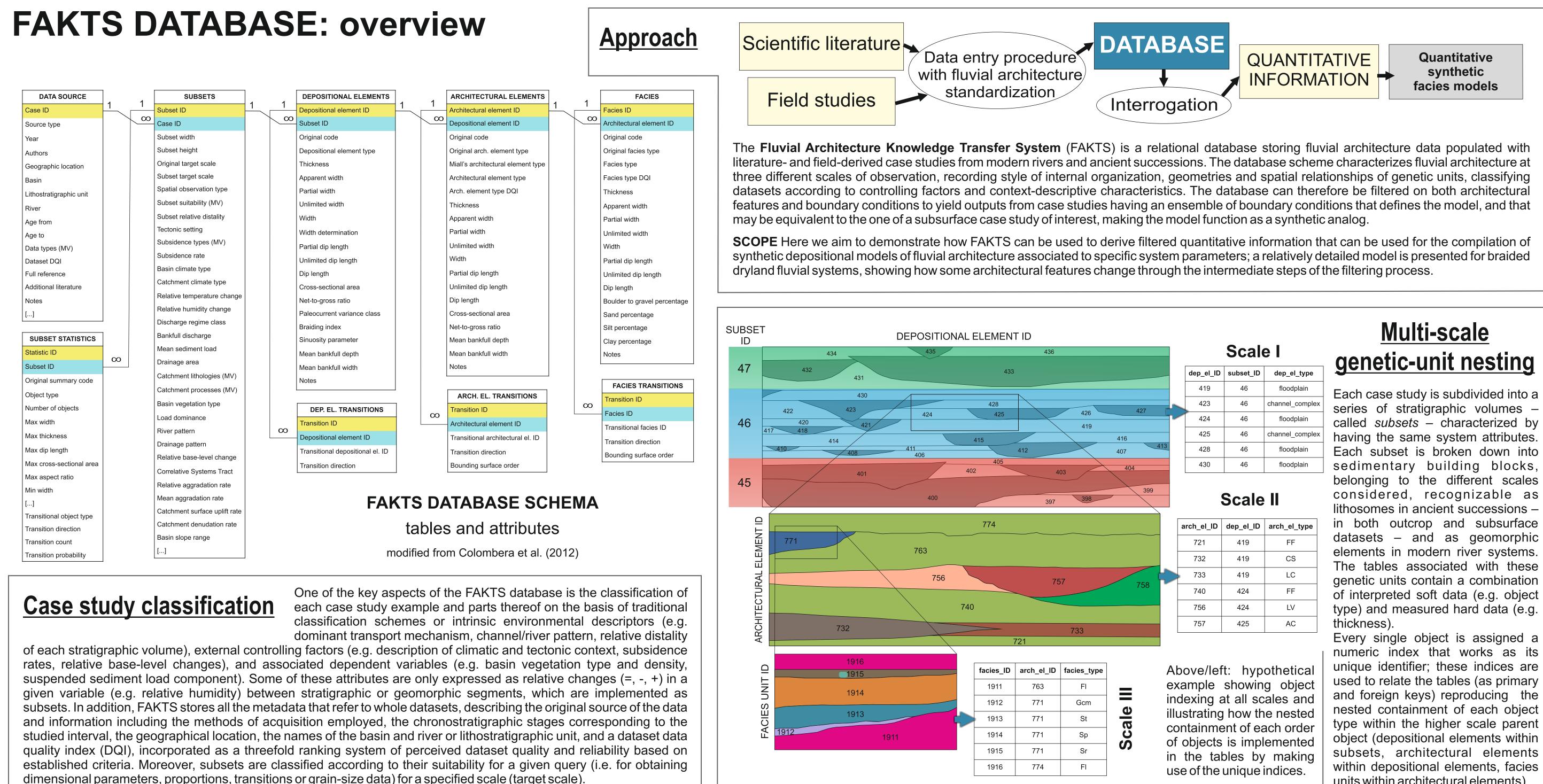
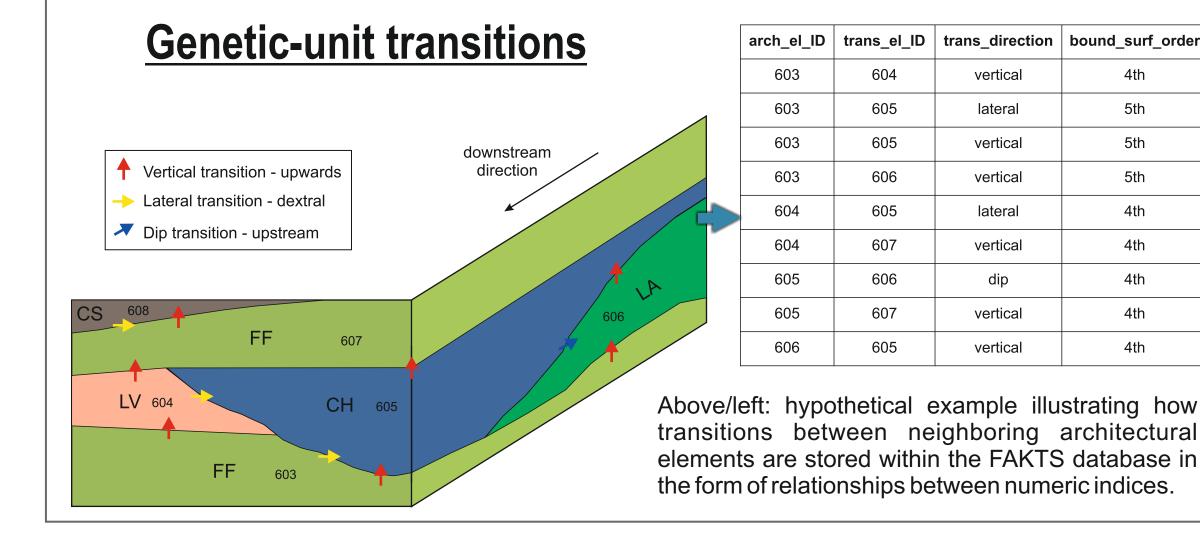
### A relational database for the digitization of fluvial architecture: toward quantitative synthetic depositional models FRG Luca Colombera, Nigel P. Mountney, William D. McCaffrey **UNIVERSITY OF LEEDS**


