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Abstract

This thesis is concerned with online detection of mean-reversion in algo-

rithmic pairs trading where a pair of assets is chosen when their prices are

expected to show similar movements. In pairs trading, mean-reversion

of the spread, defined as the price difference of a pair of financial in-

struments, is assumed, and we propose that the mean-reverted patterns

can be detected online. For this, a new algorithm for variable forgetting

factor using the conjugacy of distributions and an inference for multicat-

egorical time series in dynamic models are developed. Two algorithms

for variable forgetting factor are also introduced using the steepest de-

scent method and the Gauss-Newton method each from the field of signal

processing and control engineering. Performances of the three variable

forgetting factor algorithms are evaluated by the mean square errors

and the detection rate. However, the mean-reversion is not related to

the stationarity in time series, in particular when it is locally detected.

Thus, the behaviour of the spread or its mean-reversion needs to be

carefully monitored as well. Considering that the detection of mean-

reversion relies on a parameter estimate of the state in dynamic linear

model, the estimate is located to a category specified by the modeller.

This behaviour of the estimate is monitored in dynamic generalised lin-

ear model for multicategorical time series where sequential Monte Carlo

methods are applied for an inference as a simulation-based approach. As

an illustration, algorithmic pairs trading is implemented and shown to

be successful even with simple trading rules, given the daily stock prices

from the stock exchange.
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Chapter 1

Introduction

This chapter introduces algorithmic pairs trading, gives the aims and objectives of

the thesis, and provides information on the organisation, the terminology and the

notation of the thesis. An introduction of algorithmic pairs trading is also given as

an introductory part of Triantafyllopoulos and Han (2013).

1.1 Algorithmic Pairs Trading

Pairs trading is a market neutral trading strategy so that a trader’s risk exposure

is indifferent to the market trend by holding a long and a short position together.

A long position is held by buying an asset and a short position by short-selling the

other. According to Vidyamurthy (2004), the outset of pairs trading is marked by a

group of quants at Morgan Stanley in the mid 1980s. Algorithmic trading deploys

trading strategies and related decisions that can be implemented on a computer

system and executed without human intervention. Thus, algorithmic pairs trading

can be an algorithmic trading dealing with a pair of financial instruments. Recently,

there has been a growing interest in pairs trading and related market neutral trading

approaches which can be found in Elliott et al. (2005), Gatev et al. (2006), Montana

and Parrella (2008), Montana et al. (2009), and Zhang and Zhang (2008). For a

book-length discussion, the reader is referred to Pole (2007), Vidyamurthy (2004),

Whistler (2004), Ehrman (2005), Chan (2008), and Chan (2013).

1



Defining the spread of two assets A and B as the difference of the prices of A and

B, pairs trading assumes that the spread attains an equilibrium or that the spread

in the long run reverts to its historical mean. The main idea behind pairs trading is

to propose trades based upon the relative temporary mispricings between the two

assets. For example, suppose that the equilibrium of the spread is $10 (in USD)

and today the two assets trade at $40 and $10 respectively, or with spread of $30

(=$40-$10). Then, pairs trading suggests to go short (or short-sell) asset A (as this

is likely to be overpriced at $40) and to go long (or buy) asset B (as this is likely

to be underpriced at $10). If the spread reverts to its historical mean, the price of

asset A will decrease and/or the price of asset B will increase.

This approach is heavily dependent on the assumption of mean-reversion of the

spread. If this assumption is violated, the trader may buy an overpriced asset,

which is losing its value, or may short-sell an undervalued asset, which commit the

trader to high buying costs in the future; both of these actions result in significant

loss. Mean reversion implies that the spread fluctuates around the equilibrium level

and thus if today the price of an asset goes up, it will go down in the near future

and vice versa. Conversely, a breakdown of mean-reversion implies that any shock

in the spread may be permanent and hence there is no guarantee that if today the

price of an asset goes up, it will go down in the future. This is what happened at a

Wall Street operating hedge fund of Long Term Capital Management, which had to

be bailed out in 1998 by the Federal Reserve Bank of New York over a $3.625 billion

loss including $286 million in equity pairs according to Lowenstein (2002). This

story reveals that spread speculation, in particular regarding to short-selling assets,

may lead to significant loss if mean-reversion is not monitored systematically and if

the uncertainty of spread prediction is not studied carefully. In practice, assets may

exhibit local mean-reversion. For example, there may be periods of mean-reversion

followed by periods of a breakdown of mean-reversion according to Pole (2007) and

Triantafyllopoulos and Montana (2011). As a result, it is proposed that by detecting

periods of mean-reversion, the trader can find opportunities for trading.
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1.2 Aims and Objectives of The Thesis

This thesis is concerned with online detection of mean-reversion in algorithmic pairs

trading. Considering a dynamic linear model for the spread time series, we pro-

pose that mean-reverted patterns can be detected in real time. Adopting a dynamic

generalised linear model for multi-categorical time series, the mean-reversion of the

spread can be monitored online.

In this thesis, a newly developed variable forgetting factor algorithm in dynamic lin-

ear model and the dynamic generalised linear model proposed for multi-categorical

time series are applied for online detection of mean-reversion of the spread time se-

ries and algorithmic pairs trading. As an illustration, an opportunity of algorithmic

pairs trading is proposed with simple trading rules.

This thesis introduces the variability of forgetting factor, also known as discount

factor, in the class of dynamic linear model. This is motivated by variable forget-

ting factor algorithms using the steepest descent method and the Gauss-Newton

method from the field of signal processing and control engineering. New algorithm

for variable forgetting factor is developed and proposed using the conjugacy of dis-

tributions where the prior and the posterior distributions belong to the same family

of distributions.

For multi-categorical time series, the class of dynamic generalised linear model is

employed with multinomial distribution. The recursions of parameter estimation

in the model are proposed when the posterior distribution of the states is approx-

imated by two different approaches. In the first approach, the mean vector and

the covariance matrix of the posterior distribution of the states are approximated

using Bayes linear methods while the particle filter as a simulation-based method is

applied in the second approach.
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1.3 Layout of the Thesis

Chapter 2 provides literature review on Bayesian time series and forecasting, pairs

trading, the class of the dynamic linear model and the Kalman filter as a method of

recursive inference, variable forgetting factor, the class of the dynamic generalised

linear model, and the linear Bayesian method and the particle filters as for the ap-

proximate inference on the posterior distribution. This literature review is focused

on the relevant methodologies covered in this thesis. It aims to help a reader un-

derstand the key ideas from the selection of references for each subject.

Chapter 3 discusses the algorithms for variable forgetting factor from the fields of

signal processing and control engineering. In the chapter, two most widely used algo-

rithms, each of which employs the steepest-descent method and the Gauss-Newton

method respectively, are introduced and implemented in dynamic linear model. A

new algorithm for variable forgetting factor, which relies on the conjugacy of dis-

tributions in Bayesian statistics for sequential updating, is developed and proposed

as an improvement on previous work by Triantafyllopoulos and Montana (2011) for

online detection of mean-reversion.

Chapter 4 employs dynamic generalised linear model with multinomial distribution

for multi-categorical time series. As no closed form of the posterior distribution is

available, the chapter considers the linear Bayesian method and the particle filter

for approximate inference. While applying the particle filter for the approximation,

multivariate normal distribution is assumed for an importance density of the states.

In Chapter 5, the results of this chapter are used for real-time monitoring of mean-

reversion.

Chapter 5 proposes an opportunity of algorithmic pairs trading and illustrates suc-

cessful implementation of the newly developed algorithm for variable forgetting fac-

tor from Chapter 3 and the dynamic generalised linear model for multi-categorical

time series as an online monitoring process of mean-reversion from Chapter 4. It is

shown that algorithmic pairs trading can make a profit in the market even with a

simple trading rule.
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Chapter 6 gives final remarks as conclusion, and discusses further research opportu-

nities.

1.4 Terminology & Notation

Greek letters are used for the parameters, and Roman letters for the observed or the

observable scalars, vectors and matrices. The vectors are in bold, but the scalars

and the matrices are in plain. For example, Yt represents the univariate series while

Yt does for the vector of Yt = (Y1,t, . . . , Yi,t)
′ for i = 1, 2, . . . , N at t.

As this thesis covers several topics from different fields of academics, some termi-

nologies need to be clearly explained what they represent in this thesis. For example,

a forgetting factor is a widely used common terminology among the engineers for

a discount factor in Bayesian forecasting. In this thesis, a forgetting factor as a

terminology is adopted rather than a discount factor because the variability of it is

rigorously discussed in the fields of engineering. In addition, the state space model,

the hidden Markov model, and the dynamic models are meant to be the same in

literature by many authors, although they have different roots and usages in theory.

The state space model has its roots in the space program where the states are the

actual locations of a target. In the hidden Markov model, the states are unknown,

but finite, taking one of the possible and expected outcomes in discrete while they

are continuous and unknown in the state space model. The dynamic linear model

assumes the Gaussianity and the linearity although the other two does not. The

dynamic generalised linear model assumes the linearity as well. Authors even in

the field of time series and econometrics are found not to take much care of these

differences, using mostly ‘the state space model’ for the dynamic model and the

hidden Markov model in literature. Thus, in this thesis, the state space model are

meant to be the dynamic linear model and the dynamic generalised linear model.
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Chapter 2

Pairs Trading, Time Series, and

Dynamic Models

2.1 Introduction

This chapter reviews literature on time series and Bayesian forecasting, pairs trading,

the class of dynamic linear model, variable forgetting factors, the class of dynamic

generalised linear model for non-normal multivariate time series, and the particle

filters. Some topics have vast amounts of literature, but only a few related to this

thesis are reviewed in this chapter.

2.2 Time Series and Bayesian Forecasting

A time series is a collection of data recorded at equally spaced time intervals over a

period of time and indexed by time t. The aim of the classical time series analysis is

to understand the data and extract patterns such as trend, seasonality, and irregular

variation from given observations. Assuming that the findings and/or the patterns

continue, future values of the time series can be predicted.

Forecasting in time series dates back to the 1950s. The exponential smoothing of

Holt (1957) is followed by a one-parameter polynomial forecasting model of Brown

(1959), the adaptive smoothing techniques of Box and Jenkins (1962) and Brown
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(1963). While smoothing depends on all available observations, filtering aims to

update the system as each observation becomes available. In the fields of system

and control engineering, the Kalman filter, developed by Kalman (1960) and Kalman

and Bucy (1961), provides the recursions for the parameters in the state space model.

Harrison and Stevens (1971) introduce the application of the Kalman filter for short-

term forecasting based on Bayesian principles, and then Harrison and Stevens (1976)

define the dynamic linear model, which assumes the Gaussianity and the linearity

in the state space model. When the Gaussianity and the linearity of a model are

assumed, the Kalman filter can be the natural choice for online inference in Bayesian

formulation, giving the analytic solutions for sequential updating.

When an assumption on the Gaussianity is lost, the dynamic linear model can be

extended to the dynamic generalised linear model discussed in West et al. (1985).

Non-normal distributions can be presented in the exponential family form of distri-

butions, but the analytic solution may not be available. In that case, approximate

inference for the moments of the posterior distribution can be done using the lin-

ear Bayesian method or using the simulation-based inference such as the sequential

Monte Carlo methods.

2.3 Pairs Trading

Statistical arbitrage deploys statistical methods in order to construct trading strate-

gies in the financial market, especially popular among hedge funds and investment

banks. It takes advantage of relative mispricings between two or more financial in-

struments.

Pairs trading is a particular methodology of statistical arbitrage. According to

Vidyamurthy (2004), the outset of pairs trading is marked by a group of quants at

Morgan Stanley in the mid 1980s. It assumes that there is, for example, a pair of

stocks showing a pattern for similar movements of their prices. The pattern may be

valid for most of times, but temporarily be disrupted. It is known that a series of

disruptions from and restorations to the pattern makes pairs trading profitable.
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A pair trader opens her position to buy the underpriced and short-sell the over-

priced asset. By holding a long and a short position at the same time, pairs trading

is regarded as a market neutral strategy. A convergence trader bets her luck on the

convergence by opening her position when a disruption occurs, and closing it with

the convergence. On the other hand, there is a divergence trader betting her luck

against the convergence. A divergence trader opens her position when the share

prices of a pair converge, and closes it when they diverge. A day trader opens and

closes her position day after day while a swing trader keeps her position from two

days to several weeks.

Book-length references on statistical arbitrage, pairs trading, and algorithmic trad-

ing can be found in Pole (2007), Vidyamurthy (2004), Whistler (2004), Ehrman

(2005), Chan (2008), and Chan (2013).

2.3.1 The Correlation Approach

Ehrman (2005) suggests an approach using a correlation from a pair of shares. The

correlation coefficient in his analysis is interpreted as the strength of a relationship

between the two. When it is greater than or equal to 0.7, the pair is identified as

relevant to trading. To see if the relationship changes, the correlations are measured

and monitored over some periods of time such as 30-, 90-, and 180-calendar-day for

short-term traders and 90-, 180-, and 365-day for long-term traders.

2.3.2 The Distance Approach

Gatev et al. (2006) suggest the distance approach. It assumes that the standard-

ised price differences of a pair follow a standardised normal distribution. Among

hundreds of pairs from the market, the pairs, having the smallest sum of squared

deviations, are selected for trading. An advantage of this approach is that compu-

tation is relatively cheap. However, the assumption is often breached because the

share prices are known to have a log-normal distribution.
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2.3.3 The Co-integration Approach

Co-integration is introduced by Engle and Granger (1987) and Engle and Yoo (1987),

where price time series of two shares, for example, need not to be differenced for

stationarity. Two non-stationary time series are said to be cointegrated if their lin-

ear combination is a stationary process.

Vidyamurthy (2004) illustrates the co-integration approach for pairs trading. Sup-

pose that there are two non-stationary price time series of xt and yt. xt and yt

are said to be cointegrated if there is a relationship of zt = yt − a − b · xt so that

zt is stationary. The stationarity of zt is evaluated by the Engle-Granger two-step

method. This co-integrated pair is assumed to have an equilibrium. When there

is a deviation from the long-term equilibrium, either one or both shares prices are

believed to adjust themselves towards the equilibrium.

This approach has a couple of drawbacks in practice. For example, we need a full

set of data to make a trading decision for pairs trading. The estimation of a and b

and the stationarity test of zt has to be done at each time t. This requires expensive

computation costs and prevents the fast and efficient application of pairs trading in

real time.

2.4 Mean Reversion and The Spread Model

There has been much interest on the long-term property of equity prices among

researchers, though mostly in the fields of economics and finance. In particular,

research is focused on whether time series of share prices follows either a random

walk or a mean reverting process.

Kendall and Hill (1953) propose that share prices randomly move, and Fama (1965)

and Malkiel (2004) make the random walk hypothesis as one of the most influen-

tial in finance under the assumption of the efficient market hypothesis developed

by Fama (1970). If share prices evolve according to a random walk, any shock is

permanent and a share price is not predictable using historical prices because the
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volatility of the process would grow with no bound in the long run.

DeBondt and Thaler (1985) document the evidence of mean reversion in the market,

which is supported by Fama and French (1988) as well as by Poterba and Summers

(1988). If share prices revert to a mean over a period of time, then they can be fore-

casted using past observations. However, even when the share prices are supposed

to follow the mean reversion process, questions arise such as whether the mean is

constant, and if so, how long the constant mean would be valid.

Empirical studies by Gatev et al. (2006) show that there are trading opportunities

for a pair of shares from the same industry. However, they do not assume if the

pairs follow a mean-reversion process.

Elliott et al. (2005) assume a portfolio with two shares from the same industry,

looking for an opportunity within pairs trading. They define the spread as the

difference of prices from two shares at time t, and model the spread time series

as a mean-reverting process. Assuming that the spread time series from a pair

of shares follow a mean-reverting process, Elliott et al. (2005) propose the arith-

metic Ornstein-Uhlenbeck model, proposed by Uhlenbeck and Ornstein (1930), in

a Gaussian linear state space model, where the observed process is seen as a noisy

realisation of the true spread. The expectation-maximisation (EM) algorithm is

employed to estimate the model parameters.

While the arithmetic Ornstein-Uhlenbeck model is the most basic form of mean re-

version model, the autoregressive model of order 1, AR(1), is a discrete time version

of the arithmetic Ornstein-Uhlenbeck model. In an AR(1) model, shocks are tran-

sitory while any shock is permanent in a random walk.

Triantafyllopoulos and Montana (2011) propose time-dependency of parameters in

the model with an on-line estimation procedure. The model by Triantafyllopoulos

and Montana (2011) has couple of advantages over the model by Elliott et al. (2005).

One advantage is that their proposed model is more flexible with time varying

parameters. Another advantage is that it needs even less costs at computing for the
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parameter estimation, using an adaptive and recursive algorithm. A third advantage

is that the estimation procedure by Triantafyllopoulos and Montana (2011), unlike

the expectation-maximisation algorithm employed by Elliott et al. (2005), produces

the uncertainty measures without any additional computational cost.

2.4.1 The Spread Model

Elliott et al. (2005) propose a “mean-reverting Gaussian Markov chain model”, or a

Gaussian linear state-space model with time-invariant parameters A, B, C and D,

for the observations in Gaussian noise and call it as the spread model. They assume

that there are two shares showing similar price movements over time and the spread

between the two have an equilibrium. Thus, the observations are the spread time

series, where the spread at each time t is defined by the price difference between the

two shares.

In Elliott et al. (2005), the observed spread series {Yt} is a noisy realisation of the

state process {Xt}, a true but unobserved spread series. It is represented as follows.

Yt = Xt +D · ωt, ωt ∼ N(0, 1)

Xt+1 = A +B ·Xt + C · ǫt+1, ǫt+1 ∼ N(0, 1)

where ωt and ǫt are mutually independent and assumed to be uncorrelated with Xt

for t = 1, 2, . . ., and N(0, 1) denotes the standard normal distribution. With B

inside the unit circle, the spread series {Yt} is said to follow a mean-reverting pro-

cess, as it can be easily verified in Elliott et al. (2005) that both E(Yt) and Var(Yt)

converge to constant values.

Triantafyllopoulos and Montana (2011) consider the spread time series {Yt} following

a state space model with time-varying parameters driven by an autoregressive model

of order 1, which is specified by

Yt = At +Bt · Yt−1 + νt, νt ∼ N(0, Vt) (2.1)

At = φ1 ·At−1 + ω1,t, Bt = φ2 · Bt−1 + ω2,t (2.2)
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where φ1 and φ2 are the AR coefficients.

Triantafyllopoulos and Montana (2011) provide the conditions of this model to be

a mean reverted process applying the Kalman filter for the recursive and sequential

estimation of parameters in the model. A forgetting factor, also known as a dis-

count factor, is adopted to control the local durability of the model. They illustrate

a possible application of the model to pairs trading as a statistical arbitrage.

The model by Elliott et al. (2005) is extended by Triantafyllopoulos and Montana

(2011) at least in three different ways. First of all, the parameters of the model

in Triantafyllopoulos and Montana (2011) are time-varying, which makes a model

adaptive to changes in the data stream. Secondly, by applying the Kalman filter to

the dynamic linear model as shown in Harrison and Stevens (1971) and Harrison

and Stevens (1976), the parameters can be estimated in real time when new obser-

vation is available. Thirdly, distributional assumptions on the normality allow the

computation of posterior quantiles as well as the more traditional point estimates.

