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Summary

� Novel high-throughput sequencing methods outperform earlier approaches in terms of res-

olution and magnitude. They enable identification and relative quantification of community

members and offer new insights into fungal community ecology. These methods are currently

taking over as the primary tool to assess fungal communities of plant-associated endophytes,

pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs.
� Taking advantage of the collective experience of six research groups, we here review the

different stages involved in fungal community analysis, from field sampling via laboratory pro-

cedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives,

and solutions.
� Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples

and replicates that encompass the targeted variation in community composition, selection of

marker regions and primers, options for amplification and multiplexing, handling of sequenc-

ing errors, and taxonomic identification.
� Without awareness of methodological biases, limitations of markers, and bioinformatics

challenges, large-scale sequencing projects risk yielding artificial results and misleading

conclusions.

Introduction

The increasing use of molecular markers to identify fungi and
analyse fungal communities in a phylogenetic context has initi-
ated a boom in fungal ecology and phylogenetics. Our under-
standing of the important roles of fungi in symbiotic and
pathogenic interactions with plants, as well as in transformation
of plant litter and nutrient cycling, is thereby rapidly increasing.
In particular, high-throughput sequencing methods enable
detailed, semiquantitative analysis of fungal communities in large
sample sets and provide ecological information that extends far
beyond that provided by previous methods in terms of detail and
magnitude. The process from field samples to species abundance
data involves a long series of steps, from sampling via laboratory
handling to bioinformatics treatment (Fig. 1). At each step, there
is a risk of losing and distorting information. Here we present an
overview of the steps involved, highlight potential pitfalls, discuss
alternatives, and propose solutions.

Sampling

The collecting of field samples to cover the targeted variation and
enable statistically robust conclusions at the desired scale of infer-
ence represents a major challenge, and optimal strategies concern-
ing the number and spatial distribution of samples have been
discussed extensively (Petersen et al., 2005; Prosser, 2010;
Lennon, 2011). Collection of fungal samples calls for some addi-
tional consideration, because of the indeterminate growth of
mycelia and the multitude of contrasting morphologies and
trophic strategies that coexist and interact in fungal communities.

Individual mycelia may sometimes reach metres or much more
in size (Smith et al., 1992; Douhan et al., 2011), and to avoid
spatial autocorrelation as a result of repeated sampling of single
individuals, it is important to employ a minimum distance
between samples that exceeds the largest expected size of fungal
mycelia. For example, Lilleskov et al. (2004) found that, by keep-
ing a minimum distance of 3 m between samples, most of the
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within-stand patchiness in ectomycorrhizal community composi-
tion (which presumably reflected the distribution of individual
mycelia) could be avoided. It is also important to be aware that
fungi are often antagonistic to each other, with mutual exclusion
amplifying spatial variation at the scale of individuals (Boddy,
2000).

In forest soils with well-stratified profiles and deep organic
layers, fungal communities may be more variable along vertical
gradients than horizontally (Dickie et al., 2002; Lindahl et al.,
2007; Baldrian et al., 2012). Free-living saprotrophs depend on
recently dead (i.e. < 10 yr ago) organic materials with high energy
content, and are therefore restricted to colonize recently depos-
ited litter components close to the surface. By contrast, root-asso-
ciated biotrophs may forage for nutrients in the more processed
organic matter underneath, which has largely lost its value as an
energy source (Lindahl et al., 2007). Thus, when soil cores span
this vertical gradient, the integrated community composition
may largely depend on the relative contribution of litter and rhi-
zosphere material to the sample. Strong vertical stratification may
be accounted for by subdivision of soil cores into well-defined
horizons, preferably delimited by the structure and degree of
decomposition of the material rather than by depth.

Fungal communities often display temporal variation in com-
position (Courty et al., 2008; Pickles et al., 2010; Davey et al.,
2012), which may be short term in response to local weather

events or cyclic in relation to seasons and the phenology of host
plants. To analyse seasonal variations with statistical precision,
repeated sampling should preferably stretch over time periods of
several successive years.

Handling of samples

Most markers in DNA-based community analysis are nuclear,
and rapid multiplication of nuclei, for example in association
with spore formation or rapid cell division of opportunists, may
magnify the abundance of genetic markers without a correspond-
ing major increase in biomass. Opportunistic growth is often
induced by disturbances, implying that sampling may trigger
rapid changes in DNA composition. For example, many soil
fungi are intimately connected to plant roots, and disruption of
root connections may induce death of root-associated species fol-
lowed by rapid growth of mycelium-consuming opportunists
(Lindahl et al., 2010). Sieving of soil samples leads to further
release of readily usable substrates for opportunists. Thus, com-
munity development has to be arrested by freezing samples
immediately upon collection, or at least slowed down by keeping
samples cold until frozen at the earliest opportunity. Prolonged
storage in the fridge should best be avoided, but freezing at
�20°C should suffice to arrest community development and
preserve DNA. Samples collected for RNA extraction have to be
shock-frozen on dry ice or liquid nitrogen directly in the field, as
RNA is prone to rapid degradation, and mRNA transcriptomes
change in composition immediately upon disturbance. Samples
intended for RNA extraction, as well as the extracted RNA,
should be stored at �80°C, to ensure stable preservation. When
direct freezing is not possible, chemical preservation may be an
alternative (Grant et al., 2006). Preservation of samples by drying
at room temperature is not a good option, because it involves
incubation of moist samples at optimal temperatures for sporula-
tion and rapid growth of opportunists. Freeze-drying enables
long-term storage at room temperature, and may also aid later
sample homogenization.