## **ABSTRACT**

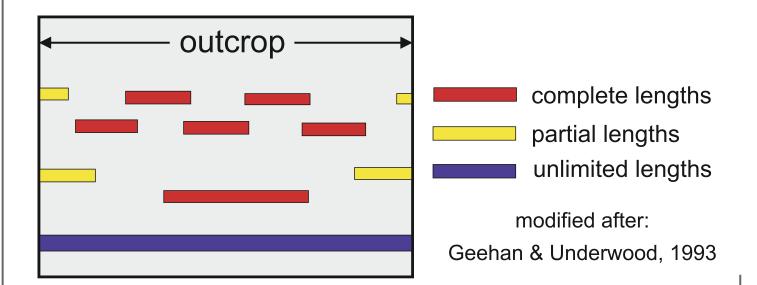
Facies models for fluvial depositional systems aim to summarize the sedimentological features of a specific fluvial type (e.g. braided, ephemeral) through a process of distillation of several real-world examples, in order to provide conceptual frameworks that are straightforwardly applicable to subsurface prediction problems. However, such models are often based on few case studies and are qualitative in nature, thereby resulting in poor predictive power. Our aim is to generate quantitative depositional models for fluvial systems that are based on the synthesis of many different case histories and continuously refined by adding data when they become available.

A relational database for the storage of data relating to fluvial architecture has been devised, developed and populated with literature- and field-derived data from studies of both modern rivers and their ancient counterparts preserved in the stratigraphic record. The database scheme characterizes fluvial architecture at three different scales of observation, corresponding to many genetic-unit types (large-scale depositional elements, architectural elements and facies units), recording all the essential architectural features, including style of internal organization, geometries, spatial distribution and reciprocal relationships of genetic units. The


database classifies datasets – either in whole or in part – according to both controlling factors (e.g. climate type, tectonic setting) and context-descriptive characteristics (e.g. river pattern, dominant transport mechanism). The data can therefore be filtered on the parameters according to which they are classified, allowing the exclusive selection of data relevant for the model.

To demonstrate the value of the approach, an example synthetic depositional model for braided fluvial systems in arid/semiarid basins is presented here, and some of its features are compared with analogous data from other settings. Resultant models are based on outcrop studies of the Permian Organ Rock Fm. and Jurassic Kayenta Fm. (both from Utah, USA), the Chester Pebble Beds Fm. and Helsby Fm. (both Cheshire Basin, UK), together with literature-derived data. In comparison to traditional facies models, the improved usefulness of synthetic models derived from this database approach to subsurface predictions is evident, as their quantitative content is particularly suitable to inform well-to-well correlations and to constrain stochastic reservoir models.




dimensional parameters, proportions, transitions or grain-size data) for a specified scale (target scale).

units within architectural elements).



| The same numeric indices       |
|--------------------------------|
| that are used for              |
| representing containment       |
| relationships, are also used   |
| for object neighboring         |
| relationships, represented     |
| within tables containing       |
| transitions in the vertical,   |
| cross-valley and along-        |
| valley directions. The         |
| hierarchical order of the      |
| bounding surface across        |
| which the transition occurs is |
| also specified at the facies   |
| and architectural element      |
| scales; the bounding surface   |
| hierarchy proposed by Miall    |
| (1996) has been adopted.       |

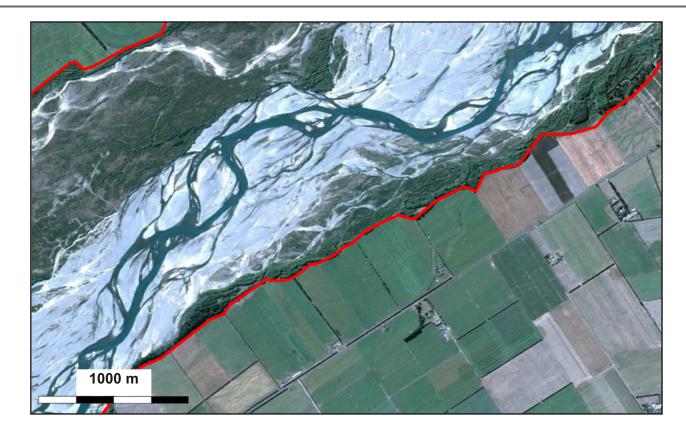




### Above:

representation of categories of completeness (after Geehan & Underwood 1993) of observed/sampled dimensional parameter. Correlated genetic-unit dimensions are stored as unlimited.

can be stored as representative thicknesses, flowperpendicular (i.e. cross-gradient) widths, downstream lengths, cross-sectional areas, and planform areas. Widths and lengths are classified according to the completeness of observations into complete, partial or unlimited categories, as proposed by Geehan & Underwood (1993). Apparent widths are stored whenever only oblique observations with respect to palaeoflow are available. Where derived from borehole correlations, widths and lengths are always stored as 'unlimited'.


Future development will involve the inclusion of descriptors of genetic-unit shape, implemented either by linking these objects to 2D/3D vector graphics or by adding table attributes (columns) relating to cross-sectional, planform and/or 3D shape types.

## **FAKTS GENETIC UNITS: classifications**

### **Depositional elements**

Depositional elements are classified as channel-complex or floodplain elements. Channel-complexes represent channel-bodies defined on the basis of flexible but unambiguous geometrical criteria, and are not related to any particular genetic significance or spatial or temporal scale; they range from the infills of individual channels, to compound, multi-storey valley-fills. This definition facilitates the inclusion of datasets that are poorly characterized in terms of the geological meaning of these objects and their bounding surfaces (mainly subsurface datasets)

Floodplain segmentation into depositional elements is subsequent to channel-complex definition, as floodplain deposits are subdivided according to the lateral arrangement of channel-complexes.



Rakaia River channel-belt (New Zealand.) From Google Earth<sup>™</sup>.