In the next section, a time-varying autoregressive model of order 1 is described

in the state space model for the spread time series {Yt}, and it is shown how the

Kalman filter, proposed by Kalman (1960) and Kalman and Bucy (1961), is applied

and understood in a Bayesian formulation. More details on the dynamic linear

model and on-line estimation of parameters by the Kalman filter can be found in

Harrison and Stevens (1971), Harrison and Stevens (1976), West and Harrison (1997)

and Triantafyllopoulos and Montana (2011) as well. A book-length exposition on

Bayesian forecasting with time series data can be found in West and Harrison (1997),

Petris et al. (2009), Prado and West (2010), and Durbin and Koopman (2012).

2.4.2 The Spread Time Series in Dynamic Linear Model

For a univariate spread time series, the dynamic linear model is defined by

Yt = F′
tθt + νt, νt ∼ N(0, Vt) (2.3)

θt = Gtθt−1 + ωt, ωt ∼ N2(0,Wt) (2.4)
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where Ft is the design vector, Gt is the evolution, system, transfer or state ma-

trix, Vt is the observational variance, and Wt is the evolution covariance matrix.

(2.3) is called as the observation equation, and (2.4) as the evolution, state or sys-

tem equation. The observation error, νt, and the evolution or system error vector,

ωt, are assumed to be individually and mutually uncorrelated. The initial state

(θ0 | D0) ∼ N(m0, C0) is determined by a modeller, and the state vector θt is as-

sumed not to be correlated with νt and ωt.

Equations (2.1) and (2.2) by Triantafyllopoulos and Montana (2011) can be rep-

resented as dynamic linear model by setting F′
t = (1, Yt−1), θt = (At, Bt)

′, Gt =

diag(φ1, φ2), and ωt = (ω1,t, ω2,t)
′. Therein, At and Bt are considered to evolve

via AR models over time. Accordingly, φ1 and φ2 make the AR coefficients as

At = φ1At−1 + ω1,t and Bt = φ2Bt−1 + ω2,t, and Gt becomes G. These coefficients

of φ1 and φ2 are assumed to lie inside the unit circle so that At and Bt be weakly

stationary.

Ft and Gt are usually determined by the modeller. However, the observational vari-

ance Vt is often not known. When it is unknown over time, a coherent Bayesian

learning is available for the observational variance Vt. For example, when Vt is

unknown but constant as V , the precision τ is defined as 1
V
and the posterior distri-

bution of τ at time t−1 can be specified as a gamma distribution with parameters of
nt−1

2
and dt−1

2
so that (τ | Dt−1) ∼ Gamma

(

nt−1

2
, dt−1

2

)

. As new observation arrives

in at t, the posterior distribution of τ is updated as (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

at

t. The details of this updating are shown in Section 2.5.3.

Wt represents any stochastic change of the states over period of time, and measures

the durability of the model. With no evolution error, say Wt = 0 at any time t, the

system equation reduces to θt = Gθt−1 and the model is considered to be globally

true. On the other hand, when Wt = ∞, the model is totally useless. Considering

the local durability of the model, an optimal value ofWt, if any, may vary over time.
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2.4.3 Conditions for Mean Reversion

Given a set of data, we will be able to estimate θt = (At, Bt)
′, and Triantafyllopou-

los and Montana (2011) provide a theorem for the state space model of (2.3)-(2.4),

giving the sufficient conditions of the series {Yt} to be mean-reverting.

Theorem 1. If {Yt} is generated from the model of (2.3)-(2.4), then, conditionally

on a realised sequence B1, . . . , Bt, {Yt} is mean revering if one of the two conditions

apply.

(a) φ1 = φ2 = 1,Wt = 0 and |B1| < 1;

(b) φ1 and φ2 lie inside the unit circle, Wt is bounded and |Bt| < 1, for all t ≥ t0

and for some integer t0 > 0.

By setting φ1 = φ2 = 1 and the covariance matrixWt = 0 for all t, the first condition

of (a) implies At = At−1 = · · · = A1 = A and Bt = Bt−1 = · · · = B1 = B, resulting

in a static AR model. In this case, |B1| = |B| < 1 gives the known condition for

mean-reversion in static AR models. Considering that φ1 and φ2 can be set to lie

inside the unit circle initially by the modeller and Wt to be bounded, the second

condition of (b) implies that |Bt| < 1.

Corollary 1. If {Yt} is generated from the model of (2.3)-(2.4) with φ1 = 1, |φ2| <

1, V11,t = V22,t = 0, then {Yt} is mean revering if |B1| < 1 for all t ≥ t0 for some

t0 > 0 where Vt = (Vij,t) for i, j = 1, 2.

This corollary allows that At = A for all t as in Elliott et al. (2005), but Bt evolves

as a weakly stationary AR model.

Given a set of data, Y1, . . . , Yt, we can estimate Bt as B̂t in the dynamic linear model

discussed in this section so that the spread Yt is detected as mean-reversion at time

t when |B̂t| < 1. Since B̂t is uncertain, the true value of Bt might well be greater

than or equal to 1 at time t even if |B̂t| < 1 due to the associated uncertainty of B̂t.

To deal with this issue, Triantafyllopoulos and Montana (2011) suggest to check the

95% credible bounds of Bt and see whether they lie inside the unit circle. However,
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from the results of the above reference as well as from our own experimentation with

several data sets, this approach results in conservative detection of mean-reversion:

if Bt is much less than one, then the algorithm detects mean-reversion well, but if

Bt is close to one, the algorithm results in credible bounds that are outside the unit

circle.

2.5 Recursions in Dynamic Linear Model

For sequential updating of the recursive estimation, we employ the Kalman filter.

To make the model be invariant to the measurement scale of observations, all the

variances in the model are multiplied by V , and the variances are independent of the

measurement scales. In this thesis, the state space model for the univariate spread

time series {Yt} is specified with V as a scaling factor.

The derivation details for recursive estimation in dynamic linear model can be found

in Appendix B.

2.5.1 Conditional on V

When Vt is known as V , the specification of a model is obtained as

Yt = F′
tθt + νt, νt ∼ N(0, V ) (2.5)

θt = Gθt−1 + ωt, ωt ∼ N2(0, V W
∗
t ) (2.6)

(θ0 | V,D0) ∼ N2(m0, V C
∗
0 ) (2.7)

where N2 denotes the bivariate normal distribution, and the starred variance matri-

ces of C∗
0 and W ∗

t represent the scale-free variance-covariance matrices. The quan-

tities of m0 and C∗
0 are specified by the modeller initially.

The recursive estimation procedure with updating equations are given by

(a1) Posterior at t− 1

(θt−1 | V,Dt−1) ∼ N2(mt−1, V C
∗
t−1)
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(a2) Prior at t

(θt | V,Dt−1) ∼ N2(at, V R
∗
t )

where at = Gmt−1 and R∗
t = GC∗

t−1G
′ +W ∗

t

(a3) One-step forecast

(Yt | V,Dt−1) ∼ N2(ft, V Q
∗
t )

where ft = F ′
tGmt−1 and Q∗

t = F ′
tR

∗
tFt + 1

(a4) Posterior at t

(θt | V,Dt) ∼ N2(mt, V C
∗
t )

where mt = at +Ktet and C
∗
t = R∗

t −KtQ
∗
tK

′
t

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

2.5.2 Unconditional on V

When Vt is unknown but constant as V , the specification of a model is obtained as

Yt = F′
tθt + νt, νt ∼ N(0, V ) (2.8)

θt = Gθt−1 + ωt, ωt ∼ N2(0, V W
∗
t ) (2.9)

(θ0 | D0) ∼ N2(m0, V C
∗
0 ) (2.10)

(τ | D0) ∼ Gamma(
n0

2
,
d0
2
) (2.11)

where N2 denotes the bivariate normal distribution, and the starred variance ma-

trices of C∗
0 and W ∗

t represent the scale-free variance-covariance matrices. E(τ |

D0) =
n0

d0
= 1

U0
and U0 is a prior point estimate of V . The unknown V or τ = 1

V
is

sequentially updated as new observation is obtained at each time t. The posterior

mean of τ is E(τ | Dt) =
nt

dt
= 1

Ut
where Ut is a posterior point estimate of V at t.

The quantities of m0, C
∗
0 , n0, and d0 are specified by the modeller initially.

The recursive estimation procedure with updating equations are given by

(b1) Posterior at t− 1

(θt−1 | Dt−1) ∼ Tnt−1(mt−1, Ct−1)

where Ct = Ut−1C
∗
t−1
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(b2) Prior at t

(θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1 and Rt = Ut−1R
∗
t

(b3) One-step forecast

(Yt | Dt−1) ∼ Tnt−1(ft, Qt)

where ft = F ′
tGmt−1 and Qt = Ut−1Q

∗
t

(b4) Posterior at t

(θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet and Ct = UtC
∗
t

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

where Tnt−1 and Tnt
denotes the student t distribution with nt−1 and nt degrees of

freedom respectively.

2.5.3 Recursion of τ = 1
V

The prior distribution of τ at t is also (τ | Dt−1) ∼ Gamma
(

nt−1

2
, dt−1

2

)

where the

posterior distribution at t− 1 is the prior distribution at t. After an observation is

made at t, the posterior distribution of τ at t becomes (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

where nt = nt−1 + 1 and dt = dt−1 +
e2t
Q∗

t
.

The initial information on the precision is specified as (τ | D0) ∼ Gamma(n0

2
, d0

2
)

by the modeller where both n0 and d0 are positive integers. The updating equations

are summarised as

(c1) (τ | Dt−1) ∼ Gamma
(

nt−1

2
, dt−1

2

)

(c2) (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

where nt = nt−1 + 1 and dt = dt−1 + e2t/Q
∗
t .

The posterior mean of E(τ | Dt) =
nt

dt
= 1

Ut
, and Ut is a posterior point estimate of

V at t.
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2.6 Variable Forgetting Factor and Least Squares

Since the notion of adaptive control emerged in 1950s by Drenick and Shahben-

der (1957), it took couple of decades to see several adaptive algorithms in practice.

In adaptive control, parameters of a model are estimated by adaptive algorithms.

Adaptive algorithms are classified as either the stochastic gradient algorithm or the

recursive least squares algorithm according to the method of least squares applied in

the algorithm. The stochastic gradient algorithm is also known as the least-mean-

square algorithm.

An adaptive algorithm is known as a self-tuning regulator in the field of control the-

ory. Åström and Wittenmark (1973) design the original self-tuning regulator for a

process with parameters which are constant but unknown. Adaptive algorithms, or

self-tuning regulators, help time-varying parameters of a model to recursively adjust

to the input. However, if the constant forgetting factor is not carefully chosen, the

covariance matrix may grow exponentially, and a system becomes extremely sensi-

tive to the changes in the process.

Variable forgetting factor first appears in Åström et al. (1977), and its recursion

in Fortescue et al. (1981). According to Åström et al. (1977), when a process con-

tains time-varying and nonlinear dynamics, a forgetting factor makes the recursive

estimator to adjust to the changes, preventing it from the converging. In Fortescue

et al. (1981), the forgetting factor is determined by the recursion at each time t,

and the parameter estimates are obtained by a recursive least squares with variable

weighting on the past data.

Haykin (1996) suggests that the tracking performance of a model is enhanced with

an adaptive scheme of a forgetting factor, and introduces the cost function Jt to be

minimised as

Jt =
1

2
E(|et|

2) (2.12)

where et = Yt−ft, defined as the difference between the observation and the estima-

tion or prediction of Yt. et indicates the estimation or prediction error. In this case,

the aim of the adaptive scheme is to find the particular value of λ minimising the
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cost function, Jt. The forgetting factor λ gives exponentially less weight to the older

errors. The tracking performance of a time-varying system is usually measured by

the mean-square error, defined as E(|et|
2).

Chun et al. (1998) develop a generalized recursive least squares algorithm, present-

ing possible applications of variable forgetting factor recursive least squares to the

general state space model. Song et al. (2000) suggest that the speed of tracking is

achieved by incorporating the second derivatives of the cost function Jt in (2.12).

They propose the Gauss-Newton method from Ljung and Soderstrom (1983) for

variable forgetting factor.

2.7 Dynamic Generalised Linear Model

Since the mid-1980s, there is a growing literature on fully Bayesian analysis with

models for categorical data. West et al. (1985) show early work with non-normal

univariate time series, proposing conjugate analysis and the linear Bayes method

as an approximate inference for the dynamic generalised linear model (DGLM).

Fahrmeir and Kaufmann (1991) and Fahrmeir (1992) use direct analytic approxi-

mations for an analysis with multinomial time series. Grunwald et al. (1993) model

multivariate series of proportions on conditionally Dirichlet distributed vectors of

multinomial probabilities, developing time evolution for the probabilities as well.

Cargnoni et al. (1997) propose the class of conditionally Gaussian dynamic mod-

els for non-normal multivariate time series. In that paper, logistically transformed

probabilities are formulated in dynamic linear model, and a posterior is simulated

based on appropriately modified Markov chain Monte Carlo algorithms including

Metropolis-Hastings components. All of these can be seen as an extension of the

work by West et al. (1985).

For time series analysis, a number of models such as autoregressive moving average

models, structural time series, and dynamic regression models can be described and

dealt with in a flexible and unifying way of the state space form. An exponential

family state space model or a DGLM has been developed by West et al. (1985). As

in the class of dynamic linear model, a DGLM consists of an observation model,
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which distribution belongs to the exponential family, and an evolution model for

the states or the unknown parameters.

The generalised state space model implies the non-linear non-Gaussian state space

model. The simplest example of the generalised state space model would be the

dynamic linear model assuming both the Gaussianity and the linearity. The dy-

namic linear model is extended and generalized to the DGLM with no distributional

assumption of Gaussianity. The exponential family class of distributions forms the

large class of the DGLM which consists of the observation model and the evolution

model as in the dynamic linear model. However, the posterior distribution of the

states is not analytically available, hence inference is based on approximations, such

as in West et al. (1985), or in simulation-based procedures, such as Markov chain

Monte Carlo by Gamerman (1998) and particle filters.

Triantafyllopoulos (2009) provides a discussion on online estimation of DGLM for

several response distributions. A book-length treatment of DGLM for multivariate

and multicategorical responses can be found in Fahrmeir and Tutz (2010).

A DGLM for a univariate time series Yt is defined in West and Harrison (1997) by

p(Yt | ηt) = exp {[Y ′
t ηt − a(ηt)] + b(Yt)} (2.13)

g(ηt) = µt = F′
t
θt (2.14)

θt = Gtθt−1 + ǫt with ǫt ∼ [0,Wt] (2.15)

In (2.15), [0,Wt] represents a distribution with mean vector of 0 and variance matrix

ofWt and indicates that there is no specific form of distributional assumption for ǫt.

(2.13), (2.14), and (2.15) are an observation model, a link function and an evolution

equation respectively, and the details of them are as follows.

• p(·) is the joint probability function;

• ηt is the natural parameter;

• g(·) is a link function of a known, continuous and monotonic function mapping

ηt to the real line;
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• µt = F′
tθt is a linear function of the state vector parameters;

• Ft is a known n-dimensional regression vector;

• θt is an n-dimensional state vector at time t;

• Gt is a known n× n evolution matrix;

• ǫt is an n-vector of evolution errors having zero mean and known variance

matrix Wt;

The model definition is completed via

(θ0|D0) ∼ [m0, C0] (2.16)

where the quantities of m0 and C0 are specified initially by the modeller.

2.7.1 The Linear Bayesian Method

Hartigan (1969) develops the linear Bayesian methods where the inference is linearly

approximated using only the first two moments of the distribution of the prior and

likelihood. A similar approach for nonlinear regression problems is found in Gold-

stein (1976).

Given no full distributional assumption for the evolution error ǫt, and the state

vector θt, their first- and second- order moments can be approximated using Bayes

linear methods as detailed in West et al. (1985). The recursive updating proceeds

as follows.

Assuming the posterior for the state vector at t− 1 as

(θt−1|Dt−1) ∼ [mt−1, Ct−1]

the joint prior distribution of µt and θt at time t is partially specified by the first
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two moments only, and it follows that

(

µt

θt

∣

∣

∣

∣

∣

Dt−1

)

∼

[(

ft

at

)

,

(

Qt F′
tRt

RtFt Rt

)]

(2.17)

where ft = F′
tat, Qt = F′

tRtFt, at = Gtmt−1, and Rt = GtCt−1G
′
t +Wt are approxi-

mately the mean and variance of (θt | Dt−1).

The posterior mean and variance of ηt are approximated by the linear Bayesian

method and then by using the tower property of expectations as

E(µt | Dt) = E(g(ηt) | Dt) = f ∗
t and Var(µt | Dt) = Var(g(ηt) | Dt) = Q∗

t

(2.18)

where f ∗
t and Q∗

t represents the posterior mean and variance of ηt respectively. The

expressions for f ∗
t and Q∗

t would differ for each distribution.

The mean and variance of (θt | Dt) are approximated as

(θt | Dt) ∼ [mt, Ct] (2.19)

where mt = at + RtFt(f
∗
t − ft)/Qt and Ct = Rt − RtFtF

′
tRt(1 − Q∗

t/Qt)/Qt. The

details of the approximation of (2.19) are given in the below.

The posterior of (θt | Dt) can be derived from the joint posterior for µt and θt which

is obtained by Bayes’ theorem as follows.

p(µt, θt | Dt) ∝ p(µt, θt | Dt−1)p(Yt | µt)

∝ {p(θt | µt, Dt−1)p(µt | Dt−1)}p(Yt | µt)

∝ p(θt | µt, Dt−1){p(µt | Dt−1)p(Yt | µt)}

∝ p(θt | µt, Dt−1)p(µt | Dt) (2.20)

From (2.20), we can see that θt is conditionally independent of Yt given µt and Dt−1,
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and it follows that

p(θt | Dt) =

∫

p(θt | µt, Dt−1)p(µt | Dt)dµt (2.21)

p(µt | Dt), the second component of the integrand in (2.21), can be obtained directly

from (2.18) in the conjugate form posterior for ηt. However, due to the incomplete

of the joint prior distribution in (2.17), conditional moments of p(θt | µt, Dt−1) are

unknown and non-linear functions of µt. Given only the partial moments, the pos-

terior mean and variance matrix of θt can be estimated using the linear Bayesian

method by Goldstein and Wooff (2007).

