
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/198835

 

 

 

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/200778136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/198835


Role of rare earth elements in methanol oxidation
Nunzia Picone and Huub JM Op den Camp

For decades rare earth elements (or lanthanides) were considered

not to be involved in biological processes, until their discovery in

the active site of the XoxF-type methanol dehydrogenase of the

methanotrophic bacterium Methylacidiphilum fumariolicum SolV.

Follow-up studies revealed the presence of lanthanides in other

pyrroloquinoline quinone-containing enzymes involved in alcohol

metabolism. This review discusses the biochemistry of the

lanthanide-dependent enzymes and the ability of these metals of

influencing the gene expression and the type of methanol

dehydrogenase used by microorganisms. Furthermore, it

highlights novel insights on the uptake mechanism of rare earth

elements into bacterial cells.
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Introduction
Rare earth elements (REEs) are a group of elements that

includes lanthanides (Ln) from lanthanum to lutetium in

the periodic table, plus yttrium and scandium. These

metals are often divided in ‘light’ lanthanides (LREEs)

which comprise elements with atomic number (Z) from

57 to 63 (La-Eu), and ‘heavy’ lanthanides (HREEs) indi-

cating elements with Z from 64 to 71 (Gb-Lu). Despite

their name, REEs are very abundant in the environment,

with a concentration that, on average, represents 0.015% of

the Earth crust [1]. Lanthanides are usually present in a

trivalent form, except for cerium (Ce3+, Ce4+) and euro-

pium (Eu2+, Eu3+) and their ionic radius decreases with

increase of atomic number, a feature known as ‘lanthanide

contraction’ [1,2]. Besides their chemical properties, REEs

were considered not to be involved in biological processes,

but this dogma was challenged by the discovery of a

lanthanide-dependent enzyme involved in methane

metabolism (Figure 1) of the extremophilic bacterium

Methylacidiphilum fumariolicum SolV [3��]. This microorgan-

ism was completely dependent on REEs for growth and the

crystal structure of its methanol dehydrogenase (MDH)

revealed a lanthanide ion in the active site. The enzyme

was encoded by the gene xoxF, a homologue of the calcium-

dependent MDH mxaFI, so far considered to be the only

enzyme capable of methanol oxidation in methanotrophic

and methylotrophic bacteria. This study initiated a

completely new field of research that explored the role

of lanthanides in biological systems and expanded it to

enzymes outside methane metabolism. Furthermore, the

addition of REEs to cultivation methods permitted the

isolation of novel and uncharacterized bacteria from a

variety of different habitats [4–8,9��], allowing researchers

to study microorganisms so far considered uncultivable.

Currently, this area of study is growing with exciting new

discoveries, which will be highlighted in this review.

Biochemical characteristics of lanthanide-
dependent enzymes
The lanthanide-dependent methanol dehydrogenase

(XoxF-MDH) was purified from different microorgan-

isms and it was shown to be a a2 homodimer with

periplasmic localization and a pyrroloquinoline quinone

(PQQ) cofactor (Figure 2) [3��,10–12]. When compared to

the calcium dependent MDH MxaF, XoxF showed a

substitution of an alanine with an aspartate residue at the

active site (Asp301— numbering based on M. fumariolicum
SolV), to coordinate the REE ion. Lanthanides are stron-

ger Lewis acids than calcium and, as shown by Density

Function Theory (DFT) calculations, they represent an

advantage in the redox cycling of the PQQ [13] and in the

formation of the nucleophilic agent [14] compared to

Ca2+. Furthermore, XoxF showed optimal activity at

pH 7 and no ammonium activation was needed, while

MxaFI performed best at pH 9 and had to be activated

[15,16]. In addition, both enzymes can oxidize a range of

primary alcohols and formaldehyde [17�] but Ln-MDH

had higher affinity for methanol and faster conversion

rates [3��,13]. Another difference between the two MDHs

involves the oxidation of methanol to formaldehyde by

Ca-MDH and directly to formate by Ln-MDH in a

4 electrons process [3��,13]. However, it was recently

demonstrated that XoxF purified from Methylobacterium
extorquens AM1 produced formaldehyde as final product

[18], challenging the assumption that all Ln-MDHs

would generate formate.