### **Facies units**

| Code | Legend | Lithofacies type                         |
|------|--------|------------------------------------------|
| G-   |        | Gravel to boulders - undefined structure |
| Gmm  |        | Matrix-supported massive gravel          |
| Gmg  |        | Matrix supported graded gravel           |
| Gcm  |        | Clast-supported massive gravel           |
| Gci  |        | Clast-supported inversely-graded gravel  |
| Gh   |        | Horizontally-bedded or imbricated gravel |
| Gt   |        | Trough cross-stratified gravel           |
| Gp   |        | Planar cross-stratified gravel           |
| S-   |        | Sand - undefined structure               |
| St   |        | Trough cross-stratified sand             |
| Sp   |        | Planar cross-stratified sand             |

In FAKTS, facies units are defined as genetic bodies characterized by homogeneous lithofacies type down to the decimetre scale, bounded by second- or higher-order (Miall 1996) bounding surfaces. Lithofacies types are based on textural and structural characters; facies classification follows Miall's (1996) scheme, with minor additions (e.g. texture-only classes - gravel to boulder, sand, fines – for cases where information regarding sedimentary structures is not provided).



|      | Ar     | chitectural elements                        | Following N                     |
|------|--------|---------------------------------------------|---------------------------------|
| Code | Legend | Architectural element type                  | defined as characterist         |
| СН   |        | Aggradational channel fill                  | interpretabl<br>FAKTS is de     |
| DA   |        | Downstream-accreting macroform              | according classificatio         |
| LA   |        | Laterally accreting macroform               | make them                       |
| DLA  |        | Downstream- & laterally-accreting macroform | expression,<br>easier. Arcl     |
| SG   |        | Sediment gravity-flow body                  | alternative s<br>the criteria c |
| НО   |        | Scour-hollow fill                           |                                 |
| AC   |        | Abandoned-channel fill                      |                                 |
| LV   |        | Levee                                       |                                 |
| FF   |        | Overbank fines                              |                                 |
| SF   |        | Sandy sheetflood-dominated floodplain       |                                 |
| CR   |        | Crevasse channel                            |                                 |
| CS   |        | Crevasse splay                              |                                 |
| LC   |        | Floodplain Lake                             |                                 |
| С    |        | Coal-body                                   | Above: exan<br>from the Lov     |
|      |        | Undefined elements                          | Utah, USA).                     |

liall's (1985, 1996) concepts, architectural elements are components of a fluvial depositional system with the stic facies associations that compose individual elements le in terms of sub-environments. esigned for storing architectural element types classified

to both Miall's (1996) classification and also to a on derived by modifying some of Miall's classes in order to more consistent in terms of their geomorphological so that working with datasets from modern rivers is hitectural elements described according to any other scheme are translated into both classifications following outlined by Miall (1996) for their definition.



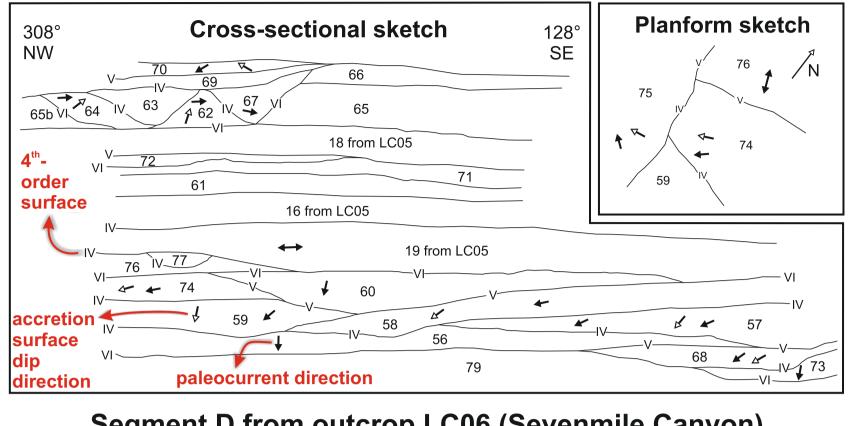


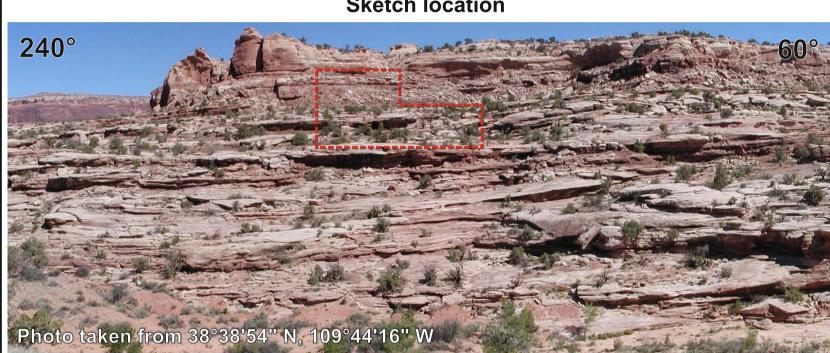
mple preserved architectural elements (DA and LA barforms) ower Jurassic Kayenta Formation at Sevenmile Canyon (SE

|                |                                          | (Ca   |
|----------------|------------------------------------------|-------|
| Sr             | Ripple cross-laminated sand              | Ss    |
| Sh             | Horizontally-laminated sand              |       |
| SI             | Low-angle cross-bedded sand              |       |
| Ss             | Scour-fill sand                          | 50    |
| Sm             | Massive or faintly laminated sand        |       |
| Sd             | Soft-sediment deformed sand              |       |
| F-             | Fines (silt, clay) - undefined structure |       |
| FI             | Laminated sand, silt and clay            | Sr    |
| sm             | Laminated to massive silt and clay       |       |
| <sup>-</sup> m | Massive clay and silt                    |       |
| Fr             | Fine-grained root bed                    |       |
| Ρ              | Paleosol carbonate                       | i     |
| С              | <br>Coal or carbonaceous mud             | Above |
|                | Undefined facies                         | Forma |

