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Resident memory T cells (TRM) inhabit peripheral tissues and are critical for protection

against localized infections. Recently, it has become evident that CD103+ TRM are not

only important in combating secondary infections, but also for the elimination of tumor

cells. In several solid cancers, intratumoral CD103+CD8+ tumor infiltrating lymphocytes

(TILs), with TRM properties, are a positive prognostic marker. To better understand the

role of TRM in tumors, we performed a detailed characterization of CD8+ and CD4+ TIL

phenotype and functional properties in non-small cell lung cancer (NSCLC). Frequencies

of CD8+ and CD4+ T cell infiltrates in tumors were comparable, but we observed a

sharp contrast in TRM ratios compared to surrounding lung tissue. The majority of both

CD4+ and CD8+ TILs expressed CD69 and a subset also expressed CD103, both

hallmarks of TRM. While CD103+CD8+ T cells were enriched in tumors, CD103+CD4+

T cell frequencies were decreased compared to surrounding lung tissue. Furthermore,

CD103+CD4+ and CD103+CD8+ TILs showed multiple characteristics of TRM, such

as elevated expression of CXCR6 and CD49a, and decreased expression of T-bet and

Eomes. In line with the immunomodulatory role of the tumor microenvironment, CD8+

and CD4+ TILs expressed high levels of inhibitory receptors 2B4, CTLA-4, and PD-1,

with the highest levels found on CD103+ TILs. Strikingly, CD103+CD4+ TILs were

the most potent producers of TNF-α and IFN-γ, while other TIL subsets lacked such

cytokine production. Whereas, CD103+CD4+PD-1low TILs produced the most effector

cytokines, CD103+CD4+PD-1++ and CD69+CD4+PD-1++ TILs produced CXCL13.

Furthermore, a large proportion of TILs expressed co-stimulatory receptors CD27 and

CD28, unlike lung TRM, suggesting a less differentiated phenotype. Agonistic triggering

of these receptors improved cytokine production of CD103+CD4+ and CD69+CD8+

TILs. Our findings thus provide a rationale to target CD103+CD4+ TILs and add co-

stimulation to current therapies to improve the efficacy of immunotherapies and cancer

vaccines.
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INTRODUCTION

T cells are important mediators of tumor immunity and T
cell infiltration of most types of solid tumors is a favorable
prognostic marker (1, 2). Immunotherapy boosting T cell
functionality in tumors is rapidly gaining a foothold as standard
treatment. Unfortunately, durable responses are only observed
in a minority of patients (3), which is most likely related to the
highly immunosuppressive microenvironment of most tumors.
Moreover, there is growing awareness that not only the degree
of tumor infiltration but also the composition of T cell infiltrates
varies substantially even between patients with the same cancer.
As in healthy tissues, it is unlikely that all subsets of T cells
are equally adapted to the physiological properties of the tumor
microenvironments. Understanding the composition of tumor
infiltrating lymphocytes (TILs) and defining the populations that
contribute most to anti-tumor responses is essential to boost
efficacy of immunotherapy.

In the past few years it became clear that immunity in tissues
requires adaptation to the physiological properties of those
tissues. In both mice and humans a specific subset of memory
T cells permanently resides in tissues. Effector and memory T
cells first enter tissues as part of an antigen-specific response and
subsequently take up residency and become resident memory T
cells (TRM). Once established, TRM are important for protecting
barrier tissues against secondary infections (4). Due to their
strategic location, TRM can detect pathogens and kill infected
cells at an early stage to control the spread of infection. As
an effector mechanism TRM produce effector molecules more
rapidly than other memory T cells (5, 6). The rapid release of
IFN-γ, TNF-α, and IL-2 primes the surrounding tissue and leads
to the recruitment of auxiliary immune cells to the infected site
(7, 8).

Different types of TRM exist, residing in different tissues,
but even within single organs strict spatial organization of
TRM subsets has been described (9, 10). As such, a subset of

TRM are specifically adapted for residence in epithelial tissues.
These TRM are traditionally characterized by the expression
of CD69, which inhibits S1PR1 mediated egress from tissues

(11), and CD103 (alpha subunit of αEβ7 integrin), which
docks cells to epithelial E-cadherin (12, 13). Recently, a variety

of novel markers have been revealed that characterize TRM.
These include the chemokine receptor CXCR6, important for
development of TRM (14), and CD49a (α subunit of α1β1
integrin), necessary for retention and cytotoxic function of TRM

(15, 16). Another hallmark of TRM is the expression of a broad
range of inhibitory receptors. TRM often reside in delicate tissues,
thus their activation appears to be strictly regulated to prevent
immunopathology (5, 6, 17).

In line with the epithelial origin of most solid tumors, varying
numbers of infiltrating T cells with an intraepithelial CD103+

phenotype have been described. For several types of cancers, it is
now appreciated that the presence of mainly CD103+CD8+ TILs
is a positive prognostic marker (18–21). Among human NSCLC
tumors with similar degrees of T cell infiltration, those with the
greatest proportions of CD103+ cells have the best prognosis.
These CD103+CD8+ TILs share gene expression programs and

phenotypic properties of TRM, including the expression of CD69,
CXCR6, and CD49a (21). TRM characteristics of CD4+ TILs are
less explored. Although, the necessity of CD4+ T cell help for the
cytotoxic programming of CD8+ T cells is widely appreciated
(22, 23), they have also been described to suppress tumor
growth through the secretion of IFN-γ or direct killing of tumor
cells (24, 25). While CD103+CD8+ TILs isolated from NSCLC
demonstrated greater cytotoxic capacity toward tumor cells than
their CD103− counterparts (19), the functional characteristics of
CD103+CD4+ TILs remain largely unexplored.

In this study we map the heterogeneity of CD4+ and
CD8+ T cell infiltrates in human NSCLC and compare them
with paired unaffected lung tissue. We investigated TRM

characteristics of TIL subsets and addressed the expression of
various inhibitory receptors that can be targeted by checkpoint
inhibition therapy. We demonstrated an increased number
of CD103+CD8+ TILs in NSCLC compared to surrounding
lung tissue. In contrast, numbers of CD103+CD4+ TILs
were decreased. Although the highest expression of inhibitory
receptors was found on CD103+ TILs this was paradoxical to
the superior cytokine production especially of CD103+CD4+

TILs. While TILs producing effector cytokines had lower PD-1
expression than TILs not producing cytokines, TILs with high
PD-1 expression produced CXCL13, indicative of functionally
distinct subsets within TILs. Furthermore, we found TILs to
have a less differentiated phenotype than lung TRM and that
additional co-stimulation enhances cytokine production of some
TIL subsets. Understanding the properties of TILs with TRM

attributes may have important implications for future cancer
treatments.

RESULTS

Resident Memory Phenotypes in Paired
Blood, Lung and Tumor Samples of NSCLC
Patients
While CD8+ T cells are in the spotlight of cancer
immunotherapy, significant numbers of CD4+ T cells can
also be found in solid tumors. We determined the frequencies
of CD4+ and CD8+ T cells among the total CD3+ T cell
pool in paired tumor, lung, and blood samples of 33 NSCLC
patients. Included patients received a surgical resection of
primary tumors as first line therapy without prior chemo- or
radiotherapy. Blood was drawn from a central line at the start
of surgery. We found comparable frequencies of CD4+ and
CD8+ T cells in all three compartments (Figure 1A, general
gating strategy in Supplementary Figure 1). Analysis of TRM

phenotypes was determined by the expression of CD69 and
CD103. While CD69+ T cells were virtually absent in peripheral
blood, they dominated in the lung and tumor (Figure 1B).
In the blood, the frequency of CD103+ cells was low and as
these cells lacked CD69 expression they cannot be defined as
TRM (data not shown). In contrast, both the lung and tumor
compartments harbored high frequencies of CD69+CD103+

cells. As such, lung and tumor derived CD4+ and CD8+ T cells
can be divided into three populations based on the expression
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FIGURE 1 | Distribution of CD103 and CD69 expression on CD4+ and CD8+ T cells of paired blood, lung, and tumor samples. (A) Frequencies of CD4+ (black

circles) and CD8+ (gray circles) cells of total CD3+ T cells of paired blood, lung, and tumor tissue was analyzed by flow cytometry. (B–D) The expression of CD69 and