Experimental data showed that purified XoxF worked

with different lanthanides, but the activity was higher
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with the light REEs compared to the heavy ones

[3��,12,19,20�,21�] — (Table 1). This data supported in
vivo observations, where growth rate and/or gene expres-

sion was influenced by the type of lanthanide used, with a

clear preference for light REEs [12,22–24]. To test the

effect of a heavy REE in the active site of the enzyme, the

crystal structure of the XoxF enzyme from a culture of

M. fumariolicum SolV grown with europium (Eu3+) was

analyzed [20�]. No significant structural change was

observed when comparing it with the mixed-Ln XoxF

from the same organism, but the Eu3+ culture had a

slower growth rate and lower enzymatic activity. These

results supported what was suggested before by Pol et al.
[3��]: a decrease in ionic radius along the lanthanide series
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Aerobic methane oxidation pathway in Ln-dependent bacteria. The oxidation of methane (CH4) to methanol (CH3OH) (1) is catalyzed by the

methane monooxygenase (MMO). Bacteria can have two types of MMOs: a soluble, iron-binding protein, called sMMO and/or a particulate

methane monooxygenase (pMMO) that is a membrane-bound enzyme and uses copper as cofactor. The methanol produced by MMO is oxidized

by XoxF MDH (2), that shuttles electrons to a CL cytochrome [41,42], encoded by the gene xoxG [31] (or the xoxJG fusion gene in thermophilic

Verrucomicrobia), and releases formaldehyde (CH2O) or formate (HCOOH) as product, which are finally converted to CO2 by (3) formaldehyde

dehydrogenase (FADH) and (4) formate dehydrogenase (FDH). In M. fumariolicum SolV only pMMO is present and methanol is converted directly

to formate.

Figure 2
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X-ray crystal structure of M. fumariolicum SolV XoxF-type methanol dehydrogenase illustrating the dimeric structure with the PPQ co-factor shown

in blue and the lanthanide ion in red.
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could affect the ability of incorporating the metal ion in

the active site, resulting in a decreased affinity for the

substrate. The lower efficiency of the enzyme was linked

to the slower growth rate determined in vivo. A difference

in enzymatic activity was also observed in XoxF purified

from Mb. extorquens AM1, when assayed with lanthanum

(La3+) and neodymium (Nd3+) [18]; in particular, the

activity was higher in the presence of Nd3+ compared

to La3+, despite the fact that both elements are consid-

ered light lanthanides. Novel insights about the prefer-

ence of the enzyme for specific REEs came from the work

of Lumpe et al. [21�]. DFT calculations were used to

explain why Nd3+ and praseodymium (Pr3+), among the

whole lanthanide group, resulted in the highest activity

for reconstituted XoxF purified from M. fumariolicum
SolV. They proposed that different factors influenced

the specific activity of the enzyme: the decreased ionic

radius of the metal ion, the preference in coordination

number, ligand exchange rates, substrate orientation and

activation and hydrogen bonding.

Besides their role in methanol oxidation, REEs were

recently shown to take part in multi-carbon metabolism,

when the first lanthanide-dependent ethanol dehydroge-

nase (ExaF) was discovered in Mb. extorquens AM1 [25].

Furthermore, an ethanol dehydrogenase (PedH) whose

activity was related to the presence of REEs, was purified

from the non-methylotrophic bacterium Pseudomonas
putida KT2440 [19]. Thanks to these recent findings, the

biological role of lanthanides was expanded to a broader

range of enzymes and microorganisms and elicited research

on the role of lanthanides in genetic regulation.

Lanthanides regulate the expression of
different methanol dehydrogenases
The expression of both types of methanol dehydro-

genases appears to be correlated with the presence of

REEs. This phenomenon is known as the ‘lanthanide

switch’ and it refers to the upregulation of the lanthanide-

dependent MDH gene xoxF and downregulation of the

calcium-dependent MDH mxaFI genes in the presence

of lanthanides, in both methano- and methylotrophic

bacteria [23–25,26�,27,28��]. Since the discovery of the

switch, it became obvious that this genetic regulation was

not as straightforward as first described. In fact, experi-

mental data in Methylosinus trichosporium OB3b showed

that the lanthanide switch was completely overruled by

copper [22,26�,27,28��,29], that is used as a cofactor for

the particulate methane monooxygenase (pMMO). When

copper was present, cerium had minimum effect on the

expression of mxaFI. However, the same response was

not observed in other bacterial species. Experiments

performed in Methylomicrobium buryatense 5GB1C showed

that XoxF was the preferred enzyme for methanol oxida-

tion, even when calcium was present in 100-fold higher

concentrations than lanthanide, and that copper had little

effect on the expression of xoxF- encoded methanol

dehydrogenase [30]. The overexpression of xoxF at

higher calcium concentrations compared to lanthanides

was also observed in Mb. extorquens AM1, and it was

suggested that a condition may exist in which mxaFI
and xoxF were expressed at the same time [23]. The co-

expression of mxaFI and xoxF was also detected in Ms.
trichosporium OB3b [29] and in Methylomonas sp. strain