Homogenization and subsampling

With some exceptions (see Taberlet et al., 2012), protocols for
nucleic acid extraction are based on small amounts (mg to g) of
sample material. Field samples are often much larger, and careful
dispersion of tissues and aggregates is required to obtain small
but still representative subsamples. The most commonly used
techniques are bead beating and crushing in liquid nitrogen. Sub-
sampling and homogenization have to be adapted to each specific
substrate and study, but a basic rule is that, when the size of the
subsample decreases in relation to the entire sample, careful
homogenization becomes more critical. In a high-throughput
sequencing study of ectomycorrhizal root systems, Kauserud et al.
(2012) split samples after the homogenization step and observed
a high consistency in fungal community composition of the inde-
pendently analysed replicates, but large differences between
repeated extractions have also been found (B. D. Lindahl et al.,
unpublished). By including some technical replicates (i.e. split
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Fig. 1 Overview of the steps involved in high-throughput sequencing of
fungal communities.
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samples), the magnitude of stochastic effects and biases originat-
ing during subsampling, extraction, PCR, and sequencing may
be assessed and put in relation to between-sample differences. If
duplicate subsamples differ much in community composition,
extraction protocols should be modified to allow larger sample
sizes (e.g. in 50-ml tubes). When many samples are pooled, repli-
cation could even be implemented during sampling, so that two
composite samples are collected and analysed from the same plot,
providing information about stochastic variation associated with
sampling. Should the sampling-associated noise threaten to over-
shadow more subtle treatment effects or ecological correlations,
sampling effort would have to be increased.

After homogenization, new spatial structures may easily be cre-
ated in the samples, for example by density fractionation at the
slightest bumping. Ideally, subsampling should therefore be con-
ducted by repeated subdivision rather than by a single ‘grab sam-
pling’ (Petersen et al., 2005). When subsamples are small,
community composition may be affected by stochastic sampling
effects, as a result of the discrete nature of the sampled nuclei.
This issue may be particularly problematic when screening for
infectious propagules, such as resting spores, which may occur at
low densities but still have a major ecological impact, for example
as plant pathogens.

To ensure that fungal diversity is equally represented for all
samples, DNA should be extracted from equivalent amounts of
starting material. However, because densities may differ by orders
of magnitude between different substrates, the distinction
between volume- and weight-based quantification becomes
important. For soil samples, determination of mass loss on igni-
tion previous to extraction enables extraction from equal
amounts of organic matter, which may be more relevant than
total mass or volume.

Extraction and purification

There are a multitude of methods and ‘ready-to-use’ kits available
for extraction and purification of nucleic acids from field samples
of different kinds, but they all rely on the same basic processes:
(1) mechanical disruption of tissues, (2) solubilization of cell
membranes by detergents under high salt concentrations, in order
to release nucleic acids into solution and prevent electrostatic
binding to contaminants, (3) removal of solid residues, (4) selec-
tive binding of nucleic acids to a solid matrix, or selective precipi-
tation of nucleic acids and pelleting by centrifugation, (5)
washing off of contaminants, and (6) elution/solubilization of
nucleic acids.

Extraction protocols should yield high and uniform amounts
of DNA, while the concentration of PCR inhibitors is mini-
mized, so that optimal PCR conditions may be achieved. To
avoid biases during sample preparation, the same DNA extrac-
tion protocol should ideally be used for all samples (Tedersoo
et al., 2010a), although the relative efficiency of extraction meth-
ods may differ greatly between tissues and soil types (Martin-
Laurent et al., 2001). For challenging substrates, such as forest
soils with high humus content, a ‘raw extract’ produced by cell
disruption and DNA precipitation may have to be further

purified by binding of DNA to a silica matrix. Some of the prob-
lems with purity may be overcome by reducing the amount of
starting material for DNA extraction. Counterintuitively, dilu-
tion of templates may often increase PCR yield as a result of
release of inhibition (Wilson, 1997).

Markers and primers

The ideal marker for fungal community studies should: have
primer sites that are shared by all fungi, be of appropriate length
for efficient amplification and sequencing, have high interspecific
variation but low intraspecific variation, and be possible to align
across all fungi. No known markers meet all these requirements.
However, components of the nuclear ribosomal repeat unit
(rDNA) are by far the most commonly used genetic markers for
phylogenetic and taxonomic identification of microorganisms.
The genes for the small subunit (SSU: 16S/18S) and large sub-
unit (LSU: 23S/25S/28S) are juxtaposed and (in eukaryotes) sep-
arated by the internal transcribed spacer (ITS) region, which is
transcribed but spliced away before assembly of the ribosomes.
The ITS region is composed of two highly variable spacers, ITS1
and ITS2, and the intercalary 5.8S gene. This rDNA operon
occurs in multiple copies in genomes, providing up to 100 times
more DNA template from the same starting material than for sin-
gle-copy genes (Herrera et al., 2009). The rDNA genes are highly
conserved across large groups of organisms, making them ideal
targets for general PCR primers that aim to amplify a wide range
of taxa. However, amplified fragments must also contain enough
variation to be informative at the phylogenetic level of interest.
This is the main reason why the ITS region has been particularly
attractive for mycologists. Because the ITS region does not code
for ribosome components, it is highly variable; with a few excep-
tions (Gazis et al., 2011), even closely related species differ in
sequence. At the same time, intraspecific variation is relatively
low (Schoch et al., 2012). Intragenomic differences in ITS
sequences have been detected in a few fungal taxa such as
Laetiporus spp. (Lindner & Banik, 2011), but this does not seem
to be a widespread phenomenon in Dikarya (D. L. Lindner et al.,
unpublished). Using primers located in the adjoining ribosome-
encoding genes or in the intercalary 5.8S gene, the ITS region
may be amplified from a wide range of fungi. The choice of
genetic marker also has to take the availability of reference data-
bases into account, with ITS sequences having by far the best rep-
resentation for Dikarya (Begerow et al., 2010). Thus, the ITS
region was recently proposed as the formal barcode for fungi
(Schoch et al., 2012). Although useful for species separation, the
ITS region is too variable to address the phylogeny of higher
ranks, that is, at the level of families and orders. When aiming to
estimate phylogenetic distances across major fungal groups, the
LSU provides an attractive alternative, being more conserved
than the ITS and possible to align across distantly related taxa,
yet also providing some resolution at lower taxonomic ranks
(Porter & Golding, 2012). The more conserved SSU and LSU
are widely used for Glomeromycota. In this phylum, single indi-
viduals may contain several divergent rDNA sequences (Sanders
& Croll, 2010), and we have little knowledge of how the
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sequences obtained from field samples are distributed within
mycelia and species.