Conditional moments of E(θt | µt, Dt−1) and Var(θt | µt, Dt−1) are obtained as the

optimal estimate by the linear Bayesian method. For all µt, they are

Ê(θt | µt, Dt−1) = at +RtFt(µt − ft)/Qt (2.22)

V̂ar(θt | µt, Dt−1) = Rt − RtFtFtRt/Qt (2.23)

From (2.21), E(θt | Dt) = E{E(θt | µt, Dt−1) | Dt} and Var(θt | Dt) = Var{E(θt |

µt, Dt−1) | Dt}+E{Var(θt | µt, Dt−1) | Dt}. Thus, the posterior moments of θt may

be estimated based on the optimal estimates of (2.22) and (2.23).

mt = E{Ê(θt | µt, Dt−1 | Dt)}

= E{at +RtFt(µt − ft)/Qt | Dt}

= at +RtFt{E(µt | Dt)− ft}/Qt

= at +RtFt(f
∗
t − ft)/Qt (2.24)

Ct = Var{Ê(θt | µt, Dt−1) | Dt}+ E{V̂ar(θt | µt, Dt−1) | Dt}

= Var{at +RtFt(µt − ft)/Qt | Dt}+ E(Rt −RtFtFtRt/Qt | Dt)

= RtFtFtRtVar(µt | Dt)/Q
2
t +Rt −RtFtFtRt/Qt

= Rt −RtFtFtRt(1−Q∗
t/Qt)/Qt (2.25)
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2.7.2 Particle Filters

Sequential Monte Carlo methods, also referred to as particle filters, are regarded

as sequential application of importance sampling. When importance sampling as

one of Monte Carlo integration methods is sequentially applied, it is called as the

sequential importance sampling and resampling. Unfortunately, sequential impor-

tance sampling may fail as t increases. Thus, it is followed by the selection step of

the generated particles, known as the resampling step.

Since Gordon et al. (1993) first demonstrate the utility of sequential Monte Carlo

approaches to nonlinear/non-Gaussian Bayesian state estimation, several related al-

gorithms are developed and actively used in the names of the bootstrap filter, the

condensation, the auxiliary particle filter, the Monte Carlo filter, the interacting

particle approximations and the survival of the fittest according to Cappé et al.

(2007) and Doucet and Johansen (2009).

There is a large literature on particle filters. Among them, Cappé et al. (2007),

Doucet and Johansen (2009), and Doucet et al. (2010a) review and summarise the

sequential Monte Carlo methods while Liu (2001) reviews the general Monte Carlo

methods. Douc et al. (2005) compare several resampling schemes in the particle

filters. Petris et al. (2009) suggest the basic approach of the particle filters with

codings in R.

2.8 Conclusion

The variable forgetting factor (VFF) would improve the flexibility of the model,

making it more adaptive to the changes of the observations in time series, and

enhance the performance in prediction by the model when new data point is ob-

served. Thus, if the variability of forgetting factor is introduced to the spread model

by Triantafyllopoulos and Montana (2011), more trading opportunities can be ex-

pected in the pairs trading. The VFF algorithms using the steepest descent and

the Gauss-Newton methods are applied to the class of DLM from the field of signal

processing and control engineering. However, the steepest descent and the Gauss-
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Newton methods are originally from the optimisation theory, looking for the optimal

value over a period of time. Now that both of them are applied to find the value

of VFF sequentially at each time t, the application may not be a reasonable choice

in some cases, and they are complicated to follow. Considering the role of VFF is

to help prediction of the model, the VFF algorithm needs to be rather simple but

sequential using the error analysis and the conjugacy of distributions.

According to the conditions of mean-reversion by Triantafyllopoulos and Montana

(2011), the spread of a pair of financial instruments is said to be in mean-reversion

when |B̂t| < 1. The detection of mean-reversion of the spread at time t solely relies

on the value of B̂t at that time, and whatever happens before and after the time t,

the algorithm detects mean-reversion as long as |B̂t| < 1. A trader or an investor

may think that this is too dangerous to take the risks of algorithmic pairs trading.

In particular, when the spread shows volatile movements, there would be no way to

avoid the extreme, and algorithmic pairs trading may end up with huge loss. Thus,

we find the need to monitor the behaviour of |B̂t|, slicing the range which |B̂t| can

be located into categories. Now that the behavior of B̂t is regarded as a process

over the period of time, it is closely monitored online at each time t. As a process,

the dynamic variation in |B̂t| such as the trend, seasonality, and cycle, if any, can

be monitored and analyzed more in depth with the evolution model of DGLM. For

this, in Chapter 4, the DGLM for multi-categorical time series and its recursions are

derived where the particle filter as inference are proposed. This is novel extending

the works by West et al. (1985) and Triantafyllopoulos (2009) to multi-categorical

time series in the DGLM using multinomial distribution for the observation model.

The particle filter, developed in the chapter for categorical time series data, is not

necessarily restricted to the application of mean reversion considered in the the-

sis. Categorical time series appear frequently and the contribution of the proposed

particle filter is general.
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Chapter 3

Dynamic Linear Model with

Variable Forgetting

3.1 Introduction

The tracking performance of the dynamic linear model, defined as (2.3) and (2.4)

in Section 2.4.2, is known to be better with small forgetting factor when there is

a sudden variation or change in the data. On the other hand, it is better to have

forgetting factor close to unity when the data stream is stable, giving the longer

memory. When a forgetting factor is small, the memory is low, using few past data

to predict future values of the data. Hence, the model can adapt quickly to changes,

as changes are supposed to be local and influenced from immediate past observa-

tions, and results in non-smooth or noisy predictions; when the memory is high, we

use a large number of past data to predict future values of the data, and then pre-

dictions are smooth. Smooth predictions mean low variance while noisy predictions

mean high variance. We want a system that is adaptive when there is a change and

smooth with low variance when there is not a change. This observation naturally

leads us to variable forgetting.

From the updating equations (a1)-(a4) and (b1)-(b4) in Section 2.5, the covari-

ance matrix C∗
t−1 of the posterior for the state (θt−1 | V,Dt−1) at time t−1 proceeds

to R∗
t = GC∗

t−1G
′ +W ∗

t which is the covariance matrix of the prior of θt at time
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t. When the model is globally true, W ∗
t = 0 and R∗

t = GC∗
t−1G

′. However, the

model is not supposed to be globally true, but locally true. Thus, if the actual

precision of the posterior for the state (θt | V,Dt−1) is denoted by (R∗
t )

−1, then

proportionally it is reduced to λ(GC∗
t−1G

′)−1, or R∗
t =

1
λ
GC∗

t−1G
′. With the relation

of R∗
t = GC∗

t−1G
′ +W ∗

t , this implies a specification of W ∗
t as W ∗

t = 1−λ
λ
(GC∗

t−1G
′)

where λ is a forgetting factor, taking a value between 0 and 1, say 0 < λ ≤ 1.

It is an important question how appropriate values for the variances Vt and Wt are

chosen in the DLM. For the observational variance Vt, variance learning procedure

is applied using the precision and the Gamma distribution when it is not known

but constant. For the evolution variance Wt, it is very difficult to directly quantify

the elements, which are often grossly misspecified. If known, it would hold only

temporarily, or be hypothetical since no “true” evolution process of the states can

be exactly represented by mathematical model. Considering that Wt controls the

uncertainty of the states between t − 1 and t and determines the stability in the

evolution equation of the DLM over time, there will be no optimal value of Wt suit-

able for all times. The forgetting factor is an aid to choose the evolution varianceWt.

The forgetting factor λ controls the local durability, ensuring that the data in the

distant past are forgotten, and measures the memory of an algorithm as (1− λ)−1.

For example, when λ = 1, the evolution error Wt in the dynamic model equals to

0 and the whole system becomes globally true with the memory of ∞. If λ → 0,

Wt → ∞ and the system can be said to be totally unreliable or useless.

First of all, this chapter aims to introduce the existing algorithms using the steepest

descent and the Gauss-Newton methods for the variable forgetting factor (VFF)

from the field of signal processing and control engineering, deriving the recursions

in the class of dynamic linear model (DLM). The role of the VFF is to improve

the adaptability to the changes of time series and enhance the predictability of the

model. Thus, secondly, based on the sequential analysis of the prediction error at

each time t, new algorithm for the VFF is proposed.

Widely applied methods of the steepest descent method and the Gauss-Newton
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method for variable forgetting factor (VFF) algorithms are taken into account of

their use to dynamic linear model (DLM). It may be difficult to say that the appli-

cation of VFF algorithm to DLM is new. However, in DLM, forgetting factor has

been a constant with no consideration on its variability yet. Thus, no derivation

of the recursions has been proposed and shown with VFF in the class of DLM. In

that sense, new names are given to VFF algorithms in DLM of the steepest descent

method and the Gauss-Newton method each as the steepest descent VFF (SDvFF)

algorithm and the Gauss-Newton VFF (GNvFF) algorithm respectively.

An algorithm for VFF needs to catch up the variation when there is a sudden change

in the data, and adjust itself to the system when there is a smooth data stream. To

achieve these two goals in one algorithm, new algorithm of the beta-Bernoulli VFF

(BBvFF) is devised and proposed as an alternative to the existing VFF algorithms.

The rationale of the BBvFF is as follows. When the prediction error et, defined by

et = Yt − ft, is small, high value of forgetting factor close to unity should be chosen

to retain as much information as possible from the new observation. On the other

hand, when et is large, low value of forgetting factor should be chosen to increase

the sensitivity of parameter estimates.

Derivation of the recursions for the algorithms of the SDvFF and the GNvFF is

shown, and the tracking performances of three algorithms, the SDvFF, the GNvFF,

and the BBvFF, are compared and evaluated by mean squared error. Comparisons

are made with generated time series.

28



3.2 Dynamic Linear Model with Variable Forget-

ting Factor

Assuming the unknown but constant observational variance of Vt = V , a univariate

DLM is specified as (2.8)-(2.11), which are

Yt = F′
tθt + νt, νt ∼ N(0, V ) (3.1)

θt = Gθt−1 + ωt, ωt ∼ Tnt−1(0, V W
∗
t ) (3.2)

(θ0 | D0) ∼ T0(m0, V C
∗
0) (3.3)

(τ | D0) ∼ Gamma(
n0

2
,
d0
2
) (3.4)

where F′
t = (1, Yt−1)

′, θt = (At, Bt), G = diag(φ1, φ2), and ωt = (ω1,t, ω2,t). Tnt−1

denotes the t-distribution with degrees of freedom nt−1, and the starred variance

matrices of C∗
0 and W ∗

t represent the scale-free variance-covariance matrices. E(τ |

D0) =
n0

d0
= 1

U0
and U0 is a prior point estimate of V . The quantities of m0, C

∗
0 , n0,

and d0 are also specified by the modeller initially.

3.2.1 Relationship Between Kt and C∗
t

Before looking into the derivation of the recursions in the VFF algorithms, it is

worth looking into a relation between Kt and C
∗
t .

First of all, from the updating equation (a4) in Section 2.5.1, C∗
t and Kt can be

represented as

C∗
t = R∗

t −KtQ
∗
tK

′
t

= R∗
t −KtF

′
t(R

∗
t )

′ = (I −KtF
′
t)R

∗
t (3.5)

or = R∗
t − R∗

tFtK
′
t = R∗

t (I − FtK
′
t)

where Kt =
R∗

tFt

Q∗
t

and R∗
t = (R∗

t )
′ because of the assumption that the observa-

tion error νt and the evolution error ωt are individually and mutually uncorrelated.

Actually, considering that Rt = Ut−1R
∗
t and Qt = Ut−1Q

∗
t , Kt =

RtFt

Qt
and Rt = (Rt)

′.
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As seen from the previous chapter, Q∗
t = 1 + F′

tR
∗
tFt in the univariate case, and

Kt =
R∗

tFt

Q∗
t

=
R∗

tFt

1+F′
tR

∗
tFt

, from which Kt + KtF
′
tR

∗
tFt = R∗

tFt. Thus, Kt can be

rewritten as

Kt = R∗
tFt −KtF

′
tR

∗
tFt

= (I −KtF
′
t)R

∗
tFt

= C∗
t Ft (3.6)

where (I −KtF
′
t)R

∗
t = C∗

t from (3.5).

In general, Qt = Ut−1 + F′
tRtFt and Kt =

RtFt

Qt
= RtFt

Ut−1+F′
tRtFt

, from which KtUt−1 +

KtF
′
tRtFt = RtFt. Thus, Kt still can be rewritten as

Kt =
RtFt −KtF

′
tRtFt

Ut−1

= R∗
tFt −KtF

′
tR

∗
tFt

= (I −KtF
′
t)R

∗
tFt

= C∗
t Ft (3.7)

where R∗
t =

Rt

Ut−1
.

Additionally, because of the assumption that the observation error νt and the evo-

lution error ωt are individually and mutually uncorrelated again, (C∗
t )

′ = C∗
t , and

therefore, K ′
t = F′

tC
∗
t .

3.2.2 Recursions of Parameter Estimates

Now that forgetting factor λ is variable, it is decided at each time t as λt. Following

the result of (3.6) and (b1)-(b4) in Section 2.5, the recursive estimation procedure

with updating equations can be achieved by

(d1) Posterior at t− 1

(θt−1 | Dt−1) ∼ Tnt−1(mt−1, Ct−1)

where Ct = Ut−1C
∗
t−1 and C∗

t−1 =
GCt−2G′

λt−2+F ′
t−1GCt−2G′Ft−1
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(d2) Prior at t

(θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1, Rt = Ut−1R
∗
t and R

∗
t =

1
λt−1

GC∗
t−1G

′

(d3) One-step forecast

(Yt | Dt−1) ∼ Tnt−1(ft, Qt)

where ft = F′
tGmt−1, Qt = Ut−1Q

∗
t and Q

∗
t =

1
λt−1

(F′
tGC

∗
t−1G

′Ft) + 1

(d4) Posterior at t

(θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet, Ct = UtC
∗
t and C∗

t =
GC∗

t−1G
′

λt−1+F′
tGC

∗
t−1G

′Ft

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

3.2.3 Recursion of τ = 1
V

The unknown V or τ = 1
V
is sequentially updated as new observation is obtained at

each time t. The posterior mean of τ is E(τ | Dt) =
nt

dt
= 1

Ut
where Ut is a posterior

point estimate of V at t. As for (c1) and (c2) in Section 2.5, the updating equations

are summarised as

(e1) (τ | Dt−1) ∼ Gamma
(

nt−1

2
, dt−1

2

)

(e2) (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

where nt = nt−1+1, dt = dt−1+ e
2
t/Q

∗
t and Q

∗
t =

1
λt−1

(F′
tGCt−1G

′Ft)+1 as in (d3).

The posterior mean of E(τ | Dt) =
nt

dt
= 1

Ut
, and Ut is a posterior point estimate of

V at t. As t→ ∞, the posterior of τ eventually converges about the mode.

When (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

, the density function of a Gamma distribution is

p(τ | Dt) =
dnt
t

Γ(nt)
τnt−1e(−τdt)

∝ τnt−1e(−τdt)

where both nt and dt are positive integers, and dt follows a chi-squared distribution

with degrees of freedom nt, dt ∼ χ2
nt
.
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In the following sections for the variable forgetting factor algorithms, both the up-

per limit λ+ and the lower limit λ− are specified by the modeller. According to

Haykin (2001), λ+ is normally set close to the unity while the user determines λ−

by experiment. The bracket followed by λ− and λ+, []
λ+
λ−
, indicates “truncation”,

restricting the forgetting factor to the interval [λ−, λ+].

3.3 The Steepest Descent Variable Forgetting Fac-

tor (SDvFF) Algorithm

In Haykin (2001), the steepest descent method is described as

λt = [λt−1 − α · ∇λ(t)]
λ+
λ−

(3.8)

where α, the convergence rate or a learning-rate parameter, is set to be 0.0005 in

Malik (2006) and λ+ and λ− are the upper and lower limits of λ respectively. In

the steepest descent method, α can take any real value, and it is fixed, normally

as 0.5, by the modeller. When α = 0, λt = λt−1 = · · · = λ1, indicating that a

forgetting factor is constant. In the field of neural network, α itself is sought after

using an algorithm such as the steepest descent method again. Haykin (2001) and

his co-authors have developed the steepest descent method above for recursive least

squares models. In this section, we adopt (3.8) and we extend the steepest descent

for variable forgetting for state space models.

∇λ(t)(≡
∂Jt
∂λ

) is recursively updated as in the followings, the details of which are

given in the subsections.

∇λ(t) ≈ −etF
′
tGψt−1 (3.9)

where ψt ≡
∂mt

∂λ
and mt is the first moment of the posterior density for (θt | Dt) at

t. Considering the adaptive scheme of a forgetting factor λ, the recursions of ψt and
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St(≡
∂C∗

t

∂λ
) are obtained by

ψt = (I − C∗
t FtF

′
t)Gψt−1 + StFtet (3.10)

St =
GSt−1G

′(λt−1 + F′
tGC

∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)

(λt−1 + F′
tGC

∗
t−1G

′Ft)2
(3.11)

where also the updating equations for C∗
t and Kt, respectively, reduce to

C∗
t = λ−1

t−1(I −KtF
′
t)GC

∗
t−1G

′ (3.12)

=
λ−1
t−1GC

∗
t−1G

′

1 + λ−1
t−1F

′
tGC

∗
t−1G

′Ft
(3.13)

Kt =
λ−1
t−1GC

∗
t−1G

′Ft

1 + λ−1
t−1F

′
tGC

∗
t−1G

′Ft
(3.14)

3.3.1 Recursion of ∇λ(t)

By defining ψt ≡
∂mt

∂λ
, ∇λ(t) is given by

∇λ(t) =
∂Jt
∂λ

=
∂

∂λ
{
1

2
E(| et |

2)}

=
1

2
2E(et

∂et
∂λ

)

= −E(etF
′
tGψt−1)

≈ −etF
′
tGψt−1 (3.15)

where et = Yt − ft = F′
tθt + ǫt − F′

tGmt−1 and

∂et
∂λ

= −F′
tG
∂mt−1

∂λ
= −F′

tGψt−1
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3.3.1.1 Updating Equation for ψt

Using Kt = C∗
tFt from (3.6) and mt = at +Ktet from the updating equation (d4),

the recursion for ψt ≡
∂mt

∂λ
is easily obtained by defining St ≡

∂C∗
t

∂λ
as follows.

ψt =
∂mt

∂λ
=

∂(at +Ktet)

∂λ
=

∂(Gmt−1 + C∗
t Ftet)

∂λ

= G
∂mt−1

∂λ
+
∂C∗

t

∂λ
Ftet + C∗

tFt
∂et
∂λ

= Gψt−1 + StFtet + C∗
tFt(−F′

tGψt−1)

= Gψt−1 + StFtet − C∗
t FtF

′
tGψt−1

= (I − C∗
t FtF

′
t)Gψt−1 + StFtet (3.16)

= (I −KtF
′
t)Gψt−1 + StFtet

where ∂Kt

∂λ
= StFt and St ≡

∂C∗
t

∂λ
.

