yet perform as well as the average radiologist. Con-
sidering the 2-6% recall rate in European screening programs, the developed CAD
system does not yet achieve a fitting sensitivity. However, the CAD system could
still be used standalone. For instance, when set to its highest sensitivity (i.e. close
to 100% detection of breast cancer), the specificity is around 50% (for calcifications,
see Chapter 6). When we assume similar specificity for the mass CAD system, ex-
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ams with a relatively high chance of containing an abnormality could be selected for
double reading and double reading might not be needed for the other half of the
screening exams because there is a very low probability that there will be any ab-
normalities in these. This approach could decrease the workload of the radiologists
theoretically by 25% or increase the time they have to read the suspicious cases.

Future prospects

Step-by-step breast cancer detection systems are becoming as good as screening radi-
ologists. With the current research trend in artificial intelligence and deep learning,
the performance of these cancer detection systems will increase even more and more
and if this trend is continuous, eventually, pass the performance of most experience
radiologists. This, however, does not mean that radiologists will be replaced by these
systems. In the end, whatever work flow changes there will be and how much per-
ception tasks will be shifted to a CAD system, a radiologist has to decide if recall
is justified. At the moment, radiologists have the ultimate medical responsibility as
this is required by law. At this stage, the CAD systems could already be used as one
of the two readers in double reading or as a selection tool for double or single read-
ing. Moreover, when the system has been validated on large screening datasets, it
might even be contemplated to only read the screening exams selected by the CAD
system. It is the right time for large studies in high volume circumstances like the
screening as it is organized in a number of European countries.
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Borstkanker is een van de meest dodelijke kankers in de vrouwelijke populatie1,2.
In Nederland heeft een op de zeven vrouwen kans om borstkanker te ontwikkelen
tijdens haar leven en vroege detectie van deze kanker reduceert de mortaliteit34,35.
Daarom zijn er borstkankerscreeningprogramma’s geı̈mplementeerd in de meeste
ontwikkelde landen. Omdat een groot deel van de vrouwelijke populatie is uitgen-
odigd voor dit bevolkingsonderzoek worden er elk jaar miljoenen mammogram-
men gemaakt wat leidt tot een substantiële werkdruk voor radiologen, voornamelijk
wanneer alle beelden door twee radiologen bekeken worden. Om de leestijd te ver-
minderen en de detectie van borstkanker te vergroten zijn er computergestuurde
detectiesysteem ontwikkeld. Een dergelijk systeem analyseert elk mammogram en
lokaliseert verdachte gebieden. Ieder gebied krijgt uiteindelijk van dit systeem een
verdachtheidsscore.

Het is bewezen dat deze computergestuurde detectiesystemen de radiologen helpen
meer kankers te vinden ten koste van een kleine toename in het aantal doorverwi-
jzingen. Echter, wanneer het systeem geı̈ntegreerd is in de borstkankerscreening
is er geen overtuigend bewijs gevonden dat deze systemen een nuttige toevoeg-
ing zijn in de algehele detectie van borstkanker. Een van de grootste nadelen van
de huidige (commerciële) systemen ontstaat doordat deze systemen een hoge sensi-
tiviteit moeten waarborgen en dat gaat ten koste van de specificiteit, wat leidt tot een
grote hoeveelheid foutpositieve markeringen in elk mammogram. Deze grote ho-
eveelheid foutpositieven kan een sterk effect hebben op de algemene acceptatie van
dit soort systemen in het bevolkingsonderzoek. Dit kan bijvoorbeeld leiden tot een
toename van vrouwen die onnodig doorverwezen worden73,96,97, een toename van
leestijd van mammogrammen102 en een verlies van vertrouwen in het systeem.102.
Het is daardoor moeilijk om vast te stellen of de markeringen van het systeem ook
echt bekeken worden door de radioloog tijdens de screening of dat ze over het alge-
meen genegeerd worden ook al is een detectiesysteem beschikbaar.101,103.

Het systeem inzetten als een onafhankelijke beoordelaar van mammogrammen
zou daarom een betere toepassing van het systeem kunnen zijn in plaats van als hulp
voor de radioloog bij het lezen van mammogrammen. In deze configuratie wordt het
systeem ingezet als een onafhankelijke waarnemer en de analyse kan bijvoorbeeld
gebruikt worden als een selectiemiddel of als een extra beoordelaar in screening. Als
een selectiemiddel kan het systeem na de analyse automatisch bepalen of een mam-
mogram een abnormaliteit bevat en alleen deze worden dan doorgestuurd naar de
screeningsradiologen. In deze setup hoeven radiologen niet te focussen op het weg-
filteren van de “normale” mammogrammen, maar kunnen in plaats daarvan meer
focussen op de moeilijkere taken zoals het differentiëren van benigne en maligne ab-
normaliteiten in de mammogrammen. Het systeem kan ook als een extra beoorde-
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laar worden ingezet waarbij er één van de twee radiologen vervangen kan worden
door het systeem of bij een meningsverschil tussen de twee radiologen kan het sys-
teem optreden als een derde lezer.