In prokaryotes, the small subunit (16S) has been the prime tar-
get for phylogenetics and community analysis. Therefore, it may
seem natural to use the corresponding SSU gene for fungi. How-
ever, in fungi and other eukaryotes, the SSU is more conserved
than in prokaryotes (see Fig. 1 in Hartmann et al., 2010). Unless
the focus is restricted to the highest phylogenetic ranks, that is,
phyla and orders, the SSU gene provides little phylogenetic infor-
mation and species delimitation power for Dikarya (Schoch
et al., 2012), and is therefore not recommended as a target for
species-level analysis of fungal communities. In many previous
studies where the SSU was used as the target marker, conclusions
were drawn at the level of species, based on perfect matches with
database references but ignoring the fact that identical sequences
could be found in hundreds of other species across entire orders
of fungi. Identical SSU sequences may be shared between sapro-
trophs, parasites, and mycorrhizal fungi, because these ecological
strategies have evolved repeatedly in relatively small phylogenetic
lineages (Hibbett et al., 2000; James et al., 2006; Tedersoo et al.,
2010b).

Protein-encoding genes usually occur as single copies in ge-
nomes, which may be advantageous for quantitative comparison
of taxon abundances but disadvantageous during amplification.
As a consequence of the nonconserved third base, protein-encod-
ing genes contain more variation in the form of substitutions
compared with deletions and insertions, enabling alignment
across phylogenetically distant groups in spite of high variation in
sequence. Furthermore, coding genes often contain introns with
sufficient power for discrimination among species. A disadvan-
tage with many protein-coding genes is that they occur in gene
families where within-genome gene duplications often have taken
place within the same time-frame as speciation, making the iden-
tification of gene orthologues problematic (Lindahl & Taylor,
2004; B€odeker et al., 2009). In addition, because of the noncon-
served third base, it is difficult to design primers that cover all
possible sequence variants, even when highly conserved func-
tional domains are targeted.

Extraction of total DNA from environmental substrates may
include material from dormant or even dead organisms, as free
DNA may be preserved adsorbed to soil particles (Taberlet et al.,
2012). By contrast, RNA has a shorter biological half-life ranging
from minutes to hours (Kebaara et al., 2006). Transcribed mes-
senger RNA (mRNA) which carries coding information of func-
tional genes may be analysed to relate activity to specific gene
products and eco-physiological functions (Kellner et al., 2010).
However, because the functional and taxonomic annotation of
genes is still far from completed and relatively few species are rep-
resented by their entire genomes in databases, the ribosomal
genes remain the primary target of fungal community identifica-
tion. Ribosomal RNA (rRNA) is quantitatively abundant and
easily extracted from environmental samples (Pennanen et al.,
2004), but the low phylogenetic resolution of these coding
regions limits their use for species identification. Processing of
transcribed rRNA to form mature ribosomes in eukaryotes
includes splicing of the ITS regions, which is known to take place

within a few minutes after transcription (Ko�s & Tollervey,
2010). This short window of time offers a possibility to amplify
taxonomically valuable ITS sequences from newly transcribed
RNA, reflecting very recent metabolic activity – even more recent
than that indicated by SSU rRNA (reviewed by Rajala et al.,
2011). The transient nature of ITS transcripts in the RNA pool
makes them an attractive target when studying responses of
fungal communities to short-term environmental fluctuations.

A multitude of primers have been designed and successfully
applied to amplify fungal rDNA and rRNA from the environ-
ment. Most of these primers were originally designed to target
fungi specifically, but turned out to amplify the DNA of other
eukaryote lineages as well (e.g. ITS1–ITS5; White et al., 1990).
The ITS1F primer (Gardes & Bruns, 1993) discriminates well
against plants and has been widely used in analyses of plant-
associated fungal communities. Primers such as ITS4B (Gardes
& Bruns, 1993) and LB-W (Tedersoo et al., 2008) were designed
with the aim of specifically targeting ectomycorrhizal fungi
belonging to Basidiomycota. Hitherto, most primers have been
constructed with amplification of monospecific samples (e.g.
mycorrhizal root tips or pathogen-infected tissues) in mind.
Nonbiased amplification of complex communities is more
challenging, and competition for primers means that even single
mismatches between primer and template impede or strongly bias
amplification (Ihrmark et al., 2012). With the possible exception
of the primers LR3/TW13 and LR5/TW14, which target highly
conserved sites within the LSU, all fungus-specific and ‘universal’
primers inadvertently discriminate against specific fungal taxa
(Bellemain et al., 2010). Thus, the choice of primer has a signifi-
cant impact on how fungal communities are translated into
amplicon communities. When the goal is to retrieve as many
different fungi as possible, we recommend the use of primer
combinations and primers with degenerate positions (i.e. mix-
tures of many different primers; e.g. Ihrmark et al., 2012; Toju
et al., 2012). If primers with low specificity are used, nonfungal
sequences may be removed at a later stage of the analysis. It
should be noted, however, that when degenerate primers are used
with high cycle numbers, depletion of specific primers in the mix-
tures may bias amplification in favour of species that match
other, less depleted primers (Polz & Cavanaugh, 1998).