CD103 was analyzed on paired blood, lung and, tumor CD4+ and CD8+ T cells. (B) Contour plots show representative examples of CD69 and CD103 expression on

blood (left panels), lung (middle panels), and tumor (right panels) CD4+ (top panels) and CD8+ (bottom panels) T cells. (C,D) Frequencies of CD103+CD69+ (black

circles), CD103−CD69+ (dark gray circles), and CD103−CD69−(light gray circles) cells of total blood, lung, and tumor CD4+ (C) and CD8+ (D) T cells were

quantified. (E,F) Correlation between CD103+CD8+ and CD103+CD4+ lung (E) and tumor (F) T cells was determined. (A–F) n = 33. Open circles, solid circles,

solid square indicate adeno-, squamous, and large cell carcinoma, respectively. (A,C,D) Quantifications are shown as dot plots with the horizontal line indicating the

mean and each point represents a unique sample. (E,F) Correlation shown as X-Y graph where each point represents a unique sample. (C,D) ***p < 0.001, ****p <

0.0001; 2-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test. (E,F) r, Pearson’s rank coefficient; p < 0.05.

of CD69 and CD103 (CD103+CD69+, CD103−CD69+, and
CD103−CD69−; Figure 1B). For the rest of paper we refer
to the CD103+CD69+ and CD103−CD69+ tumor and lung

populations as CD103+ and CD69+ TILs and TRM, respectively,
and tumor and lung CD103−CD69− as CD69− TILs and CD69−

T cells, respectively.
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The percentage of CD103+CD8+ TILs was significantly
increased compared to CD103+CD8+ lung TRM. The increased
abundance of CD103+CD8+ TILs was accompanied by a
decreased percentage of CD69−CD8+ TILs (Figure 1D). On the
other hand, the decreased frequencies of CD103+CD4+ TILs was
compensated by more CD69+CD4+ TILs (Figure 1C). Of note,
while we included patients with different types of NSCLC (24
× Adeno-, 8 × Squamous, and 1 × Large cell carcinoma), no
differences were observed in the frequency of the different subsets
(Figure 1: Adeno—open circles, squamous solid circles, large cell
carcinoma solid square). We further found a correlation between
the frequencies of CD103+CD8+ and CD103+CD4+ in both the
lung and tumor (Figures 1E,F).

TIL Populations Are Enriched for T Cells
With an Early Differentiated Memory
Phenotype
A critical step in TRM development is their recruitment
into tissue where they undergo a process of maturation
characterized by a loss of the co-stimulatory CD27 and
CD28 receptors. We defined the differentiation stage of the
different lung and tumor T cell subsets by analyzing the
surface expression of CD45RA, CD28, CD27, and CCR7.
While naïve T cells express all four markers, expression is
lost stepwise by differentiating antigen-primed cells. Early,
early-like, intermediate, late effector-type (CD45RA−) and late
effector-type (CD45RA+) differentiated cells are described as,
CCR7−CD27+CD45RA−CD28+, CCR7−CD27−CD45RA−

CD28+,CCR7−CD27+CD45RA−CD28−, CCR7−CD27−

CD45RA−CD28−, and CCR7−CD27−CD45RA+CD28−,
respectively (26–28). In accordance with our previous
studies (5, 6), lung and tumor T cells did not express CCR7
(Supplementary Figure 2A). As such, there were barely any
undifferentiated naïve (CD45RA+CD27+CD28+) T cells in
the lung or tumor (Figures 2A–D). In the lung, CD103+ TRM

harbored mainly late differentiated CD28−CD45RA−CD27−

cells for both CD4+ and CD8+ lineages (Figures 2C,D;
Supplementary Figure 2B). On the other hand, large fractions
(40–50%) of lung CD69+ TRM were early or intermediate
differentiated. The differentiation profile of lung CD69− T cells
was more variable but mainly comprised of intermediate to
late differentiated cells. Compared to lung T cell subsets, all
TIL subsets contained less differentiated cells (Figures 2C,D).
The largest differences were observed for the CD4+ TILs.
CD103+CD4+ TILs contained more CD27+CD45RA−CD28+

early differentiated cells, while these cells were virtually
absent in CD103+CD4+ TRM. This pattern was even more
pronounced for the CD69+CD4+ and CD69−CD4+ subsets.
CD103+CD8+ TILs had higher expression of CD27 than
lung CD103+CD8+ TRM. In line with the CD4+ TILs, the
strongest decrease in late differentiated cells was observed in the
CD69+CD8+ and CD69−CD8+ TIL compartments. Of note,
we also did not find differences in the phenotype of the TRM

or TILs between adenocarcinoma and squamous carcinoma
(Supplementary Figures 2C,D). In summary, both CD4+

and CD8+ TILs, regardless of phenotype, contained less late
differentiated cells compared to their lung equivalents.

CD103+ TILs Express Common TRM

Homing and Adhesion Molecules
Recently, homing and adhesion molecules CXCR6 and integrin
CD49a (α subunit of α1β1 integrin), were found in numerous
TRM core signatures and promote formation and retention
of TRM (14, 17, 29). Although CD8+ TILs were previously
demonstrated to express CXCR6 (21), it remains unclear if
this chemokine receptor defines TILs with a TRM phenotype
in tumors. In line with the expression pattern in lungs, we
found that CD4+ and CD8+ TILs with a TRM phenotype were
enriched for CXCR6+ cells (Figures 3A,C). While CXCR6 was
uniformly expressed by almost all CD103+ TILs, roughly half of
the CD69+ TILs also expressed this chemokine receptor. Also in
tumors CXCR6 expression appeared to define TRM, as CD69−

TILs barely expressed CXCR6, comparable with lung CD69− T
cells. Similarly to the CXCR6 expression, expression of CD49a
was highest in CD103+, intermediate in CD69+, and absent in
CD69− TILs (Figures 3B,D). This was the case for both CD4+

and CD8+ TILs, albeit the CD49a expression was more uniform
on CD8+ cells.

Shared Expression of Transcription
Factors by TRM and TILs With a TRM-Like
Phenotype
In both human and mice, TRM express a different repertoire
of transcription factors when compared to other memory and
effector T cells (5, 6, 30). Among the most differentially expressed
transcription factors are T-bet and Eomes. Downregulation of
both T-box transcription factors is required TRM development
(31). Accordingly, lung CD103+CD4+, CD69+CD4+, and
CD103+CD8+ TRM expressed low levels of T-bet and Eomes
(Figures 4A–D). In contrast, a substantial population of
CD69+CD8+ TRM expressed Eomes, while Tbet expression was
similar to that of the other TRM subsets. Of note, while T-bet
expression was lower than in blood effector T cells, it was higher
than blood-derived naïve T cells (Supplementary Figure 3A).
Lung CD69−CD4+ and CD69−CD8+ subsets expressed the
highest levels of T-bet and Eomes, similar to blood effector
T cells (Figures 4A–D, Supplementary Figure 3A). TILs with
a TRM phenotype demonstrated comparable T-bet and Eomes
expression patterns as their TRM counterparts. However, Eomes
expression was decreased in CD69−CD4+ TILs compared to
lung CD69−CD4+ T cells, which fits with the decreased number
of late differentiated cells in this subset, observed above. In
line with the less differentiated phenotype of the TILs and the
requirement of TRM to downregulate T-box transcription factors,
we determined whether TILs expressing CD27 also expressed
T-bet and Eomes. Interestingly, CD8+ TILs that expressed CD27
also expressed Eomes. However, we did not find this pattern
for CD4+ TILs, suggesting that there is correlation between the
downregulation of CD27 and Eomes in CD8+ TILs but not in
CD4+ TILs (Supplementary Figure 3B). We also determined
Foxp3 expression in CD4+ TILs with a TRM phenotype and
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FIGURE 2 | Differentiation status of lung TRM and TILs. (A–D) The expression of CD45RA, CD27, and CD28 on CD4+ and CD8+ lung TRM and TILs was

determined. (A,B) The expression of CD27, CD45RA, and CD28 tumor CD103+ (top panels), CD69+ (middle panels), and CD69− (bottom panels) CD4+ (A) and

CD8+ (B) T cells shown by representative contour plots (CD45RA on y-axis, CD27 on x-axis) and histograms overlays (maximum set to 100%) show the expression

of CD28 on the different subsets (black CD27−CD45RA−, gray CD27+CD45RA−, blue CD27−CD45RA+, purple CD27+CD45RA+). (C,D) The frequencies of

CD27+CD45RA+CD28+ (light purple), CD27+CD45RA+CD28− (medium purple), CD27+CD45RA−CD28+ (dark purple), CD27+CD45RA−CD28− (light gray),

CD27−CD45RA−CD28+ (medium gray), CD27−CD45RA−CD28− (black), CD27−CD45RA+CD28+ (light blue), CD27−CD45RA+CD28− (dark blue) of CD103+,

CD69+, and CD69− lung CD4+ (C; left bar graph), tumor CD4+ (C; right bar graph), lung CD8+ (D; left bar graph), and tumor CD8+ (D; right bar graph). (C,D) The

quantifications are shown as bar graphs with the mean. n = 15.

found that most regulatory T cells (Treg) were found in the
CD4+CD69+ TIL compartment (Supplementary Figure 3C).