LW13 [31], when grown with both calcium and cerium in

the medium. Interestingly, evidences showed that xoxF
was required for the expression of mxaF in Mb. extorquens
AM1 [23,32] and in Methylobacterium aquaticum 22A [24],

since xoxF deletion mutants were not able to grow in the

presence of calcium.

Although the active role that REEs have in the expression

of the different MDHs has been well documented, the

mechanism by which lanthanides operate the switch is
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Table 1

Affinity constants (KM) for methanol of Ln-dependent enzymesa

Enzyme Type Lanthanide KM (mM) Strain Reference

Methanol DHGb XoxF Ce3+ 29 Bradyrhizobium sp. [12]

Methanol DHG XoxF La3+,Ce3+,Pr3+,Nd3+ 0.8 � 0.3 M. fumariolicum SolV [3��]
Alcohol DHGc ExaF La3+ 5980 M. extorquens AM1 [25]

Methanol DHG XoxF Eu3+ 3.6 � 0.4 M. fumariolicum SolV [20�]
Methanol DHG XoxF Eu3+ 0.9 � 0.2 M. fumariolicum SolV [21�]
Methanol DHG XoxF Eu3+,Lu3+ 0.8 � 0.4 M. fumariolicum SolV [21�]
Methanol DHG XoxF Eu3+,La3+ 1.3 � 0.2 M. fumariolicum SolV [21�]
Methanol DHG XoxF1 La3+ 44 M. extorquens AM1 [18]

Methanol DHG XoxF1 Nd3+ 29 M. extorquens AM1 [18]

Methanol DHG XoxF4-1 Ce3+ 55 � 32 M. mobilis JLW8 [43]

Methanol DHG XoxF4-2 Ce3+ 42 � 18 M. mobilis JLW8 [43]

Methanol DHG XoxF5 Ce3+ 39 � 11 Methylomonas sp. LW13 [43]

a Enzymes are tested in different assay conditions by different authors. DHG = dehydrogenase.
b MDH in Bradyrhizobium was described as the product of a mxaF gene in the original publication. Analysis of the protein, however, suggested it is a

XoxF type.
c KM value for methanol of alcohol dehydrogenase PedH in Pseudomonas putida KT2440 was not reported. KM for ethanol was 177 � 31 mM with Pr3

+.

www.sciencedirect.com Current Opinion in Chemical Biology 2019, 49:39–44



not completely clarified. It is known that mxbDM and

mxcQE genes have a role in the regulation of the lantha-

nide switch in Mb. extorquens AM1 [23,32]. The genes

mxbD and mxcQ encode sensor kinases, whereas mxcE and

mxbM encode response regulators [23,24]. Indications of a

regulatory function for MxbD was also observed in the

methylotrophic bacterium Mb. aquaticum 22A [24], where

mxbD was upregulated in presence of calcium. In Mm.
buryatense 5GB1C, instead, an important function was

identified for mxaB and mxaY; in fact, it was proposed

that a putative lanthanum-binding protein activated the

orphan response regulator MxaB in absence of REEs and

MxaB induced the mxa operon and repressed xoxF [30].

Furthermore, a mutation in the histidine kinase mxaY
gene (glutamate 147 ! glycine), allowed constant expres-

sion of mxaB and mxaF, indicating the involvement of

MxaY in the lanthanide switch regulation [33].