3.3.1.2 Updating Equation for St

From the recursion,

Kt =
R∗
tFt
Q∗
t

=
R∗
tFt

1 + F′
tR

∗
tFt

=
λ−1GC∗

t−1G
′Ft

1 + λ−1F′
tGC

∗
t−1G

′Ft
from (3.14)

=
GC∗

t−1G
′

λ+ F′
tGC

∗
t−1G

′Ft
Ft (3.17)

From the relation of C∗
t and Kt in (3.6), we obtain

C∗
t =

GC∗
t−1G

′

λ+ F′
tGC

∗
t−1G

′Ft
(3.18)

A partial differentiation of (3.18) with regard to λ gives

St ≡
∂C∗

t

∂λ
=

∂
(

GC∗
t−1G

′

λ+F′
tGC

∗
t−1G

′Ft

)

∂λ

=
GSt−1G

′(λ+ F′
tGC

∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)

(λ+ F′
tGC

∗
t−1G

′Ft)2
(3.19)
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Considering the adaptive scheme of a forgetting factor λ, a recursion of St at time

t can be obtained by

St =
GSt−1G

′(λt−1 + F′
tGC

∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)

(λt−1 + F′
tGC

∗
t−1G

′Ft)2
(3.20)

3.4 The Gauss-Newton Variable Forgetting Fac-

tor (GNvFF) Algorithm

Song et al. (2000) suggest that the speed of tracking is improved by incorporating

the second derivatives of the cost function, Jt, as in Ljung and Soderstrom (1983),

proposing the recursion by

λt =

[

λt−1 − α ·
∇λ(t)

∇2
λ(t)

]λ+

λ−

(3.21)

where ∇λ(t) =
∂Jt
∂λ

, ∇2
λ(t) =

∂2Jt
∂λ2

, and α is the convergence rate, or a learning-rate

parameter, is set to be 0.1 in Song et al. (2000). λ+ and λ+ are the upper and lower

limit of λ respectively. Herein, the Gauss-Newton method is extended for the use

to a DLM.

∇λ(t), followed by ψt and St, is recursively updated as seen in the SDvFF.

∇λ(t) ≈ −etF
′
tGψt−1

ψt = (I − C∗
t FtF

′
t)Gψt−1 + StFtet

St =
GSt−1G

′(λt−1 + F′
tGC

∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)

(λt−1 + F′
tGC

∗
t−1G

′Ft)2

where ψt ≡
∂mt

∂λ
and St ≡

∂C∗
t

∂λ
.

The recursions of ∇2
λ(t), ηt ≡

∂ψt

∂λ
, and Lt ≡

∂St

∂λ
are

∇2
λ(t) ≈ (F′

tGψt−1)
2 − etF

′
tG
∂ψt−1

∂λ
(3.22)

ηt = (I − C∗
t FtF

′
t)Gηt−1 + LtFtet − 2StFtF

′
tGψt−1 (3.23)
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where Lt is also recursively updated with a recursion of Lt =
A
B
and

A =
{

GLt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft)
}

·
{

(λt−1 + F′
tGC

∗
t−1G

′Ft)
2
}

−
{

GSt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

·
{

2(λt−1 + F′
tGC

∗
t−1G

′Ft)(1 + F′
tGSt−1G

′Ft)
}

(3.24)

B = (λt−1 + F′
tGC

∗
t−1G

′Ft)
4 (3.25)

The detailed derivation of recursions follows as subsections.

3.4.1 Recursion of ∇2
λ(t)

∇2
λ(t) is defined and can be approximated as follows.

∇2
λ(t) =

∂2Jt
∂λ2

=
∂

∂λ
(−E(etF

′
tGψt−1))

= −E(
∂et
∂λ

F′
tGψt−1 + etF

′
tG
∂ψt−1

∂λ
)

≈ (F′
tGψt−1)

2 − etF
′
tG
∂ψt−1

∂λ
(3.26)

where
∂et
∂λ

= −F′
tG
∂mt−1

∂λ
= −F′

tGψt−1

3.4.1.1 Updating Equation for ηt

By defining ηt ≡
∂ψt

∂λ
and Lt ≡

∂St

∂λ
, a recursion of ηt ≡

∂ψt

∂λ
can be derived as follows.

ηt ≡
∂ψt
∂λ

=
∂

∂λ
{(I − C∗

tFtF
′
t)Gψt−1 + StFtet}

= −
∂C∗

t

∂λ
FtF

′
tGψt−1 + (I − C∗

t FtF
′
t)G

∂ψt−1

∂λ
+
∂St
∂λ

Ftet + StFt
∂et
∂λ

= −StFtF
′
tGψt−1 + (I − C∗

tFtF
′
t)Gηt−1 + LtFtet + StFt(−F′

tGψt−1)

= (I − C∗
t FtF

′
t)Gηt−1 + LtFtet − 2StFtF

′
tGψt−1 (3.27)

= (I −KtF
′
t)Gηt−1 + LtFtet − 2StFtF

′
tGψt−1
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3.4.1.2 Updating Equation for Lt

A recursion for Lt(≡
∂St

∂λ
) also can be derived as follows.

Lt ≡
∂

∂λ

{

GSt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)

(λ+ F′
tGC

∗
t−1G

′Ft)2

}

(3.28)

A partial differentiation of a numerator in (3.28) gives

∂

∂λ

{

GSt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

= GLt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft) +GSt−1G
′(1 + F′

tGSt−1G
′Ft)

−GSt−1G
′(1 + F′

tGSt−1G
′Ft)−GC∗

t−1G
′(F′

tGLt−1G
′Ft)

= GLt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft) (3.29)

A partial differentiation of a denominator in (3.28) gives

∂(λ + F′
tGC

∗
t−1G

′Ft)
2

∂λ
= 2(λ+ F′

tGC
∗
t−1G

′Ft)(1 + F′
tGS

∗
t−1G

′Ft) (3.30)

Therefore, combining terms in (3.29) and (3.29) by the principle of differentiation

gives Lt =
A
B
where

A =
{

GLt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft)
}

·
{

(λ+ F′
tGC

∗
t−1G

′Ft)
2
}

−
{

GSt−1G
′(λ+ F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

·
{

2(λ+ F′
tGC

∗
t−1G

′Ft)(1 + F′
tGSt−1G

′Ft)
}

(3.31)

B = (λ+ F′
tGC

∗
t−1G

′Ft)
4 (3.32)

Considering the adaptive scheme of a forgetting factor, a recursion to compute a
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numerator and a denominator of Lt finally reduces to Lt =
A
B
where

A =
{

GLt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft)
}

·
{

(λt−1 + F′
tGC

∗
t−1G

′Ft)
2
}

−
{

GSt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

·
{

2(λt−1 + F′
tGC

∗
t−1G

′Ft)(1 + F′
tGSt−1G

′Ft)
}

(3.33)

B = (λt−1 + F′
tGC

∗
t−1G

′Ft)
4 (3.34)

3.5 The Beta-Bernoulli Variable Forgetting Fac-

tor (BBvFF) Algorithm

A new algorithm referred to as the BBvFF(d, k) is proposed to achieve an adaptive

forgetting to track down the changes of the data stream, where d(> 0) is a threshold

for a Bernoulli process xt and k (0 < k ≤ 1) is a discount factor in the steady

forecasting models by Smith (1979). The idea is that λt will take the upper limit

λ+ with probability πt and the lower limit λ− with probability 1 − πt. Hence, to

determine λt, we define

λt = πtλ+ + (1− πt)λ− (3.35)

where πt is estimated as π̂t = mode(πt | xt) =
α1,t−1

α1,t+α2,t−2
and πt ∼ Beta(α1,t, α2,t).

Also, λ+ and λ− are upper and lower limits of λt where 0 < λt ≤ 1 as before.

Steady forecasting models by Smith (1979) may propose an evolution for πt using

the conjugacy of the beta-Bernoulli as follows.

p(πt | Dt−1) ∝ p(πt−1 | Dt−1)
k (3.36)

where k is a discount factor and 0 < k ≤ 1. Especially when k = 1, p(πt | Dt−1) =

p(πt−1 | Dt−1) and πt = π. For 0 < k < 1, πt changes over time.

Suppose that (πt−1 | Dt−1) ∼ Beta(α1,t−1, α2,t−1). If we write p1(π | Dt−1) = p(πt |
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Dt−1) and p2(π | Dt−1) = p(πt−1 | Dt−1), then

p1(π | Dt−1) ∝ p2(π | Dt−1)
k (3.37)

∝ π(α1,t−1−1)k(1− π)(α2,t−1−1)k (3.38)

= πα1,t−1k−k+1−1(1− π)α2,t−1k−k+1−1 (3.39)

so that (πt | Dt−1) ∼ Beta(α1,t−1k − k + 1, α2,t−1k − k + 1).

This approach keeps the mode unchanged from t− 1 to t such that

mode(πt−1 | Dt−1) =
α1,t−1 − 1

α1,t−1 + α2,t−1 − 2

mode(πt | Dt−1) =
α1,t−1k − k + 1− 1

α1,t−1k − k + 1 + α2,t−1k − k + 1− 2

=
α1,t−1k − k

α1,t−1k − k + α2,t−1k − k

=
α1,t−1 − 1

α1,t−1 + α2,t−1 − 2

Suppose that xt is a binary series, taking a value of either 1 or 0 at each time t

according to

xt =

{

1, if |et|√
Qt

≤ d, with probability π

0, if |et|√
Qt
> d, with probability 1− π

where d(> 0) is a threshold specified by the modeller.

We define xt to be a Bernoulli process at any time t, and herein, in a broad sense,

πt can be a probability of “success” as a measure of uncertainty. Considering a

sequence of Bernoulli trials, having a result as “success” or “failure” at t, πt can

be regarded as the proportion of “successes” in the population up to time t, or the

probability in a trial at t. Still, in the above framework of (3.35) in the BBvFF(d, k),

πt is not known, but to be estimated. Using the conjugacy of the beta-Bernoulli

distributions, it is easily obtained as follows.
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Given π, the likelihood function at t from the observed data xt is a Bernoulli distri-

bution, and written as

p(xt | π) = Bernoulli(xt | π) = πxt(1− π)1−xt

where π ∈ [0, 1].

A prior distribution for π is specified to be a beta distribution with parameters

(α1,t−1k−k+1) and (α2,t−1k−k+1). Thus, π ∼ Beta(α1,t−1k−k+1, α2,t−1k−k+1)

and its density is

p(π) = Beta(π | α1,t−1k − k + 1, α2,t−1k − k + 1)

=
Γ(α1,t−1k − k + 1, α2,t−1k − k + 1)

Γ(α1,t−1k − k + 1)Γ(α2,t−1k − k + 1)
πα1,t−1k−k+1−1(1− π)α2,t−1k−k+1−1

where both (α1,t−1k− k+ 1) and (α2,t−1k− k+1) > 0 and Γ(·) denotes the gamma

function. It is noted that the distribution of π is implicitly conditional on data up

to time t− 1.

By applying the Bayes’ theorem, the posterior distribution for π is

p(π | xt) ∝ p(xt | π)p(π)

∝ πxt(1− π)1−xtπα1,t−1k−k+1−1(1− π)α2,t−1k−k+1−1

= πα1,t−1k−k+1+xt−1(1− π)α2,t−1k−k+1+1−xt−1

= Beta(α1,t−1k − k + 1 + xt, α2,t−1k − k + 2− xt) (3.40)

Applying the above sequentially, we obtain that (π | x1, . . . , xt) ≡ (π | Dt) ∼

Beta(α1,t, α2,t) where α1,t = α1,t−1k − k + 1 + xt and α2,t = α2,t−1k − k + 2 − xt so

that (πt | Dt) ∼ Beta(α1,t, α2,t). Bearing in mind the above results, π at t can be

estimated as follows.

π̂t = mode(πt | Dt) =
α1,t − 1

α1,t + α2,t − 2
=

α1,t−1k − k + xt
α1,t−1k + α2,t−1k − 2k + 1

(3.41)
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Now that we write p1(π | Dt) = p(πt+1 | Dt) and p2(π | Dt) = p(πt | Dt), then

p1(π | Dt) ∝ p2(π | Dt)
k (3.42)

∝ π(α1,t−1)k(1− π)(α2,t−1)k (3.43)

= πα1,tk−k+1−1(1− π)α2,tk−k+1−1 (3.44)

so that (πt+1 | Dt) ∼ Beta(α1,tk − k + 1, α2,tk − k + 1).

This approach keeps the mode unchanged from t to t+ 1 such that

mode(πt | Dt) =
α1,t − 1

α1,t + α2,t − 2

mode(πt+1 | Dt) =
α1,tk − k + 1− 1

α1,tk − k + 1 + α2,tk − k + 1− 2

=
α1,tk − k

α1,tk − k + α2,tk − k

=
α1,t − 1

α1,t + α2,t − 2

Given initial values of α1,0 and α2,0, the above development suggests a sequential al-

gorithm, which basically runs the Kalman filter conditional on the forgetting factor

λt−1 and then updates the forgetting factor according to the beta-Bernoulli pro-

cedure. For π0 ∼ Beta(α1,0, α2,0), the initial values can be proposed to be set as

α1,0 = α2,0 = 2. Noting that π̂0 = (α1,0 − 1) · (α1,0 + α2,0 − 2)−1, π̂1 becomes

1/2. This is motivated by the reasoning that since we have no data observed, the

probability π is assumed to be 0.5 at the beginning.

3.5.1 Advantages of the BBvFF over the other algorithms

The BBvFF(d, k) has a couple of advantages of its own. First of all, at each time t,

λt of the BBvFF(d, k) from (3.35) is guaranteed to lie between λ+ and λ−, which is
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easily proven in the following:

λt = πtλ+ + (1− πt)λ−

= πt(λ+ − λ−) + λ−

≥ λ−

and

λt = (πt − 1 + 1)λ+ + (1− πt)λ−

= −(1− πt)λ+ + λ+ + (1− πt)λ−

= (1− πt)(λ− − λ+) + λ+

≤ λ+

as λ+ > λ− and 1− πt ≥ 0.

Secondly, in the BBvFF(d, k), the forgetting factor can be regarded as a random

variable as it is a function of π from (3.35). Rearranging (3.35) gives πt =
λt−λ−
λ+−λ− .

It is known that (πt | Dt) ∼ Beta(α1,t, α2,t), and

p(πt | Dt) =
Γ(α1,t, α2,t)

Γ(α1,t)Γ(α2,t)
π
α1,t−1
t (1− πt)

α2,t−1

where both α1,t and α2,t > 0 and Γ(·) denotes the gamma function. Hence, the

distribution of (λt | Dt) can be obtained by

p(λt | Dt) =
Γ(α1,t, α2,t)

Γ(α1,t)Γ(α2,t)

(

λt − λ−
λ+ − λ−

)α1,t−1(

1−
λt − λ−
λ+ − λ−

)α2,t−1

=
Γ(α1,t + α2,t)

Γ(α1,t)Γ(α2,t)

(λt − λ−)
α1,t−1(λ+ − λt)

α2,t−1

(λ+ − λ−)α1,t+α2,t−2
(3.45)

This notion of the distribution of λ helps to analyze the uncertainty associated with

λt. From (3.35), λt can be rearranged as λt = πt(λ+ − λ−) + λ−, and therefore,

noting that (πt | Dt) ∼ Beta(α1,t, α2,t), the variance of (λt | Dt) is

Var(λt | Dt) = (λ+ − λ−)
2 α1,tα2,t

(α1,t + α2,t)2(α1,t + α2,t + 1)
(3.46)
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where

Var(πt | Dt) =
α1,tα2,t

(α1,t + α2,t)2(α1,t + α2,t + 1)

For α1,t > 1 and α2,t > 1, even the mode of (λt | Dt) can be found. Firstly, by

taking the log of p(λt | Dt), we have log(λt | Dt) = logK + (α1,t− 1) · log(λt− λ−) +

(α2,t − 1) · log(λ+ − λt) where K =
Γ(α1,t+α2,t)

Γ(α1,t)Γ(α2,t)
1

(λ+−λ−)α1,t+α2,t−2 . Secondly, partial

differentiation of log(λt | Dt) with regard to λt gives

∂log(λt | Dt)

∂λt
=

(

α1,t − 1

λt − λ−

)

−

(

α2,t − 1

λ+ − λt

)

∂2log(λt | Dt)

∂λ2t
= −

α1,t − 1

(λt − λ−)2
−

α2,t − 1

(λ+ − λt)2

By making
∂log(λt|Dt)

∂λt
= 0 and the fact that

∂2log(λt|Dt)

∂2λt
< 0, we find the mode of

(λt | Dt) is

mode(λt | Dt) =
(α1,t − 1)λ+ + (α2,t − 1)λ−

α1,t + α2,t − 2
(3.47)

3.6 Pseudo-code Implementations of The VFF Al-

gorithms

3.6.1 The SDvFF

Table 3.1 shows the pseudo-code implementation of the SDvFF. An example of the

initialisation at t = 0 could be that m0 = (1, 1)′, C0 = I2, n0 = d0 = 1 where

E(τ | D0) = n0

d0
= 1

U0
, α = 0.5, ∇λ(0) = 0, ψ0 = (1, 1)′, and S0 = I2 with

G = diag(0.95, 2), an 2 × 2 evolution matrix. As for the variable forgetting factor

λ, λ0 = 0.8 as 0 < λt ≤ 1, λ+ = 1 and λ− = 0.01 as 0 < λt ≤ 1.

3.6.2 The GNvFF

Table 3.2 shows the pseudo-code implementation of the GNvFF. An example of

the initialisation at t = 0 could be that m0 = (1, 1)′, C0 = I2, n0 = d0 = 1
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Table 3.1: Pseudo-code implementations for the SDvFF
1. Initialisation at t = 0
· Set m0, C0, U0 and n0 where E(τ | D0) =

n0

d0
= 1

U0

for (θ0 | D0) ∼ Tn0 [m0, C0] and (τ | D0) ∼ Gamma
(

n0

2
, d0

2

)

· Set λ0 as 0 < λt ≤ 1, α, ∇λ(0), ψ0, and S0

· Set G an 2× 2 evolution matrix
2. Recursions for t = 1, 2, . . . , T
· (θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1, Rt = Ut−1R
∗
t and R

∗
t =

1
λt−1

GC∗
t−1G

′

· (Yt | Dt−1) ∼ Tnt−1(ft, Qt)
where ft = F′

tGmt−1, Qt = Ut−1Q
∗
t and Q

∗
t =

1
λt−1

(F′
tGC

∗
t−1G

′Ft) + 1

· (θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet, Ct = UtC
∗
t and C∗

t =
GC∗

t−1G
′

λt−1+F′
tGC

∗
t−1G

′Ft

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

· λt = [λt−1 − α · ∇λ(t)]
λ+
λ−

where ∇λ(t) ≈ −etF
′
tGψt−1, ψt = (I − C∗

t FtF
′
t)Gψt−1 + StFtet,

and St =
GSt−1G′(λt−1+F

′
tGC

∗
t−1G

′
Ft)−GC∗

t−1G
′(1+F

′
tGSt−1G′

Ft)

(λt−1+F′
tGC

∗
t−1G

′Ft)2

where E(τ | D0) = n0

d0
= 1

U0
, α = 0.5, ∇λ(0) = 0, ψ0 = (1, 1)′, and S0 = I2 with

G = diag(0.95, 2), an 2× 2 evolution matrix, which are the same as for the SDvFF.

In addition, η0 = (1, 1)′, and L0 = I2 for the GNvFF. As for the variable forgetting

factor λ, λ0 = 0.8 as 0 < λt ≤ 1, λ+ = 1 and λ− = 0.01 as 0 < λt ≤ 1.