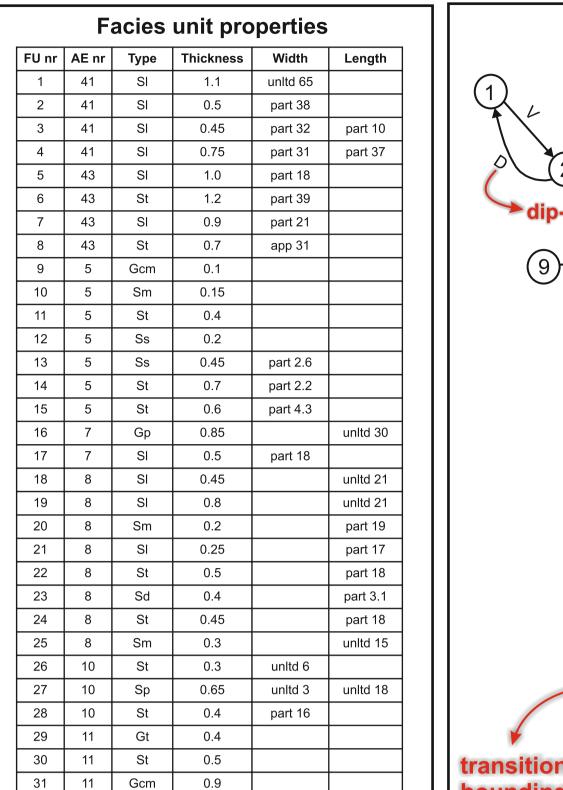


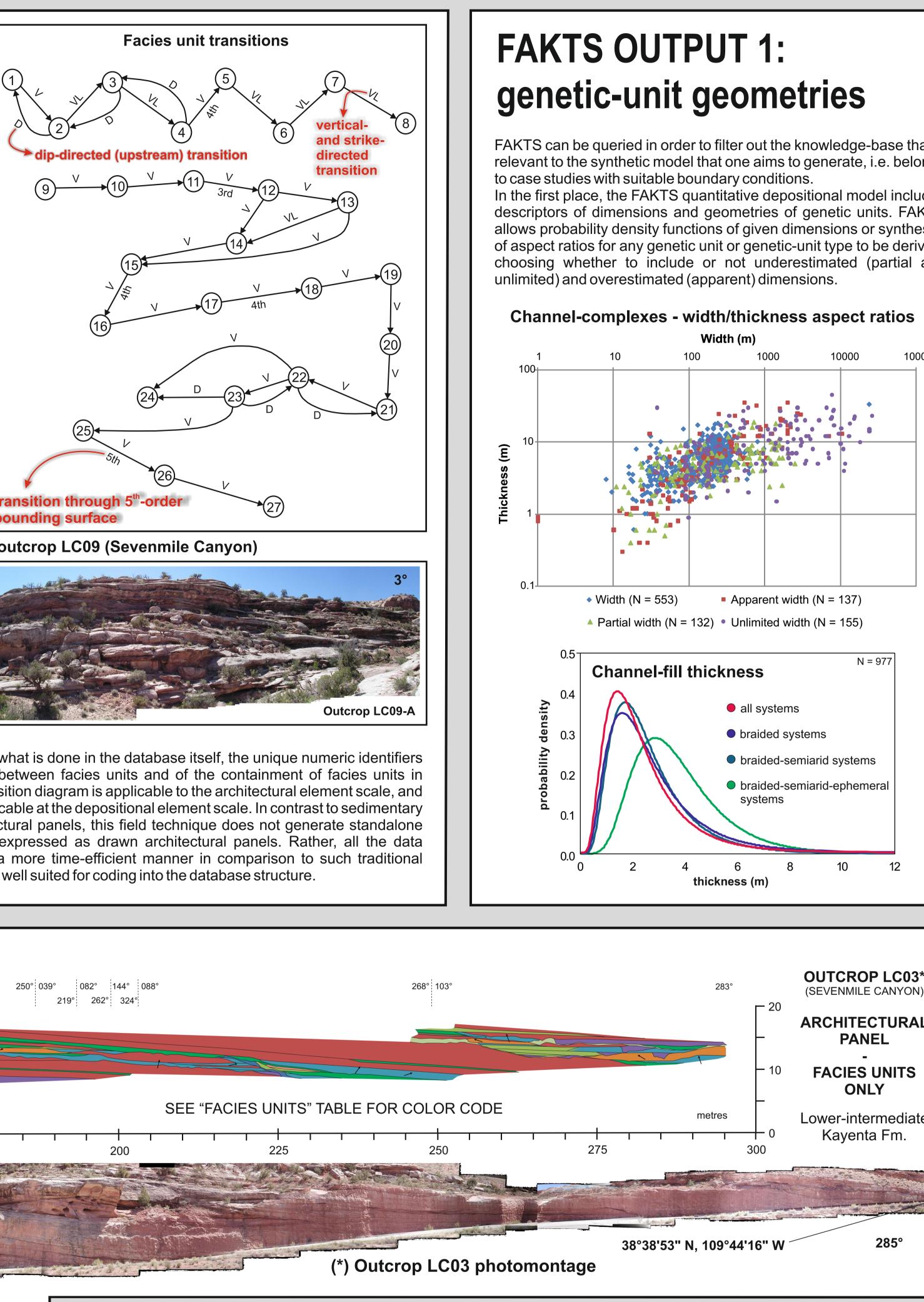


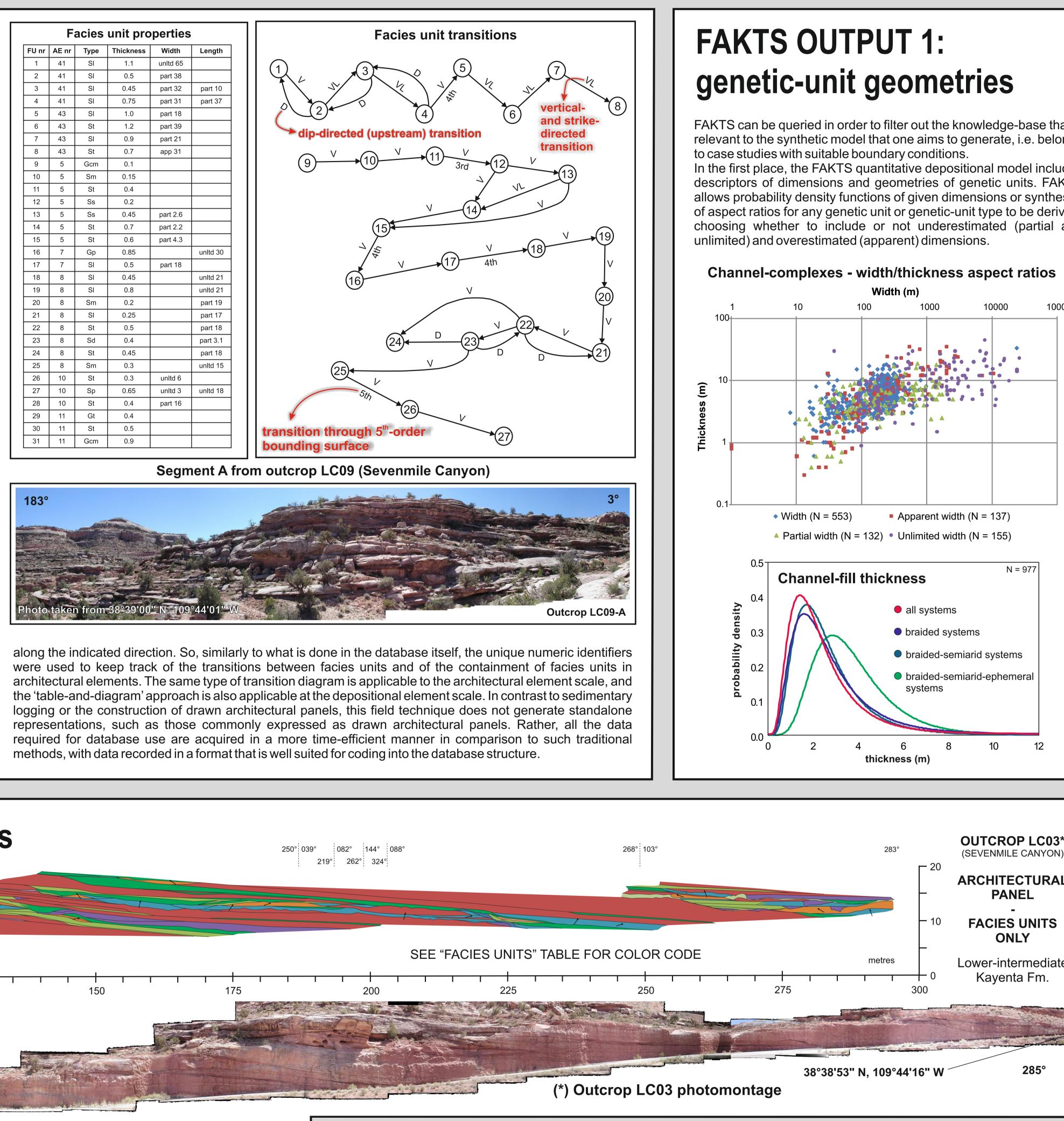




e: example sandy facies units from the Lower Jurassic Kayenta ation in the Moab area (SE Utah, USA).