The length of the amplified fragments is a critical parameter
that has to be considered when primers are chosen. Longer frag-
ments contain more information for phylogenetic analyses. How-
ever, when aiming for minimized amplification biases, amplified
fragments should be kept short, as increasing length of the target
amplicon has a significant negative effect on assessments of
microbial richness and biases community composition (Huber
et al., 2009; Engelbrektson et al., 2010). With longer stretches of
conserved sequence in the amplicons, the incidence of chimeric
sequences also increases (Fonseca et al., 2012). By using primer
sites in the 5.8S gene, amplification may be restricted to either
the ITS1 or the ITS2 region only. Ihrmark et al. (2012) used new
primers in the 5.8S gene to amplify 250–400-bp fragments con-
taining the ITS2 region and found that diversity and community
composition were much better preserved than when the entire
ITS region was amplified. Additional primers with a similar
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purpose were designed by Toju et al. (2012). ITS1 and ITS2
share many properties, and similar results can be obtained with
the two markers (Mello et al., 2011; Bazzicalupo et al., 2012).
However, ITS2 is generally less variable in length compared with
ITS1 and lacks the problem of co-amplification of a 5′ SSU
intron that is common in many ascomycetes. The ITS2 has also
relatively conserved secondary structure among eukaryotes, which
potentially enables higher level phylogenetic comparisons and the
use of ITS2 as a universal barcode across eukaryotic kingdoms
(Coleman, 2009; Koetschan et al., 2010). Furthermore, ITS2 is
somewhat better represented than ITS1 in databases (Nilsson
et al., 2009).

With respect to Glomeromycota and other non-Dikarya lin-
eages, it is more problematic to recommend primers, as we still
lack information on the diversity in many groups. For Glomer-
omycota, a combination of taxonomically inclusive primers for
nested PCR, involving the partial SSU, ITS, and partial LSU,
has been elaborated (Kr€uger et al., 2009). Alternatively, a vari-
able region of the SSU is amplified with the primers NS31-
AM1, and the variable D2 region of the LSU is amplified with
the primer FLR3 (aka glo454) in combination with either FLR4
or NDL22 (aka TW13) (van Tuinen et al., 1998; Gollotte et al.,
2004; Lee et al., 2008; €Opik et al., 2009; Lekberg et al., 2012).
Recently, other primers or primer combinations have been
suggested (Lee et al., 2008; Stockinger et al., 2010), which also
target regions in the SSU and LSU. The SSU has also been suc-
cessfully used as a marker for Chytridiomycota (Freeman et al.,
2009).

Multiplexing

To make optimal use of high-throughput sequencing technolo-
gies, tagged amplicons from several samples may be mixed and
sequenced in a single run. Sequences are then assigned to samples
based on short sequence tags (i.e. molecular identifiers – MIDs),
which are unique to each sample. In addition, most high-
throughput sequencing methods require that amplicons are fitted
with specific adaptor sequences. The adaptor sequences, as well as
the tags, can be incorporated into the PCR primers, but they may
also be added by ligation to the PCR products. Three options are
available (Table 1).
(1) Both adaptors and sample tags are included in the PCR
primers (Jumpponen & Jones, 2009). This method enables direc-
tional sequencing, which is beneficial if the fragments are too
long to be sequenced throughout their entire length. However, in

some labs such long primer constructs (> 45 bp) has proved to
impair PCR efficiency and to cause problems with primer dimer-
ization (Wallander et al., 2010). Such problems may be amelio-
rated by a nested PCR approach, where ordinary primers are
used during most of the PCR and the extended primers are added
during the last few cycles (Kauserud et al., 2012), but such com-
plicated PCR schemes may increase the risk of contamination
and distortion of relative abundances.
(2) Sample tags are included in the PCR primer but adaptors are
added to the PCR product by ligation (Ihrmark et al., 2012).
This method reduces the length of primers to < 30 bp, and PCR
may be conducted using standard programmes. With adaptors
added by ligation, amplicons will be sequenced in random orien-
tation. This may cause problems for long amplicons, where
sequences from different ends may have no or only partial over-
lap. Nondirectional sequencing also implies that half of the
sequences have to be reversed before further analysis. Further-
more, the 5′-end nucleotides of the tags may interfere with liga-
tion, so that certain samples are favoured in the final mix
(Ihrmark et al., 2012). This problem may be overcome by fitting
all sample tags with the same 5′-end nucleotide or by adding
more PCR product from certain samples.
(3) Both adaptors and sample tags are ligated onto PCR prod-
ucts. Here, the same standard primers may be used for all sam-
ples, but PCR products from different samples have to be kept
separated through ligation. When many samples are analysed,
this method increases work-load and costs considerably.

Berry et al. (2011) found indications that tag-extended prim-
ers may introduce biases in community composition and
advised that tagged primers are added during the last PCR
cycles. However, in later tests of different tags on artificially
assembled communities (Ihrmark et al., 2012), tag-related biases
were marginal. It is, however, important that the two nucleo-
tides at the 3′ end of the tag do not match with corresponding
nucleotides in the target priming site, which would allow the
tag to act as an extension of the primer, potentially causing
positive amplification bias. Switching of sample tags after pool-
ing of separately amplified PCR products may have an impact
on sequencing results and lead to numerous false positives as a
result of cross-contamination (Carlsen et al., 2012). To be able
control for this phenomenon, amplicons may be tagged at both
ends. In order to minimize the risk of misidentification of
sequence tags, it is also important that all tags differ from each
other by at least two nucleotides (Parameswaran et al., 2007;
Faircloth & Glenn, 2012).

