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X Artin Arshamian,1,2,3,4 X Behzad Iravani,1 X Asifa Majid,2,3,5,6* and X Johan N. Lundström1,7,8*
1Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden, 2Donders Institute for Brain, Cognition, and Behavior, 6500 HD
Nijmegen, The Netherlands, 3Center for Language Studies, Radboud University, 6500 HD Nijmegen, The Netherlands, 4Department of Psychology,
Stockholm University, 106 91 Stockholm, Sweden, 5Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands, 6University of York, Heslington,
York, YO10 5DD, United Kingdom, 7Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, and 8Department of Psychology, University of
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In mammals respiratory-locked hippocampal rhythms are implicated in the scaffolding and transfer of information between sensory and
memory networks. These oscillations are entrained by nasal respiration and driven by the olfactory bulb. They then travel to the piriform
cortex where they propagate further downstream to the hippocampus and modulate neural processes critical for memory formation. In
humans, bypassing nasal airflow through mouth-breathing abolishes these rhythms and impacts encoding as well as recognition pro-
cesses thereby reducing memory performance. It has been hypothesized that similar behavior should be observed for the consolidation
process, the stage between encoding and recognition, were memory is reactivated and strengthened. However, direct evidence for such an
effect is lacking in human and nonhuman animals. Here we tested this hypothesis by examining the effect of respiration on consolidation
of episodic odor memory. In two separate sessions, female and male participants encoded odors followed by a 1 h awake resting
consolidation phase where they either breathed solely through their nose or mouth. Immediately after the consolidation phase, memory
for odors was tested. Recognition memory significantly increased during nasal respiration compared with mouth respiration during
consolidation. These results provide the first evidence that respiration directly impacts consolidation of episodic events, and lends
further support to the notion that core cognitive functions are modulated by the respiratory cycle.
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Introduction
Even when there is no odor, mammalian olfactory sensory neu-
rons detect the mechanical pressure caused by airflow in the nos-

tril (Grosmaitre et al., 2007). This information reaches the
olfactory bulb (Freeman, 1976; Fontanini et al., 2003; Courtiol et
al., 2011; Rojas-Líbano et al., 2014), which generates oscillations
that reach the piriform cortex where they propagate further
downstream to the hippocampal formation, and beyond to so-
matosensory cortex and prefrontal networks (Adrian, 1942; Kay
and Freeman, 1998; Fontanini et al., 2003; Fontanini and Bower,
2005, 2006; Kay et al., 2009; Ito et al., 2014; Kay, 2014; Yanovsky
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Significance Statement

Memories pass through three main stages in their development: encoding, consolidation, and retrieval. Growing evidence from
animal and human studies suggests that respiration plays an important role in the behavioral and neural mechanisms associated
with encoding and recognition. Specifically nasal, but not mouth, respiration entrains neural oscillations that enhance encoding
and recognition processes. We demonstrate that respiration also affects the consolidation stage. Breathing through the nose
compared with the mouth during consolidation enhances recognition memory. This demonstrates, first, that nasal respiration is
important during the critical period were memories are reactivated and strengthened. Second, it suggests that the neural mecha-
nisms responsible may emerge from nasal respiration.
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et al., 2014; Nguyen Chi et al., 2016; Biskamp et al., 2017; Heck et
al., 2017; Zhong et al., 2017). These oscillations have been impli-
cated in the scaffolding and transfer of information between sen-
sory and memory networks, and shown to modulate learning and
perception in rodents (Fontanini et al., 2003; Fontanini and
Bower, 2005, 2006; Kay et al., 2009; Ito et al., 2014; Kay, 2014,
2015; Yanovsky et al., 2014; Biskamp et al., 2017; Heck et al., 2017;
Zhong et al., 2017; Tort et al., 2018).

Removing or inhibiting the olfactory bulb, or bypassing nasal
airflow through tracheotomy or mouth-breathing, abolishes
these activations in animals (Ito et al., 2014; Yanovsky et al., 2014;
Liu et al., 2017; Zhong et al., 2017). In humans too, nasal respi-
ration entrains hippocampal oscillatory activity (Zelano et al.,
2016), and recognition memory is enhanced at peak inhalation
during nasal, but not mouth, respiration both at the encoding
and recognition phases of memory formation (Zelano et al.,
2016). However, the specific pathway for this is not clear because
it is still unknown whether respiratory oscillations propagate
from piriform cortex to hippocampus in humans.

