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ABSTRACT: Electron attachment dissociation (electron capture dissociation
(ECD) and electron transfer dissociation (ETD)) applied to gaseous multiply
protonated peptides leads predominantly to backbone N—C, bond cleavages
and the formation of ¢- and z-type fragment ions. The mechanisms involved in
the formation of these ions have been the subject of much discussion. Here, we
determine the molecular structures of an extensive set of c-type ions produced
by ETD using infrared ion spectroscopy. Nine c;- and c,-ions are investigated to
establish their C-terminal structure as either enol-imine or amide isomers by
comparison of the experimental infrared spectra with quantum-chemically
predicted spectra for both structural variants. The spectra suggest that all c-ions
investigated possess an amide structure; the absence of the NH bending mode at

approximately 1000—1200 cm ™" serves as an important diagnostic feature. L 600 800 1000 1200 1400 1600 1800
Wavenumber —————m—dJ

O

c-type fragments ﬂ
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D 1 ass spectrometry (MS) is well-established as the leading peptide backbone predominantly at the N—C, bonds,”***~**

technique for protein sequencing.' Collision induced resulting in ¢- and radical z-type sequence ions.

dissociation (CID) has long been the main tandem MS (MS/ The precise reaction mechanisms of ETD have been the
MS) method used to induce peptide fragmentation, cleaving subject of extensive discussion.””””?*****7%3 Several mecha-
protonated peptides at their amide bonds® and generating nisms have been proposed, with the Cornell*”*”*%>* and
predominantly b- and y-type sequence ions.® However, the Utah—Washington“o’%_48”55_°7 mechanisms being the most
inability of CID MS/MS to sequence labile post translational prominent ones. In the Cornell mechanism, electron attach-
modifications (PTMs) and its limited applicability in top-down ment occurs at a protonated site that is hydrogen-bonded to a
protein sequencing’™” have led to an increase in the use of nearby carbonyl."* Hydrogen atom transfer from the now
fragmentation strategies based on electron attachment to the neutralized protonation site to the carbonyl group then induces
multiply protonated target, in particular electron capture N-C, bond cleavage and the formation of ¢-type ions with an
dissociation (ECD) and electron transfer dissociation enol-imine structure at their C-terminal end (Scheme 1). In
(ETD)." ECD and ETD, jointly termed ExD, increase the Utah—Washington hypothesis, the electron is captured in
sequence coverage and thus enable top-down sequencing, the 7*-orbital of an amide carbonyl H-bonded to a protonated
mitigating the need for enzymatic digestion of a protein into site, producing a charge-stabilized amide anion-radical
smaller peptides,s’u_M and moreover leave labile PTMs intermediate, which isomerizes by proton transfer to the
attached, which was originally suggested to be due to a peptide bond amide oxygen or nitrogen;34’58 proton transfer to
nonergodic nature of the dissociation process, but this the amide nitrogen upon cleavage of the N—C, bond forms c-
hypothesis was later rejected.zs_27 ExD of multiply charged type ions with an amide moiety at the C-terminus. Charge
gaseous proteins results mainly in ¢- and z-type ions, cleaving stabilization by protonation, rather than by metal-ion
the backbone at the N—C, bond.****73* Complementary coordination, was recently suggested to enhance the efficiency
information is obtained by combining CID and ExD for of ¢- and z-type ion formation.”
protein identification as different ion types are formed. Because the two mechanisms lead to two different

In ETD, an anionic species (often the radical anion of (isomeric) product ions, with either an enol-imine or an
fluoranthene'®) is guided into the ion trap and stored along amide terminus, identification of the molecular structure of the
with the multiply protonated precursor peptide ion of
interest."”>**® An ion/ion reaction results in electron transfer Received: September 16, 2018
and charge-reduction of the peptide ion forming a radical Accepted: October 18, 2018
species.”” The charge recombination induces cleavage of the Published: October 22, 2018
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Scheme 1. Schematic Representation of Two Isomeric ¢-Type Product Ions That Have Been Proposed to Be Formed upon
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“The top structure is the enol-imine c-type structure proposed to result from the Cornell mechanism. Following the Utah—Washington mechanism,

c-type product ions can form as either an amide or enol-imine.
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Figure 1. Experimental infrared spectrum of the ETD-generated c;-ion from [KAAA+2H]*" (in black) compared with computed spectra for the
lowest-energy amide structure (left, gray), a higher-energy conformation of the amide isomer (left, blue), and the lowest-energy enol-imine
structure (red, right). The experimental spectrum is assigned as an amide structure based on the generally favorable overlap between the
experimental and computed spectrum in blue and in particular on the absence of O—H and N—H bending modes in the experimental spectra,
diagnostic for the enol-imine structure (indicated with asterisks on the right).