Granzyme B (GZMB) Expression by TRM

and TILs
Since both T-bet and Eomes are important for effector cell
differentiation and function (32), we determined granzyme B
(GZMB) expression among the different T cell subsets. In line
with the observed T-bet and Eomes expression, the frequency of
GZMB+ cells was highest in lung CD69− T cells (Figures 4A,E).
However, there was a strong decrease of GZMB expression in
CD69− TILs compared to lung T cells. As for the CD69+ TIL

subsets, GZMB expression resembled the levels of their lung
counterparts. Most CD103+CD4+ and CD103+CD8+ lung TRM

lacked expression of GZMB, yet there was a significant increase of
GZMB+ cells in CD103+CD8+ TILs. Overall, GZMB expression
patterns were similar to those of T-bet and Eomes in both lung
TRM and TILs.

CD103+ TILs Expressed the Highest Levels
of Inhibitory Receptors
A shared feature of TRM in mice and human is the expression of
multiple inhibitory receptors (30). These receptors are thought
to help protect against excessive TRM activation and subsequent
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FIGURE 3 | Expression of TRM homing molecules by TILs. (A-D) The expression of chemokine receptor CXCR6 and integrin CD49a were analyzed on CD4+ and

CD8+ TRM and TILs. The expression of CXCR6 (top panels) and CD49a (bottom panels) on lung (left panels) and tumor (right panels) CD4+ (A) and CD8+ (B) T cell

subsets is shown by representative histogram overlays (maximum set to 100%) (CD103+ black, CD69+ dark gray, CD69− solid light gray). The frequencies of

CXCR6+ (C) and CD49a+ (D) CD103+ (black circles), CD69+ (dark gray circles), and CD69− (light gray circles) cells of lung and tumor CD4+ T cells (left graphs) and

CD8+ T cells (right graphs). (C,D) The quantifications are shown as dot plots with the horizontal line indicating the mean and each point represents a unique sample.

n = 15–17. Open circles and solid circles indicate adeno- and squamous carcinoma, respectively. *p < 0.05, ***p < 0.001, ****p < 0.0001; 2-way ANOVA with

Tukey’s multiple comparisons test.

immunopathology of delicate tissues. In the tumor environment,
upregulation of inhibitory receptors, such as PD-1, have also been
linked to exhaustion (33). Paradoxically, PD-1 expression has
also been described as a favorable prognostic marker in several
cancers, in which it defines tumor-specific CD8+ T cells (34, 35).
As several inhibitory molecules are targeted by immunotherapy,
we investigated the expression of PD-1, CTLA-4, and 2B4 among
the different TIL populations. PD-1 was broadly expressed by
CD4+ and CD8+ TRM and TILs (Figure 5A). The highest

frequencies and levels of PD-1 expression were found on
CD103+CD4+, CD69+CD4+, and CD103+CD8+ TILs followed
by CD69+CD8+ TILs (Figures 5B,C). We found that the
expression pattern of CTLA-4 was comparable to that of PD-
1 (Figures 5D–F). Interestingly, CD4+ TILs expressed higher
CTLA-4 levels than their CD8+ counterparts. Expression of
2B4 appeared different. While 2B4 is associated with T cell
exhaustion, it functions differently from classical inhibitory
receptors and can also act as a co-stimulatory molecule (33, 36).
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FIGURE 4 | Expression of T-bet, Eomes and GZMB on TRM and TILs. (A–D) The expression of T-bet, Eomes, and GZMB was analyzed on CD4+ and CD8+ TRM
and TILs. The expression of T-bet (top panels), Eomes (middle panels), and GZMB (bottom panels) on lung (left panels) and tumor (right panels) CD4+ (A) and CD8+

(B) T cells is shown by representative histogram overlays (maximum set to 100%) (CD103+ black, CD69+ dark gray, CD69− solid light gray). The expression of T-bet

(geometric mean fluorescence intensity; GeoMFI) (C) and frequencies of Eomes+ (D) and GZMB+ (E) CD103+ (black circles), CD69+ (dark gray circles), and CD69−

(light gray circles) cells of lung and tumor CD4+ (left graphs) and CD8+ (right graphs) T cells. (C–E) The quantifications are shown as dot plots with the horizontal line

indicating the mean and each point represents a unique sample. n = 17. Open circles and solid circles indicate adeno- and squamous carcinoma, respectively. **p <

0.01, ****p < 0.0001; 2-way ANOVA with Tukey’s multiple comparisons test.
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FIGURE 5 | CD103+ TILs express the highest levels of inhibitory receptors. (A–I) The expression of inhibitory receptors PD-1, CTLA-4, and 2B4 was analyzed on

CD4+ and CD8+ TRM and TILs. The expression of PD-1 (A), CTLA-4 (D), and 2B4 (G) on lung (left panel) and tumor (right panel) on CD4+ (top panel) and CD8+

(bottom panel) T cells is shown by representative histogram overlays (maximum set to 100%) (CD103+ black, CD69+ dark gray, CD69− solid light gray). The

(Continued)
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FIGURE 5 | frequencies and geoMFI of PD-1+ (B,C), CTLA-4+ (E,F) and 2B4+ (H,I) were quantified for CD103+ (black circles), CD69+ (dark gray circles), and

CD69− (light gray circles) cells of lung and tumor CD4+ (left graphs) and CD8+ (right graphs) T cells. (B,C,E,F,H,I) The quantifications are shown as dot plots with the

horizontal line indicating the mean and each point represents a unique sample. n = 17. Open circles and solid circles indicate adeno- and squamous carcinoma,

respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; 2-way ANOVA with Tukey’s multiple comparisons test.

Though virtually all lung CD8+ T cells were 2B4+, 2B4 was also
expressed by most CD103+CD4+ TRM and some CD69−CD4+

T cells. In the tumor, frequencies of 2B4+ cells were again
highest on CD103+ TILs. In comparison to the lung, CD69+ and
CD69− TILs expressed low or decreased 2B4 levels for the CD4+

and CD8+ populations, respectively (Figures 5G,H). Expression
levels of 2B4 were comparable between the lung and tumor
(Figure 5I). Overall, CD103+ TILs expressed the most inhibitory
receptors.

CD103+CD4+ TILs Are the Most Potent
Cytokine Producers in Tumors
The main obstacle faced by TILs is exhaustion induced by
repeated stimulation and subsequent loss of T cell receptor
responsiveness. A common feature of exhausted T cells
is a step-wise loss of the capacity to produce multiple
cytokines upon activation (37, 38). Thus, we set out to test
the functionality of the different CD4+ and CD8+ TRM and
TIL subsets. We stimulated Treg-depleted T cells with plate-
bound agonistic αCD3 and soluble αCD28 antibodies and
determined cytokine production. The majority of CD4+ TRM

and TILs upregulated CD40L and/or CD137 upon activation.
CD8+ TRM and TIL activation was restricted to CD137
upregulation (Supplementary Figures 4A,C). In terms of
cytokine production, CD103+CD4+ TILs produced significantly
more TNF-α and IFN-γ than CD69+CD4+ and CD69−CD4+

TILs (Figures 6A,B; Supplementary Figures 4B,C). No
differences in cytokine production were observed between
CD103+CD8+ and CD69+CD8+ TIL and TRM fractions.
Cytokine production of CD103+CD4+ TILs also exceeded that
of all CD8+ TIL populations.