Whether nasal respiration modulates the consolidation phase,
the off-line stage between encoding and recognition, where
memory is reactivated and strengthened is not known. Recently it
has been demonstrated that the nasal respiratory cycle entrains
hippocampal sharp-wave ripples (SWRs) in awake mice (Liu et
al., 2017). It has been suggested that respiration-locked hip-
pocampal oscillations modulate the probability of SWRs, and
that reducing these should subsequently reduce SWRs (Liu et al.,
2017). Hippocampal oscillations and SWRs are both essential for
memory consolidation (Buzsaki, 2006; Axmacher et al., 2008;
Girardeau et al., 2009; Carr et al., 2011; Jadhav et al., 2012; Buz-
sáki, 2015). So it has been hypothesized that for hippocampal-
dependent memory, akin to encoding and recognition, nasal
respiration should modulate consolidation processes (Fontanini
and Bower, 2006; Liu et al., 2017).

We test this hypothesis directly by examining the effect of
respiration on consolidation of episodic memory in humans. We
studied this effect in awake consolidation because SWRs are most
frequent when the participant is immobile and resting, but not
asleep (Axmacher et al., 2008). In two separate sessions, partici-
pants encoded odors followed by a 1 h awake resting consolida-
tion phase where they either breathed solely through their nose or

mouth. We predicted that nasal compared with mouth respira-
tion during consolidation would enhance episodic memory. To
ensure our breathing manipulation specifically targeted memory
consolidation, we also conducted a control experiment measur-
ing the effect of breathing on attention. It could be hypothesized
that our experimental manipulation (nose- vs mouth-breathing)
differentially affected attentional control; for example, people
who are habitual nose-breathers could have had to pay more
attention to their breathing in the mouth-breathing condition,
thereby influencing their memory indirectly. We rule out this
possibility in a control experiment below.

Materials and Methods
Participants. Twenty-four healthy participants between 19 and 25 years
(M � 22.2, SD � 1.8; 12 women) participated in the main experiment
(consolidation study). Participants were recruited via the internal re-
cruiting system within Radboud University Njimegen, and provided
written informed consent before enrollment in the study. The study was
approved by the local ethics committee at Radboud University. In the
control experiment assessing respiratory effects on sustained and selec-
tive attention, a different 24 healthy participants between 19 and 49 years
(M � 27.3, SD � 6.0; 13 women) participated. These participants were
recruited via the internal recruiting system available within Karolinska
Institute, Stockholm, and provided written informed consent before en-
rollment in the study. The control experiment was approved by the
Stockholm County local research ethics committee.

Procedure main experiment. The consolidation experiment consisted
of two separate sessions 2 d apart. Each session was divided into three
phases: encoding, consolidation, and recognition (Fig. 1). In one session
participants breathed through their nose (nasal consolidation: tape over
mouth); in another session participants breathed through their mouth
(mouth consolidation: nasal clip) during a 1 h consolidation phase (i.e.,
while passive resting).

In the first phase, during encoding, participants were connected to a
nasal cannula and presented with a set of 12 odors one-by-one that they
were instructed to memorize. Immediately after the encoding phase,
participants were assigned to one of the two breathing conditions. They
were disconnected from the nasal cannula and relocated to a resting
room where they were seated in an armchair facing a white wall. Partic-
ipants were not allowed to stand-up, sleep, talk, read, or remove the nasal
clip/mouth tape during the 1 h resting consolidation phase. Compliance
was controlled by an experimenter seated in the resting-room with the
participant under the pretense that they would monitor the participants’