c-type ions may shed light on their mechanism of formation.
The combination of mass spectrometry, ion spectroscopy, and
quantum-chemical calculations has become a powerful method
for distinguishing isomers, tautomers, and conformers of MS/
MS reaction products,”~** which has previously been used for
the structural characterization of an ECD-generated cy-ion of a
derivatized peptide.”® Its structure was established to include
an amide moiety as its C-terminus. More recently, the c,-ion
produced by ETD on the doubly protonated GL*GGK peptide
was also assigned as an amide structure on the basis of
ultraviolet photodissociation and infrared multiple photon
dissociation (IRMPD) spectroscopy experiments along with
density functional theory (DFT) calculations. Calculated
spectra distinguished the amide tautomer from the enol-
imine tautomer by strong IR bands of the enol-imine product
ion at 1040—1050 cm™' and 1190—1220 cm™', which were
absent in the experimental spectrum.®®

Ion mobility has also been used to characterize ETD
fragment ions (c; ¢4 z; and z, of [AAHAL+2H]**).”

6405

Although the collisional cross sections (€2) showed close
agreement with calculations, the values for enol-imine and
amide tautomers were nearly identical, not allowing the
authors to distinguish between them. In another study, the
CID fragmentation pattern of the cs-ion of GAILKGAILR was
found to be essentially identical to that of the synthesized
[GAILK-NH,+H]* analog.68 In contrast, CID fragmentation
of the intact peptide [GAILK+H]* showed a y;-fragment ion
and several neutral loss-species, which were absent in the CID
spectrum of the cs-ion (and of [GAILK-NH,+H]").

Here we address the question of whether the formation of
amide c-type ions is generic or not by applying IRMPD
spectroscopy to probe the structure of an extensive set of ETD
c-type ions. This also addresses the question of whether the
fragment ion structure is influenced by the identity of the
amino acid residue at the cleavage site. Peptides containing a
Lys residue at the N-terminus were selected to favor c-ion
formation upon ETD. The peptide length is varied (tetra- and
heptapeptides), as is the amino acid residue N-terminal to

DOI: 10.1021/acs.jpclett.8002850
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cleavage site (Ala, His, or Phe); a peptide with a His residue C-
terminal to the cleavage site was also included. An IRMPD
spectrum was also recorded for the NH, capped peptide of
AAAA, as reference for an amide-structure c-type ion.

Figure 1 presents the IRMPD spectrum of the ¢; ion of
[KAAA+2H]*" compared with spectra predicted for different
structural variants by DFT. The gray trace in the left panel is
the computed spectrum for the lowest-energy conformer found
for the amide isomeric form. The spectrum in blue represents
an alternative, higher-energy (+18 kJ/mol) conformer of the
same amide isomer. The right panel compares the IRMPD
spectrum with the predicted spectrum for the lowest-energy
conformer of the enol-imine isomer, which lies 60 kJ/mol
above the lowest-energy amide conformer.

In the calculated enol-imine spectrum, two relatively strong
diagnostic bands (*) are due to NH bending of the enol-imine
moiety (1100 cm™") and to a delocalized bending vibration
involving enol-imine NH and OH bonds (840 cm™). In the
computed spectrum for the amide isomer, no strong bands are
predicted at these frequencies. The observation that the
experimental spectrum shows little or no intensity at these
frequencies suggests that the cs;-ion possesses an amide
structure. The remainder of the experimental spectrum
between 1200 and 1750 cm™' also shows good agreement
with the spectrum predicted for the amide isomer, especially
for the conformer at slightly elevated energy (blue trace).

This isomeric structure assignment is in line with that for
two c-type ExD fragments studied by IR spectroscopy
previously.”>*® Ref 65 addresses the structure of a (modified)
co-ion, so that the two isomeric product ions can conveniently
be distinguished based on the absence or presence of the
amide C=O stretch (at 1731 cm™"). The enol-imine structure
does not possess a carbonyl moiety so that its predicted
spectrum does not contain a C=0 stretch band. The longer ¢;
and c, ions studied in the present work possess multiple amide
C=0 moieties, one for each peptide linkage, so that the
presence or absence of a carbonyl stretch is no longer a good
diagnostic. Instead, the presence of the NH bending mode
near 1100 cm™ is used here as a diagnostic for the enol-imine
structure.®®

Peptides with a C-terminal NH,-cap are readily available and
can serve as a reference for c-type fragment ions in the amide
isomeric configuration.”****® The IRMPD spectrum of
protonated NH,-capped tetra-alanine, [AAAA-NH,+H]*, is
shown in Figure 2. The band near 1700 cm™" is due to C=0
stretches of the first and last peptide linkages, with the

[AAAA-NH,+H]' 0 kJ,fmoI_

800 1000 1200 1400 1600 1800

Wavenumber{cm'l]

Figure 2. Experimental spectrum of NH,-capped AAAA compared
with the computed spectrum for a N-terminally protonated structure.
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shoulder at 1670 cm™" being due to a combined C=0 stretch
with N—H bending at the N-terminus of the peptide. The peak
at 1600 cm™" corresponds to NH bending at the protonated N-
terminus, and that around 1500 cm™" corresponds to modes
with combined backbone NH and terminal NH; bending
character. Clearly, matching this feature with theory appears
slightly more challenging than the other bands, which we shall
keep in mind in our analysis below.