PD-1 Expression Delineates Between
Functionally Distinct Subsets of CD4+ TILs
As we demonstrated the expression of PD-1 to be highest on
TILs with a TRM phenotype and CD103+CD4+ TILs to be
the best cytokine producers, we investigated the relationship
between PD-1 expression and cytokine production. To do so, we
determined the expression of PD-1 (geometricmean fluorescence
intensity) on TRM and TILs that produced cytokines (positive for
TNF-α and/or IFN-γ) and TILs that did not produce cytokines
(TNF-α−IFN-γ−; Figure 6C; Supplementary Figure 4D). For
lung CD4+ and CD8+ TRM, there was no differential expression
of PD-1 between the cytokine producing or non-producing cells.
On the other hand, within CD103+CD4+, CD69+CD4+, and
CD103+CD8+ TIL populations, significantly lower expression of
PD-1 was observed for the cytokine producers. Recently, PD-
1++CD4+ TILs in breast cancer and PD-1++ CD8+ TILs in
NSCLC were shown to produce CXCL13 (39, 40). Therefore,
we determined CXCL13 expression in the different TRM and

TIL subsets. Also in the CD4+ T cells, expression of CXCL13
appeared to be biased to the tumor fraction. A high percentage of
CD4+ TILs expressed CXCL13 in 4 out of 4 tested samples while
only in 1 out of 4 lung samples expression was detected. Strikingly
CXCL13 was only expressed by TIL with a TRM phenotype.
The highest numbers of CXCL13+ cells were detected in the
CD4+ lineage (Figures 6D,E). Furthermore, CXCL13 was solely
expressed by PD-1++ TILs (Figures 6D,F). Thus, we found that
PD-1 expression defines functionally distinct subsets of CD4+

TILs, effector cytokine producer PD-1low and CXCL13 producing
PD-1++ TILs.

Co-stimulation Increases Cytokine
Production of TILs
Adoptive transfer and vaccination strategies to treat cancer have
demonstrated that CD4+ T cell help, through co-stimulation, is
required for optimal cytotoxic CD8+ T cell responses in tumors.
Administration of co-stimulation in combination with PD-1
therapy improved the cytokine production of TILs in tumor-
bearingmice (22).We next assessed whether CD28 and CD27 co-
stimulation in addition to TCR triggering could boost cytokine
production of Treg-depleted TILs. CD103+CD4+ TILs, but not
other CD4+ TILs, mainly responded to CD28 co-stimulation by
producing more IFN-γ and/or TNF-α (Figures 7A–C). However,
agonistic stimulation of CD27 did not add to this, which
could be explained by higher CD28 than CD27 expression by
the CD103+CD4+ TILs. While CD103+CD8+ TILs appeared
non-responsive to co-stimulation, agonistic CD28 stimulation
boosted TNF-α production by CD69+CD8+ TILs (Figure 7E).
The addition of CD27 co-stimulation further enhanced TNF-
α and/or IFN-γ production (Figures 7D–F). We did not find
differences between adenocarcinoma and squamous carcinoma
samples (Supplementary Figure 5). These data suggest that
therapeutic efficacy of cancer immunotherapy targeting specific
TIL populations may improve by providing agonistic stimulation
of co-stimulatory molecules.

DISCUSSION

In this study, we investigated the phenotype of tumor infiltrating
T cells in NSCLC. We phenotypically characterized CD4+

and CD8+ TILs and directly compared these with T cell
populations in the surrounding lung tissue. While adaptive
immune responses that protect against tumors are typically
attributed to CD8+ T cells, several studies provide evidence
that CD4+ T cells also play a central role (41). As CD4+ T
cells exhibit phenotypic and functional heterogeneity, different
subsets are expected to play different and even opposing roles
in the tumor environment. While accumulation of CD4+

Treg within tumors is associated with worse prognoses in
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FIGURE 6 | Cytokine and chemokine production of TRM and TILs. (A–C) Cytokine production by lung TRM and TILs was determined after overnight αCD3/αCD28

stimulation. (A) The production of TNF-α and IFN-γ by CD103+ (top panels), CD69+ (middle panels), and CD69− (bottom panels) tumor CD4+ (left panels) and

CD8+ (right panels) TILs shown by representative contour plots (TNF-α on y-axis, IFN-γ on x-axis). (B) TNF-α+ IFN-γ+ CD103+, CD69+, and CD69− cells of lung

and tumor CD4+ (top graph) and CD8+ (bottom graph) T cells. (C) PD-1 expression (geometric mean fluorescence intensity; GeoMFI) was quantified on cytokine+

(TNF-α+ and/or IFN-γ+) (black circles) and cytokine− (TNF-α− IFN-γ−) (gray circles) CD103+, CD69+, and CD69− lung and tumor CD4+ (top graph) and CD8+

(bottom graph) T cells. (D) The expression of CXCL13 was determined by flow cytometry in CD103+ (top panels), CD69+ (middle panels), and CD69− (bottom

panels) tumor CD4+ (left panels) and CD8+ (right panels) TILs and is shown by representative contour plots (PD-1 on y-axis, CXCL13 on x-axis). (E) CXCL13+ of

CD103+, CD69+, and CD69− cells was quantified in lung and tumor CD4+ (top graph) and CD8+ (bottom graph) T cells. (F) PD-1 expression (GeoMFI) was

quantified on the CXCL13+ (black circles) and CXCL13− (gray circles) CD103+, CD69+, and CD69− CD4+ TILs. n = 4–6 paired lung-tumor samples; all

adenocarcinoma. *p < 0.05, **p < 0.01, ***p < 0.001; 2-way ANOVA with Tukey’s multiple comparisons test.

many cancers (42), CD4+ T helper cells are required to
optimize cytotoxic CD8+ T cell responses against tumor
cells (43). In addition, CD4+ T cells were demonstrated
to mediate tumor-antigen-mediated killing of tumor cells,
highlighting the importance to understand the functional

heterogeneity of the different T cell subsets in tumors (24, 44,
45).

While numerous studies have reported the presence of TRM-
like CD8+ T cells in solid tumors to be a favorable prognosis,
the role of CD4+ TILs with a shared phenotype is unclear. We
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FIGURE 7 | Co-stimulation enhances cytokine production of TILs. (A–F) The effect of co-stimulation on cytokine production of TILs was assessed with overnight

stimulation. (A–C) The frequencies of IFN-γ+ (A), TNFα+ (B), or TNF-α+ IFN-γ+ (C) CD103+, CD69+, and CD69− CD4+ TILs stimulated with αCD3 with control cell

line (CL) (black circles), αCD3 and αCD28 with control CL (black squares), or αCD3 and αCD28 with CD70-expressing CL (black triangles) was quantified. (D–F) The

frequencies of IFN-γ+ (D), TNFα+ (E), or TNF-α+ IFN-γ+ (F) CD103+, CD69+, and CD69− CD8+ TILs stimulated with αCD3 with control CL (black circles), αCD3

and αCD28 with control CL (black squares), or αCD3 and αCD28 with CD70-expressing CL (black triangles) was quantified. n = 5. *p < 0.05, **p < 0.01, ****p <

0.0001; 2-way ANOVA with Tukey’s multiple comparisons test.

demonstrated for the first time a positive correlation between
CD103+CD8+ and CD103+CD4+ TILs in NSCLC. Our findings
are supported by the observation that CD8+ TILs from CD103-
rich tumors expressed transcripts linked to CD4+ T cell-
mediated help, while CD8+ TILs from CD103-poor tumors did
not (21). As CD4+ T cell help was demonstrated to be required
for guiding CD8+ TRM formation in the lungs by regulating the
entry of TRM precursors to the lung mucosa (46), it is tempting to
speculate that a similar role applies in NSCLC. A key mechanism
to attract TRM precursors into the tissue is IFN-γ production
by CD4+ T cells (46, 47). IFN-γ induces the production of
chemokines by the tissue and boosts the expression of adhesion
molecules by the vasculature which result in higher T cell
infiltration (7, 8). In the tumor, we found the best producers of
IFN-γ to be CD103+CD4+ TILs. While adapted to the metabolic
requirements in tissues, such specialization may also provide
CD103+CD4+ T cells with an advantage over other CD4+ T cell
subsets in malignant niches. Strategies designed to boost anti-
tumor CD8+ CTL responses may therefore benefit from taking
into account the CD4+ subset that appearsmost effective for their
generation.