3.6.3 The BBvFF(d, k)

Table 3.3 shows the pseudo-code implementation of the BBvFF(d, k). An example

of the initialisation at t = 0 could be that m0 = (1, 1)′, C0 = I2, and n0 = d0 = 1

where E(τ | D0) =
n0

d0
= 1

U0
with G = diag(0.95, 2), an 2 × 2 evolution matrix. As

for the variable forgetting factor λ, α1,0 = α2,0 = 2 for (π0 | D0) ∼ Beta(α1,0, α2,0)

as λ0 = mode(π0) = π̂0 · λ+ + (1 − π̂0) · λ− where π̂0 =
α1,0−1

α1,0+α2,0−2
, λ+ = 1 and

λ− = 0.01 as 0 < λt ≤ 1. Additionally, a threshold d=0.1 or 1.96 as d > 0 and a

discount factor k as 0 < k ≤ 1 as seen in Smith (1979).
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Table 3.2: Pseudo-code implementations for the GNvFF
1. Initialisation at t = 0
· Set m0, C0, U0 and n0 where E(τ | D0) =

n0

d0
= 1

U0

for (θ0 | D0) ∼ Tn0[m0, C0] and (τ | D0) ∼ Gamma
(

n0

2
, d0

2

)

· Set λ0 as 0 < λt ≤ 1, α, ∇λ(0), ψ0, and S0

· Set η0, and L0

· Set G an 2× 2 evolution matrix
2. Recursions for t = 1, 2, . . . , T
· (θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1, Rt = Ut−1R
∗
t and R

∗
t =

1
λt−1

GC∗
t−1G

′

· (Yt | Dt−1) ∼ Tnt−1(ft, Qt)
where ft = F′

tGmt−1, Qt = Ut−1Q
∗
t and Q

∗
t =

1
λt−1

(F′
tGC

∗
t−1G

′Ft) + 1

· (θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet, Ct = UtC
∗
t and C∗

t =
GC∗

t−1G
′

λt−1+F′
tGC

∗
t−1G

′Ft

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

· λt =
[

λt−1 − α · ∇λ(t)

∇2
λ
(t)

]λ+

λ−

where ∇λ(t) ≈ −etF
′
tGψt−1, ψt = (I − C∗

tFtF
′
t)Gψt−1 + StFtet,

St =
GSt−1G′(λt−1+F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1+F′
tGSt−1G′Ft)

(λt−1+F′
tGC

∗
t−1G

′Ft)2
,

∇2
λ(t) ≈ (F′

tGψt−1)
2 − etF

′
tG

∂ψt−1

∂λ
,

ηt = (I − C∗
t FtF

′
t)Gηt−1 + LtFtet − 2StFtF

′
tGψt−1, and Lt =

A
B

with A =
{

GLt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft)
}

·
{

(λt−1 + F′
tGC

∗
t−1G

′Ft)
2
}

−
{

GSt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

·
{

2(λt−1 + F′
tGC

∗
t−1G

′Ft)(1 + F′
tGSt−1G

′Ft)
}

and B = (λt−1 + F′
tGC

∗
t−1G

′Ft)
4

3.7 Comparisons with Simulated Time Series

In algorithmic pairs trading, accurate forecast of the series is critical. In this section,

the performance of three algorithms of the SDvFF, the GNvFF, and the BBvFF(d, k)

are compared and assessed.

For simulation study, a time series is generated by Yt = a·Yt−1+ǫt, ǫt ∼ N(0, V ) where

(a, V ) = {(0.1, 1), (0.1, 100), (0.5, 1), (0.5, 100), (0.9, 1), (0.9, 100)}. Each combina-

tion of a and V is iterated for 1,000 times, generating 1,000 times series of 30 data

points each. For example, with a = 0.1 and V = 1, Yt = 0.1 · Yt−1 + ǫt, ǫt ∼ N(0, 1)
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Table 3.3: Pseudo-code implementations for the BBvFF(d, k)
1. Initialisation at t = 0
· Set m0, C0, U0 and n0 where E(τ | D0) =

n0

d0
= 1

U0

for (θ0 | D0) ∼ Tn0 [m0, C0] and (τ | D0) ∼ Gamma
(

n0

2
, d0

2

)

· Set α1,0 and α2,0 for (π0 | D0) ∼ Beta(α1,0, α2,0)
· Set λ+ and λ− as 0 < λ+, λ− ≤ 1

for λ0 = mode(π0) = π̂0 · λ+ + (1− π̂0) · λ−
where π̂0 =

α1,0−1

α1,0+α2,0−2

· Set d as d > 0 and k as 0 < k ≤ 1
· Set G an 2× 2 evolution matrix
2. Recursions for t = 1, 2, . . . , T
· (θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1, Rt = Ut−1R
∗
t and R

∗
t =

1
λt−1

GC∗
t−1G

′

· (Yt | Dt−1) ∼ Tnt−1(ft, Qt)
where ft = F′

tGmt−1, Qt = Ut−1Q
∗
t and Q

∗
t =

1
λt−1

(F′
tGC

∗
t−1G

′Ft) + 1

· (θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet, Ct = UtC
∗
t and C∗

t =
GC∗

t−1G
′

λt−1+F′
tGC

∗
t−1G

′Ft

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

· xt =

{

1, if |et|√
Qt

≤ d

0, if |et|√
Qt
> d

where d(> 0) is a threshold specified by the modeller
· λt = π̂t · λ+ + (1− π̂t) · λ− from (πt | Dt) ∼ Beta(α1,t, α2,t)

where α1,t = α1,t−1k − k + 1 + xt, α2,t = α2,t−1k − k + 2− xt
and π̂t = mode(πt|Dt) =

α1,t−1

α1,t+α2,t−2
=

α1,t−1k−k+xt
α1,t−1k+α2,t−1k−2k+1

and 1,000 time series, each of which contains 30 data points, are generated. To each

time series of 30 data points, the DLM with the VFF algorithm is applied to see its

performance in prediction and assessed by mean squared errors (MSE).

Table 3.4, 3.5, 3.6, and 3.7 summarise the mean and the standard errors (s.e.) of

the MSE by the DLM with each of the VFF algorithms such as the SDvFF, the

GNvFF, and the BBvFF(d,k) where d=0.1, 1.96 and k=1, 0.99, 0.95, 0.9, 0.8, 0.7,

0.6, 0.5 for the purpose of comparisons. A difference between the tables of Table 3.4

and 3.5 and of Table 3.6 and 3.7 lies in the different d for the BBvFF(d,k). Thus, no

additional information is necessary from the SDvFF and the GNvFF for the tables
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of Table 3.6 and 3.7.

From the simulation study, it is found that the performance of the BBvFF(d,k) may

differ with different choices of d and k as seen in the summary tables. From the mean

and the s.e. of the MSE in Table 3.4 and 3.5, it can be seen that the BBvFF(0.1,k)

outperforms the SDvFF and the GNvFF except for the case of (a, V ) = (0.9, 1)

where the BBvFF(0.1,k) outperforms the SDvFF only. Among the BBvFF(0.1,k)

with different k, performances in forecasting get better as k decreases except for the

cases of (a, V ) = {(0.9, 1), (0.9, 100)} where the performance of the BBvFF(0.1,k)

rather deteriorates with decreasing k. From the mean and the s.e. of the MSE in

Table 3.6 and 3.7, it is seen that the BBvFF(0.1,k) outperforms the SDvFF only for

all the cases of (a, V ). Among the BBvFF(1.96,k) with different k, performances in

forecasting get worse as k decreases.

Table 3.4: The mean and the standard errors (s.e.) in the bracket of the MSE by
the SDvFF, the GNvFF, and the BBvFF(d,k) with d=0.1 and k=1,0.99,0.95

(a, V ) SDvFF GNvFF BBvFF(0.1,1) BBvFF(0.1,0.99) BBvFF(0.1,0.95)

(0.1,1) 1.924(0.778) 1.580(0.535) 1.430(0.382) 1.430(0.381) 1.428(0.380)

(0.1,100) 3.766(6.148) 2.966(4.389) 2.226(1.548) 2.225(1.546) 2.220(1.539)

(0.5,1) 1.879(0.679) 1.541(0.463) 1.459(0.377) 1.459(0.378) 1.459(0.377)

(0.5,100) 3.362(3.582) 2.584(2.211) 2.199(1.513) 2.199(1.511) 2.196(1.501)

(0.9,1) 1.819(0.632) 1.537(0.417) 1.601(0.400) 1.603(0.401) 1.609(0.404)

(0.9,100) 3.068(4.745) 2.501(2.406) 2.320(1.317) 2.321(1.315) 2.327(1.306)

Table 3.5: The mean and the standard errors (s.e.) in the bracket of the MSE by
the BBvFF(d,k) with d=0.1 and k=0.9,0.8,0.7,0.6,0.5

(a, V ) BBvFF(0.1,0.9) BBvFF(0.1,0.8) BBvFF(0.1,0.7) BBvFF(0.1,0.6) BBvFF(0.1,0.5)

(0.1,1) 1.426(0.379) 1.423(0.377) 1.420(0.374) 1.417(0.372) 1.415(0.370)
(0.1,100) 2.214(1.532) 2.205(1.519) 2.197(1.510) 2.191(1.506) 2.188(1.511)

(0.5,1) 1.459(0.377) 1.459(0.378) 1.458(0.377) 1.457(0.375) 1.455(0.374)
(0.5,100) 2.193(1.489) 2.187(1.465) 2.181(1.440) 2.174(1.413) 2.168(1.384)

(0.9,1) 1.616(0.407) 1.625(0.412) 1.629(0.416) 1.630(0.418) 1.629(0.419)
(0.9,100) 2.334(1.296) 2.342(1.280) 2.345(1.269) 2.344(1.264) 2.341(1.264)
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Table 3.6: The mean and the standard errors (s.e.) in the bracket of the MSE by
the BBvFF(d,k) with d=1.96 and k=1,0.99,0.95,0.9

(a, V ) BBvFF(1.96,1) BBvFF(1.96,0.99) BBvFF(1.96,0.95) BBvFF(1.96,0.9)

(0.1,1) 1.852(0.614) 1.855(0.616) 1.867(0.623) 1.879(0.633)

(0.1,100) 3.704(5.123) 3.717(5.187) 3.735(4.898) 3.781(5.027)

(0.5,1) 1.755(0.548) 1.757(0.550) 1.765(0.555) 1.774(0.560)

(0.5,100) 3.249(3.091) 3.257(3.105) 3.288(3.158) 3.314(3.173)

(0.9,1) 1.598(0.487) 1.599(0.488) 1.604(0.492) 1.608(0.497)

(0.9,100) 3.016(4.255) 3.020(4.269) 3.045(4.334) 3.068(4.390)

Table 3.7: The mean and the standard errors (s.e.) in the bracket of the MSE by
the BBvFF(d,k) with d=1.96 and k=0.8,0.7,0.6,0.5

(a, V ) BBvFF(1.96,0.8) BBvFF(1.96,0.7) BBvFF(1.96,0.6) BBvFF(1.96,0.5)

(0.1,1) 1.901(0.649) 1.921(0.666) 1.933(0.674) 1.948(0.689)

(0.1,100) 3.858(5.207) 3.940(5.653) 4.003(5.933) 4.090(6.311)

(0.5,1) 1.791(0.574) 1.807(0.589) 1.821(0.607) 1.834(0.622)

(0.5,100) 3.366(3.264) 3.401(3.315) 3.431(3.380) 3.480(3.527)

(0.9,1) 1.617(0.508) 1.623(0.516) 1.631(0.524) 1.638(0.530)

(0.9,100) 3.099(4.515) 3.100(4.322) 3.129(4.487) 3.163(4.758)

3.8 Conclusion

The BBvFF(d, k) is different with the other two existing VFF algorithms in that

the BBvFF(d, k) considers the error analysis. The steepest descent and the Gauss-

Newton methods are originally from the optimisation theory, looking for the optimal

value over a period of time. Now that both of them are applied to find the value of

VFF sequentially at each time t, the application may not be a reasonable choice in

some cases. Considering that the VFF algorithm is to improve the flexibility of the

model, making it adaptive to the changes of the observations in time series, and en-

hance the performance in prediction of the model when new data point is observed,

the BBvFF(d, k) may be more reasonable choice for sequential application of the

VFF algorithm.

From the simulation study, the BBvFF(0.1,k) is found to be the best or at least

a competitive choice for better forecasting rather than the other two existing VFF
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algorithms of the SDvFF and the GNvFF and the BBvFF(1.96,k). In pairs trad-

ing, the spread is assumed to follow an AR(1) model. Thus, the BBvFF(0.1,k) is

expected to improve the performance in forecasting of the model.
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Chapter 4

Inference for Multi-categorical

Time Series

4.1 Introduction

In this chapter, an online monitoring process is newly defined and proposed to mon-

itor a process in real time. In the field of process control, there are two different

approaches to monitoring (a) the statistical process control and (b) the automatic

process control according to Joe Qin (2003) and Box and Kramer (1992). The

former is originated from the parts industry while the latter is from the process

industry. The statistical process control aims to achieve the highest possible mean

or a fixed target value with the smaller possible variation for the measurement of

the targets. For example, there are lower and upper control limits and warning lines

from a normal distribution or a normal approximation to the reference distribution.

The automatic process control focuses on the feedback control trying to adjust the

process accordingly to the external and uncontrollable variables. Newly proposed

online monitoring process is different from the automatic process control in that it

does not try to adjust itself to the external and uncontrollable variables. The online

monitoring process is also different from the monitoring process of the statistical

process control such as the Shewart chart, the Page-Barnard CUSUM chart, and

the Roberts EWMA chart. In the online monitoring process, categories are set up

by thresholds, and the location of a target is monitored and confirmed by the poste-
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rior probabilities for each category. A logistic transformation of the probabilities for

the categories is represented with the evolution model. Thus, the posterior proba-

bilities are not just the counted proportions of the responses in the corresponding

categories. The probability vector itself is a vector of random variables.

This chapter derives the recursions and proposes the particle filter as inference for

multi-categorical time series in the DGLM. This is novel extending the works by

West et al. (1985) and Triantafyllopoulos (2009) to multi-categorical time series in

the DGLM using multinomial distribution for the observation model. The particle

filter, developed in this chapter for categorical time series data, is not necessarily

restricted to the application of mean reversion considered in the thesis. Categorical

time series appear frequently and the contribution of the proposed particle filter is

general.

In the classical time series analysis, the stationarity is a tool to find the periods

when the moments such as the mean, the variance, and the auto-covariance of the

process do not change. This is achieved often by differencing the original time se-

ries. A common but usual question on finding the stationary of time series is how

to difference and how many more times to difference the original time series. There

also exist two types stationarity: strong stationarity and weak stationarity. The

strong stationary process share the same joint probability distribution while the

weak stationary process does mainly the same first two moments. However, it is

hardly possible to find the strong stationarity of the process. “Perfect” stationarity

of kind can be obtained from the only one data point, clearly having the constant

moments. Thus, to avoid claiming that each data point is strongly stationary, there

are several formal tests to find the stationarity of the process over a period of time

such as Augmented Dickey-Fuller test. The time series analyst roughly decides the

periods where this much closeness is enough to be declared as stationary so that the

stationarity is agreed and accepted by test results. For all this, a question always re-

mains in time series analysis on how closeness is enough to be stationary. A concept

of mean-reversion by Triantafyllopoulos and Montana (2011) is nothing but the sta-

tionarity in the class of dynamic models. A reader may think that we can calculate

the probabilities of Bt when it is estimated by a normal or t posterior distribution
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as in chapter 3. However, this is based on the assumption of normality on the data.

Such an assumption may be unrealistic, especially given that the assets and their

spreads normally have fat tails in real. Thus, considering the assumption on the

distribution of the assets and their spreads with fat tails, the idea of calculating

the probabilities of Bt is not recommendable, at least as far as the decision of mean

reversion is concerned. Still, of course, we use the normal model to estimate Bt, but,

in chapter 4, we suppose that this may not be perfect. In fact, Bt does not depend

much on normality, in the sense that the moments of B̂t is obtained by the Kalman

filter, which can be obtained assuming no distribution and having the Bayes liner

optimality. There is another advantage of treating the data as categorical. We are

now able not only to estimate the probabilities, but also to say something about the

uncertainty around these estimates with the posterior variances of the probabilities.

As a general formulation, a multi-categorical response is considered, which can be

represented as a multinomial distribution at each time t. An example of the online

monitoring process is to track the movements of |B̂t|, which is discretized within

several categories. For this, a multinomial distribution, a member of the exponen-

tial family of distributions, is adopted within the class of dynamic generalised linear

model (DGLM). Thus, sequential estimation of parameters can be approximated

only by the moments. In this chapter, we propose two approaches for sequen-

tial estimation: (a) adopting Bayes linear methods together with conjugate prior

distributions we approximate the first two moments of the states, and (b) adopt-

ing sequential Monte Carlo methods which we provide sequential simulation of the

states for. West et al. (1985) show how the approximation using the linear Bayesian

method can be done in the class of DGLM, which is discussed earlier in Section

2.7.1. Triantafyllopoulos (2009) provides a critical discussion on the topic of online

estimation. For (a), we extend the approximate inference of DGLM, due to West

et al. (1985), to responses of the multivariate exponential family of distributions.

Using the ideas of the above paper, developed for binomial responses, we extend

their approach to the multinomial distribution. This produces an approximation of

the first two moments of the state distribution, based on Bayes linear methods. For

(b), we use the posterior of (a) in order to approximate the importance function in

particle filters.
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From Chapter 2, we know that the value of |B̂t| determines whether the spread of

a pair is in the mean-reversion or not at time t. The one-step ahead forecast of a

spread is recursively obtained, but it is believed to be valid as long as the spread

at t is detected in the mean-reversion. When |B̂t| < 1, the pair is said to be in

mean-reversion. Otherwise, |B̂t| ≥ 1 and the pair is in non-mean-reversion accord-

ing to the conditions of mean-reversion in Section 2.4.3; see Triantafyllopoulos and

Montana (2011). However, at any time t when |B̂t| < 1, how confident a trader can

be is an issue. Considering that the detection is online, it also would be better if

a trader can have more information on the pair. Thus, the behavior of |B̂t| over

the period of time is regarded as a process, and it is closely monitored in the online

monitoring process at each time t. As a process, the dynamic variation in |B̂t| such

as the trend, seasonality, and cycle, if any, can be monitored and analyzed more in

depth with the evolution model of DGLM.

Suppose that the probability of πt is defined as the counted proportion of the data

points in the mean-reversion from the spread time series available up to time t. At

each time t, this probability would provide numerical information, revealing how

many data points are in mean-reversion state up to t. In the binomial case where

there are only two possible outcomes of ‘Mean Reversion’ or ‘Non-Mean Reversion’

at each time t, the less than half proportion for the mean-reversion may represent

that the pair is not reliable for pairs trading. On the other hand, the increased

proportion for the mean-reversion from t − 1 to t would add more support of the

pair for trading. The binomial case of either ‘in mean-reversion’ or ‘not in mean-

reversion’ can be extended to the multiple cases by closely monitoring the behavior

of |B̂t|. For example, with thresholds of 0.9 and 1.0 for |B̂t|, the three different

categories can be assumed according to the value of |B̂t|. They can be set as fol-

lows: ‘mean-reversion’ for 0 ≤ |B̂t| < 0.9, ‘semi-mean-reversion’ for 0.9 ≤ |B̂t| < 1,

and ‘non-mean-reversion’ for 1 ≤ |B̂t|. Over the period of time, each value of |B̂t|

belongs to one of three categories, and at each time t, a vector of the observation is

made such that Xt = (x1,t, x2,t, x3,t)
′.