Relying on the good overall match between experiment and
theory in Figure 2 and having established the salient
distinguishing features between amide and enol-imine IR
spectra, we extend our study to a large set of ¢; and ¢, ions
generated from different precursor peptides. Figure 3 shows
the experimental IRMPD spectra of eight different ¢; and ¢,
ions obtained from ETD on doubly protonated KAHA,
KAAAAAA, KAAHAAA, KAHAAAA, and KAFAAAA. All
experimental spectra are compared with the calculated spectra
for both the enol-imine and the amide isomer, including
different conformations of these isomers. In Figure 3, the left
panels compare experimental spectra with computed spectra
for amide isomers, with the best matching spectra in shaded
blue and, if different, the most stable conformer in gray. The
panels on the right show the predicted spectra for the
alternative enol-imine isomers of each of the c-ions overlaid on
the same experimental spectra; diagnostic NH and OH
bending modes are indicated by asterisks. The spectrum for
the lowest-energy conformer is shown in all cases.

The c;-ions of KAHAAAA and of KAHA likely are identical,
which is indeed confirmed by their IR spectra (see Figure S1 in
the Supporting Information). The computed spectra in the first
and fifth row of Figure 3 are therefore identical. Similarly, the
cs-ions of KAAA and KAAHAAA are also the same as
suggested by an overlay of their IR spectra in Figure S1; the
computed spectra in Figure 1 and on the third row of Figure 3
are therefore identical.

For all structures, the preferred protonation site is the Lys
side chain, except for the c¢,-ions of KAAHAAA and
KAHAAAA, where protonation occurs on the His residue for
the enol-imine isomers. The amide structure of KAHAAAA-c,
is also protonated at the His residue. Some enol-imine
conformers converge to a structure where the proton has
transferred from the Lys or His side chain to the imine
nitrogen. As a consequence, their calculated spectra do not
possess the typical NH bending modes. The match with the
experimental spectra is poor, as shown in Figure S2, and we
discard these structures.

All spectra feature prominent amide I (backbone amide
carbonyl stretching around 1600—1700 cm™') and amide II
(backbone amide NH bending around 1500 cm™") bands. The
spectra in the 1400—1700 cm™' range are generally well
reproduced by the computed spectra for the amide isomers in
blue except for some deviations in intensity for amide II in a
few cases, as already noted for the NH,-capped Ala, reference
(Figure 2). As for the ¢ ion of KAAA in Figure 1, the lowest-
energy conformer does not always provide the best match; for
the cy-ions of KAAAAAA and KAAHAAA, the spectral match
is better for higher-energy conformers, which we tentatively
attribute to kinetic trapping.

As compared to the amide spectra, the calculated spectra for
the enol-imine isomers qualitatively display more prominent
deviations from experiment in the 1400—1700 cm™' range,
with for instance significant mismatches in the amide I band
(e.g, KAH-c;, KAA-c;, and KAAH-c,) and the absence of the

DOI: 10.1021/acs.jpclett.8002850
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Figure 3. Experimental spectra of a series of c; and ¢, ETD fragment ions (black) compared with the computed spectra for the amide structures
(left, blue) and for the enol-imine isomers (red, right). The stars indicate the enol-imine NH and OH bending modes. Arrows indicate the
protonation site. For the c,-ions of KAAAAAA and KAAHAAA, the best match is found for a higher-energy conformer; the spectrum of the lowest-
energy amide conformer is shown in addition in light gray in these cases.

1590 cm ™" band for KAAA-c,. Also at lower frequencies, amide enol-imine spectra, with the general absence of the enol-imine
spectra appear to provide an overall closer agreement than NH and OH bending modes (*) in the experimental spectra as
6407 DOI: 10.1021/acs jpclett.8b02850
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specific examples. The overall picture that emerges from the
comparisons in Figure 3 is that the amide isomer spectra
provide the best match to the experimental spectra.