1 Primers ADAPTOR - TAG - PRIMER PRIMER - TAG - ADAPTOR
PCR ADAPTOR - TAG - PRIMER ----------------- PRIMER - TAG - ADAPTOR

2 Primers TAG - PRIMER PRIMER - TAG
PRC TAG - PRIMER ----------------- PRIMER - TAG
Ligation ADAPTOR - TAG - PRIMER ----------------- PRIMER - TAG - ADAPTOR

3 Primers PRIMER PRIMER
PCR PRIMER ----------------- PRIMER
Ligation ADAPTOR - TAG - PRIMER ----------------- PRIMER - TAG - ADAPTOR

Table 1 Different options for the addition of
sample tags and sequencing adapters to PCR
products
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PCR

Preservation of genotype composition through DNA extraction
and subsequent PCR amplification is a major challenge. The
number of PCR cycles has to be minimized, as excessive cycles
may result in preferential amplification of rare sequences as well
as the creation and further propagation of chimeric sequences
(Kanagawa, 2003; Haas et al., 2011). Particularly when degener-
ate primers are used, the PCR should preferably be interrupted
while in the exponential phase (Polz & Cavanaugh, 1998). The
cycle number may be reduced by optimizing extraction protocols
and by choosing markers and primers that yield short amplicons
and, thereby, increase PCR efficiency. Generally, one should aim
for weak to medium-strong PCR products, as visualized on an
electrophoresis gel.

Different polymerases tend to differ in fidelity, and choosing a
high-fidelity polymerase will reduce the number of nucleotide
incorporation errors produced during PCR amplification. For
instance, Phusion® (New England BioLabs Inc., Ipswich, MA,
USA) and Pfu UltraTM (Agilent Technologies Inc., Santa-Clara,
CA, USA) both have a 509 higher fidelity than taq (Li et al.,
2006). With a taq error rate of 2.39 10�5, the proportion of
amplicons with error for a 250-bp fragment amplified through
30 cycles of PCR will be 0.3% for Phusion® and Pfu UltraTM and
16% for taq. However, the majority of these errors would be
caused by a single bp difference only and could be accounted for
during denoising and sequence clustering. Choosing a high-
fidelity enzyme may also reduce the number of recombinant
(chimeric) amplicons (Lahr & Katz, 2009).

Quantitative real time PCR (qPCR) is a valuable tool when
optimizing extraction protocols and PCR conditions. In a qPCR
cycler, the increasing product concentration may be followed for
each individual reaction during the entire cycling programme.
Thus, qPCR may be used to pre-screen samples, adjusting cycle
numbers to ensure that the PCR is interrupted during the phase
of exponential increase in product concentration. Extraction
yield, template dilution, and PCR parameters can be optimized,
and PCR inhibition may be assayed by spiking samples with
standard template. Real-time PCR may also be used to quantify
the amount of template, that is, the absolute number of extract-
able copies of marker genes per amount of extracted substrate
(Baldrian et al., 2013). By choosing primers with different speci-
ficities, the total amount of fungal DNA or individual taxa may
be quantified. However, several technical replicates are required,
in order to gain precision in the estimates. It is also critical to
control for PCR inhibition and template availability, preferably
by spiking samples with standard reference DNA before extrac-
tion.

The need to employ the most stringent discipline during prep-
aration of samples for community sequencing cannot be empha-
sized enough. Negative controls (blank extractions) should
always be included in all PCR reactions (Tanner et al., 1998).
However, when the number of PCR cycles is increased, PCR
products will inevitably form, also in negative controls, unless all
laboratory work is conducted under rigorously sterile conditions;
a single spore that falls into a PCR tube is enough to yield a band

on the gel. This is another reason to aim for high template con-
centrations and low cycle numbers, so that the effects of minute
contaminations on overall community composition are mini-
mized. There is also the possibility to include positive controls in
the form of a simple, standard ‘mock community’ of known
qualitative and quantitative composition (c.f. Ihrmark et al.,
2012).

Purification, quantification, and pooling of PCR
products

Before sequencing, PCR products from different samples are
mixed in equimolar proportion, so that the DNA sequence
output is evenly distributed across all samples. It may also be ben-
eficial to pool several PCR reactions from each sample, in order
to even out stochastic distortion of community composition dur-
ing PCR (Polz & Cavanaugh, 1998; Ihrmark et al., 2012). Before
pooling, PCR products have to be purified, to remove primers
and short DNA fragments. If long composite primers are used,
this step may require particular attention, especially when primer
dimerization is a problem. In difficult cases, gel excision may be a
solution, but this approach involves excessive laboratory work
when sample numbers are large. When establishing the concen-
tration of PCR products, methods based on fluorescent DNA-
binding dyes have higher resolution than methods based on UV
absorbance, particularly as many types of sample tubes may
release UV-absorbing compounds from the plastic (Lewis et al.,
2010). If PCR products are available in excess, specially designed
normalization plates are available, which retain the same amount
of DNA from each sample and discard the surplus. To ensure a
high quality of the sample, that is, absence of primers and frag-
ments of unwanted sizes, and firmly establish the final amounts
of DNA, the combined size fractionation and concentration
measurements offered by the Bioanalyzer technology (Agilent
Technologies Inc.) are useful. When running the protocols for
the first time, confirmatory Sanger sequencing of a few cloned
amplicons is recommended before high-throughput sequencing,
particularly if complex PCR schemes are employed.