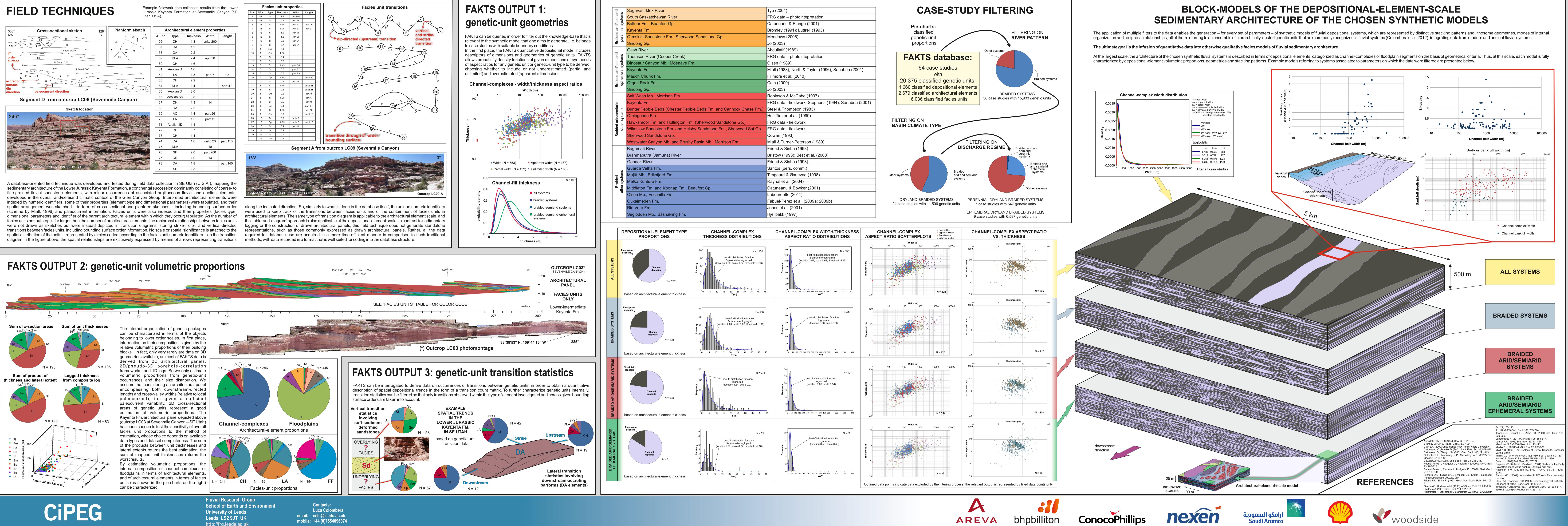






# A relational database for the digitization of fluvial architecture: toward quantitative synthetic depositional models





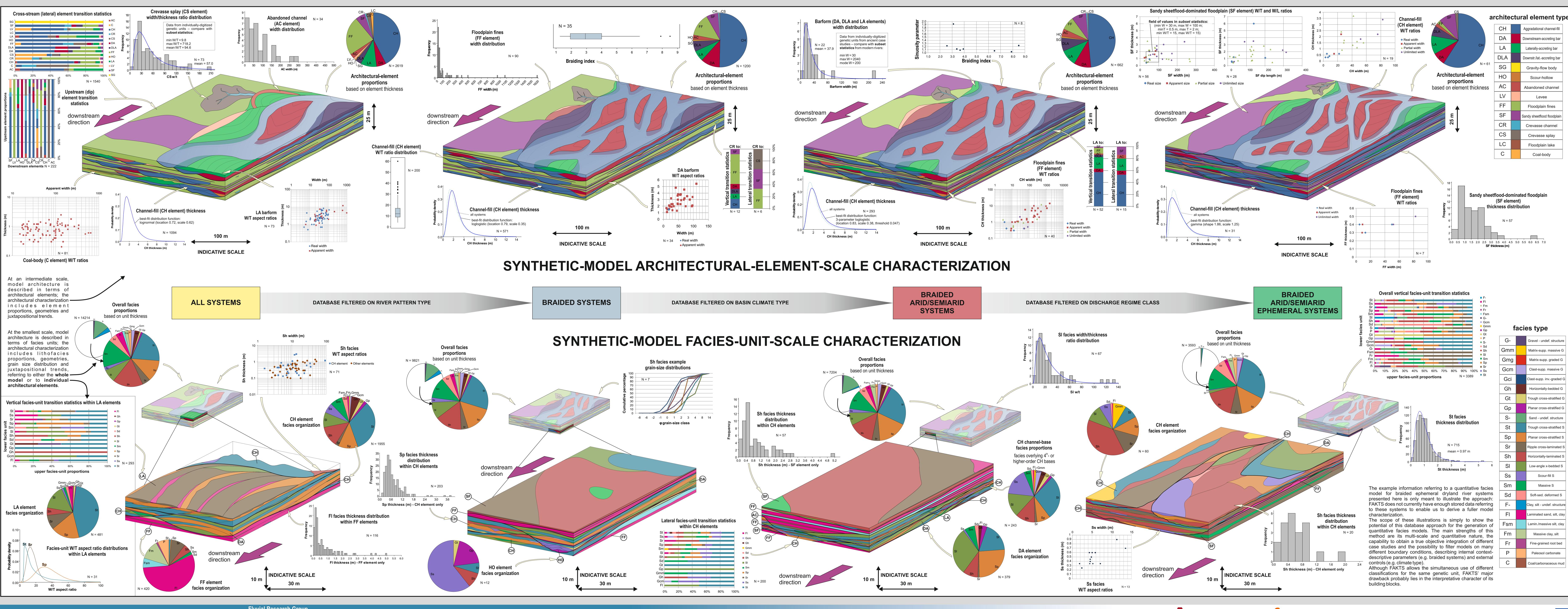


| AE nr | Туре       | Thickness | Width     | Length   |
|-------|------------|-----------|-----------|----------|
| 56    | СН         | 1.8       | unltd 200 |          |
| 57    | DA         | 1.2       |           |          |
| 58    | DA         | 2.2       |           |          |
| 59    | DLA        | 2.4       | app 38    |          |
| 60    | СН         | 1.6       |           |          |
| 61    | Aeolian D  | 1.6       |           |          |
| 62    | LA         | 1.3       | part 7    | 19       |
| 63    | СН         | 2.2       |           |          |
| 64    | DLA        | 2.4       |           | part 47  |
| 65    | Aeolian D  | 3.0       |           |          |
| 66    | Aeolian SS | 0.8       |           |          |
| 67    | СН         | 1.3       | 14        |          |
| 68    | DA         | 2.3       |           |          |
| 69    | AC         | 1.4       | part 26   |          |
| 70    | LA         | 1.5       | part 11   |          |
| 71    | Aeolian ID | 1.1       |           |          |
| 72    | СН         | 0.7       |           |          |
| 73    | СН         | 1.4       |           |          |
| 74    | DA         | 1.8       | unltd 23  | part 110 |
| 75    | DLA        |           | 10        |          |
| 76    | SF         | 2.0       | part 200  |          |
| 77    | CR         | 1.0       | 13        |          |
| 78    | DA         | 1.8       |           | part 140 |
| 79    | SF         | 2.3       |           |          |







some of their properties (element type and dimensional parameters) were tabulated, and thei current information. Facies units were also indexed and their properties storing strike-, dip-, and vertical-directed




# Luca Colombera, Nigel P. Mountney, William D. McCaffrey – Fluvial Research Group, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