Het huidige systeem moet echter nog een stuk verbeterd worden om dit doel te
halen, met name het verminderen van het aantal foutpositieven. Daarom hebben is
er in deze thesis gefocust op het ontwikkelen en verbeteren van een computerges-
tuurd detectiesysteem in mammogrammen. Ons hoofddoel is het optimaliseren van
de detectie van calcificaties, het vroegste stadium van borstkanker.

In het eerste deel van deze thesis hebben we voornamelijk gefocust op het ver-
beteren van het calcificatie detectiesysteem door het verminderen van het aantal
foutpositieve markeringen in de mammogrammen. In Hoofdstuk 2 is de detectie
van individuele calcificaties verbeterd met een zogeheten Deep-Learning methode
waarbij convolutionele neurale netwerken gebruikt worden. Deze netwerken zijn
uiterst geschikt voor deze taak omdat ze ongevoelig zijn voor het grote klasseg-
rootte verschil tussen het relatief kleine aantal pixels behorende bij een calcificatie
in vergelijking met het grote aantal pixels van andere borststructuren. Een ander vo-
ordeel is dat de convolutionele neurale netwerken zelf de meeste descriptieve ken-
merken uit de data kunnen halen zonder dat er extra informatie nodig is die de data
beschrijven. Deze netwerken kunnen tevens snel toepast worden op nieuwe onge-
classificeerde data wat een vereiste is voor een dergelijk systeem, omdat het miljoe-
nen mammmogrammen moet kunnen verwerken per jaar. Het nieuw getrainde sys-
teem was vergeleken met een cascade classificatie methode. Deze methode is een
state-of-the-art methode en bestaat uit een sequentie van individuele classifiers die
getraind zijn met zogeheten Haar-like features. In de cascade wordt na iedere in-
dividuele classifier pixels weggefilterd zodat de latere classifiers meer kunnen fo-
cussen op moeilijker classificeerbare pixels. De vergelijking was gedaan op een
database wat individuele geannoteerde calcificaties bevat. Deze data is verkregen
met mammografen van drie verschillende bedrijven. De resultaten van deze studie
lieten zien dat het gebruik van convolutionele neurale netwerken de calcificatiede-
tectie significant verbeterde in vergelijking met de cascade classificatie, onafhanke-
lijk van de mammograaffabrikant.

In Hoofdstuk 3 en 4 is er gefocust op het verwijderen van een van de meest
voorkomende oorzaken van foutpositieven: arteriële calcificaties in de borst. Om-
dat dit type calcificaties maar een een relatief klein deel van de screeningspopu-
latie voorkomt, stellen we een methode voor waarbij we eerst de vrouwen selecteren
met arteriële calcificaties. En alleen in die geselecteerde vrouwen de foutpositieven
te verwijderen die worden veroorzaakt door arteriële calcificatie. De selectie van
vrouwen met arteriële calcificaties is beschreven in Hoofdstuk 3. In dit hoofdstuk is
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een classifier getraind dat van iedere vrouw alle mammogrammen van een screen-
ingsronde analyseert en gebaseerd op alle informatie in de mammogrammen bepaalt
of dat er arteriële calcificaties gevonden zijn. Met deze methode konden we al 44%
van de vrouwen met arteriële calcificaties selecteren zonder per ongeluk een vrouw
te selecteren zonder dit type calcificaties. Alle vrouwen met arteriële calcificaties
konden met dit systeem gevonden worden, waarbij 20% van de vrouwen werd ges-
electeerd zonder deze calcificaties. In Hoofdstuk 4 is een methode beschreven dat
het aantal arteriële calcificaties verwijderde als positieve markeringen in de mam-
mogrammen van vrouwen die werden geselecteerd door de methode beschreven
in het voorgaande hoofdstuk. Voor de methode om arteriële calcificaties te verwi-
jderen hebben we een nieuwe set van kenmerken ontworpen die de arteriële calci-
ficaties zoveel mogelijk differentieert van maligne calcificaties. De nieuwe methode
was geëvalueerd met en zonder de selectie van vrouwen met arteriële calcificaties en
vergeleken met de huidige state-of-the-art calcificatiedetectiemethode. In de evalu-
atie hebben we aangetoond dat het verwijderen van arteriële calcificaties leidt tot
een significante verbetering van het systeem. Het voorselecteren van vrouwen met
arteriële calcificaties en door alleen de verwijderingsstap te doen in de mammogram-
men van deze vrouwen verbeterde het systeem nog meer.