Sequencing platforms

In 2005 the first high-throughput sequencing platform from 454
Life Sciences (Branford, CT, USA) was introduced to the market
(Margulies et al., 2005), and c. 3 yr later the first fungal ecology
studies were published based on this technology (Buee et al.,
2009; Jumpponen & Jones, 2009; €Opik et al., 2009). The 454-
sequencing technique is routinely used both for shotgun sequenc-
ing of genomic DNA/cDNA and in-depth sequencing of PCR
amplicons. A typical run on the GS FLX+, using titanium chem-
istry, takes 1 d and yields 1–1.5 million reads with a length of
c. 400–500 bases, which are ideal read lengths for covering either
ITS1 or ITS2 (plus primers and tags). Longer read lengths, up to
1200 bases, have recently been generated. Ion Torrent (i.e. the
Ion PGM Sequencer; Life Technologies, Carlsbad, CA, USA),
which was introduced to the market in 2011, has similarities with
the 454 technology but measures released protons (pH) directly
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rather than light. The major advantages of Ion Torrent are its
short run-time (c. 2 h), high yields, and a competitive price com-
pared with 454-sequencing. According to the manufacturer, the
new Ion Proton Sequencer may generate 60–80 million 200-base
reads (with the Proton I chip). The shorter read lengths have
hitherto made Ion Torrent unsuitable for the analysis of the ITS
region, but up to 400-bp sequences have recently been generated.
Illumina sequencing (Illumina Inc., San Diego, CA, USA) is
currently the most successful and most widely adopted next-
generation sequencing platform, but has hitherto not been
adopted for analysis of fungal communities because of limited
read lengths. However, according to the manufacturer, paired-
end sequences on the MiSeq platform now enable 29 250-base
read lengths and a yield of c. 30 million reads. The sequencing
platform SOLiD (Life Technologies) also results in a high num-
ber (up to 4.8 billion) of short reads. As a consequence of their
reduced costs and tremendous yields, both Ion Torrent and Illu-
mina MiSeq will obviously challenge the Roche 454 technology.
So-called ‘third-generation sequencing platforms’ are based on
single-molecule and real-time sequencing, with the first platform,
PacBio RS, introduced in 2011 by Pacific Biosciences (Menlo
Park, CA, USA). Read lengths may be up to several kb but the
sequence quality and output are still too low for diversity analyses
based on amplified markers. However, by sequencing the tem-
plate several times (circular consensus sequencing), reads of high
quality may be produced. Other upcoming techniques that will
probably have a substantial impact on the field are based on regis-
tering the DNA (or RNA) as it goes through nanopores placed in
artificial membranes. For comprehensive reviews of current and
future sequencing technologies, see Glenn (2011) and Shokralla
et al. (2012). Further up-to-date news on this rapidly developing
topic may be found at http://seqanswers.com.

Bioinformatics analysis

As PCR errors become visible when sequences are based on single
molecules of PCR product, and high-throughput methods also
generate frequent errors during the sequencing procedure, data
sets derived by high-throughput sequencing must be subjected to
extensive quality control measures (Kunin et al., 2010). The same
data set analysed using only read-score-based filtering versus more
advanced filtering methods may differ around five-fold in the
number of derived operative taxonomic units (OTUs; Quince
et al., 2009). ITS sequences seem to be particularly prone to 454-
sequencing errors, presumably because of the high incidence of
homopolymers, that is, repetitions of a single nucleotide, which
are a major source of error in 454-sequencing (Balzer et al.,
2011).

The read-score-based base-pair pruning applied by the
sequencing factory is at best a poor replacement for sequence
quality management programs such as AMPLICONNOISE (Quince
et al., 2011), the Denoiser implemented in QIIME (Reeder &
Knight, 2010), DADA (Rosen et al., 2012) and ACACIA (Bragg
et al., 2012), which are all tailored for high-throughput sequenc-
ing data. AMPLICONNOISE also supports detection of sequence
chimeras, whose presence otherwise would inflate diversity

estimates significantly (Fonseca et al., 2012). 454-sequencing
data sets may contain a nontrivial number of sequences that rep-
resent primer dimers, seemingly random sequence data, or gene
segments other than the one targeted (Balzer et al., 2011). It may
happen, as in the study by Wallander et al. (2010), that as much
as 95% of 454-sequencing reads have to be excluded because of
quality-related issues, but 20–40% is a more common figure.
Whether or not a sequence represents the ITS region can be
established using ITSx (http://microbiology.se/software/itsx/),
which uses hidden Markov models and the HMMER package
(Eddy, 2011) to detect the flanking SSU, 5.8S and LSU genes.
The ITS1 and ITS2 as well as the full ITS region can then be
extracted automatically from the sequence data set depending on
which genes were detected. A similar tool for the SSU was
released by Bengtsson et al. (2011). Diversity estimates also
depend on the amount of sequences derived from samples, and
one way to reduce bias associated with different numbers of reads
in the different samples is to randomly subsample all samples
down to the size of the smallest sample (Gihring et al., 2012).

Establishment of sequence similarities requires alignment of
sequences. When global alignments are possible, as is the case for
less variable markers, such as the LSU and SSU, data may be
entered into commonly used pipelines developed for general
microbial ecology, such as MOTHUR (Schloss et al., 2009). Global
alignment also enables analysis of the phylogenetic distance
between communities, using tools such as UniFrac (Hamady
et al., 2010), in which the difference between communities
depends not only on which members are included, but also on
how closely related they are. However, for the ITS region, meth-
ods based on global alignments are impractical, because of high
variability in sequence and length, and clustering of ITS
sequences usually has to depend on pairwise alignments. Pairwise
alignments require major computational capacities, and several
available bioinformatics pipelines specially developed for process-
ing of fungal ITS data sets derived by 454-sequencing, including
CLOTU (Kumar et al., 2011), SCATA (http://scata.mykopat.slu.se),
and PLUTOF (Abarenkov et al., 2010a), run as web-based tools on
high-capacity computer clusters.