A statistical model for time series of multi-categorical, or polychotomous responses
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can be categorized into a class of multivariate dynamic models. Suppose that there

is a (n + 1)-categorical time series, and a response vector of Xt = (x1,t, . . . , xn+1,t)
′

with Πt = (π1,t, . . . , πn+1,t)
′ for each category. Assuming that Nt =

∑n+1
i=1 xi,t and

∑n+1
i=1 πi,t = 1 at t, the (n + 1)th category can be understood to have xn+1,t =

Nt −
∑n

i=1 xi,t with πn+1,t = 1 −
∑n

i=1 πi,t. Thus, a vector of responses at t can be

described by xt = (x1,t, . . . , xn,t)
′ with probabilities of πt = (π1,t, . . . , πn,t)

′ for each

category, having the joint probability function as

p(xt | πt) =
Nt!

x1,t! · · ·xn,t!(Nt −
∑n

i=1 xi,t)!
π
x1,t
1,t · · ·π

xn,t

n,t (1−

n
∑

i=1

πi,t)
Nt−

∑n
i=1 xi,t (4.1)

where Nt =
∑n+1

i=1 xi,t and
∑n+1

i=1 πi,t = 1 satisfying 0 ≤ πi,t ≤ 1.

If only one response is observed for multiple categories at each time t, Nt = 1 and

components of an observation vector Xt is determined by

xi,t =

{

1, if a category i is observed

0, otherwise

where i = 1, 2, . . . , n + 1. For example, when there are three categories and only

one observation is available at t, Nt =
∑3

i=1 xi,t = 1 and Xt becomes either one of

the three possible vector such as Xt ∈ {(1, 0, 0)′, (0, 1, 0)′, (0, 0, 1)′}, making xt to be

one of {(1, 0)′, (0, 1)′, (0, 0)′}.

In this chapter, as the response vector Xt is observed from the values of |B̂t| in

the dynamic linear model for the spread time series Yt, the DGLM with a multino-

mial distribution works together with the dynamic linear model for pairs trading.

However, each of the two models is mathematically separate and applicable inde-

pendently to any appropriate time series.

4.2 Model Specification

A DGLM is comprised of the observation model with a link function and the evo-

lution model. For multi-categorical time series with (n + 1) categories, the online
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monitoring process can be set up by the DGLM with a multinomial distribution

where the response or observation vector is Xt = (x1,t, . . . , xn+1,t)
′ at time t. Thus,

a continuous and monotonic link function g(·) becomes a logistic transformation

of the vector of probabilities Πt = (π1,t, . . . , πn+1,t)
′, mapping Πt to the real line

as g(Πt) = ηt. The corresponding response probabilities Πt = (π1,t, . . . , πn+1,t)
′

are specified by a dynamic multivariate logistic model so that πi,t =
eηi,t

1+
∑n

i=1 e
ηi,t for

i = 1, . . . , n, leaving the (n + 1)th component of Πt as πn+1,t =
1

1+
∑n

i=1 e
ηi,t . In the

evolution model, the moments of the state vector θt are shown to be approximated

first using the conjugate analysis and the linear Bayesian method, and then using

the particle filters as a simulation-based approach.

4.2.1 The Observation Model

For the multi-categorical time series Xt with (n + 1) categories, the observation

model of an exponential family state space model or a DGLM can be described in

the exponential family form as

p(xt | ηt) = exp {[x′
tηt − a(ηt)] + b(xt)} (4.2)

xt = (x1,t, . . . , xn,t)
′

ηt = (η1,t, . . . , ηn,t)
′

=

(

log

(

π1,t
1−

∑n
i=1 πi,t

)

, · · · , log

(

πn,t
1−

∑n
i=1 πi,t

))′

a(ηt) = Nt · log

(

1 +

n
∑

i=1

eηi,t

)

b(xt) = log

(

Nt!

x1,t! · · ·xn,t!(Nt −
∑n

i=1 xi,t)!

)

where ηt is the natural parameter.
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a(ηt) is assumed to be twice differentiable in ηt such that

E(xi,t | ηi,t) =
da(ηt)

dηi,t
= ȧ(ηi,t)

= Nt ·
eηi,t

1 +
∑n

i=1 e
ηi,t

= Nt · πi,t

Var(xi,t | ηi,t) =
dȧ(ηi,t)

dηi,t
= ä(ηi,t)

= Nt ·
d

dηi,t

(

eηi,t

1 +
∑n

i=1 e
ηi,t

)

= Nt ·
eηi,t (1 +

∑n
i=1 e

ηi,t)− eηi,t(eηi,t)

(1 +
∑n

i=1 e
ηi,t)

2

= Nt · πi,t · (1− πi,t)

where eηi,t =
πi,t

1−∑n
i=1 πi,t

and 1 +
∑n

i=1 e
ηi,t = 1

1−∑n
i=1 πi,t

. Each of ȧ(ηi,t) and ä(ηi,t) is

termed as the mean function and the variance function of the distribution respec-

tively.

The link function for the observation model is given by

g(Πt) = ηt ≃ F ′
tθt (4.3)

so that g(·) maps Πt to the linear predictor ηt. The link function of the logit model

is given by gj,t(πi,t, . . . , πn+1,t) = log
(

πj,t
1−

∑n
i=1 πi,t

)

and the response function h(·),

defined as the inverse function of g(·), becomes hj,t(ηi,t, . . . , ηn,t) = eηj,t
1+

∑n
i=1 e

ηi,t for

j = 1, 2, . . . , n. Ft is a known (n × n) design matrix, and θt is an n-dimensional

state vector of θt = (θ1,t, . . . , θn,t)
′ at t.

In (4.3), the relationship between ηt and θt is represented as ηt ≃ F ′
tθt as in West

et al. (1985), indicating that there is no actual but a “guide” relationship by ≃. This

guide relationship is brought into to explain the recursions between ηt and θt for any

F ′
t in general, justifying the application of the linear Bayesian method to obtain the

optimal estimate for conditional moments of E(θt | ηt, Dt−1) and Var(θt | ηt, Dt−1).

56



4.2.2 The Evolution Model

The evolution model of the state vector θt is

θt = Gtθt−1 + ǫt, ǫt ∼ MVN[0,Wt] (4.4)

where Gt is a known (n × n) transition matrix, ǫt is an n-dimensional vector of

evolution errors, and Wt is a known (n × n) covariance matrix. For the evolution

errors of ǫt, distributional assumption is not necessary, and the zero mean assump-

tion may be relaxed. However, in this chapter, the evolution errors are assumed to

be a white noise sequence with multivariate normal distribution and uncorrelated

over time. Conditional on ηt, xt is assumed to be independent of ǫt. When θt is

time-invariant, Gt = I and Wt = 0, the model is reduced to a generalized linear

model.

(4.2), (4.3), and (4.4) define the DGLM for the time series Xt with polychotomous

responses at t. In this chapter, the simplest choice for θt would be the first order

random walk model of θt = θt−1 + ǫt, ǫt ∼ MVN[0,Wt], having Gt = I.

4.2.3 Recursions of Parameter Estimates

Although Ft and Gt are assumed to be known as an identity matrix for an applica-

tion to pairs trading in this chapter, the derivation of the recursions is made for the

general formulation of a model with Ft and Gt.

With the model definitions of a DGLM, r∗0, m0 and C0 are decided initially by the

modeller when (Π0 | D0) ∼ Dirichlet(r∗0) and (θ0 | D0) ∼ [m0, C0]. In the dynamic

linear model, the prior and posterior distributions for the state vector θt is assumed

to be the normal distribution, but in the DGLM, they are meant to be any expo-

nential family form of distributions. When the recursions are not available to get

the posterior distribution for the state vector θt, the moments are approximated. In

this chapter, as the first approach, the moments of the posterior distribution for the

state vector θt are approximated using the conjugate analysis and the linear Bayes

method. As the second approach, a simulation-based methodology of the particle
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filters is employed to adequately summarise such distributions with the moments.

While applying the particle filters to a DGLM with a multinomial distribution,

the required distributions are partially achieved in terms of the first and the second

moments. When choosing the importance transition density in the sequential Monte

Carlo methods, the easiest choice at t would be the prior distribution of the states θt

and it is called as the bootstrap filter. However, with consideration on information

from the newly observed, the online estimation can be improved. Thus, the optimal

importance kernel is chosen to be the importance transition density in the particle

filter, where its moments are obtained also by the linear Bayesian method. Both

the bootstrap filter and the particle filter are the sequential Monte Carlo methods,

also know as the particle filters, but the only difference lies in the choice of the

importance transition density from which the particles are simulated.

4.2.3.1 Prior Distributions

The prior distributions are approximated by the moments only. Given that (θt−1 |

Dt−1) ∼ [mt−1, Ct−1], the recursions for the prior distributions at t are achieved by

(f1) (θt | Dt−1) ∼ [at, Rt]

where at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt

(f2) (ηt | Dt−1) ∼ [ft, Qt]

where ft = F ′
tat and Qt = F ′

tRtFt

(f3) (Πt | Dt−1) ∼ Dirichlet(rt)

where ri,t =
1+efi,t

Qii,t
for i = 1, 2, . . . , n and rn+1,t =

∑n
i=1 ri,t

∑n
i=1 e

fi,t

The derivation of updating equations in (f1) and (f2) parallel the normal theory

which can be found in Appendix B as shown for the dynamic linear model in Chapter

2 and 3, but with no full distributional assumptions, (θt | Dt−1) and (ηt | Dt−1) are
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partially specified in terms of the moments. (f1), for example, is achieved by

E(θt | Dt−1) = E(Gtθt−1 + ǫt | Dt−1) = GtE(θt−1 | Dt−1)

= Gtmt−1 = at

Var(θt | Dt−1) = Var(Gtθt−1 + ǫt | Dt−1)

= GtVar(θt−1 | Dt−1)G
′
t +Var(ǫt | Dt−1)

= GtCt−1G
′
t +Wt = (GtCt−1G

′
t +Wt)

= Rt

The derivation of (f2) can be seen in Section 4.3.1. A vector of parameters rt in

(f3) for (Πt | Dt−1) are achieved by the moments of (ηt | Dt−1) where Πt and ηt

are linked via a multivariate logistic transformation. The details are shown in (4.14)

and (4.15) of Section 4.3.2.5 on how a vector of parameters rt for (Πt | Dt−1) are

achieved by the moments of (ηt | Dt−1).

4.2.3.2 Posterior Distributions

When an observation Xt is made at time t, the parameters of the Dirichlet distri-

bution are updated from (Πt | Dt−1) ∼ Dirichlet(rt) to (Πt | Dt) ∼ Dirichlet(r∗t )

where r∗t = (r∗1,t, . . . , r
∗
n+1,t) and r∗i,t = rt + xt for i = 1, 2, . . . , n and r∗n+1,t =

rn+1,t +Nt −
∑n

i=1 xi,t.

(g1) (Πt | Dt) ∼ Dirichlet(r∗t )

r∗i,t = ri,t + xi,t and r
∗
n+1,t = rn+1,t +Nt −

∑n
i=1 xi,t

where Xt = (x1,t, x2,t, . . . , xn+1,t)
′ and r∗t = (r1,t, r2,t, . . . , rn+1,t)

(g2) (ηt | Dt) ∼ [f∗t , Q
∗
t ]

f ∗
i,t ≈ log(ri,t + xi,t)− log(rn+1,t +Nt −

∑n
i=1 xi,t) where f∗t = (f ∗

1,t, . . . , f
∗
n,t)

′,

Q∗
ii,t ≈

1
ri,t+xi,t

+ 1
rn+1,t+Nt−

∑n
i=1 xi,t

and Q∗
ij,t ≈

(

1
rn+1,t+Nt−

∑n
i=1 xi,t

)

for i 6= j

where Qi,j represents (i, j) entries of an (n× n) matrix Qt

(g3) (θt | Dt) ∼ [mt, Ct]

As new observation Xt is made, the parameters of the Dirichlet distribution for Πt

are updated from rt for (Πt | Dt−1) to r∗t = rt +Xt for (Πt | Dt) as given in (g1).

59



By these updated parameters of r∗t , the moments of the posterior distribution for

(ηt | Dt) are approximately obtained as given in (g2), the approximation details

of which can be found in Section 4.3.3. The distribution of (θt | Dt) in (g3) is

analytically intractable so that the first and the second moments are approximated

using the linear Bayesian method in Section 4.4 and using the particle filters in

Section 4.5. The estimation methods make use of conjugate prior distributions

and of Bayes linear methods, which are combined with particle filters. In Section

4.3, we give all the necessary details of the conjugate prior distributions together

with derivations of moments of the linear predictor. In Section 4.4, we develop an

inference that uses Bayes linear methods as the main approximation or as a guide

to approximate the optimal importance kernel in particle filtering.

4.3 Recursive Updating for Πt and ηt

Parameters of (Πt | Dt−1) are determined by the moments of (ηt | Dt−1). (Πt | Dt−1)

are updated to (Πt | Dt) with new vector of observations Xt at time t. The moments

of (ηt | Dt) are approximately obtained from the parameters of (Πt | Dt). These

recursive updating is explored and shown in this section.

4.3.1 Moments of (ηt | Dt−1)

(f2) from Section 4.2.3.1 can be derived as follows.

E(ηt | Dt−1) = E(F ′
tθt | Dt−1) = E(F ′

tGtθt−1 + F ′
tǫt | Dt−1)

= F ′
tGtE(θt−1 | Dt−1) + F ′

tE(ǫt | Dt−1)

= F ′
tGtmt−1 = F ′

tat = ft

Var(ηt | Dt−1) = Var(F ′
tθt | Dt−1) = Var(F ′

tGtθt−1 + F ′
tǫt | Dt−1)

= F ′
tGtVar(θt−1 | Dt−1)G

′
tFt + F ′

tVar(ǫt | Dt−1)Ft

= F ′
tGtCt−1G

′
tFt + F ′

tWtFt

= F ′
t (GtCt−1G

′
t +Wt)Ft

= F ′
tRtFt

= Qt
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where Rt = GtCt−1G
′
t +Wt.

4.3.2 Relationship between (ηt | Dt−1) and (Πt | Dt−1)

While Πt follows a Dirichlet distribution, ηt is related to Πt via a link function g(·)

and by a logistic variable transformation of

ηt = (η1,t, . . . , ηn,t)
′ =

(

log

(

π1,t
1−

∑n
i=1 πi,t

)

, · · · , log

(

πn,t
1−

∑n
i=1 πi,t

))′

By investigating the relationship between (Πt | Dt−1) and (ηt | Dt−1), the details

of (f3) are shown on how the parameters of (Πt | Dt−1) are determined by the first

and second moments of (ηt | Dt−1). For a random vector Πt = (π1,t, . . . , πn+1,t)
′,

(Πt | Dt−1) ∼ Dirichlet(rt) is assumed where rt = (r1,t, . . . , rn+1,t)
′. However,

rt = (r1,t, . . . , rn+1,t)
′ is unknown. This unknown parameter vector of rt can be

obtained from the relationship between (Πt | Dt−1) and (ηt | Dt−1).

4.3.2.1 The Density Function of (ηt | Dt−1)

Suppose that Πt = (π1,t, . . . , πn+1,t)
′ is a random vector which follows the Dirichlet

distribution such as (Πt|Dt−1) ∼ Dirichlet(rt) where rt = (r1,t, . . . , rn+1,t)
′ is a pa-

rameter vector.

The joint density function of (Πt | Dt−1) is

p(Πt | Dt−1) =
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)
π
r1,t−1
1,t · · ·π

rn,t−1
n,t

(

1−
n
∑

i=1

πi,t

)rn+1,t−1

where 0 ≤ π1,t, . . . , πn+1,t ≤ 1 and πn+1,t = 1−
∑n

i=1 πi,t.

By a logistic variable transformation,

ηt = (η1,t, . . . , ηn,t)
′ =

(

log
(

π1,t
1−

∑n
i=1 πi,t

)

, . . . , log
(

πn,t

1−
∑n

i=1 πi,t

))′
, which is equally

likely to be πt = (π1,t, . . . , πn,t)
′ =
(

eη1,t

1+
∑n

i=1 e
ηi,t ,

eη2,t

1+
∑n

i=1 e
ηi,t , . . . ,

eηn,t

1+
∑n

i=1 e
ηi,t

)′
.

Thus, by the variable transformation, the prior distribution at t, or the density
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function of (ηt | Dt−1) is

p(ηt | Dt−1) =
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

e
∑n

i=1 ηi,t(ri,t−1)

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 (ri,t−1)

· |J |

=
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

e
∑n

i=1 ri,tηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 ri,t

(4.5)

where

|J | =

∏n
i=1 e

ηi,t

(1 +
∑n

i=1 e
ηi,t)n+1

=
e
∑n

i=1 ηi,t

(1 +
∑n

i=1 e
ηi,t)n+1

(4.6)

The computation of the Jacobian |J | in (4.6) is shown in Appendix C.

4.3.2.2 Generating Functions for ηt

For a real valued vector z = (z1, . . . , zn)
′, the moment generating function of ηt is

Mηt
(z) = E(ez

′ηt) =
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

∫

· · ·

∫

Rn

e
∑n

i=1(ri,t+zi)ηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 ri,t

dη1,t · · · dηn,t

=
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

∫

· · ·

∫

Rn

e
∑n

i=1(ri,t+zi)ηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n
i=1(ri,t+zi)+(rn+1,t−

∑n
i=1 zi)

dη1,t · · · dηn,t

=
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

∏n
i=1 Γ(ri,t + zi)Γ(rn+1,t −

∑n
i=1 zi)

Γ(
∑n

i=1(ri,t + zi) + (rn+1,t −
∑n

i=1 zi))

=
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

∏n
i=1 Γ(hi,t)Γ(hn+1,t)

Γ(
∑n+1

i=1 hi,t)
(4.7)

where hi,t = ri,t + zi for i = 1, . . . , n and hn+1,t = rn+1,t −
∑n

i=1 zi and (4.7) is justi-

fied by noting the followings.