Naast arteriële calcificaties bevinden zich ook andere benigne soorten calcificaties
in de borst met elk een andere oorsprong. Het detecteren van deze calcificaties wordt
ook gezien als foutpositieven van het detectiesysteem. Een aantal van deze fout-
positieven zijn typisch benigne en worden eenvoudig herkend door de radioloog
en genegeerd. Het markeren van deze duidelijke foutpositieven (DFP) zullen alleen
maar als vervelend worden beschouwd door radiologen. De groep DFPs bevat drie
verschillende typen foutpositieven: 1) arteriële calcificaties, 2) macro-calcificaties
(calcificaties groter dan 10mm) en 3) detectiefouten zoals ruis in het mammogram.
In Hoofdstuk 5 is een methode beschreven dat deze DFPs verwijdert als detec-
tiemarkeringen van het detectiesysteem. In dit hoofdstuk hebben we twee meth-
oden beschreven en geëvalueerd. Hierbiij was de eerste methode de conventionele
manier van classificatie is toegepast voor het differentiëren van DFPs en maligne
calcificaties. De tweede methode bestaat uit een multi-classificatie waarbij individu-
ele classifiers zijn getraind op ieder DFP type en gecombineerd zijn om de DFP’s
te verwijderen als detectiemarkeringen. Beide methodes zijn geëvalueerd op een
onafhankelijke dataset en vergeleken met de huidige state-of-the-art calcificatiede-
tectiemethode. De resultaten in deze studie toonden aan dat het verwijderen van
DFP’s het detectiesysteem significant verbeterde. De tweede methode, de multi-
classificatie methode, presteerde zelfs significant beter dan de conventionele classi-
ficatiemethode.
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In het tweede deel van deze thesis hebben we de potentie van CAD in borstkanker-
screening. Allereerst hebben we in Hoofdstuk 6 het belang van het vroegtijdig
detecteren van maligne calcificaties in de borstkankerscreening en hebben we de
sensitiviteit in het detecteren van maligne calcificaties van het borstkankerscreen-
ingprogramma bepaald. In dit hoofdstuk hebben we groot borstkankerscreening-
cohort geëvalueerd. Dit cohort bevatte digitale mammogrammen van 63,895 indi-
viduele vrouwen die hebben deelgenomen aan de borstkankerscreening tussen 2003
en 2014. In deze databases hebben we gekeken naar het aantal calcificaties die de-
tecteerbaar zijn op het mammogram voorafgaande aan de screeningsronde waarbij
een borstkanker was gevonden of een intervalkanker (een kanker die ontwikkeld
tussen twee screeningsronden). Om dit te doen hebben we met een calcificatiede-
tectiesysteem alle voorgaande mammogrammen geanalyseerd en de mammogram-
men waar het systeem iets vond laten inspecteren door een radioloog. De radioloog
selecteerde hierbij alleen de mammogrammen waarbij het detectiesysteem de later
gevonden kanker heeft gemarkeerd. Hierbij vonden we dat bijna 55% van detecteer-
bare calcificaties zichtbaar zijn in het voorgaande mammogram (twee jaar eerder).
Bovendien ontwikkelde het merendeel van deze eerder detecteerbare calcificaties
tot een invasieve kanker wat het belang van het vroeg detecteren in borst kanker-
screening versterkt.

In Hoofdstuk 7 hebben we een compleet zelfstandig detectiesysteem geëvalueerd.
Dit systeem detecteerde tumor schaduwen en calcificaties. Met dit detectiesysteem
hebben we een zelftestdataset geanalyseerd en de prestatie van het zelfstandige de-
tectiesysteem was vergeleken met screenings radiologen. Deze dataset is gebruikt
voor het evalueren van screenings radiologen en de Nederlandse borstkankerscreen-
ing. Deze zelftest was uitgevoerd in 2012 en de resultaten van 109 radiologen waren
beschikbaar voor ons. In deze studie hebben we laten zien dat het detectiesysteem
niet significant verschillend presteert dan de screeningsradiologen.
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[27] Çetin M., Çetin R., and Tamer N. Prevalence of breast arterial calcification in hypertensive
patients. Clinical Radiology, 59(1):92–95, 2004.



136 Bibliography

[28] Reddy J., Bilezikian J. P., Smith S. J., and Mosca L. Reduced bone mineral density is associated
with breast arterial calcification. The Journal of clinical endocrinology and metabolism, 93(1):208–
211, 2008.

[29] Duhn V., D’Orsi E. T., Johnson S., D’Orsi C. J., Adams A. L., and O’Neill W. C. Breast arterial
calcification: a marker of medial vascular calcification in chronic kidney disease. Clin J Am Soc
Nephrol, 6:377–382, 2011.

[30] Zafar A. N., Khan S., and Zafar S. N. Factors associated with breast arterial calcification on
mammography. Journal of the College of Physicians and Surgeons–Pakistan : JCPSP, 23(3):178–81,
2013.

