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Abstract 
The introduction of the new Informatics curriculum in the Netherlands in 2019 raises the need for new 
teaching material that includes practical assignments and guidelines for their assessment. As a part of 
our research project on teaching Computational Science (modeling and simulation), we participate in 
these efforts and developed a curriculum intervention and an assessment instrument consisting of a 
practical assignment and grading rubrics to assess student’s level of understanding. The rubrics we 
developed can be used both for formative and summative assessment. In this paper we describe the 
design of this assessment instrument and indicate further research directions focusing on validation of 
this instrument.  
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Introduction 

In the Netherlands, where informatics is an elective subject in grades 10 and 11 of the senior general 
secondary education spanning grades 7 through 11 (in Dutch: HAVO) and in grades 10 through 12 of 
the pre-university education spanning grades 7 through 12 (in Dutch: VWO), the new 2019 informatics 
curriculum recognizes the importance of modeling and includes an elective theme comprised of 
modeling and simulation, together called Computational Science. It is described by the high-level 
learning objectives: “Modeling: The candidate is able to model aspects of a different scientific discipline 
in computational terms” and “Simulation: The candidate is able to construct models and simulations, 
and use these for the research of phenomena in that other science field.” (Barendsen & Tolboom, 2016). 
The curriculum does not provide further details about these objectives, instruction or assessment. In 
line with the Dutch tradition, this is left to educators and authors of teaching materials. The elaboration 
of these learning objectives, the development of teaching materials, assessment tools and teacher 
training courses are already taking place and we both participate in these endeavors and monitor the 
developments. 

This study is a part of a larger research project on teaching Computational Science in the context of 
informatics in Dutch secondary education, investigating pedagogical aspects and teachers’ pedagogical 
content knowledge (PCK) about modeling. (For clarity, in this paper the terms modeling, simulation 
modeling and computational science all refer to the learning objective computational science.) Following 
Magnusson et al. (Magnusson, Krajcik, & Borko, 1999), we distinguish four elements of content-specific 
pedagogy: (M1) goals and objectives, (M2) students’ understanding and difficulties, (M3) instructional 
strategies, and (M4) assessment. Previously, we refined the CSTA definition of computational thinking 
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(CT) (Grgurina, Barendsen, Zwaneveld, van de Grift, & Stoker, 2013), made initial explorations of 
teachers’ PCK (Grgurina, Barendsen, Zwaneveld, van Veen, & Stoker, 2014a; Grgurina, Barendsen, 
Zwaneveld, van Veen, & Stoker, 2014b) and of the computational modeling process (Grgurina, 
Barendsen, van Veen, Suhre, & Zwaneveld, 2015), obtained an operational description of the intended 
learning outcomes (ILO) of the learning objective Computational science — thus focusing on 
Magnusson’s element M1, observed students working on modeling tasks — focusing on Magnusson’s 
element M2, and established what data sources were suitable for assessment — Magnusson’s element 
M4  (Grgurina, Barendsen, Zwaneveld, van Veen, & Suhre, 2016), and finally, investigated teachers’ 
initial pedagogical content knowledge on modeling and simulation (Grgurina, Barendsen, Suhre, van 
Veen, & Zwaneveld, 2017). In our subsequent study, we focus on monitoring the levels of understanding 
in the learning outcomes of students engaging in modeling projects - Magnusson’s element M4 - and 
address the following research question: What are the characteristics of the assessment instrument for 
assessment of the intended learning outcome for computational science? In this paper, we describe the 
design of this assessment instrument. The results of the entire study will be reported elsewhere. 

Background and Related Work 

Computational Thinking: Modeling 
Formulating problems in a way that enables us to use a computer to solve them and representing data 
through abstractions such as models and simulations are integral parts of computational thinking (CT) 
(CSTA Computational Thinking Task Force, 2011). With the arrival of computers into schools, new 
venues are created to aid students’ learning in various disciplines through the use of computer models 
(Blikstein & Wilensky, 2009; Van Overveld, Borghuis, & van Berkum, 2015). Wilensky argues, 
“Computational modeling has the potential to give students means of expressing and testing 
explanations of phenomena both in the natural and social worlds” (2014), as do Caspersen and Nowack 
(2013). Indeed, modeling plays a significant role in the development and learning of science (Justi & 
Gilbert, 2002) and informatics equips the students to actively engage in learning science by providing 
tools and techniques to engage in modeling, thus enabling them to provide meaning to the learning both 
of the discipline at hand (Gilbert, 2006) and informatics. In the Informatics curriculum, for the intended 
learning outcomes of the learning objective Computational science, in one of our previous studies we 
developed an operational description that describes the modeling cycle for simulation modeling through 
its elements purpose, research, abstraction, formulation, requirements/specification, implementation, 
verification/validation, experiment, analysis, and reflection (Grgurina et al., 2016).  