Once in the tissue, CD8+ TRM maturation is believed to be
independent of CD4+ T cell help. TRM maturation is driven
by local inflammatory stimuli that induce the expression of
CD69 and CD103 (48). In the healthy tissue many of these
signals are provided by local macrophages and dendritic cells,
which were demonstrated to be crucial for full maturation of

especially CD4+ TRM (49–51). It remains to be investigated if the
increased frequency of phenotypically less-differentiated TRM-
like cells in NSCLC may be the result of the tumor environment
that suppresses dendritic cell function (52). Full maturation
of CD103+ TRM requires TGF-β signaling (31). Several lung
tumors are described to express high levels of TGF-β (53), which
may explain the high level of CD103+CD8+ TILs in NSCLC.
At apparent odds, we found the frequencies of CD103+CD4+

TILs to be decreased relative to the surrounding lung tissue.
The altered ratio between CD103+CD8+ and CD103+CD4+

TILs in NSCLC may be a result of different requirements for
their maintenance.While CD8+ TRM maintenance was described
to be independent of persistent antigen (54), whether antigen
presence is required for the maintenance of CD103+CD4+ TRM

remains unclear. If CD103+CD4+ TRM maintenance is antigen-
dependent, this may be a major hurdle for CD103+CD4+ TILs
as many tumors express little or no MHC class II molecules (55).
Strikingly, tumor cells upregulate MHC class Il molecules and
consequently their cytotoxicity in response to IFN-γ. Moreover,
adoptive transfer of Th1-like CD4+ T cells was found to protect
against tumors lacking MHC class II expression (24, 44, 56). Our
data suggest the CD103+CD4+ TILs to be the best candidates for
such therapies.

In NSCLC, IFN-γ-responsive gene expression signatures
are associated with favorable prognosis (57). In light of our
findings, a prominent role for CD103+CD4+ TILs seems
possible as they were the most potent intratumoral cytokine
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producing T cell subset, despite the high expression of PD-1 and
CTLA-4. These CD103+CD4+ TILs also expressed 2B4 while
other CD4+ TILs did not. While generally 2B4 is considered
an inhibitory receptor, it functions differently from typical
inhibitory receptors and has also been demonstrated to act
as a co-stimulatory molecule depending on the availability of
intracellular SAP protein (58). Therefore, 2B4 may be playing
a different role on CD103+CD4+ TILs. On the other hand,
we found that PD-1 expression delineates between effector
cytokine and CXCL13 producing CD4+ TILs. TILs with high
PD-1 expression are classically thought to be exhausted since
they do not produce effector cytokines. This raised the question
of how PD-1++CXCL13+ cells act in the tumor environment.
Our data suggests that CXCL13+ TILs are functionally adapted
to the tumor environment rather than being exhausted. As
a mechanism, intratumoral CXCL13 production may serve to
recruit CXCR5+ T follicular helper cells (Tfh) or B cells. Recently,
it was shown that PD-1++CD8+ TILs are localized within tertiary
lymphoid structures (TLS) in tumors and may be important for
the formation of TLS (40). As such, PD-1 has also been shown to
control the positioning and function of Tfh, which also produce
CXCL13 (39, 59). Therefore, these PD-1++CD4+ TILs may also
be located within TLS and contribute to the formation of TLS
in tumors of NSCLC. It has been shown that in chronic viral
infections, a subset of memory CD8+ T cells with an “exhausted”
phenotype retain their effector function through TCF-1 (60),
indicating that these phenotypically exhausted T cells contain
diverse subsets. Our data reveal the functional heterogeneity
within these “exhausted” CD4+ TILs, suggesting that not all
of these TILs are exhausted but functionally distinct from the
effector cytokine producing TILs.

Agonistic activation of co-stimulatory CD27 and CD28
boosted cytokine production of the CD103+CD4+ TILs.
However, CD69+CD4+ TILs expressed identical levels of PD-1
and higher levels of CD27 and CD28, but cytokine production
was not boosted with additional co-stimulation. If parallels may
be drawn with differentiation of circulating T cells associated
with a step-wise loss of CD27 and CD28, our data suggests
these CD69+CD4+ cells are less differentiated and adapted
to the tissue niche. On the other hand, while CD69−CD4+

TILs have lower expression of inhibitory receptors, this subset
was not able to produce effector cytokines to the same extent
as CD103+CD4+ TILs. However, CD69−CD4+ TILs mainly
consists of early and early-like differentiated cells, which could
indicate that these cells are recent emigrants and are yet to fully
differentiate. This is also supported by the lower expression of
co-inhibitory molecules which suggest they are not yet exhausted
by the tumor microenvironment. Recently, it has been suggested
that these phenotypically “exhausted” TILs are in a stage of
differentiation rather than exhausted and that this state of
“exhaustion” may be reversible (61–63). Overall, both CD4+

and CD8+ TILs expressed high levels of CD27 and CD28,
suggestive of cells in an early stage of differentiation. Perhaps
the addition of co-stimulation to current cancer vaccines and
immunotherapies could push the differentiation of TILs into
optimal cytotoxic effector cells and enhance the efficacy of cancer
therapies.

While IFN-γ production may directly inhibit tumor growth
in synergy with TNF-α (64, 65), it remains to be investigated
whether CD103+CD4+ TILs are equally equipped to kill cancer
cells as their CD103+CD8+ counterparts (19). CD49a expression
by CD103+CD4+ and CD103+CD8+ TILs may allude to this,
as CD49a expressing CD103+CD8+ TILs were the most potent
killers of tumor cells in a mouse model of melanoma and
CD49a defines cytotoxic CD8+ TRM in skin (16, 66, 67). As
such, strategies to identify CD4+ T cells that can directly target
tumor cells may focus on CD103+CD4+ T cells. Therapeutic
manipulation of such reactivity could be a highly attractive
strategy.

MATERIALS AND METHODS

Subjects
Lung and tumor tissue samples were obtained from a total of
33 non-small cell carcinoma (NSCLC) patients. The patients
received a surgical resection of primary tumors as first line
therapy without prior chemo- or radiotherapy. Blood was drawn
from a central line at the start of surgery. Patients included
were stages AJCC between IA1 and IIIA. The exclusion criteria
included history of asthma or a recent lower respiratory tract
infection. The patients were recruited from Onze Lieve Vrouwe
Gasthuis (OLVG), Amsterdam, the Netherlands. A list of the age,
gender, pathology of the patients used in this study are listed in
Supplementary Table 1.

Study Approval
Written informed consent was given by all of the patients and
donors before inclusion into the study. The Ethical Review Board
(ERB) of the METC/CCMO of the OLVG approved the study
under the MEC-U number NL52453.100.15 according to the
Declaration of Helsinki.

Isolation of Mononuclear Cells From
Peripheral Blood and Lung Tissue
Peripheral blood mononuclear cells (PBMCs) were isolated from
heparinized peripheral blood samples with standard density
gradient techniques. For the lung material, after the lobectomy
the pathologist cuts off a piece of peripheral normal looking lung
tissue farthest away from the tumor. For the tumor material, the
pathologist cuts off a piece of the tumor. Lung mononuclear cells
(LMC) and tumor mononuclear cells (TMC) were isolated from
the tissues as previously described (68, 69). In short, the tissue was
cut into small pieces and incubated for 1 h at 37◦C in digestion
medium [RPMI with 20mM Hepes, 10% fetal calf serum (FCS),
50 U/ml DNAse type I (Sigma-Aldrich), 300 U/ml collagenase
type 4 (Worthington)] while shaking. Before and after the
digestion, the tissue was dissociated using gentleMACS Tissue
Dissociator (Miltenyi). The digested tissue was passed through
a flow-through chamber to achieve a single cell suspension.
To isolate mononuclear cells from the cell suspension standard
density gradient techniques were used. LMC, TMC, and PBMC
samples were cryopreserved in liquid nitrogen until further
analysis.
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Flow Cytometry Analysis
PBMC or LMC were labeled with combinations of the following
antibodies: anti-CD4, anti-CD3, anti-CD8, anti-CD27, anti-
CD45RA, anti-CD69, anti-CD103, anti-CD49a, anti-CXCR6,
anti-CD28, anti-CCR7, anti-PD-1, and anti-2B4. Near-IR fixable
dye (Invitrogen) was used to exclude dead cells from the
analysis. For intracellular staining the following antibodies
were used: anti-CTLA4, anti-Eomes, anti-Tbet, anti-IFNγ, anti-
GZMB, anti-CD40L, anti-CD137, anti-IL-2, anti-TNFα, and
anti-CXCL13. The cells were labeled according to manufacturer’s
instructions. For the intracellular staining the cells with fixed and
permeabilized using the Foxp3/Transcription Factor Staining
kit (eBioscience). All samples were measured in PBS 0.5% FCS
with a LSR Fortessa (BD) or FACSymphony (BD) and the
analysis was performed using FlowJo Version 10 software. See
Supplementary Table 2 for the full list of antibodies used in this
manuscript.