Figure 1. Schematic of experimental paradigm. The experiment consisted of two separate sessions, each including an encoding, a consolidation, and a recognition phase. In the encoding phase,
participants were presented with six familiar (e.g., strawberry) and six unfamiliar (e.g., 1-butanol) odors one at a time and asked to remember them. The odors familiarity was predefined and a new
set of odors were used in each session. After the encoding phase, participants rested passively without sleeping (consolidation phase) for 1 h during which they either breathed through their nose
(nasal consolidation) or mouth (mouth consolidation). Next, during the odor recognition phase, participants were once again presented with the odors from the encoding phase but this time
intermixed with 12 new odors (6 familiar and 6 unfamiliar odors). For each odor, participants made a recognition judgment if the odor was new or old. Next participants rated odor intensity,
pleasantness, familiarity, and nameability, as well as trying to identify the odor. During both encoding and recognition, nasal airflow was monitored by a nasal cannula, which enabled measurement
of sniff parameters during odor presentation.
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oxygen level. After consolidation participants relocated to the testing
room and rated the unpleasantness of the blocking procedure. They were
then reconnected to the nasal cannula and instructed that they would be
presented with odors one-by-one and their task was to judge whether the
odors were present in the encoding phase or not (i.e., an old or new
odor). Recognition memory for the encoded odors was tested by present-
ing the 12 target odors mixed with 12 new lures. After each recognition
judgment they had to rate the odors pleasantness, intensity, familiarity,
and nameability, as well as try to produce a label for the odor. Odor
ratings were measured on 7-point Likert scales. Odor pleasantness: 1
(unpleasant)–7(pleasant); Odor intensity: 1(weak)–7(strong); Odor fa-
miliarity: 1(unfamiliar)–7(familiar); Odor nameability: 1(unameable)–
7(nameable). As odor familiarity and odor identification affect odor
memory predefined high and low familiar odors were used both in the
encoding and recognition phases (Larsson, 1997; Zelano et al., 2009;
Saive et al., 2014; Cornell Kärnekull et al., 2015).

Odor presentation and sniffing. Nasal respiration was monitored by the
experimenter continuously throughout the encoding and recognition
phases. Odors were presented to both nostrils for �3 s, with a jittered
interstimulus interval between 20 and 30 s. Odors were presented at the
nadir of the participants’ nasal exhalation. Participants were blindfolded
during both the encoding and recognition phases and were instructed to
inhale when presented with an odor. After the first encoding phase, par-
ticipants were randomized to start with either the nose- or mouth-
blocking session.

Breathing technique. During the consolidation phase participants
breathed either through their nose or mouth using standard techniques
to block nose (nasal clips) or mouth (tape straps) (Verrall et al., 1989;
Prem et al., 2013; Turkalj et al., 2016). Before the start of the first session
participants matched the physical pressure of the nasal clip and the tape
by manually adjusting them until they had the same perceived pressure.
This was done to keep any discomfort resulting from the breathing tech-
niques as similar as possible between the two sessions.

Cover story. Participants were told that the aim of the experiment was
to observe the effect of blood oxygen level on memory, which was mod-
ulated by breathing format (through nose or mouth). This was imple-
mented to minimize demand characteristics. Participants were informed
that their blood oxygen level would be measured by a finger-pulse oxi-
meter that they would wear during the whole experiment, as well as by a
nasal cannula during encoding and testing for increased precision. The
word sniffing was never mentioned during the experiment. At the end of
the two sessions, participants were asked what they thought the purpose
of the experiment was. All but one stated that the aim was how oxygen
level affected odor memory.

The remaining participant believed that the aim was to study the effect
of enclosing odors in the nose on odor memory, with the notion that a
nasal clip would help the odor information flow to the brain, and subse-
quently enhance performance. They were also asked if they could gener-
ate an alternative aim of the study. Of the participants that could, no-one
guessed the true aim of the study, nor mentioned sniffing or type of
breathing.

Randomization. Odors were pseudo-randomized to ensure equal
amount of predefined familiar and unfamiliar odors across sessions.
They were divided into four odors sets, with each set having 12 low
familiar (6 at encoding and 12 at recognition) odors and 12 high familiar
(6 at encoding and 12 at recognition). Familiarity ratings of the odors did
not differ between the predefined familiar and unfamiliar odors across
sessions (familiar odors: t(23) � 0.65, p � 0.53; unfamiliar: t(23) � 0.55,
p � 0.59, paired t tests). Bayesian paired samples t tests showed that all
Bayes factors (BF01) were in favor of the null hypothesis that odor famil-
iarity did not differ between sessions (familiar: BF01 � 3.857, error �
0.04; unfamiliar odors: BF01 � 4.063, error � 0.04). The presentation of
the four sets of odors was pseudo-randomized across conditions and
participants. The presentation order for the odors within a set was ran-
domized across participants. To ensure that the order of sessions was
counterbalanced across participants, order was pseudorandomized with
half the participants starting with nasal, and the other half with mouth

consolidation. Furthermore, both the participant and the experimenter
were blind to the session order until the compilation of the first encoding
phase.