Firstly, by taking hi,t = ri,t + zi for i = 1, . . . , n and hn+1,t = rn+1,t −
∑n

i=1 zi,

n+1
∑

i=1

ri,t =

n+1
∑

i=1

hi,t =

n
∑

i=1

hi,t + hn+1,t =

n
∑

i=1

(ri,t + zi) + (rn+1,t −

n
∑

i=1

zi)
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Secondly, from the fact that

∫

p(ηt)dηt =

∫

· · ·

∫

Rn

Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

e
∑n

i=1 ri,tηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 ri,t

dη1,t · · · dηn,t = 1

we obtain

∫

· · ·

∫

Rn

e
∑n

i=1 ri,tηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 ri,t

dη1,t · · · dηn,t =

∏n+1
i=1 Γ(ri,t)

Γ(
∑n+1

i=1 ri,t)

By definition, the cumulant generating function for ηt is equal to

Kηt
(z) = log

{

Mηt
(z)
}

= log

{

Γ(
n+1
∑

i=1

ri,t)

}

− log

{

n+1
∏

i=1

Γ(ri,t)

}

+ log

{

n
∏

i=1

Γ(ri,t + zi)Γ(rn+1,t −
n
∑

i=1

zi)

}

−log

{

Γ(

n
∑

i=1

(ri,t + zi) + (rn+1,t −

n
∑

i=1

zi))

}

The partial derivatives of the cumulant generating function in the above are

∂Kηt
(z)

∂zi
= Ψ(ri,t + zi)−Ψ(rn+1,t −

n
∑

i=1

zi)

= Ψ(hi,t)−Ψ(hn+1,t), i = 1, . . . , n (4.8)

∂2Kηt
(z)

∂z2i
= Ψ(1)(ri,t + zi) + Ψ(1)(rn+1,t −

n
∑

i=1

zi)

= Ψ(1)(hi,t) + Ψ(1)(hn+1,t), i = 1, . . . , n (4.9)

∂2Kηt
(z)

∂zj∂zi
=

∂{Ψ(ri,t + zi)−Ψ(rn+1,t −
∑n

i=1 zi)}

∂zj
= Ψ(1)(rn+1,t −

n
∑

i=1

zi)

= Ψ(1)(hn+1,t) (4.10)

where Ψ(·) and Ψ(1)(·) denote the digamma function and the trigamma function re-

spectively as in Abramowitz and Stegun (1965). The details on generating functions,
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digamma and trigamma functions are found in Appendix A.

4.3.3 Parameters of (Πt | Dt−1)

With Ψ(z) ≈ log(z) and Ψ(1)(z) ≈ 1
z
, the moments of (ηt | Dt−1) can be represented

as

E(ηi,t | Dt−1) = fi,t = Ψ(ri,t)−Ψ(rn+1,t)

≈ log(ri,t)− log(rn+1,t)

= log

(

ri,t
rn+1,t

)

(4.11)

Var(ηi,t | Dt−1) = Qii,t = Ψ(1)(ri,t) + Ψ(1)(rn+1,t)

≈
1

ri,t
+

1

rn+1,t
(4.12)

Cov(ηi,t, ηj,t | Dt−1) = Qij,t = Ψ(1)(rn+1,t)

≈
1

rn+1,t
for i 6= j (4.13)

where ft = (f1,t, . . . , fn,t)
′, Qii,t are diagonal elements and Qij,t for i 6= j are non-

diagonal elements of the covariance matrix, Qt.

From (4.11), we know that efi,t =
ri,t

rn+1,t
. By taking

∑

for both sides, (4.11) reduces

to
∑n

i=1 e
fi,t =

∑n
i=1 ri,t
rn+1,t

. Thus, rn+1,t can be written as

rn+1,t =

∑n
i=1 ri,t

∑n
i=1 e

fi,t
(4.14)

On the other hand, rewriting (4.11) with regard to rn+1,t gives rn+1,t =
ri,t

efi,t
, and by

substituting it into (4.12), ri,t is obtained as

ri,t =
1 + efi,t

Qii,t

, for i = 1, 2, . . . , n (4.15)

64



4.3.4 Moments of (ηt | Dt)

The posterior distribution of Πt given Dt follows the Dirichlet(rt + Xt) with an

observation Xt at time t. When we derive formula for rt in Section 4.3.3, Ψ(z)

and Ψ(1)(z) are approximated by log(z) and 1
z
for computational simplicity. While

computing the moments of (ηt | Dt), we use more terms up to the second term for

approximations, which are log(z) − 1
2z

and 1
z

(

1 + 1
2z

)

for Ψ(z) and Ψ(1)(z). More

details on a digamma and a trigamma functions can be found in Abramowitz and

Stegun (1965) and in Appendix A.2 of this thesis.

While ft and at are obtained from the recursions of ft = F ′
tat and at = Gtmt−1,

a vector of rt for the prior distribution of (Πt | Dt−1) has to be computed from ft

and Qt. A vector of r∗t for the posterior distribution of (Πt | Dt) is obtained by

conjugacy of a Dirichlet distribution when new observation Xt is made at t.

The posterior moments of (ηt | Dt) can be found by the approximations as follows.

E(ηi,t | Dt) = f ∗
i,t ≈ Ψ(ri,t + xi,t)−Ψ(rn+1,t + xn+1,t) for i = 1, 2, . . . , n

=

{

log(ri,t + xi,t)−
1

2(ri,t + xi,t)

}

−

{

log (rn+1,t + xn+1,t)−
1

2(rn+1,t + xn+1,t)

}

= log

(

ri,t + xi,t
rn+1,t + xn+1,t

)

−

{

(ri,t + xi,t) + (rn+1,t + xn+1,t)

2(ri,t + xi,t)(rn+1,t + xn+1,t)

}

(4.16)
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Var(ηi,t | Dt) = Q∗
ii,t ≈ Ψ(1)(ri,t + xi,t) + Ψ(1)(rn+1,t + xn+1,t)

=

(

1

ri,t + xi,t

)(

1 +
1

2(ri,t + xi,t)

)

+

(

1

rn+1,t + xn+1,t

)(

1 +
1

2(rn+1,t + xn+1,t)

)

=

{

(ri,t + xi,t) + (rn+1,t + xn+1,t)

(ri,t + xi,t)(rn+1,t + xn+1,t)

}

+
1

2

{

(ri,t + xi,t)
2 + (rn+1,t + xn+1,t)

2

(ri,t + xi,t)2(rn+1,t + xn+1,t)2

}

(4.17)

Cov(ηi,t, ηj,t | Dt) = Q∗
ij,t ≈ Ψ(1)(rn+1,t + xn+1,t) for i 6= j

=

(

1

rn+1,t + xn+1,t

)(

1 +
1

2(rn+1,t + xn+1,t)

)

=
1

2

{

2(rn+1,t + xn+1,t) + 1

(rn+1,t + xn+1,t)2

}

(4.18)

4.4 Inference for The Posterior of (θt | Dt)

In this section, two approaches are introduced for inference of (θt | Dt). Following

the approach by Hartigan (1969), Goldstein (1976), West et al. (1985), and Tri-

antafyllopoulos (2009), the Bayes linear methods are applied to DGLM for multi-

categorical time series for the approximate inference. As a simulation-based ap-

proach, sequential Monte Carlo methods are also applied for the approximations.

4.4.1 Approximate Inference by the Bayes Linear Methods

With the model specification of DGLM in Section 4.2, the first- and second- mo-

ments of the posterior of (θt | Dt) can be approximated using the moments of the

joint posterior of ηt and θt. To the following, we generalise the utility of Bayes

linear methods for univariate DGLMs by West et al. (1985) to the multivariate case.

In West and Harrison (1997), the linear Bayes estimate mt is known to minimise

the associated risk matrix Ct.
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Assuming the posterior for the state vector at t− 1 as

(θt−1|Dt−1) ∼ [mt−1, Ct−1]

the joint prior distribution of ηt and θt at time t is partially specified by the first

two moments only, and it follows that

(

ηt

θt

∣

∣

∣

∣

∣

Dt−1

)

∼

[(

ft

at

)

,

(

Qt F ′
tRt

RtFt Rt

)]

(4.19)

where ft = F ′
tat, Qt = F ′

tRtFt, at = Gtmt−1, and Rt = GtCt−1G
′
t +Wt are approxi-

mately the mean and variance of (θt | Dt−1).

The posterior mean vector and covariance matrix of ηt are approximated by linear

Bayesian methods and by using the tower property of expectations as

E(ηt | Dt) = E(g(Πt) | Dt) = f∗t and Var(ηt | Dt) = Var(g(Πt) | Dt) = Q∗
t (4.20)

The mean vector and covariance matrix of (θt | Dt) are approximated as

(θt | Dt) ∼ [mt, Ct] (4.21)

where mt = at + RtFtQ
−1
t (f∗t − ft) and Ct = Rt − RtFtQ

−1
t (I − Q∗

tQ
−1
t )F ′

tRt. The

details of the approximation in (4.21) are given below,

p(ηt, θt | Dt) ∝ p(ηt, θt | Dt−1)p(Yt | ηt)

∝ {p(θt | ηt, Dt−1)p(ηt | Dt−1)}p(Yt | ηt)

∝ p(θt | ηt, Dt−1){p(ηt | Dt−1)p(Yt | ηt)}

∝ p(θt | ηt, Dt−1)p(ηt | Dt) (4.22)

From (4.22), we can see that θt is conditionally independent of Yt given ηt and

Dt−1, and it follows that

p(θt | Dt) =

∫

p(θt | ηt, Dt−1)p(ηt | Dt)dηt (4.23)
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p(ηt | Dt), the second component of the integrand in (4.23), can be obtained directly

from (4.20) in the conjugate form posterior for ηt. However, due to the incomplete

of the joint prior distribution in (4.19), conditional moments of p(θt | ηt, Dt−1) are

unknown and non-linear functions of ηt. Given only the partial moments, the pos-

terior mean and variance matrix of θt can be estimated using the linear Bayesian

method by Goldstein and Wooff (2007).

Conditional moments of E(θt | ηt, Dt−1) and Var(θt | ηt, Dt−1) are obtained as the

optimal estimate by the linear Bayesian method. For all ηt, they are

Ê(θt | ηt, Dt−1) = at +RtFtQ
−1
t (ηt − ft) (4.24)

V̂ar(θt | ηt, Dt−1) = Rt − RtFtQ
−1
t FtRt (4.25)

From (4.23), E(θt | Dt) = E{E(θt | ηt, Dt−1) | Dt} and Var(θt | Dt) = Var{E(θt |

ηt, Dt−1) | Dt}+E{Var(θt | ηt, Dt−1) | Dt}. Thus, the posterior moments of θt may

be estimated based on the optimal estimates of (4.24) and (4.25).

mt = E{Ê(θt | ηt, Dt−1 | Dt)}

= E{at +RtFtQ
−1
t (ηt − ft) | Dt}

= at +RtFtQ
−1
t {E(ηt | Dt)− ft}

= at +RtFtQ
−1
t (f∗t − ft) (4.26)

Ct = Var{Ê(θt | ηt, Dt−1) | Dt}+ E{V̂ar(θt | ηt, Dt−1) | Dt}

= Var{at +RtFtQ
−1
t (ηt − ft) | Dt}+ E(Rt − RtFtQ

−1
t F ′

tRt | Dt)

= RtFtQ
−1
t Var(ηt | Dt)Q

−1
t F ′

tRt +Rt −RtFtQ
−1
t F ′

tRt

= RtFtQ
−1
t Q∗

tQ
−1
t F ′

tRt +Rt − RtFtQ
−1
t F ′

tRt

= Rt −RtFtQ
−1
t (I −Q∗

tQ
−1
t )F ′

tRt (4.27)

4.4.2 Particle Filters

Sequential Monte Carlo (SMC) methods, also known as the particle filters, are a

set of simulation approaches to infer the posterior distributions in case analytically

they are not possible to get. The particle filters apply importance sampling meth-
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ods sequentially: at each time t, particles are generated from a suitable importance

density and then the importance weights, which compensate to account for the fact

we do not sample from the true posterior distribution, are updated recursively over

time. Unfortunately, the weights are known to degenerate over time, meaning that

very few particles have significant weights and all the rest are virtually zero. This

effect fails the Monte Carlo approximation and hence a resampling step is applied

at each time t when the particles are thought to degenerate.

The particle filter successfully works in online filtering application when the posterior

distribution is not easy to obtain analytically. The posterior distribution is sequen-

tially approximated by the Monte Carlo method for integration with the samples

from a proposal density qt(·), also known as an importance function or an importance

density. When the posterior distribution p(θt | Dt) is known, qt(·) ≡ p(θt | Dt).

When it is unknown, we write qt(·) explicitly as qt(θt | Xt), which can be represented

as

qt(θt | Xt) = qt|t−1(θt | θt−1,Xt) · qt−1(θt−1 | Xt−1) (4.28)

where qt|t−1(·) is the importance transition density.

While applying the particle filter to the online monitoring process with a multinomial

distribution for the response vector Xt, N vectors of Θt = (θ
(1)
t , · · · , θ

(N)
t )′ are

sampled at each time t from the importance transition density qt|t−1(θt | θt−1,Xt).

Each sample vector of θ
(i)
t for i = 1, . . . , N consists of (θ

(i)
1,t, . . . , θ

(i)
n,t), thus having

Θt =
(

(θ
(1)
1,t , . . . , θ

(1)
n,t), · · · , (θ

(N)
1,t , . . . , θ

(N)
n,t )

)′
as the sample matrix with the weights

of wt = (w
(1)
t , · · · , w

(N)
t ) for each sample vector at t. For example, a sample vector of

θ
(1)
t = (θ

(1)
1,t , . . . , θ

(1)
n,t) has a weight of w

(1)
t , and a discrete approximation of p̂(θt | Dt)

is done by the weighted vectors (θ
(i)
t , w

(i)
t ), i = 1, . . . , N .

4.4.2.1 The Importance Density

The selection of the importance transition density is one of the most common, but

important issues considered in the particle filter. One of the most commonly used

importance transition densities is such that qt|t−1(θt | θt−1,Xt) = p(θt | θt−1).

In this case, particles are drawn from the prior distribution irrespective of newly
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made observation at t, making the calculation of the incremental weights straight-

forward; this is known as the bootstrap filter in Cappé et al. (2007) and Doucet and

Johansen (2009). However, with no additional information from the observation

Xt made at t, approximated moments of the posterior density from the generated

particles easily become obsolete. To get over this problem, particles are generated

from a conditional distribution of θt given both θt−1 andXt, say qt|t−1(θt | θt−1,Xt).

According to Petris et al. (2009), the bootstrap filter is the suboptimal choice for the

importance density while the optimal choice is qt|t−1(θt | θt−1,Xt) = p(θt | θt−1,Xt).

This is optimal in that the optimal density behaves in a similar way as the posterior

of (θt | Dt); see Proposition 2 of Doucet et al. (2010b) and Doucet et al. (2010a).

We propose that we approximate the optimal choice by simulating from a multivari-

ate normal distribution with the mean vector and covariance matrix approximated

by Bayes linear methods.

The moments of p(θt | θt−1) and p(ηt | θt−1) are obtained as follows.

E(θt | θt−1) = E(Gtθt−1 + ǫt | θt−1) = Gtθt−1

Var(θt | θt−1) = Var(Gtθt−1 + ǫt | θt−1) = Wt

E(ηt | θt−1) = E(F ′
tθt | θt−1) = F ′

tE(Gtθt−1 + ǫt | θt−1) = F ′
tGtθt−1

Var(ηt | θt−1) = Var(F ′
tθt | θt−1) = F ′

tVar(Gtθt−1 + ǫt | θt−1)Ft

= F ′
tWtFt

Cov(ηt, θt | θt−1) = Cov(F ′
tθt, θt | θt−1) = F ′

tVar(θt | θt−1)

= F ′
tVar(Gtθt−1 + ǫt | θt−1) = F ′

tWt

Thus, the joint density of ηt and θt given θt−1 is

(

ηt

θt

∣

∣

∣

∣

∣

θt−1

)

∼

[(

F ′
tGtθt−1

Gtθt−1

)

,

(

F ′
tWtFt F ′

tWt

WtFt Wt

)]

Using the linear Bayes’ estimation, we have the mean vector and covariance matrix
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of (θt | θt−1,ηt) as

(θt | θt−1,ηt) ∼ [Gtθt−1 +WtFt(F
′
tWtFt)

−1(ηt − F ′
tGtθt−1),

Wt −WtFt(F
′
tWtFt)

−1F ′
tWt] (4.29)

Using the tower property of conditional expectation and the variance decomposi-

tion formula with the results from (3) in Appendix B, the moments of the optimal

importance kernel or the importance transition density qt|t−1(θt | θt−1,Xt) can be

approximated as

E(θt | θt−1,Xt) = E(Ê(θt | θt−1,ηt) | Xt)

= E(Gtθt−1 +WtFt(F
′
tWtFt)

−1(ηt − F ′
tGtθt−1) | Xt)

= Gtθt−1 +WtFt(F
′
tWtFt)

−1(f∗t − F ′
tGtθt−1) (4.30)

Var(θt | θt−1,Xt) = Var(Ê(θt | θt−1,ηt) | Xt) + E(V̂ar(θt | θt−1,ηt) | Xt)

= Var(Gtθt−1 +WtFt(F
′
tWtFt)

−1(ηt − F ′
tGtθt−1) | Xt)

+E(Wt −WtFt(F
′
tWtFt)

−1F ′
tWt | Xt)

= WtFt(F
′
tWtFt)

−1Q∗
t (F

′
tWtFt)

−1F ′
tWt

+Wt −WtFt(F
′
tWtFt)

−1F ′
tWt

= Wt +WtFt(F
′
tWtFt)

−1(Q∗
t (F

′
tWtFt)

−1 − I)F ′
tWt (4.31)

where f∗t = E(ηt | Dt) and Q
∗
t = Var(ηt | Dt).

Thus, N particles for the particle filter are sampled from the multivariate normal dis-

tribution with moments of (mOIK
t , COIK

t ) wheremOIK
t = Gtθt−1+WtFt(F

′
tWtFt)

−1(f∗t −

F ′
tGtθt−1) from (4.30) and COIK

t = Wt +WtFt(F
′
tWtFt)

−1(Q∗
t (F

′
tWtFt)

−1 − I)F ′
tWt

from (4.31).

4.4.2.2 The Incremental Weights

From a link function for the observation model in (4.3), we can see that conditioning

upon θt implies conditioning upon ηt; i.e. p(Xt | ηt) ≡ p(Xt | θt).
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By Bayes’ theorem, the weights wt are updated as

wt ∝
p(θt | Xt)

qt(θt | Xt)
∝

p(θt,Xt | Xt−1)

qt(θt | Xt)

∝
p(θt,Xt | θt−1,Xt−1)

qt|t−1(θt | θt−1,Xt)
·
p(θt−1 | Xt−1)

qt−1(θt−1 | Xt−1)

∝
p(Xt | θt) · p(θt | θt−1)

qt|t−1(θt | θt−1,Xt)
·wt−1 (4.32)

For each particle vector of θ
(i)
t , the weight of w

(i)
t is calculated from

w
(i)
t =

p(Xt | θ
(i)
t ) · p(θ

(i)
t | θ

(i)
t−1)

qt|t−1(θ
(i)
t | θ

(i)
t−1,Xt)

· w
norm(i)
t−1 (4.33)

where
p(Xt|θ(i)

t )·p(θ(i)
t |θ(i)

t−1)

qt|t−1(θ
(i)
t |θ(i)

t−1,Xt)
is called as the incremental weight. The optimal importance

kernel qt|t−1(·) is Markovian, and the incremental weight depends only on θ
(i)
t and

θ
(i)
t−1.

At each time t when the particles are sampled, each incremental weight w
(i)
t is

normalized as

w
norm(i)
t =

w
(i)
t

∑N
j=1w

(j)
t

(4.34)

4.4.2.3 Resampling Methods

At each time t, the incremental weights w
(i)
t are computed by

p(Xt|θ(i)
t )·p(θ(i)

t |θ(i)
t−1)

qt|t−1(θ
(i)
t |θ(i)

t−1,Xt)
as

in (4.33). Accordingly, the weights are updated with new weights at t from the old

weights at t−1 and normalized to be
∑N

i=1w
norm(i)
t = 1 as in (4.34). With these nor-

malized weights, the effective sample size Neff is computed as 1/
∑N

i=1(w
norm(i)
t )2,

and compared with a threshold Nthr to see whether to employ the resampling step

or not. The threshold is decided by the modeller, but it is normally N/2. When

Neff < Nthr, the resampling step is employed and the weights are set to be 1/N .