In vitro Stimulation Assays
Cytokine production by lung and tumor T cells was determined
by incubating TMC with platebound αCD3 (HIT3A;
eBioscience) and soluble αCD28 (s.28; CLB) overnight at
37◦C in the presence of Brefeldin A (eBioscience). Treg were
depleted by MACS (Miltenyi) isolation CD25+ cells from
the LMC and TMC samples before the stimulation according
to manufacturer’s protocol. To determine the effects of co-
stimulation on TILs, TILs were incubated with only soluble
αCD3 (HIT3A; eBioscience) with control cell line, soluble
αCD3 and αCD28 (s.28; CLB) with control cell line, or soluble
αCD3 (HIT3A; eBioscience) and αCD28 (s.28; CLB) with a
CD70-expressing cell line. The cell lines were made by cloning
CD70 cDNA into pMX-IRES-GFP vector using EcoRI and
NotI restriction enzymes (NEB). Retroviral packaging by
transfection of either pMX-IRES-GFP empty vector or pMX-
hCD70-IRES-GFP together with pCL-ECO into Phoenix-ECO
packaging cells using polyethyleminine. Supernatants containing
retrovirus was collected 48 h after transfection and used for
retroviral transduction of mouse NIH3T3 cells. Transduced
NIH3T3 cells were sorted on GFPhigh (pMX-IRES-GFP) or

GFPhighCD70high (pMX-hCD70-IRES-GFP) expression using
a MoFlo Astrios cell sorter (Beckman Coulter).

Statistics
To determine the significance of our results, we used 2-way
ANOVA and Tukey’s multiple comparisons test with GraphPad
Prism 6. p-value of < 0.05 was considered statistically significant
(∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001).

AUTHOR CONTRIBUTIONS

AO and PH designed the project and experiments. All of
the authors performed experiments and/or collected tissue and
blood samples. All authors contributed to the interpretation and
discussion of data. AO and PH wrote the manuscript. All authors
read and approved the manuscript.

FUNDING

Sanquin PPO project honorated by the Dutch Government.
NWO-Veni 2017.

ACKNOWLEDGMENTS

We express our gratitude to the Sanquin core facility for technical
assistance with the FACS analysis. We like to thank Ester
Remmerswaal and Liset Westera of the AMC for help with the
antibody panel design. We would furthermore like to express
our gratitude to the thoracic surgeons, staff of the lung oncology
and pathology department of the OLVG Oost in Amsterdam
for help with obtaining the patient material. To conclude we
thank the patients for their willingness to participate in our
study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2018.02654/full#supplementary-material

REFERENCES

1. FridmanWH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in

human tumours: impact on clinical outcome.Nat Publ Gr. (2012) 12:298–306.

doi: 10.1038/nrc3245

2. Becht E, Giraldo NA, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH.

Cancer immune contexture and immunotherapy. Curr Opin Immunol. (2016)

39:7–13. doi: 10.1016/j.coi.2015.11.009

3. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy:

toward combination strategies with curative potential.Cell (2015) 161:205–14.

doi: 10.1016/j.cell.2015.03.030

4. Park CO, Kupper TS, Park CO, Kupper TS. The emerging role of resident

memory T cells in protective immunity and inflammatory disease. Nat Med.

(2015) 21:688–97. doi: 10.1038/nm.3883

5. Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, Stark R,

et al. Programs for the persistence, vigilance and control of

human CD8+ lung-resident memory T cells. Nat Immunol. (2016)

17:1467–78. doi: 10.1038/ni.3589

6. Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers

H, et al. Trigger-happy resident memory CD4+ T cells inhabit the

human lungs. Mucosal Immunol. (2017) 11:654–67. doi: 10.1038/mi.20

17.94

7. Schenkel JM, Fraser KA, Vezys V, Masopust D. Sensing and alarm function

of resident memory CD8+ T cells. Nat Immunol. (2013) 14:509–13.

doi: 10.1038/ni.2568

8. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY,

et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of

tissue-wide pathogen alert. Science (2014) 346:101–5. doi: 10.1126/science.12

54803

9. Turner DL, Bickham KL, Thome JJ, Kim CY, D’Ovidio F, Wherry EJ, et al.

Lung niches for the generation and maintenance of tissue-resident memory T

cells.Mucosal Immunol. (2014) 7:501–10. doi: 10.1038/mi.2013.67

10. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et al.

Human skin is protected by four functionally and phenotypically discrete

populations of resident and recirculating memory T cells. Sci Transl Med.

(2015) 7:279ra39. doi: 10.1126/scitranslmed.3010302

Frontiers in Immunology | www.frontiersin.org 13 November 2018 | Volume 9 | Article 2654

https://www.frontiersin.org/articles/10.3389/fimmu.2018.02654/full#supplementary-material
https://doi.org/10.1038/nrc3245
https://doi.org/10.1016/j.coi.2015.11.009
https://doi.org/10.1016/j.cell.2015.03.030
https://doi.org/10.1038/nm.3883
https://doi.org/10.1038/ni.3589
https://doi.org/10.1038/mi.2017.94
https://doi.org/10.1038/ni.2568
https://doi.org/10.1126/science.1254803
https://doi.org/10.1038/mi.2013.67
https://doi.org/10.1126/scitranslmed.3010302
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Oja et al. Functional Heterogeneity of CD4+ TILs in NSCLC

11. Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, et al. GRK2-

dependent S1PR1 desensitization. Science (2015) 333:1898–903.

doi: 10.1126/science.1208248

12. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL,

et al. Adhesion between epithelial cells and T lymphocytes mediated by

E-cadherin and the alpha E beta 7 integrin. Nature (1994) 372:190–3.

doi: 10.1038/372190a0

13. Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK,

et al. Antigen-independent differentiation and maintenance of effector-

like resident memory T cells in tissues. J Immunol. (2012) 188:4866–75.

doi: 10.4049/jimmunol.1200402

14. Zaid A, Hor JL, Christo SN, Groom JR, Heath WR, Mackay LK, et al.

Chemokine receptor-dependent control of skin tissue-resident memory T cell

formation. J Immunol. (2017) 199:2451–9. doi: 10.4049/jimmunol.1700571

15. Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, Sprague AG,

et al. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8T

cell-mediated immune protection against heterologous influenza infection.

Immunity (2004) 20:167–79. doi: 10.1016/S1074-7613(04)00021-4

16. Cheuk S, Schlums H, Bryceson YT, Eidsmo L, Tjernlund A. CD49a expression

defines tissue-resident CD8+ T cells poised for cytotoxic function in human

skin article. Immunity (2017) 46:287–300. doi: 10.1016/j.immuni.2017.01.009

17. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, et al.

Human tissue-resident memory T cells are defined by core transcriptional

and functional signatures in lymphoid and mucosal sites. Cell Rep. (2017)

20:2921–34. doi: 10.1016/j.celrep.2017.08.078

18. Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating

lymphocytes expressing the tissue resident memory marker cd103 are

associated with increased survival in high-grade serous ovarian cancer. Clin

Cancer Res. (2014) 20:434–44. doi: 10.1158/1078-0432.CCR-13-1877

19. Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpréville V, et al.