Materials. Respiratory parameters were continuously recorded during
encoding and recognition at 1000 Hz birhinally with a nasal cannula
coupled with a pneumotachograph that relayed changes in intranasal
pressure to an amplifier PowerLab 4/35 recording system (AD Instru-
ments). The transduced signals were extracted and down sampled to 100
Hz with LabChart 7. Oxygen level was measured with a Contec Pulse
Oximeter CMS50D. In the main experiment, monomolecular and odor
mixtures from Sigma-Aldrich, Burghart Messtechnik, and International
Flavors and Fragrances were presented using Sniffin’ Sticks (Hummel et
al., 1997).

Attentional control experiment. In the control experiment, sustained
attention was measured using the Sustained Attention to Response Task
(SART; Robertson et al., 1997), and selective attention was measured
using a color–word Stroop task (Stroop, 1935). The SART task measures
the ability to respond to repetitive, non-arousing stimuli. It is a Go/NoGo
task where the NoGo stimulus is presented very infrequently, thus in-
creasing habituation and distraction. Participants were presented with
streams of single digits (1–9) in a randomized order and responded with
a key press if any digit other than 3 was displayed, and told to withhold
the response if 3 was presented. In the Stroop task, participants have to
name the ink color of congruent or incongruent color words. Incongru-
ent words normally result in slower response time, a finding attributed to
selective allocation of attention to eligible responses (Lamers et al., 2010).
Before the start of the experiment, participant’s ran one test block on
each attentional task to minimize test–retest effects. As with the consol-
idation experiment, participants had to rest with either their nose or
mouth blocked (same procedure as in consolidation experiment). After
10 min rest they conducted the two attentional tasks with either their
nose or mouth still blocked. After this, they switched blocking procedure
and again rested for 10 min before repeating the attentional tasks with
either nose or mouth blocked. All blocking procedures and attentional
tasks were pseudorandomized across participants. Both SART and the
color–word Stroop task were presented using Inquisit Lab v4 (Millisec-
ond Software).

Statistical analysis. We used signal detection theory (SDT) for recog-
nition memory using d-prime (d�) as the measure of sensitivity defined as
the difference between z-transformed hit (H) and false alarm rate (FA);
d� � z (H) � z (FA) (Macmillan and Creelman, 2005). Thus, d� is an
unbiased measure of recognition memory. Hit and false alarm rates of 1
and 0 were adjusted to 1 � 1/(2 N) and 1/(2 N), respectively, where N is
the number of trials (Macmillan and Creelman, 2005). To determine
significant main effects and interactions, data were analyzed using
repeated-measures ANOVA with partial � square (� 2

p) as the effect size.
Odor ratings were analyzed using two-tailed paired samples Student’s t
tests. Alpha was set at 0.05.

Parallel to these tests, we also assessed the main results using a Bayesian
approach because it, contrary to classical null hypothesis significance
testing (NHST): (1) can quantify evidence in favor of H0, (2) enables
comparison between different models (e.g., H0 vs H1 across main effects
and interactions), and (3) is not biased against H0, unlike NHST (Rouder
et al., 2012, 2017; Wagenmakers et al., 2018). We used a Bayesian
repeated-measures ANOVA which is an equivalent to a repeated-
measures ANOVA (Rouder et al., 2012, 2017), using d� as the dependent
variable. Respiration type (nasal, mouth) was entered as a within-
participants factor (default prior of: r scale fixed effects � 0.5; r scale
random effects � 1). Paired-sample Bayesian t tests, an equivalent to
paired-sample t tests were further used to analyze odor ratings and used
a default Cauchy prior � 0.707 (Jeffreys, 1961; Rouder et al., 2009; Morey
et al., 2011).

For both the Bayesian ANOVA and the t tests, we used the default
priors (as implemented in JASP) because they place mass in realistic
ranges without being overcommitted to any one point. Also, they have
been shown to fit a large set of psychological data with moderate effect
sizes, and convey a minimum degree of information without being un-
informative (Rouder et al., 2009, 2012, 2017). The BF depicts an odds
ratio, the probability of the data under one hypothesis relative to another
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hypothesis. This allows for a clearer interpretation. For instance, BF10 �
4 indicates the data are four times more likely under H1 than under H0.
Whereas, a BF01 � 3 would support H0 three times more than H1. Our
interpretation of the BF follow the standard recommendations (Jeffreys,
1961; Jarosz and Wiley, 2014). These state a BF between 1 and 3 imply
anecdotal evidence, 3–10 substantial, and 10 –30 strong evidence. BF10

quantifies evidence for the alternative hypothesis relative to the null hy-
pothesis, whereas BF01 quantifies evidence for the null hypothesis relative
to the alternative hypothesis. Statistical analyses were conducted in
MATLAB 2015b, MathWorks and the JASP (2018) software package
v0.8.6.0 (Love et al., 2018).