| s<br>S                                     | Sagavanirktok River                                                | Tye (2004  |
|--------------------------------------------|--------------------------------------------------------------------|------------|
| Braided arid/semiarid<br>perennial systems | South Saskatchewan River                                           | FRG data   |
|                                            | Balfour Fm., Beaufort Gp.                                          | Catunean   |
|                                            | Kayenta Fm.                                                        | Bromley (  |
|                                            | Ormskirk Sandstone Fm., Sherwood Sandstone Gp.                     | Meadows    |
|                                            | Sindong Gp.                                                        | Jo (2003)  |
| _                                          | Gash River                                                         | Abdullatif |
| iario<br>ems                               | Thomson River (Cooper Creek)                                       | FRG data   |
| Braided arid/semiarid<br>ephemeral systems | Dinosaur Canyon Mb., Moenave Fm.                                   | Olsen (19  |
| ral s                                      | Kayenta Fm.                                                        | Miall (198 |
| iraided arid<br>ephemeral                  | Mauch Chunk Fm.                                                    | Fillmore e |
| iraid<br>ephe                              | Organ Rock Fm.                                                     | Cain (200  |
| Ц                                          | Sindong Gp.                                                        | Jo (2003)  |
|                                            | Salt Wash Mb., Morrison Fm.                                        | Robinson   |
| id                                         | Kayenta Fm.                                                        | FRG data   |
| ms                                         | Bunter Pebble Beds (Chester Pebble Beds Fm. and Cannock Chase Fm.) | Steel & T  |
| ided arid/semiari<br>other systems         | Omingonde Fm.                                                      | Holzförste |
|                                            | Hawksmoor Fm. and Hollington Fm. (Sherwood Sandstone Gp.)          | FRG data   |
| braiged                                    | Wilmslow Sandstone Fm. and Helsby Sandstone Fm., Sherwood Sst Gp.  | FRG data   |
| DD                                         | Sherwood Sandstone Gp.                                             | Cowan (1   |
|                                            | Westwater Canyon Mb. and Brushy Basin Mb., Morrison Fm.            | Miall & Tu |
|                                            | Baghmati River                                                     | Friend & S |
|                                            | Brahmaputra (Jamuna) River                                         | Bristow (1 |
|                                            | Gandak River                                                       | Friend & S |
| Ś                                          | Guarda Velha Fm.                                                   | Santos (p  |
| aided<br>systems                           | Majût Mb., Eriksfjord Fm.                                          | Tirsgaard  |
|                                            | Melka Kunture Fm.                                                  | Raynal et  |
| Bra                                        | Middleton Fm. and Koonap Fm., Beaufort Gp.                         | Catunean   |
| 6                                          | Olson Mb., Escanilla Fm.                                           | Labourde   |
|                                            | Oukaimeden Fm.                                                     | Fabuel-Pe  |
|                                            | Rio Vero Fm.                                                       | Jones et a |
|                                            | Seglodden Mb., Båsnæring Fm.                                       | Hjellbakk  |