CD8+ CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-

resident memory T cells and a prognostic factor for survival in lung cancer

patients. J Immunol. (2015) 194:3475–86. doi: 10.4049/jimmunol.1402711

20. Koh J, Kim S, Kim MY, Go H, Jeon YK, Chung DH. Prognostic

implications of intratumoral CD103+ tumor-infiltrating lymphocytes

in pulmonary squamous cell carcinoma. Oncotarget (2017) 8:13762–9.

doi: 10.18632/oncotarget.14632

21. Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, et al.

Tissue-resident memory features are linked to the magnitude of cytotoxic

T cell responses in human lung cancer. Nat Immunol. (2017) 18:940–50.

doi: 10.1038/ni.3775

22. Ahrends T, Babała N, Xiao Y, Yagita H, van Eenennaam H, Borst

J. CD27 Agonism plus PD-1 blockade recapitulates CD4+ T-cell help

in therapeutic anticancer vaccination. Cancer Res. (2016) 76:2921–31.

doi: 10.1158/0008-5472.can-15-3130

23. Ahrends T, Spanjaard A, Pilzecker B, Babała N, Bovens A, Xiao Y, et al. CD4+

T Cell Help confers a cytotoxic t cell effector program including coinhibitory

receptor downregulation and increased tissue invasiveness. Immunity (2017)

47:848–61.e5. doi: 10.1016/j.immuni.2017.10.009

24. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, et al.

Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large

established melanoma after transfer into lymphopenic hosts. J Exp Med.

(2010) 207:637–50. doi: 10.1084/jem.20091918

25. Friedman KM, Prieto PA, Devillier LE, Gross CA, Yang JC, Wunderlich

JR, et al. Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J

Immunother. (2012) 35:400–8. doi: 10.1097/CJI.0b013e31825898c5

26. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al.

Memory CD8+ T cells vary in differentiation phenotype in different persistent

virus infections. Nat Med. (2002) 8:379–85. doi: 10.1038/nm0402-379

27. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of

human T lymphocyte subsets: consensus and issues. Cytom Part A (2008)

73:975–83. doi: 10.1002/cyto.a.20643

28. van Aalderen MC, Remmerswaal EB, Verstegen NJ, Hombrink P, ten Brinke

A, Pircher H, et al. Infection history determines the differentiation state

of human CD8+ T cells. J Virol. (2015) 89:5110–23. doi: 10.1128/JVI.034

78-14

29. Tse SW, Radtke AJ, Espinosa DA, Cockburn IA, Zavala F. The chemokine

receptor CXCR6 is required for the maintenance of liver memory CD8+

T cells specific for infectious pathogens. J Infect Dis. (2014) 210:1508–16.

doi: 10.1093/infdis/jiu281

30. Mackay LK, Kallies A. Transcriptional regulation of tissue-

resident lymphocytes. Trends Immunol. (2017) 38:94–103.

doi: 10.1016/j.it.2016.11.004

31. Mackay LK, Wynne-Jones E, Freestone D, Pellicci DG, Mielke LA, Newman

DM, et al. T-box transcription factors combine with the cytokines TGF-β

and IL-15 to control tissue-resident memory T cell fate. Immunity (2015)

43:1101–11. doi: 10.1016/j.immuni.2015.11.008

32. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE,

et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain

chronic viral infection. Science (2012) 338:1220–5. doi: 10.1126/science.

1229620

33. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Resource

molecular signature of CD8+ T cell exhaustion during chronic viral infection.

Immunity (2007) 27:670–84. doi: 10.1016/j.immuni.2007.09.006

34. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C,

et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor

antigen—specific CD8+ T cell dysfunction in melanoma patients. J Exp Med.

(2010) 207:2175–86. doi: 10.1084/jem.20100637

35. Gros A, Robbins PF, Yao X, Li YF, Tucotte S, Tran E et al. PD-1 identifies the

patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J

Clin Invest. (2014) 124:2246–59. doi: 10.1172/JCI73639

36. Chlewicki LK, Velikovsky CA, Balakrishnan V, Mariuzza RA, Kumar V.

Molecular basis of the dual functions of 2B4 (CD244). J Immunol. (2018)

180:8159–67. doi: 10.4049/jimmunol.180.12.8159

37. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics,

causes and conversion. Immunology (2010) 129:474–81.

doi: 10.1111/j.1365-2567.2010.03255.x

38. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat, A, Barba L, et al.

Exhaustion of tumour-specific CD8+ T cells in metastases from melanoma

patients. J Clin Invest. (2011) 121:2350–60. doi: 10.1172/jci46102

39. Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud

S, et al. CXCL13-producing T FH cells link immune suppression and

adaptive memory in human breast cancer. JCI Insight (2017) 2:1–17.

doi: 10.1172/jci.insight.91487

40. Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, et al.

A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with

predictive potential in non-small cell lung cancer treated with PD-1 blockade.

Nat Med. (2018) 24:994–1004. doi: 10.1038/s41591-018-0057-z

41. Zanetti M. Tapping CD4T cells for cancer immunotherapy: the

choice of personalized genomics. J Immunol. (2015) 194:2049–56.

doi: 10.4049/jimmunol.1402669

42. Ward-Hartstonge KA, Kemp RA. Regulatory T-cell heterogeneity and

the cancer immune response. Clin Transl Immunol. (2017) 6:e154.

doi: 10.1038/cti.2017.43

43. Ossendorp F, Mengedé E, Camps M, Filius R, Melief CJ. Specific T helper

cell requirement for optimal induction of cytotoxic T lymphocytes against

major histocompatibility complex class II negative tumors. J Exp Med. (1998)

187:693–702.

44. Xie Y, Akpinarli A,Maris C, Hipkiss EL, LaneM, Kwon EK, et al. Naive tumor-

specific CD4+ T cells differentiated in vivo eradicate established melanoma. J

Exp Med. (2010) 207:651–67. doi: 10.1084/jem.20091921

45. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer

Immunotherapy based on mutation-specific CD4+ T cells in a patient with

epithelial cancer. Science (2014) 344:641–5. doi: 10.1126/science.1251102

46. Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T, Hu Y, et al.

CD4+ T cell help guides formation of CD103+ lung-resident memory

CD8+ T cells during influenza viral infection. Immunity (2014) 41:633–45.

doi: 10.1016/j.immuni.2014.09.007

47. Nakanishi Y, Lu B, Gerard C, Iwasaki A. CD8+ T lymphocyte mobilization

to virus-infected tissue requires CD4+ T-cell help. Nature (2009) 462:510–3.

doi: 10.1038/nature08511

48. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in

immune defence. Nat Publ Gr. (2015) 16:79–89. doi: 10.1038/nri.2015.3

49. Iijima N, Iwasaki A. A local macrophage chemokine network sustains

protective tissue-resident memory CD4T cells. Science (2014) 346:93–8.

doi: 10.1126/science.1257530

Frontiers in Immunology | www.frontiersin.org 14 November 2018 | Volume 9 | Article 2654

https://doi.org/10.1126/science.1208248
https://doi.org/10.1038/372190a0
https://doi.org/10.4049/jimmunol.1200402
https://doi.org/10.4049/jimmunol.1700571
https://doi.org/10.1016/S1074-7613(04)00021-4
https://doi.org/10.1016/j.immuni.2017.01.009
https://doi.org/10.1016/j.celrep.2017.08.078
https://doi.org/10.1158/1078-0432.CCR-13-1877
https://doi.org/10.4049/jimmunol.1402711
https://doi.org/10.18632/oncotarget.14632
https://doi.org/10.1038/ni.3775
https://doi.org/10.1158/0008-5472.can-15-3130
https://doi.org/10.1016/j.immuni.2017.10.009
https://doi.org/10.1084/jem.20091918
https://doi.org/10.1097/CJI.0b013e31825898c5
https://doi.org/10.1038/nm0402-379
https://doi.org/10.1002/cyto.a.20643
https://doi.org/10.1128/JVI.03478-14
https://doi.org/10.1093/infdis/jiu281
https://doi.org/10.1016/j.it.2016.11.004
https://doi.org/10.1016/j.immuni.2015.11.008
https://doi.org/10.1126/science.1229620
https://doi.org/10.1016/j.immuni.2007.09.006
https://doi.org/10.1084/jem.20100637
https://doi.org/10.1172/JCI73639
https://doi.org/10.4049/jimmunol.180.12.8159
https://doi.org/10.1111/j.1365-2567.2010.03255.x
https://doi.org/10.1172/jci46102
https://doi.org/10.1172/jci.insight.91487
https://doi.org/10.1038/s41591-018-0057-z
https://doi.org/10.4049/jimmunol.1402669
https://doi.org/10.1038/cti.2017.43
https://doi.org/10.1084/jem.20091921
https://doi.org/10.1126/science.1251102
https://doi.org/10.1016/j.immuni.2014.09.007
https://doi.org/10.1038/nature08511
https://doi.org/10.1038/nri.2015.3
https://doi.org/10.1126/science.1257530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Oja et al. Functional Heterogeneity of CD4+ TILs in NSCLC