Results
Type of respiration during consolidation modulates episodic
odor memory
To quantify the effect of respiration type on episodic odor mem-
ory, we used d� that serves as an unbiased index of recognition

memory, with higher d� indicating greater
odor recognition. As odor familiarity
plays an important role in odor memory,
d� was calculated according to our pre-
defined high and low familiarity targets
and lures. This enabled a separate sensitiv-
ity measure (d�) for familiar and unfamil-
iar odors that was then submitted to a 2
(respiration modality: nasal, mouth) � 2
(odor familiarity: high, low) repeated-
measures ANOVA. This demonstrated a
main effect of consolidation (F(1,23) �
12.50, p � 0.002, �p

2 � 0.35). Breathing
through the nose for 1 h during memory
consolidation increased recognition mem-
ory compared with 1 h of mouth-breathing,
regardless of familiarity (nasal consolida-
tion: familiar M � 1.63, SD � 0.73, unfa-
miliar M � 1.52, SD � 0.81; mouth
consolidation: familiar M � 1.27, SD �
0.71, unfamiliar M � 1.05, SD � 0.53; Fig.
2). There was no main effect of familiarity
(F(1,23) � 1.34, p � 0.26, �p

2 � 0.06), and no
interaction between respiration during con-
solidation and familiarity (F(1,23) � 0.18,
p � 0 0.67, �p

2 � 0.01).
When the control ratings (intensity,

pleasantness, familiarity, nameability,
and discomfort) between sessions were
entreated as covariates in the repeated-
measures ANOVA, there was no change
to the overall pattern of results, and they
are therefore excluded in the analysis re-
ported below. Moreover, there were no
statistical differences in ratings across

sessions, even without correcting for multiple comparisons
(intensity: t(23) � 1.39, p � 0.178; pleasantness t(23) � �0.09,
p � 0.93; familiarity: t(23) � 0.75, p � 0.50; nameability: t(23) �
0.88, p � 0.39; discomfort: t(23) � �1.89, p � 0.070). Impor-
tantly, corresponding Bayesian paired samples t tests on the
same ratings demonstrated substantial support for the null
hypothesis (BF01), i.e., there was no difference between ses-
sions for pleasantness (BF01 � 4.6, error % � 1.16e�4), fa-
miliarity (BF01 � 3.6, error % � 0.04) and nameability (BF01

� 3.3, error % � 0.04), and only mere anecdotal evidence for
the null for intensity (BF01 � 2.0, error % � 1.03e�4), and
discomfort (BF01 � 1.0, error % � 1.03e�4). Also, there was
no statistical difference in how often participants were able to
label/verbalize the odors across sessions (t(23) � �1.23, p �
0.23; BF01 � 2.4, error % � 1.19e�4).

There is evidence that women have better episodic odor rec-
ognition memory then men (Majid et al., 2017); however, we did
not have a specific a priori hypothesis about how this might in-
teract with respiration. Specifically testing for an effect of sex by
including it in the repeated-measures ANOVA as a between-
subjects factor revealed no additional effects (interaction be-
tween sex and respiration: F(1,22) � 0.04, p � 0.85, �p

2 � 0.00;
between sex, respiration and odor familiarity: F(1,22) � 0.76, p �
0.39, �p

2 � 0.03). So this factor was not included in subsequent
analyses.

To further estimate the strength of evidence for our data we
submitted the d� to a Bayesian equivalent of a repeated-

Figure 2. Recognition memory (d�) as function of nasal and mouth respiration during consolidation. Violin plot for recognition
memory using the sensitivity index d� after nasal and mouth consolidation sessions. The d� was calculated for the familiar and
unfamiliar odors separately but for simplicity are collapsed here. The boxes indicate the 75th (upper horizontal line), mean � SEM
(black bold horizontal line), median (white dot), and the 25th (lower horizontal line), percentiles of the distribution. The upper
whiskers indicate the maximum value of the variable located within a distance of 1.5 times the interquartile range above the 75th
percentile. The lower whiskers indicate the corresponding distance to the 25th percentile value. Surrounding the boxes (shaded
area) on each side is a rotated kernel density plot, which is comparable to a histogram with infinitely small bin sizes.