Assessment  
Brennan and Resnick focused on assessment of the development of CT during learning in informal 
settings and developed a CT framework distinguishing three dimensions: computational concepts 
describing the concepts designers employ as they program, namely “sequences, loops, parallelism, 
events, conditionals, operators, and data”; computational practices describing the practices designers 
develop as they program, namely “being incremental and iterative, testing and debugging, reusing and 
remixing, and abstracting and modularizing”, and computational perspectives describing the 
perspectives designers form about the world around them and about themselves, namely “expressing, 
connecting and questioning”. (Brennan & Resnick, 2012). Zhong et al. brought these three dimensions 
of CT into the classroom when designing an assessment framework for elementary school students and 
they redefined them as follows: computational concepts as ”objects, instructions, sequences, loops, 
parallelism, events, conditionals, operators, and data”; computational practices as “planning and 
designing, abstracting and modeling, modularizing and reusing, iterative and optimizing, and testing and 
debugging”, and computational perspectives as “creative and expressing, communicating and 
collaborating, and understanding and questioning” (Zhong, Wang, Chen, & Li, 2016). Using this 
framework, Lye and Koh analyzed 27 intervention studies in K-12 aimed at the development of 
computational thinking and found that the majority focuses on computational concepts and only six on 
computational practices. In order to promote focus on computational practices and computational 
perspectives in a K-12 classroom, they suggest an instructional approach providing “a constructionism-
based problem-solving learning environment, with information processing, scaffolding and reflection 
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activities.” (Lye & Koh, 2014) Since assessments can provide learning opportunities, Brennan and 
Resnick offer six suggestions for assessing computational thinking via programming, among others to 
make assessment useful to learners, to incorporate creating and examining artifacts, and to have the 
designer illuminate the whole process. (Brennan & Resnick, 2012).  

These views are corroborated by the findings in our prior study on informatics teachers’ pedagogical 
content knowledge (PCK) of modeling and simulation, where we learned that the interviewed teachers 
mostly suggest hands-on approach to learning and that the preferred assessment form for most of them 
would be a practical assignment lasting several weeks, where student groups would construct models 
and use them to run simulations and conduct research while extensively documenting the whole 
process. At the same time, we observed a great diversity in the assessment criteria teachers mentioned, 
yet very few corresponding quality indicators used to judge to what extent these criteria are met (Grgurina 

et al., 2017). 

In the eyes of the students, the assessment defines the actual curriculum, according to Biggs and Tang, 
who advocate a criterion-referenced system where the objectives are imbedded in the assessment 
tasks. In their constructive alignment network, the curriculum is stated in the form of clear intended 
learning objectives (ILO) specifying the required level of understanding, the teaching methods engage 
students in doing things nominated by the ILO’s and the assessment tasks address these ILO’s. The 
learning outcomes can be classified using the Structure of the Observed Learning Outcome (SOLO) 
which describe the learning progress through five levels of understanding. The first three levels — 
prestructural, unistructural and multistructural — are considered to be quantitative in the sense that 
prestructural indicates missing the point, unistructural means meeting only a part of the task and 
multistructural shows  a further quantitative increase in what is grasped: “knowing more”. Relational, on 
the other hand, indicates a qualitative change indicating conceptual restructuring of the components — 
“deepening understanding”, and extended abstract takes the argument into a new dimension: (Biggs & 
Tang, 2011). Meerbaum-Salant et al. interpreted SOLO as five ordered categories: 

 Prestructural: Mentioning or using unconnected and unorganized bits of information which make no sense.  
 Unistructural: A local perspective – mainly one item or aspect is used or emphasized. Others are missed, and 

no significant connections are made.  
 Multistructural: A multi-point perspective – several relevant items or aspects are used or acknowledged, 

but significant connections are missed and a whole picture is not yet formed.  
 Relational: A holistic perspective – meta-connections are grasped. The significance of parts with respect to 

the whole is demonstrated and appreciated.  
 Extended abstract: Generalization and transfer – the context is seen as one instance of a general case. 

According to them, while the strength of the SOLO taxonomy lies in the fact that it offers a holistic, rather 
than a local perspective, “using [it] for various types of activities, simultaneously, is not straightforward”, 
so they combined the Bloom’s taxonomy and the three intermediate categories of the SOLO taxonomy 
in order to assess how novice programmers learned programming with Scratch (Meerbaum-Salant, 
Armoni, & Ben-Ari, 2013). Whalley et al. noted that previous research had indicated difficulties in 
mapping from student code to the SOLO taxonomy “since the mapping process seems very context 
bound and question specific”. To alleviate this problem, they developed a mapping framework where 
first, the salient elements are identified at syntactic level of the code; subsequently, basic replicable and 
discernible features such as redundancy, efficiency, generalizability and integration are abstracted from 
the code itself, and finally, SOLO mapping takes place to the five SOLO categories they suggest for 
code writing solutions (Whalley, Clear, Robbins, & Thompson, 2011). 