During clustering, sequences sharing a predefined level of simi-
larity are assembled into OTUs. Complete-linkage clustering
(furthest neighbour) yields OTUs that can be thought of as circu-
lar; with a 97% similarity threshold, all sequences within a cluster
will be at most 3% different from each other. With single-linkage
clustering (nearest neighbour), a 97% similarity threshold means
that it is enough that a sequence is at most 3% different from any
other sequence in the OTU to be included in that OTU, and
OTUs tend to be amoeboid rather than circular (Fig. 2).
BLASTCLUST (ftp://ftp.ncbi.nih.gov/blast/) is an example of a
single-linkage clustering program, and CLOTU, SCATA, PLUTOF,
and MOTHUR all feature single-linkage clustering. Complete-link-
age algorithms (e.g. UCLUST; Edgar, 2010) are sensitive to the
choice of seed sequences, which typically relies on sequence
frequencies or length. This is not a concern for single-linkage
clustering, which is deterministic, that is, the same OTUs are
arrived at irrespective of seed sequence. The ‘greedy clustering’ of
single-linkage methods, where clusters expand until there are no
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similar sequences left to enter, makes them efficient in the han-
dling of sequencing errors (Huse et al., 2010), and single-linkage
clustering may to some extent replace more computationally
intensive quality management programs. However, single-linkage
clustering requires that OTUs are phylogenetically well separated
from their neighbours, or there is a major risk that they merge
into large clusters (a ‘snowballing effect’). Furthermore, it is
important to consider that local alignments over subsections of
sequences usually lead to higher pairwise similarities than global
alignments, and local alignments with a low match-length thresh-
old may yield overly large clusters.

An alternative to pairwise comparisons, which may be attrac-
tive when computational capacity is limited, is to compare sam-
ple sequences to a set of identified reference sequences, for
example, with MAFFT (Katoh & Frith, 2012) or QIIME (Caporaso
et al., 2010; https://github.com/qiime/its-reference-otus). This
method is best suited for inventories of well-described taxa, but
has obvious limitations when exploring less charted parts of the
fungal kingdom.

An increasing number of clustering programs apply other simi-
larity measures than absolute distances, relying on, for example,
the grammatical structure of the sequence data (notably GRAM-

CLUSTER by Russell et al. (2010), CROP by Hao et al. (2011), and
CRUNCHCLUST by Hartmann et al. (2012)).

CRUNCHCLUST, CLOTU, and SCATA are notable in offering a
pyrosequencing homopolymer collapse option, where OTUs can-
not be delimited based on differences in homopolymer regions
alone. Furthermore, both CLOTU and SCATA allow easy checking
for noncompatible tag combinations when tags are fitted at both
ends of amplicons. Sequence clustering produces the best results
when sequences of comparable coverage are employed, and the
user should consider running tools, such as ITSx (http://micro
biology.se/software/itsx/) or V-XTRACTOR (Hartmann et al.,
2010; Kerekes et al., 2013) for SSU and LSU, to ensure that the
query sequences are at least roughly comparable in terms of cov-
erage of the target region.

To assign taxonomic affiliations to the sequences obtained is a
major challenge, and projects should be planned both with ample
time for data analysis in mind and in such a way that bioinfor-
matics and taxonomic expertise is accounted for among the pro-
ject members. Following the sequence clustering step, the derived
OTUs are typically examined for taxonomic affiliation through

BLAST-based similarity searches in the INSD or UNITE
(Abarenkov et al., 2010b) databases or, for LSU sequences,
through a Bayesian classifier (Liu et al., 2012). We recommend
the use of the most common sequence in each OTU as a basis for
taxonomic examination (less favoured options include the longest
sequence in each OTU or the consensus sequence). The INSD
sequence corpus is in part compromised by the presence of incor-
rectly annotated, chimeric, or otherwise substandard entries, and
the user is well advised to use the UNITE (ITS; Abarenkov et al.,
2010b; Tedersoo et al., 2011), SILVA (SSU; Pruesse et al., 2007)
or MaarjAM (SSU; Glomeromycota; €Opik et al., 2010) databases
instead. UNITE maintains a downloadable copy of the fungal
ITS sequences in INSD (http://unite.ut.ee/repository.php), and
this copy is subject to third-party annotation and other quality
management measures. More than 75 000 INSD sequences have
been annotated, including the exclusion of c. 1000 chimeric
entries and the taxonomic annotation and re-annotation of
13 500 entries, and for local similarity searches, this data set is
much to be preferred over a raw dump of the INSD.

Complications associated with the taxonomic affiliation of
sequences based on BLAST searches are discussed in Christen
(2008) and Kang et al. (2010). Although dependent on settings,
BLAST searches tend to favour long sequence, and the presence
of conserved sequence segments in the query sequence, and any-
one analysing high-throughput derived ITS sequences may want
to prune any large parts of the SSU, LSU, and possibly also the
5.8S from their ITS sequences before doing similarity searches. It
should be recognized that proper sequence-based identification
involves delimitation of taxa and requires understanding of fun-
damental phylogenetics as well as a basic taxonomic overview of
the fungal kingdom (Nilsson et al., 2008). There are countless
examples of how blind reliance on best BLAST hits for identifica-
tion may lead in totally wrong directions. The construction of a
‘rough’ phylogenetic tree, based on a crude alignment and
neighbour joining of sample and reference sequences, may aid
understanding of the material in a phylo-taxonomic context. For
a schematic overview of the phylogenetic composition and diver-
sity across samples, BLAST results can be imported and viewed
in the program MEGAN (Huson et al., 2011). Based on the consis-
tency of the top BLAST matches, the sequences will be mapped
at different levels in a predefined taxonomy (e.g. the GenBank
taxonomy). The SCATA pipeline approaches OTU identification
in a different way, with database references and sample sequences
clustered together. The reference sequences included in each
OTU are listed in the data output, allowing assignment of taxo-
nomic identities.