Table 1. Bayesian model comparison: d� as a function of respiration modality and
odor familiarity

Models compared to the null model P(M) P(M¦data) BFM BF10 Error, %

Null model (including subject) 0.200 0.028 0.115 1.000
Respiration modality 0.200 0.605 6.139 21.741 1.439
Odor familiarity 0.200 0.012 0.047 0.415 1.200
Respiration modality � Odor familiarity 0.200 0.273 1.505 9.814 1.826
Respiration modality � Odor familiarity �

Respiration modality � Odor familiarity
0.200 0.082 0.356 2.936 2.109

All models include subject. P(M), Prior model probabilities; P(M¦data), posterior model probabilities; BFM , change
from prior to posterior model odds.
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measures ANOVA. Here we compared Bayes factors (BF10) for
each effect relative to a null modal (i.e., no effect). Compared
with the null model, the model that included the main effect of
respiration modality during consolidation had a BF10 of 21.74,
thus predicting the data �21 times better than the null model
(Table 1). This BF10 should be considered as strong evidence
in favor of this model. Next, we compared the remaining main
effect and interactions models to the null model. These in-
cluded the main effect of odor familiarity on d�, the two main
effects together (respiration modality and odor familiarity), as
well as the interaction. Neither of these models explained the
data better than the model with the main effect of respiration
modality only.

Both hit and false alarm rate changed as a function of
respiration type during consolidation
To further investigate differences in recognition memory we
compared hit and false alarm rates across sessions. Similar to d�,
hit and false alarms rates were submitted to a 2 (respiration mo-
dality: nasal, mouth) � 2 (odor familiarity: high, low) repeated-
measures ANOVA. For hits, this reveled a main effect of
respiration modality during consolidation (F(1,23) � 6.46, p �
0.018, �p

2 � 0.22) a main effect for familiarity (F(1,23) � 4.6, p �
0.043, �p

2 � 0.17) but no interaction between respiration and
familiarity on hit rates (F(1,23) � 0.44, p � 0.51, �p

2 � 0.02).
Likewise, for false alarm rates, there was a main effect of respira-
tion modality during consolidation (F(1,23) � 5.85, p � 0.024,
�p

2 � 0.20) but no main effect for familiarity (F(1,23) � 0.35, p �
0.56, �p

2 � 0.02) nor an interaction between respiration during
consolidation and familiarity (F(1,23) � 0.01, p � 0.93, �p

2 � 0.00).

Figure 3. Sniff parameters during odor encoding and recognition across sessions. A, Average continuous sniff response during odor encoding across sessions with 95% confidence interval (CI).
Gray volume of the 95% CI indicates the area were the nasal consolidation (light blue) and mouth consolidation (light orange) sniffing parameters overlap. B, C, AUC and the FWHM with
corresponding 95% CI during odor encoding across sessions. D, Average continuous sniff response during odor recognition sessions with 95% CI. E, F, The AUC and the FWHM with corresponding 95%
CI during odor recognition across sessions. G, H, Data from one participant displaying 12 s of a 10-samples moving average continuous respiration (6 s before odor presentation and 6 s after) during
both encoding and recognition for nose and mouth respiration. The unit used is in proportion (	) pressure change, measured in arbitrary units (AU).

Figure 4. Response bias (c) as function of nasal and mouth respiration during consolidation.
Violin plots for response bias c for nasal and mouth consolidation conditions. The c was calcu-
lated for the familiar and unfamiliar odors separately but here are collapsed for clarity. For a
fuller description of figure markings, see Figure 2.
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We conclude that differences in d� between consolidation ses-
sions were driven by differences in both hit and false alarms rates.

Sniffing during odor encoding and recognition did not differ
between sessions
Next, we examined sniffing parameters during odor encoding
and recognition and established that they were kept constant
between sessions. It is well known that sniffing, the brief and
active sampling of odors through the nasal cavity, is essential for
odor perception, and the sniff response during odor learning and
discrimination are causally linked to hippocampus activity and
later performance (Mainland and Sobel, 2006; Kay, 2014). We
extracted the continuous sniff response across sessions during
encoding and recognition starting from odor presentation onset
to 4 s after. To fully capture various potential differences in sniff
parameters we compared the continuous sniff, the area under the
curve (AUC), as well as the full width at half maximum (FWHM).
There were no statistical differences between sessions in these
parameters (see Fig. 3). The difference in d� between the two
sessions are therefore unlikely to be explained by differences in
sniff parameters during odor encoding and recognition.