The enol-imine structures of interest here are between 51
and 100 kJ/mol higher in energy than the global minimum
amide structures, which is in line with relative energies
reported previously.®>*”’%”" Although the IR spectra suggest
an amide structure for all c-ions studied here, we cannot
exclude the possibility that the amide structure is formed via an
enol-imine intermediate, driven by the substantial gain in
energy. The energetic barriers involved in such transformations
have been investigated by transition-state (TS) calculations,
and it appears likely that isomerization occurs before the
incipient ¢- and z-fragments separate.”””" The charge-solvating
behavior of the z-fragment in this predissociation ion—
molecule complex lowers the barriers for the H-atom transfer
and can be regarded as a catalyst for the isomerization.”’ The
actual TS energies depend on the specific system but are in all
cases much lower than the energy available from the charge
recombination process.72

In conclusion, on the basis of our structural assignments
from IR spectral matching in Figures 1 and 3 and the
corresponding computed relative energies, this study suggests
that for a set of nine c-type ions, all most likely possess an
amide C-terminus. Assuming the set of sequences selected for
the precursor peptides is sufficiently diverse to be generally
representative for a broader range of peptides, these results
suggest c-type ions not having C-terminal amide groups would
be unusual and that they generally are NH,-capped truncated
peptides. One caveat may be the presence of a Lys residue in
all systems studied here. On the basis of computational
investigations, the ammonium group of a protonated Lys side
chain was suggested to catalyze the enol-imine to amide
tautomerization.”! However, isolated cases of c-ions not
including a Lys residue have been spectroscopically inves-
tigated and gave evidence for amide structures without
exceptions.””*®”®> The bottom line here is that the enol-
imine structure was not encountered in any of the
spectroscopic investigations thus far. These experiments do
not exclude the possibility that enol-imine structures are
traversed as reaction intermediates but may be regarded as
experimental evidence for their efficient conversion to amide
structures.”””"

B EXPERIMENTAL AND COMPUTATIONAL
METHODS

IRMPD Spectroscopy. The experiments made use of a modified
ion trap tandem mass spectrometer (Bruker AmaZon ETD
Speed) coupled to the beamline of the IR free electron laser
FELIX.”” Doubly protonated peptide ions were generated
using electrospray ionization (ESI) from 10™° M solutions in
50:50 acetonitrile:water with ~0.5% formic acid. The doubly
charged precursor ions of interest were mass isolated in the
quadrupole ion trap. ETD was effected by admitting
fluoranthene radical anions’” to the trap reacting with the
stored peptide cations for 300 ms. The basic Lys residue in the
first position generates a prominent series of c-type ions, out of
which the singly charged ¢; or ¢, ion of interest was mass
isolated. Note that Lys is preferred over other basic residues
such as Arg or His because of its relative silence in the IR
spectrum, in contrast with the guanidinium and imidazolium
side chains which feature strong IR absorptions overlapping
with, and therefore obscuring, the diagnostic amide I and II

6408

features in the spectra. A potential side effect of this choice is
the alleged catalytic behavior of the ammonium group in the
conversion of enol-imine to amide structures.”'

The c-type fragment ion was then irradiated with two IR
pulses of the FELIX free-electron laser. FELIX produced 6 us
long macropulses of 20—60 mJ at a 10 Hz repetition rate
having a bandwidth of ~0.5% of the center frequency. The IR-
induced dissociation yield, calculated as XI(fragment ions)/
YI(parent + fragment ions), at each laser frequency was
determined from five averaged mass spectra. Plotting the yield
as a function of laser frequency then generates an infrared
spectrum. The vyield is linearly corrected for the frequency-
dependent pulse energy, and the IR frequency is calibrated
using a grating spectrometer.

Computational Chemistry. For all c-ions, enol-imine and
amide isomeric structures were optimized, and their infrared
spectra were calculated using DFT at the B3LYP/6-31++
G(d,p) level using Gaussian 09 revision DO1.”* These spectra
were used for qualitative initial comparison with the
experimental spectra. A molecular mechanics/molecular
dynamics (MM/MD) approach employing AMBER 12”° was
then used to further search for lower-energy conformers of
both isomeric motifs. Within AMBER, an initial MM geometry
optimization was performed, followed by a simulated annealing
procedure up to 273—500 K, resulting in 500 structures. These
structures were grouped based on rms atom positions to give
20—-30 candidate structures, which were optimized using DFT
at the B3LYP/6-31++G(d,p) level. Their spectra were
compared with the experimental spectra. Computed harmonic
vibrational frequencies were scaled by 0.975 and convoluted
with a 25 cm™ full-width-at-half-maximum (fwhm) Gaussian
line shape. Single-point electronic energies were calculated at
the MP2/6—311+G(2d,2p) level using the B3LYP/6-31+
+G(d,p) optimized structures. The computational procedure
is described in more detail elsewhere.””"”°

B ASSOCIATED CONTENT
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The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jp-
clett.8b02850.

Additional figures showing a comparison between the ¢;-
ions of doubly protonated KAHA and KAHAAAA
(Figure S1) and the calculated spectra of alternative
enol-imine structures in which the proton has trans-
terred from the Lys or His side chain to the imine
nitrogen atom (Figure S2); calculated relative Gibbs
energies for all presented c-ion structures at three
different levels of theory (Table S1) (PDF)
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