# A relational database for the digitization of fluvial architecture: toward quantitative synthetic depositional models

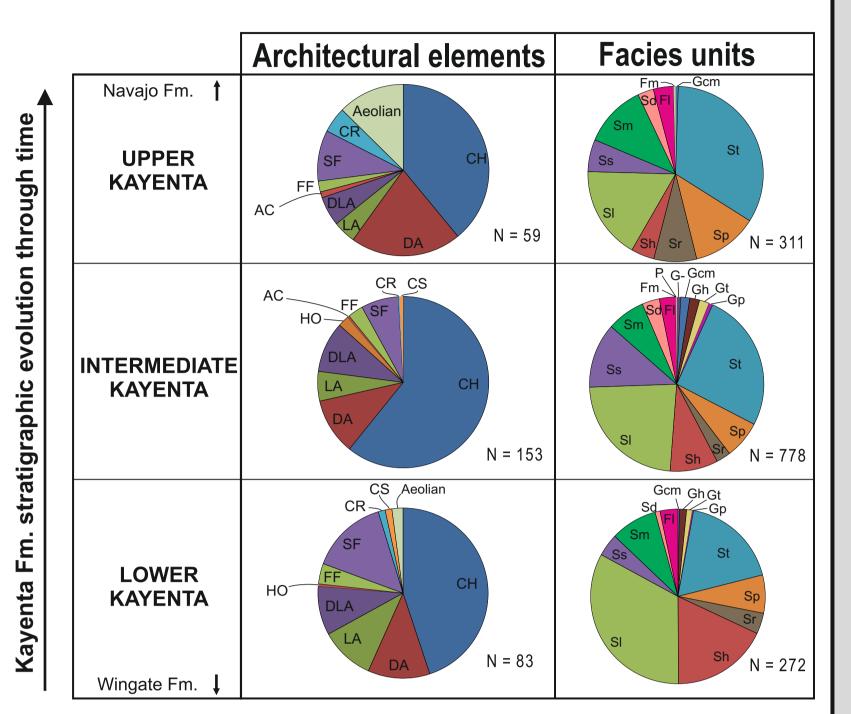


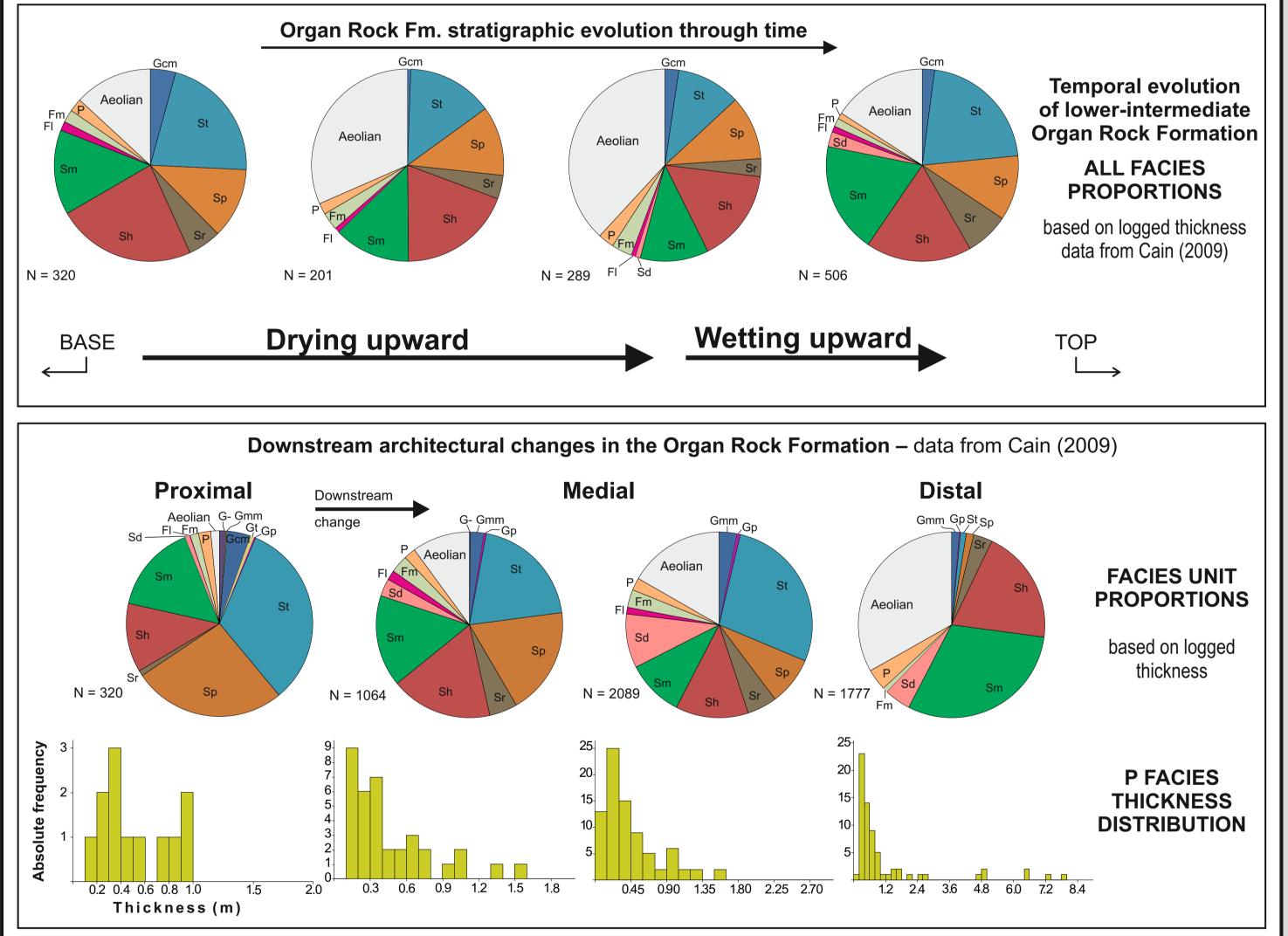
CIPEG

Fluvial Research Group School of Earth and Environment University of Leeds Leeds LS2 9JT UK http://frg.leeds.ac.uk

Contacts: Luca Colombera email: eelc@leeds.ac.uk mobile: +44 (0)7554096074

# Luca Colombera, Nigel P. Mountney, William D. McCaffrey – Fluvial Research Group, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK


bhpbi'


AREVA

# **UNIVERSITY OF LEEDS**

# **CHARACTERIZATION OF THE TEMPORAL AND** SPATIAL EVOLUTION OF FLUVIAL SYSTEMS

# uantitative evaluation of the sensitivity of fluvial far-reaching objective of the FAKTS project





# CONCLUSIONS

Here we have demonstrated how the FAKTS database c employed for the generation of guantitative depositional models fluvial systems. As these models describe the sedimenta architecture of fluvial systems in terms of occurrence, proportions, distribution, geometry and spatial relationships of genetic bodies, a database-derived model is entirely analogous to a traditional facies model. However, a number of advantages stem from this approach, the main ones include: I) the **quantitative nature** of the architectural information

REFERENCES

## Abdullatif O.M. (1989) Sed. Geol. 63, 171-18

Bromley M.H. (1991) Sed. Geol. 73, 77-99. Cain S.A. (2009) Unpublished PhD Thesis, Keele Universi Catuneanu O., Bowker D. (2001) J. Afr. Earth Sci. 33, 579-59 Catuneanu O., Elango H.N. (2001) Sed. Geol. 140, 291-313. Colombera L., Mountney N.P., McCaffrey W.D. (2012) Pet. Geosc. 18, 129-140 Cowan G. (1993) Geol. Soc. Spec. Publ. 73, 231-245. Fabuel-Perez I., Hodgetts D., Redfern J. (2009a) AAPG Bull. 93, 795-827 Fabuel-Perez I., Redfern J., Hodgetts D. (2009b) Sed. Geol. 218, 103-140 Fillmore D.L., Lucas S.G., Simpson E.L. (2010) Paleogeog. Paleocl. Paleoeco. 292, 222-244 Friend P.F., Sinha R. (1993) Geol. Soc. Spec. Publ. 75, 105-111. Geehan G., Underwood J. (1993) IAS Spec. Publ. 15, 205-212. Hjellbakk A. (1997) Sed. Geol. 114, 131-161. Holzförster F., Stollhofen H., Stanistreet I.G. (1999) J. Afr. Earth Sci. 29, 105-123.