Respiration type during consolidation does not affect
response bias
Experimental manipulations in recognition memory can often
induce changes in response bias, for example, by inducing dis-
traction, or changing attention and motivation. These effects can
come from both external and internal sources including differ-
ences in environment, participants’ estimated degree of learning
during conditions, perceived difficulty of the lures or the task
itself, as well as from item characteristics such as familiarity (Ben-
jamin et al., 2009). Therefore, we examined and compared the
decision-making strategies across the two consolidation sessions.
According to a SDT perspective, participants evaluate targets and
distractors on a scale of strength. The decision criterion (c) indi-
cates the degree of strength that has to be exceeded for an item to
be accepted as previously experienced. The response bias c is a SD
unit measuring the level of preference for answering “old”
(smelled the odor previously) or “new” (not smelled the odor
previously). Negative values indicate a liberal response bias with a
tendency to respond old, positive values indicate a conservative

response bias with a tendency to respond new, and zero indicates
a neutral, unbiased response (Macmillan and Creelman, 2005).

To directly compare whether the decision-making strategies
across the two consolidation sessions differed, as before, we sub-
mitted c to a 2 (respiration format: nasal, mouth) � 2 (odor
familiarity: high, low) repeated-measures ANOVA. This demon-
strated that the response bias (c) was not affected by respiration
modality during consolidation (nasal consolidation: familiar
M � �0.157, SD � 0.416, unfamiliar M � �0.044, SD � 0.50;
mouth consolidation: familiar M � �0.183, SD � 0.39, unfamil-
iar M � 0.004, SD � 0.46. There was no main effect for respira-
tion modality during consolidation (F(1,23) � 0.04, p � 0.85, �p

2 �
0.00) and no main effect for familiarity (F(1,23) � 2.46, p � 0.13,
�p

2 � 0.10) nor an interaction (F(1,23) � 0.23, p � 0.64, �p
2 � 0.01;

Fig. 4).

Respiration type does not affect attentional control
Differences in recognition memory between the two consolida-
tion sessions could potentially be biased by differences in atten-
tional control during the two breathing modes. To rule out this
possibility, we conducted a second experiment with a new set of
24 participants (see Materials and Methods) to measure whether
breathing affected attentional control. Specifically, we tested par-
ticipants sustained-attention as well as a selective-attention as a
function of respiration modality.

Sustained attention, as measured by correct responses in
SART, did not significantly differ between nasal and mouth res-
piration (t(23) � �0.68, p � 0.51), nor did selective attention as
measured by reaction time for correct responses for incongruent
color–words in the Stroop task (t(23) � �0.24, p � 0.81; Fig. 5).
Along the same lines, Bayesian paired t test substantially sup-
ported the null hypothesis that attentional control was not af-
fected by breathing procedure (sustained-attention: BF01 � 3.8,
error % � 0.03; selective-attention: BF01 � 4.5, error % � 0.04).

Discussion
We demonstrated that breathing through the nose, as compared
with the mouth, during awake memory consolidation enhances
the ability to recognize episodic events. We used both high and
low familiar odors because, although both are hippocampal de-
pendent, they draw on partially different types of memory pro-

Figure 5. Attentional control as function of respiration route. A, B, Violin plots for the SART and the color–word Stroop task measuring selective attention. For description of figure
markings, see Figure 2.
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cesses. High familiar odors engage more semantic networks,
compared with more perceptual engagement for low familiar
odors (Larsson, 1997; Zelano et al., 2009; Saive et al., 2014; Cor-
nell Kärnekull et al., 2015). The fact that respiration-type modu-
lates consolidation independent of odor familiarity indicates this
effect may not be limited to episodic events involving odors per
se, but could generalize to hippocampal-dependent consolida-
tion of items across modalities. The latter remains to be tested,
however.

In contrast, respiration-type did not differentially influence
external or internal factors that potentially affect distraction, at-
tention, and motivation, as changes in these parameters would
have been reflected in participants’ response bias across sessions.
Additional evidence for this comes from the attentional control
experiment where respiration modality did not differentially im-
pact sustained- or selective-attention. A skeptic could neverthe-
less argue that attentional demands differ across conditions. We
cannot definitively rule out that mouth-breathing may have had
differential effects on other unspecified attentional functions
driven by, for example, stress and anxiety during the consolida-
tion phase, but the overall picture presented by the converging
evidence above suggests this is unlikely. Therefore, we conclude
that differences in recognition memory are most likely attribut-
able to differences in consolidation between nasal and mouth
respiration per se, and not to differences in attention or discom-
fort that could arise as a side-effect of the main manipulation.