Another alternative to BLAST for taxonomic assignment is
provided by the na€ıve Bayesian classifier method (Liu et al.,
2012) implemented in the ribosomal database project (Wang
et al., 2007). Starting from a large training set of well-annotated
reference sequences, the Bayesian classifier attempts to assign
query sequence to the various taxonomic levels offered by the ref-
erence sequences. It computes a bootstrap value for each assign-
ment, thus providing a rough measure of confidence of the
assignment at each level. Its accuracy is comparable to, or some-
what better than, that of BLAST, and it is substantially faster

(b)(a)

Fig. 2 Illustration of (a) single-linkage clustering and (b) complete-linkage
clustering of the same objects in a two-dimensional space. Arrows
indicate the clustering threshold distance. With the same clustering
threshold distance, single-linkage clustering yields fewer clusters and fewer
singletons.
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than the latter. A potential downside of the LSU classifier is the
limited number (and taxonomic scope) of the public fungal LSU
sequences. However, given the more conserved nature of the
LSU compared with the ITS region, LSU sequences from previ-
ously unsequenced lineages are typically still assignable to higher
taxonomic ranks such as order or class, which is not always the
case with ITS sequences.

Finally, it is important that data are stored in a publicly acces-
sible way, and that the bioinformatics handling of data is prop-
erly accounted for in publications (Nilsson et al., 2011). An
extensive list of bioinformatics resources can be found in Bik
et al. (2012).

Data interpretation

In spite of denoising and the use of ‘greedy’ clustering algorithms,
high-throughput data sets usually contain a large number of sin-
gletons (unique sequences present only once in the data set) that
deviate to varying degrees from the original template. As such
erroneous singletons inflate diversity, a common practice
has been to remove them before downstream statistical analyses
(Tedersoo et al., 2010a), but of course many singletons may rep-
resent authentic, rare taxa (Kauserud et al., 2012). The abun-
dance of artificial singletons in high-throughput data sets makes
estimates of total sample diversity by endpoint extrapolation of
rarefaction curves risky. As the incidence of erroneous singletons
increases with sequencing effort, species accumulation curves
tend to increase infinitely (Quince et al., 2009). This implies that
the relevance of diversity estimators, such as Jackknife and Chao
indices, which rely on the abundance of singletons and double-
tons relative to more common OTUs, may be questioned for
high-throughput sequencing data (Dickie, 2010). It remains
uncertain to what extent this problem can be ameliorated by
proper bioinformatics procedures.

The reliability of OTUs with a low number of sequences may
also be questioned, and a conservative approach has been to
remove all clusters with less than, for example, five reads. How-
ever, the appropriate cut-off level for removing ‘low-frequency
clusters’ depends on the total number of sequences per sample
and the clustering parameter settings. If the primary aim of stud-
ies is to investigate community–environment relationships or
effects of experimental treatments rather than estimating alpha
diversity or screening for rare taxa, it has been found that pruning
of rare OTUs has a marginal effect on subsequent multivariate
statistical analyses (Gobet et al., 2010). By contrast, particular
attention has to be paid to the validity of rare OTUs when data
are analysed based on presence/absence. As false positives may
occur as a result of tag switching (Carlsen et al., 2012), and even
the slightest cross-contamination may have a major impact, we
recommend pruning of OTUs with low numbers of sequences.
Such pruning should preferably be carried out on a per-sample
basis, as an OTU that is common in one sample may occur as a
low-abundant contaminant in other samples.

To what degree high-throughput sequencing data can be used
quantitatively is much debated (Amend et al., 2010; Baldrian
et al., 2013). When interpreting community analyses based on

molecular markers, it is important to remember that abundance
of genetic markers in extracts does not reflect biomass in the sam-
ples. Amplification of an artificial community assembled from
PCR products showed that community structure may be fairly
well conserved through PCR and 454-sequencing, provided that
the amplicons are short and primers match with all species in the
community (Ihrmark et al., 2012). By contrast, the quantitative
composition of an artificially assembled spore community was
not well reflected by 454-sequencing in the study of Amend et al.
(2010), suggesting that diverging numbers of rDNA repeats in
different species in combination with differences in extractability
may lead to severe quantitative biases. Furthermore, accurate
quantification of genomes in a sample does not suffice to describe
taxonomic biomass distribution; species with long, filamentous
cells are likely to be underrepresented, whereas fungi with yeast-
like growth and/or small cells may be overrepresented, because of
their high nucleus to biomass ratio.

Concluding remarks

New high-throughput methods outperform earlier approaches in
terms of resolution and magnitude and offer unprecedented
insights into fungal community ecology. However, without
awareness of methodological biases, limitations of markers or
bioinformatics challenges, large-scale sequencing risks yielding
artificial results and misleading conclusions. Thus, early claims of
astonishingly high species richness in 454-sequenced amplicons
were exaggerated, because of problems in distinguishing technical
artefacts from true diversity. Although more sophisticated
bioinformatics tools are now available, high-throughput assess-
ment of species richness remains a major technical challenge.
Furthermore, considering that even a species represented by a sin-
gle spore would be recorded in a sufficiently deeply sequenced
sample, the biological relevance of such assessments may be ques-
tioned. Absolute analyses of species presence and diversity are also
sensitive to contaminations during sampling, laboratory process-
ing and sequencing. We argue that the major benefit of
high-throughput methods rather lies in the capacity to provide
information about the main fungal colonizers in large numbers
of samples, to a progressively decreasing cost in terms of money
and laboratory labour. In the near future, automated processing
of samples may increase the scope and statistical power of ecolog-
ical studies even further. In addition, novel sequencing tech-
niques continually increase data output, which in combination
with rapidly expanding databases of entire genomes enables a
development away from molecular markers and PCR amplifica-
tion towards direct analysis of meta-genomes and meta-tran-
scriptomes of complex fungal communities (Kuske & Lindahl,
2013).
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