50. Bergsbaken T, Bevan MJ. Proinflammatory microenvironments within

the intestine regulate the differentiation of tissue-resident CD8+ T cells

responding to infection.Nat Immunol. (2015) 16:406–14. doi: 10.1038/ni.3108

51. Iborra S, Martínez-López M, Khouili, SC, Enamorado M, Cueto, FJ, Conde-

Garrosa R, et al. Optimal generation of tissue-resident but not circulating

memory T cells during viral infection requires crosspriming by DNGR-

1+ dendritic cells. Immunity (2016) 45:847–60. doi: 10.1016/j.immuni.2016.

08.019

52. Schneider T, Hoffmann H, Dienemann H, Schnabel PA, Enk AH, Ring S,

et al. Non-small cell lung cancer induces an immunosuppressive phenotype of

dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac

Oncol. (2011) 6:1162–8. doi: 10.1097/JTO.0b013e31821c421d

53. Levy L, Hill CS. Alterations in components of the TGF-β superfamily signaling

pathways in human cancer. Cytokine Growth Factor Rev. (2006) 17:41–58.

doi: 10.1016/j.cytogfr.2005.09.009

54. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Long-

lived epithelial immunity by tissue-resident memory T (T RM ) cells in the

absence of persisting local antigen presentation. Proc Natl Acad Sci USA.

(2012) 109:7037–42. doi: 10.1073/pnas.1202288109

55. Accolla RS, Lombardo L, Abdallah R, Raval G, Forlani G, Tosi G. Boosting

the MHC class II-restricted tumor antigen presentation to CD4+ T helper

cells: a critical issue for triggering protective immunity and re-orienting the

tumor microenvironment toward an anti-tumor state. Front Oncol. (2014)

4:32. doi: 10.3389/fonc.2014.00032

56. Mumberg D, Monach PA, Wanderling S, Philip M, Toledano AY, Schreiber

RD, et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo

by indirect effects of IFN-gamma. Proc Natl Acad Sci USA. (1999) 96:8633–8.

doi: 10.1073/pnas.96.15.8633

57. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune

contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. (2017)

14:717–34. doi: 10.1038/nrclinonc.2017.101

58. Waggoner SN, Kumar V. Evolving role of 2B4/CD244 in T and NK

cell responses during virus infection. Front Immunol. (2012) 3:377.

doi: 10.3389/fimmu.2012.00377

59. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 controls follicular

T helper cell positioning and function. Immunity (2018) 49:264–74.e4.

doi: 10.1016/j.immuni.2018.06.012

60. Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira

DP, Calderon-Copete S, et al. T cell factor 1-expressing memory-

like CD8+ T cells sustain the immune response to chronic viral

infections. Immunity (2016) 45:415–27. doi: 10.1016/j.immuni.

2016.07.021

61. Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al.

Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the

development of memory-like T cells during chronic infection. Immunity

(2017) 47:1129–41.e5. doi: 10.1016/j.immuni.2017.11.021

62. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P,

et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell

rejuvenation. Cell (2017) 170:142–57.e19. doi: 10.1016/j.cell.2017.06.007

63. Borst J, Ahrends T, Babała N, Melief CJM, Kastenmüller W. CD4+ T cell

help in cancer immunology and immunotherapy. Nat Rev Immunol. (2018)

12:635–47. doi: 10.1038/s41577-018-0044-0

64. Fransen L, Van der Heyden J, Ruysschaert R, Fiers W. Recombinant tumor

necrosis factor: its effect and its synergismwith interferon-gamma on a variety

of normal and transformed human cell lines. Eur J Cancer Clin Oncol. (1986)

22:419–26. doi: 10.1016/0277-5379(86)90107-0

65. Qin Z, Blankenstein T. CD4+ T cell–mediated tumor rejection involves

inhibition of angiogenesis that is dependent on IFN gamma receptor

expression by nonhematopoietic cells. Immunity (2000) 12:677–86.

doi: 10.1016/S1074-7613(00)80218-6

66. Le Floc’h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G,

et al. α E β 7 integrin interaction with E-cadherin promotes antitumor CTL

activity by triggering lytic granule polarization and exocytosis. J Exp Med.

(2007) 204:559–70. doi: 10.1084/jem.20061524

67. Murray T, Fuertes Marraco SA, Baumgaertner P, Bordry N, Cagnon L, Donda

A, et al. Very late antigen-1 marks functional tumor-resident CD8T cells and

correlates with survival of melanoma patients. Front Immunol. (2016) 7:573.

doi: 10.3389/fimmu.2016.00573

68. Holt PG, Robinson BW, Reid M, Kees UR, Warton A, Dawson VH, et al..

Extraction of immune and inflammatory cells from human lung parenchyma:

evaluation of an enzymatic digestion procedure. Clin Exp Immunol. (1986)

66:188–200.

69. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome

JJ, et al. Distribution and compartmentalization of human circulating

and tissue-resident memory T cell subsets. Immunity (2013) 38:187–97.

doi: 10.1016/j.immuni.2012.09.020

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Oja, Piet, van der Zwan, Blaauwgeers, Mensink, de Kivit, Borst,

Nolte, van Lier, Stark and Hombrink. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 15 November 2018 | Volume 9 | Article 2654

https://doi.org/10.1038/ni.3108
https://doi.org/10.1016/j.immuni.2016.08.019
https://doi.org/10.1097/JTO.0b013e31821c421d
https://doi.org/10.1016/j.cytogfr.2005.09.009
https://doi.org/10.1073/pnas.1202288109
https://doi.org/10.3389/fonc.2014.00032
https://doi.org/10.1073/pnas.96.15.8633
https://doi.org/10.1038/nrclinonc.2017.101
https://doi.org/10.3389/fimmu.2012.00377
https://doi.org/10.1016/j.immuni.2018.06.012
https://doi.org/10.1016/j.immuni.2016.07.021
https://doi.org/10.1016/j.immuni.2017.11.021
https://doi.org/10.1016/j.cell.\penalty -\@M {}2017.06.007
https://doi.org/10.1038/s41577-018-0044-0
https://doi.org/10.1016/0277-5379(86)\penalty -\@M {}90107-0
https://doi.org/10.1016/S1074-7613(00)80218-6
https://doi.org/10.1084/jem.20061524
https://doi.org/10.3389/fimmu.2016.00573
https://doi.org/10.1016/j.immuni.2012.09.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Functional Heterogeneity of CD4+ Tumor-Infiltrating Lymphocytes With a Resident Memory Phenotype in NSCLC
	Introduction
	Results
	Resident Memory Phenotypes in Paired Blood, Lung and Tumor Samples of NSCLC Patients
	TIL Populations Are Enriched for T Cells With an Early Differentiated Memory Phenotype
	CD103+ TILs Express Common TRM Homing and Adhesion Molecules
	Shared Expression of Transcription Factors by TRM and TILs With a TRM-Like Phenotype
	Granzyme B (GZMB) Expression by TRM and TILs
	CD103+ TILs Expressed the Highest Levels of Inhibitory Receptors
	CD103+CD4+ TILs Are the Most Potent Cytokine Producers in Tumors
	PD-1 Expression Delineates Between Functionally Distinct Subsets of CD4+ TILs
	Co-stimulation Increases Cytokine Production of TILs

	Discussion
	Materials and Methods
	Subjects
	Study Approval
	Isolation of Mononuclear Cells From Peripheral Blood and Lung Tissue
	Flow Cytometry Analysis
	In vitro Stimulation Assays
	Statistics

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