Animal and human studies have jointly demonstrated that
memories are rapidly encoded in the hippocampus (Alvarez and
Squire, 1994; Ison et al., 2015), that recognition memory related
hippocampal activity is initiated immediately after learning
(Stark and Squire, 2000), and that this activity persists over a 1 h
interval (Peigneux et al., 2006). Replaying memories is a funda-
mental mechanism by which the initially encoded memory signal
is amplified. During awake states, this replay is necessary for
hippocampal-dependent consolidation and retrieval (Karlsson
and Frank, 2009; O’Neill et al., 2010; Carr et al., 2011). This type
of automatic reengagement of neural patterns during awake con-
solidation are present across the whole brain, but are especially
evident for the hippocampus and associated with time intervals
important for awake consolidation (Robertson, 2009). Disturb-
ing the neural processes underlying awake consolidation has a
direct negative impact on memory performance (Robertson,
2009). For example, both transcranial magnetic stimulation over
neural circuits activated during consolidation, as well as behav-
ioral tasks that compete over the same neural resources decrease
later retrieval processes (Brown and Robertson, 2007; Robertson,
2009).

In the present study we demonstrated that the consolidation
process can be modulated by the simple act of breathing alone.
The fact that the respiratory shift was induced immediately after
the encoding session indicates that these engage the first stages
of the awake consolidation process. Whether similar respiratory
locked effects arise for later stages, or during sleep-dependent
consolidation, remains to be seen. Our results support the grow-
ing evidence that nasal respiration modulates perception and
cognition in humans (Sobel et al., 1998; Bensafi et al., 2003, 2005;
Mainland and Sobel, 2006; Simonyan et al., 2007; Arshamian et
al., 2008; Perl et al., 2016; Zelano et al., 2016; Heck et al., 2017;
Herrero et al., 2018).

Previous studies with humans have demonstrated nasal, but
not mouth, cycle-by-cycle time-locking of hippocampus oscilla-
tions (Zelano et al., 2016). These oscillations are specifically mod-
ulated by the inhalation phase of the nasal cycle, and behavioral

measures have demonstrated enhanced performance when solv-
ing complex cognitive tasks (e.g., visual recognition memory)
during nasal inhalation but not exhalation; a pattern not seen for
cycle-by-cycle mouth respiration (Zelano et al., 2016). In the
present study there was no difference in the sniffing cycle across
sessions during odor encoding and recognition. So the observed
differences in recognition memory could not result from differ-
ential sniffing during these events. However, although each con-
solidation session removed the complete nasal or mouth
respiratory cycle (i.e., inhalation/exhalation), we believe that the
observed differences in recognition memory are primarily driven
by the difference between nasal and mouth inhalation phases
during consolidation. Although this study did not measure brain
oscillations, we propose that one possibility for the reduction in
d� could be the decreased communication between sensory (i.e.,
olfactory bulb) and memory networks (i.e., hippocampus) dur-
ing consolidation when air is redirected to the mouth. One po-
tential mechanism for this is that nasal inhalation increases the
probability of SWRs activity in hippocampus during awake con-
solidation enabling a more effective replay of episodic events (Liu
et al., 2017). However, changes in hippocampal activity may not
be the only reason for changes in olfactory memory, because
mouth-breathing could have affected other aspects of the consol-
idation phase, including olfactory imagery ability (Bensafi et al.,
2003; Arshamian et al., 2008) and oxygen load in the brain (Sano
et al., 2013).

The present study manipulated the respiratory cycle during
consolidation to enable causal inference and to maximize poten-
tial effects on recognition memory between nasal and mouth
respiration. However, it should be noted that the majority of
individuals are habitual nose breathers (Warren et al., 1988).
Future studies should also look how the natural respiratory cycle
during consolidation is correlated with memory performance.

To conclude, we demonstrate for the first time that respiration
mode during awake consolidation has behaviorally relevant con-
sequences for episodic odor recognition, and underscore the crit-
ical role of the fundamental physiological process of breathing on
the shaping of episodic memories.
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