Besides the mechanism of regulation, it soon became clear

that the expression of the two MDHs was not solely linked

to thepresenceof lanthanides. Recently, itwas shownthat a

mixed community composed of a methanotrophic and a

non-methanotrophic methylotroph could be established,

and that the methanol produced by the methane oxidizer

was used by the methylotroph as energy source

[28��,31,34]. Under these conditions, a switch in the type

of methanol dehydrogenase used was observed: when

grown with the methylotroph the expression of the

MDH in the methanotroph shifted from xoxF to mxaFI
in the presence of lanthanum. It was speculated that the

methylotroph induced the methanotrophic bacterium to

perform a reaction carried out by MxaFI instead of XoxF;

based on reported KMvalues for methanol [3��], in fact, the

reaction catalyzed by MxaFI would be less efficient com-

pared to XoxF, leading to an increased loss of methanol

from the methanotroph, that enabled the methylotroph to

survive. Furthermore, it was reported that the supernatant

retrieved from the coculture had the same inhibitory effect

towards xoxF expression. This allowed to hypothesize the

presence of a secreted compound able to regulate the

expression of the two MDHs in the methane oxidizing

bacterium Methylobacter tundripaludum 31/32 [28��]. To

date, this putative compound has yet to be identified. Other

experimental data showed that, in mixed communities, the

lanthanide switch was also influenced by the nitrogen

source (with xoxF more expressed when ammonium was

supplied instead of nitrate), methane and oxygen concen-

trations [34]. With nitrate present, in fact, high methane

concentrations selected for mxaF overexpression, low

methane and low oxygen partial pressures for xoxF, high

methane and low oxygen concentrations, instead, allowed

the transcription of both. To better understand the regula-

tion, insight into theuptake of rare earth elements is crucial.

Rare earth elements uptake by bacteria
In 2010, one of the biggest natural disasters in history was

reported on the Deepwater Horizon drilling rig in the Gulf

of Mexico, where a large oil spill led to the release of

natural gas in the ocean. At the oil spill site, REEs were

rapidly removed from the water column at a depth that

also revealed the presence of bacteria containing the xoxF
methanol dehydrogenase, as shown by metagenomic data

[35]. Other studies reported the microbial removal of

REEs in solution, and the measurements were usually

carried out by applying Inductively Coupled Plasma Mass

Spectrometry (ICP-MS) [3��,22,27,36]. Alternatively, a

fast and easy colorimetric assay was recently developed

for specific detection of lanthanides in a range of

0.1–10 mM, delivering results in accordance with ICP-

MS data [37]. Several authors speculated on how these

metals, despite the low solubility, were transferred into

the cell. The transport could be either passive, mediated

by secreted compounds or more selectively controlled by

transporters, as suggested in studies that documented the

genetic regulation of MDH by REEs [22,38]. It was

proposed that carboxylate and phosphate groups on the

bacterial cell surface mediated the absorption in Bacillus
subtilis and Escherichia coli [39]. Furthermore, indications

for the presence of three different pH-dependent lantha-

nide binding sites in Roseobacter sp. were reported. Sites

with higher pKa values bound the light, more basic

lanthanides and those with lower pKa the heavier ones

[36]. Also, TonB dependent transporters could have an

important role in the lanthanide uptake system of

Ms. trichosporium OB3b; the hypothesis was based on

the presence of a certain sequence (CGA(T/C)(G/A)

TGACC) in the promoter region of genes whose expres-

sion was influenced by the presence of REEs [22]. More

indications came from transcriptome studies in the same

strain, where the upregulation of a gene encoding a TonB

dependent transporter was possibly linked to the pres-

ence of cerium in the medium [29]. In addition, TonB

transporters and TonB dependent receptors seemed to be

conserved in the genome of some xoxF-containing micro-

organisms [7,40]. Whether they are really involved in

REEs uptake needs to be established.

Conclusions
REEs are essential for methanol metabolism since they

are needed for an active XoxF-type MDH. The enzy-

matic activity and the growth rate of methanotrophic and

methylotrophic bacteria are influenced by the type of

lanthanide available, with a clear preference for LREEs.

Moreover, their presence in solution regulates the gene

expression between the calcium and the Ln-dependent

MDH genes, a phenomenon known as ‘lanthanide

switch’. Despite the novel discoveries, many questions

still need to be answered in this emerging field of

research. For example, how are these metals transported

into the cell? New insights in this uptake mechanism

could help clarify the regulation mechanism for the gene

expression and the physiological behavior of bacteria

observed in vivo. Furthermore, the role of REEs is so

far confined to alcohol metabolism. It is tempting to

42 Bioinorganic chemistry
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speculate that we are just starting to understand the

importance of lanthanides in biological systems, and their

function may be expanded to other pathways in the near

future.
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