[31] D’Orsi C. J., E.A.Sickles, Mendelson E. B., and Et al. E. A. M. ACR BI-RADS Atlas, Breast Imaging
Reporting and Data System. 2013.

[32] Hofvind S., Iversen B. F., Eriksen L., Styr B. M., Kjellevold K., and Kurz K. D. Mammographic
morphology and distribution of calcifications in ductal carcinoma in situ diagnosed in orga-
nized screening. Acta radiologica (Stockholm, Sweden : 1987), 52(5):481–7, 2011.

[33] Cox R. F., Hernandez-Santana a., Ramdass S., McMahon G., Harmey J. H., and Morgan M. P.
Microcalcifications in breast cancer: novel insights into the molecular mechanism and func-
tional consequence of mammary mineralisation. British journal of cancer, 106(3):525–37, 2012.

[34] Tabár L., Gad A., Holmberg L., Ljungquist U., Fagerberg C., Baldetorp L., Gröntoft O., Lund-
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F., Laso M. S., Macià F., Castells X., and Sala M. Differences in radiological patterns, tumour
characteristics and diagnostic precision between digital mammography and screen-film mam-
mography in four breast cancer screening programmes in Spain. European Radiology, 21(9):
2020–2028, 2011.

[157] Hambly N. M., McNicholas M. M., Phelan N., Hargaden G. C., O’Doherty A., and Flanagan
F. L. Comparison of digital mammography and screen-film mammography in breast cancer
screening: A review in the Irish Breast Screening Program. American Journal of Roentgenology,
193(4):1010–1018, oct 2009.

[158] Bijker N., Donker M., Wesseling J., den Heeten G. J., and Rutgers E. J. T. Is DCIS Breast Cancer,
and How Do I Treat it? Current Treatment Options in Oncology, 14(1):75–87, 2013.

[159] Weigel S., Hense H. W., Heidrich J., Berkemeyer S., Heindel W., and Heidinger O. Digital



Bibliography 145

Mammography Screening: Does Age Influence the Detection Rates of Low-, Intermediate-, and
High-Grade Ductal Carcinoma in Situ? Radiology, 278(3):707–713, oct 2015.

[160] van Luijt P. A., Heijnsdijk E. A. M., Fracheboud J., Overbeek L. I. H., Broeders M. J. M., Wessel-
ing J., den Heeten G. J., and de Koning H. J. The distribution of ductal carcinoma in situ (DCIS)
grade in 4232 women and its impact on overdiagnosis in breast cancer screening, 2016. ISSN
1465-542X. URL http://breast-cancer-research.biomedcentral.com/articles/10.1186/

s13058-016-0705-5.

[161] Groen E. J., Elshof L. E., Visser L. L., Rutgers E. J. T., Winter-Warnars H. A., Lips E. H., and
Wesseling J. Finding the balance between over- and under-treatment of ductal carcinoma in
situ (DCIS). The Breast, 2016.

[162] Tabár L., Vitak B., Chen H. H., Duffy S. W., Yen M. F., Chiang C. F., Krusemo U. B., Tot T., and
Smith R. A. The Swedish Two-County Trial twenty years later. Updated mortality results and
new insights from long-term follow-up. Radiol Clin North Am, 38(4):625–651, 2000.

[163] Bansal G. J. and Thomas K. G. Screen-detected breast cancer: does presence of minimal signs
on prior mammograms predict staging or grading of cancer? Clinical radiology, 66(7):605–608,
jul 2011.

[164] Baker R., Rogers K. D., Shepherd N., and Stone N. New relationships between breast microcal-
cifications and cancer. British Journal of Cancer, 103(7):1034–1039, sep 2010.

[165] Bird R. E., Wallace T. W., and Yankaskas B. C. Breast Imaging Missed at Screening Mammogra-
phy. Radiology, 184(3):613–617, 1992.

[166] van Dijck J. A., Verbeek A. L., Hendriks J. H., and Holland R. The current detectability of
breast cancer in a mammographic screening program. A review of the previous mammograms
of interval and screen-detected cancers. Cancer, 72(6):1933–1938, 1993.

[167] Vitak B. Invasive interval cancers in the Ostergötland Mammographic Screening Programme:
radiological analysis. European radiology, 8(4):639–646, 1998.

[168] Duncan J., Shi P., Constable T., and Sinusas A. Physical and geometrical modeling for image-
based recovery of left ventricular deformation. Progress in Biophysics and Molecular Biology, 69
(2-3):333–351, 1998.

[169] Daly C. A., Apthorp L., and Field S. Second round cancers: How many were visible on the first
round of the UK National Breast Screening Programme, three years earlier? Clinical Radiology,
53(1):25–28, 1998.

[170] Saarenmaa I., Salminen T., Geiger U., Heikkinen P., Hyvärinen S., Isola J., Kataja V., Kokko
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