The issue of assessing the learning of the students engaged in larger programming projects attracts attention as 

well. Casto and Fisler explored how to track program design skills through the entire CS1 course and suggest a 

multi-strand SOLO taxonomy, thus corroborating the idea that using SOLO taxonomy simultaneously for various 

types of activities is not straightforward. They suggest a multi-strand SOLO-taxonomy without the extended 

abstract level, since none of the students in their study reached that level (Castro & Fisler, 2017). A multi-strand 

SOLO taxonomy is in line with the idea that one assessment task might address several ILOs and vice versa, one 

ILO might be addressed by several assessment tasks (Biggs & Tang, 2011). Assignments for complex tasks 

encompassing diverse ILOs — such as going through a modeling cycle by formulating a problem, pinpointing the 
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research question, designing a model and using it to answer the research question — warrant the elaboration of 

criteria defining performance for each of the ILOs involved. 

Assessment instrument 

Based on these findings, we developed constructionist teaching material about agent-based modeling 
with NetLogo, meant for the informatics students in the 11th and 12th grades who are preferably no 
novice programmers but rather somewhat experienced, probably in other programming languages. The 
teaching material covers all the aspects of the ILO’s of Computational science we identified earlier 
(Grgurina et al., 2016), and focuses not only on computational concepts such as programming to 
implement the model, but also on computational practices such as the validation of the model and 
computational perspectives such as formulating the research question to be answered through the use 
of the model. Together with this teaching material, we also developed an assessment instrument on 
which we focus here. 

Following suggestions for the rubrics construction by Wolf and Stevens (2007), from the modeling cycle 
we first identified the criteria that defined performance as: stating the case and the research question, 
designing the model, implementation, validation, experiment, analysis, answering the research 
question, reflection, and additionally, logbooks. Subsequently, we designed an assessment instrument 
consisting of a practical assignment that provides several cases and research questions for students to 
choose from, a detailed description of the modeling process they need to engage in, and a 
corresponding rubric based on SOLO taxonomy with unequally weighted criteria defining performance. 
The description of SOLO categories was based on the interpretation by Meerbaum-Salant et al., 
stressing the progression from the local to the global perspective. 

An example of the cases provided is the question whether sustainable human life is possible on Mars. 
The students are pointed to the websites of NASA and SpaceX to learn about the current state of affairs 
and subsequently have to explore whether, after the initial supplies and shelter were delivered, it would 
be possible to produce sufficient water, air and food to survive and thus whether it would be possible to 
found a sustainable human colony on Mars. Among other cases are the questions, what is better for 
traffic flow on a junction: a roundabout or traffic lights, and to investigate the optimal number and task 
division of bank counters as to minimize the waiting time of the customers with various needs. In line 
with our dedication to stimulate student engagement, the students are allowed to come up with their 
own research questions instead. 

Assignment 
The assignment consists of a number of questions the students need to answer in writing while 
designing their model and using it to answer their research question. After forming groups and choosing 
a case to model, the students answer the following questions: 

Case and research question. Describe what you are going to model and with what purpose: (1) What 
do you know about this phenomenon? If need be, carry out the necessary research. (2) What part of 
your phenomenon would you like to build a model of? (3) What do you hope to observe from this model? 
(Questions 2 and 3 suggested by Wilensky & Rand (2015).) 

Design the model. Design a model following the questions listed here. Describe the considerations and choices 

you make. (E.g., “The sheep can reproduce. If two sheep meet, there is a chance of 20% that a new sheep will be 

breed. We decided not to take into account the gender of the sheep because that is not relevant in this case.”) (1) 

What are the principal types of agents involved in this phenomenon? (2) In what kind of environment do these 

agents operate? Are there environmental agents?  (3) What properties do these agents have (describe by agent 

type)?  (4) What actions (or behaviors) can these agents take (describe by agent type)? (5) How do these agents 

interact with this environment or each other?  (6) If you had to define the phenomenon as discrete time steps, what 

events would occur in each time step, and in what order? (All questions suggested by Wilensky & Rand (2015).) 

Implement the model. Implement the model in NetLogo. Write your code in small chunks and keep 
testing! 
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Validate the model. (1) Microvalidation: to what extent does the agents’ behavior resemble the 
observations of the phenomenon in reality? If the behaviors are (somewhat) dissimilar, is this variation 
relevant to your research question? (2) Macrovalidation: to what extent does the behavior of the system 
as a whole resemble the observations of the phenomenon in reality? If the behavior is (somewhat) 
dissimilar, is this variation relevant to your research question? 