associated to each model;

II) the construction of the model on a standardized set of **hierarchically-nested genetic units**, which facilitates comparisons between different models:

III) the objective integration of different case histories, filtering data on the suitable attributes describing bounda conditions and qualifying dataset appropriateness for providing a given type of information.

Database-informed quantitative depositional models are expected to have higher predictive power, as some of the main drawbacks of traditional facies models (e.g. qualitative nature, end-member models based on individual studies) are overcome.

- Jo H.R. (2003) Sed. Geol. 161, 269-294. Jones S.J., Frostick L.E., Astin T.R. (2001) Sed. Geol. 139, 229-260. Labourdette R. (2011) AAPG Bull. 95, 585-617.
- Luttrell P.R. (1993) Sed. Geol. 85, 411-434. Meadows N.S. (2006) Geol. J. 41, 93-122.
- Miall A.D. (1985) Earth-Sci. Rev. 22, 261-308.
- Miall A.D (1996) The Geology of Fluvial Deposits. Spronger Verlag, Berlin. Miall A.D., Turner-Peterson C.E. (1989) Sed. Geol. 63, 21-60.
- North C.P., Taylor K.S. (1996) AAPG Bull. 80, 811-830. Olsen H. (1989) Sed. Geol. 61, 207-221.
- Raynal J.-P., Kieffer G., Bardin G. (2004) Studies on the Early Paleolithic site of Melka Kunture, Ethiopia, 137-166.
- Robinson J.W., McCabe P.J. (1997) AAPG Bull. 81, 1267-1291. Sanabria D.I. (2001) Unpublished PhD Thesis, Rice University, Houston Steel R.J., Thompson D.B. (1983) Sedimentology 30, 341-367.
- Stephens M. (1994) Sed. Geol. 90, 179-211. ïrsgaard H., Øxnevad I.E.I. (1998) Sed. Geol. 120, 295-317. Tve R.S. (2004) AAPG. Bull 88, 1123-1147.