Experiment, analysis and conclusion. Use the model to answer your research question: (1) Describe 
the experiment in detail. If you use Behavior Space, report the number of experiments conducted and 
the parameters used. (2) Report the findings in an appropriate manner (e.g., a narrative, a table, a 
graph, etc.) (3) Analyze the results. (4) Answer the research question. 

Reflection. Reflect on your modeling process: (1) What went well and what could be better? (2) Did 
you make any assumptions which, in retrospect, you would like to reconsider?  (3) Are there any aspects 
of your model which you would like to change? Are there any aspects of your model (agents or behavior) 
you decided not to include in you model while now you believe they do need to be included? Make a 
wish list of aspect of your model that need to be added, removed or changed in the next version of the 
model. 

In addition, the students were asked to keep a logbook recording all their activities, problems, successes 
and dead ends they encountered; possible explanations for problems and successes, and finally, 
lessons learned. 

Grading Rubrics 
After we identified the criteria that defined performance, we created performance descriptions (Wolf & 
Stevens, 2007) to describe the appropriate level of understanding for intended learning outcomes (Biggs 
& Tang, 2011). Here we quote some of these descriptions: 

Case and research question  

 Prestructural: (1) Nothing or simplistic idea of the phenomenon. Performed no research. (2) 
Nothing, or a few non-specific remarks but missing the point (3) Research question not clear 

 Unistructural: (1) Some general description. Performed no research or only limited to isolated 
aspects of the phenomenon (2) Few isolated aspects of the phenomenon identified. (3) Identified 
the question from a local perspective. 

 Multistructural: (1) Performed some research. Able to name more relevant aspects of the 
phenomenon, but mentions no relations among these aspects (2) Described what (part of the) 
phenomenon is being modeled. (3) Described the question from a multi-point perspective. 

 Relational: (1) Performed research. Complete idea of the phenomenon. Able to name relevant 
aspects of the phenomenon, have insight into relations among these aspects  
(2) Described what (part of the) phenomenon is being modeled. (3) The research question clear and 
predicts possible outcomes. 

 Extended abstract: (1) Additionally, described the relation of this phenomenon to other phenomena 
in the world and/or conceptualized this phenomenon so as to be able to use it other contexts 
restricted and its relevance explained. Stated its relevance for other phenomena. (2) Additionally, 
theorize about possible generalization of the model or transfer into a different context. (3) 
Additionally, theorize about possible generalization or transfer into a different context. 

Design the model and implement it  

 Prestructural: No agents mentioned. 
 Unistructural: A few agents and actions identified.  
 Multistructural: Several agents and actions described.  
 Relational: Agents, actions and interactions correct and substantiated. Their contribution to the 

whole acknowledged. 
 Extended abstract: Additionally, generalize or hypothesize about similar models in different 

contexts or extend the model beyond the minimal requirements. 
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Validate the model  

 Prestructural: Nothing. No working program. 
 Unistructural: Identified some resemblances and differences between the model and reality. 

Relevance for the research question not clear. 
 Multistructural: Described resemblances and differences between the model and reality. 

Relevance of the differences for the research question not clear. 
 Relational: Resemblances and differences between the model and reality described. Analyzed and 

explained their relevance for the research question. 
 Extended abstract: Additionally, hypothesized over model adjustments to improve its validity for a 

more general purpose. 

Results and Further Research Direction 

In this paper, we described the design of our assessment instrument for the assessment of the intended 
learning outcomes for Computational Science consisting of a practical assignment covering the ILO’s 
defining Computational Science and an accompanying rubric based on SOLO taxonomy that describes 
the levels of understanding. During the design process, we faced many challenges due to the fact that 
some ILO’s of modeling are at the core of informatics (e.g. implementation of the model), while others 
are not often seen in an informatics classroom (e.g. experiment). Even for implementation, which comes 
down to programming, it was not easy to find related work addressing assessment of programming at 
just the right level of granularity. The same holds true for validation: while there is plentiful literature on 
validation of computational models, to our best knowledge there is none focusing on the assessment of 
validation in a formal learning setting.  

So far, several teachers used our teaching material and assessment instrument to teach Computational 
Science in the Informatics class of the 11th and 12th grade of pre-university education (VWO) in the 
Netherlands. We are collecting and analyzing feedback from them and their students in order to aid the 
on-going project of development of teaching materials and assessment instruments. Specifically, the 
current version of the assessment instrument will be analyzed to establish its reliability, validity and 
objectivity, and in particular, it will be scrutinized in relation to the descriptions and attainability of 
currently proposed levels of understanding as specified in the rubrics. 
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