Many different resampling algorithms are developed to keep its Monte Carlo vari-

ance as small as possible and to reduce the computational complexity. Among them,
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multinomial, stratified, residual, and systematic resamplings are the most frequently

employed in literature. A theoretical framework and the differences among different

methods for resampling can be found in Hol et al. (2006).

We employ the simplest of multinomial resampling. When we have N particles

from the importance sampling and need to do the resampling by Neff < Nthr,

a sample of size N are drawn with replacement from the discrete distribution of

p(θt = θ
(i)
t ) = w

(i)
t . As mentioned, the weights become 1/N after the resampling.

4.5 Comparison of The Bootstrap Filter and The

Particle Filter

When the prior distribution is chosen as the importance density to sample from,

the particle filter is known as the bootstrap filter. To see the benefit of using the

optimal importance kernel in the particle filter, a comparison is made between the

particle filter and the bootstrap filter. To help a reader to understand both the

bootstrap filter and the particle filter, a summary is provided as a table for each in

the following section.

For an illustration, the states θt = (θ1,t, θ2,t) are generated for categorical time

series with 3 categories by a random walk process, where the probabilities Πt =

(π1,t, π2,t, π3,t) are determined via the link function and the logistic transformation

assuming that Ft = I. Observations Xt are simulated from Multinomial(1,Πt) for

t = 1, 2, . . ., indicating the sum of the count at each time t is 1. Comparisons

between the particle filter and the bootstrap filter are made with firstly 100 and

secondly 1,000 generated time series. The number of particles N are set as 1,000 to

generate at time t for both filters. Each comparison provides a plot of the original

probabilities Πt = (π1,t, π2,t, π3,t) used to generate multi-categorical time series at

each time t and the estimated probabilities Π̂t = (π̂1,t, π̂2,t, π̂3,t) for each category.

In addition to Multinomial(1,Πt), observationsXt are simulated fromMultinomial(100,Πt)

for t = 1, 2, . . ., indicating the sum of the counts are 100 at each time t, when the
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results from both filters are compared. This is to see if the only one count at each

time t may cause some poor performance.

4.5.1 The Bootstrap Filter

Table 4.1 describes the bootstrap filter in detail. In this chapter, the bootstrap

filter does not store the paths of the particles from time 0 to time t when the

interest lies only in estimating p(θt|Dt) or the moments of the distribution. At time

t, the filter starts with {θ
(i)
t ,

1
N
}, and then updates the importance weights, using

the information given at time t, to {θ
(i)
t , w

(i)
t }. In the resampling step, only the

fittest are selected to obtain the unweighted measure {θ
(i)
t ,

1
N
}. These are used to

approximate p(θt|Dt). The bootstrap filter adopts the prior distribution p(θt|θ
(i)
t−1)

as an importance distribution to sample from. As a distributional assumption, the

multivariate normal distribution is considered for an importance density.

Table 4.1: Pseudo-code implementations for the bootstrap filter

1. Initialisation at t = 0
· Set N as the number of particles generated for the filtering
· Set m0 and C0 for MVN(m0, C0)

· Sample θ
(i)
0 = {θ

(i)
1,0, θ

(i)
2,0, . . . , θ

(i)
n,0} for i = 1, 2, . . . , N from MVN(m0, C0)

where (n+ 1) is the number of categories

· Set w
(i)
0 = 1

N
for i = 1, 2, . . . , N

2. Importance sampling step for t = 1, 2, . . . , T

· Sample θ
(i)
t for i = 1, 2, . . . , N from p(θt|θ

(i)
t−1) or MVN(Gtθ

(i)
t−1,Wt)

· Update the importance weights w
(i)
t for i = 1, 2, . . . , N

w
(i)
t = p(Xt|θ

(i)
t )

· Normalise the importance weights as w
norm(i)
t =

w
(i)
t

∑N
j=1 w

(j)
t

3. Resampling step for t = 1, 2, . . . , T
· Resample N particles with replacement according to the importance weights

4.5.2 The Particle Filter

Table 4.2 describes the particle filter. Key differences between the bootstrap filter

and the particle filter are on the choice of the importance density to sample the
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particles from, the weights updating, and the decision criterion at the resampling

step. The particle filter uses the optimal importance kernel p(θt|θt−1,Xt) as an

importance desnsity, and updates the weights at t using the incremental weights

and the weights at t− 1. To decide whether to resample the particles, the modeller

specifies a threshold N0 which is compared with the effective sample size Neff .

Table 4.2: Pseudo-code implementations for the particle filter

1. Initialisation at t = 0
· Set N as the number of particles generated for the filtering
· Set m0 and C0 for MVN(m0, C0)

· Sample θ
(i)
0 = {θ

(i)
1,0, θ

(i)
2,0, . . . , θ

(i)
n,0} for i = 1, 2, . . . , N from MVN(m0, C0)

where (n + 1) is the number of categories

· Set w
(i)
0 = 1

N
for i = 1, 2, . . . , N

2. Importance sampling step for t = 1, 2, . . . , T

· Sample θ
(i)
t for i = 1, 2, . . . , N from MVN(moik

t , Coik
t )

where moik
t = Gtθ

(i)
t−1 +WtFt(F

′
tWtFt)

−1(f∗t − F ′
tGtθ

(i)
t−1)

and Coik
t =Wt +WtFt(F

′
tWtFt)

−1(Q∗
t (F

′
tWtFt)

−1 − I)F ′
tWt

with f∗t = E(ηt | Dt) and Q
∗
t = Var(ηt | Dt)

· Update the importance weights w
(i)
t for i = 1, 2, . . . , N

w
(i)
t =

p(Xt|θ(i)
t )·p(θ(i)

t |θ(i)
t−1)

qt|t−1(θ
(i)
t |θ(i)

t−1,Xt)
· w

(i)
t−1

· Normalise the importance weights as w
norm(i)
t =

w
(i)
t

∑N
j=1 w

(j)
t

3. Resampling step for t = 1, 2, . . . , T
· Set the threshold N0

· Compute the effective sample size Neff defined as 1/
∑N

i=1(w
norm(i)
t )2

· If Neff < N0, resample N particles with replacement

and set the weights w
(i)
t = 1

N
for i = 1, 2, . . . , N

4.5.3 Comparison Results

To see the performance of both the particle filter and the bootstrap filter in the

class of DGLM for a multi-categorical time series, both filters are applied to the

generated time series for comparisons. Multi-categorical time series of 100 data

points with 3 categories, having the sum of the counts as 1, 100, or 1,000 at each

time t, are generated from a random walk process. For Monte Carlo simulation, a
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multi-categorical time series generation of 100 data points is iterated for 100 times,

where 1,000 particles are generated at each time t in each iteration.

As an example from 100 iterations, Figure 4.1, 4.2, and 4.3 show the probabilities

of each category by both the particle filter and the bootstrap filter when the sum

of the count at each time t is 1, 100, and 1,000 respectively. The upper plots in the

figure are the results by the particle filter while the lower plots are by the bootstrap

filter. In each of the upper and the lower plots of the figure, the original proba-

bilities are drawn in black to generate a multi-categorical time series of 100 data

points with 3 categories while the probabilities estimated by the filters are in red.

From the figures, it is found that the filters work better with multi-categorical time

series having more sums of counts at each time t, but not clearly seen which filter

performs better than the other.

To see the details of the comparisons, the distance (Di,t) between the original prob-

abilities to generate the time series and the estimated probabilities by the filters

is defined and measured by the differences between the two at each time t, say

Di,t = πi,t − π̂i,t for i = 1, 2, 3 in this section. Absolute deviation of the estimated

probabilities by each of the filters from the original probabilities is measured at

each time t and averaged in each iteration. Thus, the smaller mean and the smaller

standard error for each category would mean the better estimation of probabilities

by the filter. As an example from 100 iterations, Figure 4.4, 4.5, and 4.6 show the

absolute deviation |Di,t| of the estimated probabilities by each of the filters from the

original probabilities of each category by both the particle filter and the bootstrap

filter when the sum of the count at each time t is 1, 100, and 1,000 respectively. In

the plots of the figure, the absolute deviation |Di,t| is drawn in black by the par-

ticle filter and in red by the bootstrap filter. Table 4.5.3 shows the mean and the

standard error of the absolute deviation measured by |Di,t| for i = 1, 2, 3 from each

of the particle filter and the bootstrap filter according to the sum of counts at each

time t. From the means and the standard errors in the table, it can be said that

the particle filter works better than the bootstrap filter, although slightly even for

the case with sum of count of 1 at each time t. As sum of counts at t increases, the

performance by the particle filter is enhanced relatively to the bootstrap filter.
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Table 4.3: The mean and the standard error (s.e.) of the absolute deviation mea-
sured by |Di,t| for i = 1, 2, 3 from each of the particle filter (PF) and the bootstrap
filter (BF) with the sum of counts (Nt = 1, 100, and 1,000) at each time t in the
bracket

Category 1 PF(1) BF(1) PF(100) BF(100) PF(1,000) BF(1,000)

mean 0.0755 0.0788 0.0134 0.0167 0.0041 0.0072
s.e. 0.0423 0.0464 0.0071 0.0092 0.0023 0.0042

Category 2 PF(1) BF(1) PF(100) BF(100) PF(1,000) BF(1,000)

mean 0.0816 0.0848 0.0134 0.0169 0.0042 0.0076
s.e. 0.0400 0.0425 0.0076 0.0097 0.0027 0.0053

Category 3 PF(1) BF(1) PF(100) BF(100) PF(1,000) BF(1,000)

mean 0.0810 0.0855 0.0137 0.0175 0.0052 0.0094
s.e. 0.0427 0.0473 0.0074 0.0093 0.0027 0.0054

4.6 Conclusion

Both filters are sequentially applied to estimate the moments and therefore the

probabilities of each category as a result. According to the simulation study, the

particle filter works better than the bootstrap filter in the class of DGLM for multi-

categorical time series. Better performance of the particle filter may be caused by

using the optimal importance kernel as an importance density.

Since the particles are simulated from the prior distribution of the states in the

bootstrap filter and the prior is just a normal distribution with the mean of the

state at previous time, then the generated particles at time t may be similar to

those at time t − 1. In the proposed particle filter, the particles are simulated

by taking into account the prior and the observed data Xt. Hence, the particles

may well adapt to new information. The performance of the particle filter should

not be influenced by whether Ft = I or not. When Ft = I and θt = θt−1 + ǫt,

we can infer the estimates of θt from the posterior distribution of Πt, which is

known by the conjugate method. However, it should be clear that the particle filter

is needed as the posterior distribution of Πt depends on the rt, which are only
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calculated approximately using the Bayes linear methods. The particle filter helps

doing this estimation more accurately. If Ft = I, the distribution of θt could be

inferred by the conjugate posterior distribution ofΠt. However, as noted earlier, this

distribution depends on either unknown or approximated parameters, namely the rt.

The advantage of the proposed particle filter is that it utilizes that approximation

in order to achieve a much more accurate estimation.
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Figure 4.1: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 1 at each time t (in black for the upper and the lower
plots) with the estimated posterior probabilities by the particle filter (PF) (in red
for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Figure 4.2: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 100 at each time t (in black for the upper and the
lower plots) with the estimated posterior probabilities by the particle filter (PF) (in
red for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Figure 4.3: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 1,000 at each time t (in black for the upper and the
lower plots) with the estimated posterior probabilities by the particle filter (PF) (in
red for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Figure 4.4: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 1 at each time t (in black for the upper and the lower
plots) with the estimated posterior probabilities by the particle filter (PF) (in red
for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Figure 4.5: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 100 at each time t (in black for the upper and the
lower plots) with the estimated posterior probabilities by the particle filter (PF) (in
red for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Figure 4.6: The probabilities used to generate a multi-categorical time series of 100
data points with the counts of 1,000 at each time t (in black for the upper and the
lower plots) with the estimated posterior probabilities by the particle filter (PF) (in
red for the upper plots) and by the bootstrap filter (BF) (in red for the lower plots)
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Chapter 5

Algorithmic Pairs Trading

5.1 Introduction

Algorithmic trading implements a trading strategy and related decisions as an al-

gorithm on a computer system where trading orders are entered without human

intervention. Algorithmic pairs trading is regarded as an algorithmic trading to

deal with a pair of financial instruments. In this chapter, simple implementation

of algorithmic pairs trading is proposed, employing the dynamic linear model with

variable forgetting factor to the spread time series from Chapter 3, and the dynamic

generalised linear model developed for multi-categorical time series in Chapter 4.

The dynamic linear model with variable forgetting factor detects the mean-reversion

of the spread based on the value of |B̂t|, and the dynamic generalised linear model

developed in Chapter 4 monitors the behaviour of |B̂t|.

Algorithmic pairs trading needs an algorithm to decide when and how many shares

to trade, and probably a facility to feed the share prices to the system when the

bid and ask prices are used for trading. Figure 5.1 illustrates algorithmic pairs

trading as a flow chart. In the flow chart, the stages of START and END would

mean that you power on and off a computer system for algorithmic pairs trading.

At the Pattern Recognition & Modeling step, a pattern or a status of the spread is

recognised, which can be done by applying the dynamic linear model with variable

forgetting factor to the spread time series. As discussed earlier in Chapter 3, the
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Figure 5.1: A flow chart of algorithmic pairs trading

value of |B̂t| as a state of the model determines whether it is in mean-reversion or

not. When in mean-reversion, a decision is made to open a position, and trading

rules are taken into account such as which asset and how many to buy and short-sell

at the Strategy step. The dynamic generalised linear model developed for multi-

categorical time series in Chapter 4 may be involved in this Strategy step as an

online monitoring process to consider if a trading should be executed at t. At the

step of the Execute & Balance, trading orders are entered when a position is opened

and any outstanding positions from the previous trading are cleared and closed by

counter-orders. An income statement is drawn up every day to see the daily profit
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and loss (P/L) which is accrued for the cumulative P/L.

5.2 Trading Rules

An investor or a trader can open her long position by buying the shares, and open

her short position by short-selling them. “Short-selling” is an investment strategy

to sell the shares which one does not own. When an investor anticipates that the

price of any share will fall, she borrows the shares from other investors and pay

back to the lender later on, usually within a few days according to the rules of the

exchange. In practice, a fund manager borrows the shares via the prime broker of

her own so that she does not need to find a lender and eventually does not know

whom the shares are borrowed from.

The basic rule for trading is to buy an asset which value is expected to go up and

short-sell an asset which value is expected to go down. Assuming mean-reversion

of the spread, any asset of the two, which is expected to lose its value, is short-sold

and will be bought back to pay the borrowing. The other asset is bought to be

sold when its price goes up. A pair trader buys number of shares of Stock A, for

example, with the money earned from short-selling the borrowed shares of Stock B

at the same time, and vice versa. Thus, she does not need large capital for initial

investment.

As discussed earlier, pairs trading is based on the relative mis-pricing of the pair.

From the dynamic linear model to the spread time series discussed in Chapter 3,

the one-step ahead forecast of the spread can be obtained. However, the prices of

the individual assets, forming the spread, are not known. Thus, there is no absolute

rule of thumb for the guaranteed profits as long as the betting is not on the spread

or the range of the future spread. As an online monitoring process of the behaviour

of |B̂t|, the dynamic generalised linear model, discussed earlier in Chapter 4, may

allow for further restrictions to open a position at t. In addition, although a decision

is made to open a position at t, questions remain such as which asset of the two to

buy and/or short-sell and how many shares to trade.
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In this chapter, two simple trading rules, named as Trading Rule 1 and Trading

Rule 2, are proposed to decide which asset of the two to buy and/or short-sell. The

trading rules follow the very basics of the investment, ‘buy an asset at the low price

and sell another at the high price’. When a position is opened at t, the position is

closed at t + 1 as a rule. For a question of how many to trade, the ratio approach

found in Whistler (2004) is adopted. Two stocks are chosen from the New York

Stock Exchange, and the number of shares determined by the ratio approach is ad-

justed to avoid possible loss incurred by opening a position in the illustration.

The spread Yt is observed at t and defined by Yt = PA,t − PB,t where PA,t and PB,t

represent the prices of the two stocks, say Stock A and Stock B, at time t. For

the purpose of comparison, the price differences of a stock between t and t + 1 are

defined as ∆PA,t+1 = PA,t+1 − PA,t and ∆PB,t+1 = PB,t+1 − PB,t. The prices of the

stocks in the market are non-negative, but the spread can be negative. From the

spread model discussed in Chapter 3, µt = E(Yt|θt) = F′
tθt, µt is regarded as the

mean response of the spread at t, and ft+1 is the forecast of the spread obtained at

t.

5.2.1 Trading Rule 1

In Trading Rule 1, Yt and µt are compared to make a decision on which asset to buy

and short-sell. When µt ≥ Yt, the spread Yt is expected to move up towards the mean

response µt at t+1. Thus, it is believed that one of the following will happen at t+1,

widening the price gap or the spread between Stock A and Stock B: (1) ∆PA,t+1 > 0

but ∆PB,t+1 < 0, (2) ∆PA,t+1 > ∆PB,t+1 ≥ 0, (3) 0 ≥ ∆PA,t+1 > ∆PB,t+1. In case

of (1), an investor makes double profits from the long position of Stock A and the

short position of Stock B. While an investor loses her money from the short position

of Stock B, she earns more money from the long position of Stock A in (2). Even

in (3), while an investor loses her money from the long position of Stock A, she can

make profits from the short position of Stock B. Therefore, when µt ≥ Yt, it seems

reasonable to buy Stock A and short-sell Stock B. When µt < Yt, the spread Yt is

expected to get smaller towards the mean response µt at t+ 1, narrowing down the

price gap or the spread between Stock A and Stock B. Thus, it is believed to be one
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Table 5.1: Trading Rule 1: which stock to buy and short-sell at t
µt ≥ Yt Stock µt < Yt Stock
µt Yt A B µt Yt A B
+ + Buy SS + + SS Buy
+ - Buy SS + - - -
- + - - - + SS Buy
- - Buy SS - - SS Buy

of the followings: (1) ∆PA,t+1 < 0 but ∆PB,t+1 > 0, (2) ∆PB,t+1 > ∆PA,t+1 ≥ 0,

(3) 0 ≥ ∆PB,t+1 > ∆PA,t+1. In case of (1), an investor makes double profits from

the long position of Stock B and the short position of Stock A. While an investor

loses her money from the short position of Stock A, she earns money from the long

position of Stock B in (2). Even in (3), while an investor loses her money from the

long position of Stock B, she can make profits from the short position of Stock A.

Therefore, when µt < Yt, it seems reasonable to buy Stock B and short-sell Stock

A.

Regardless of the signs of µt and Yt each, Stock A is bought and Stock B is borrowed

to short-sell when µt ≥ Yt at t. On the other hand, when µt < Yt, Stock B is bought

and Stock A is short-sold. With this trading rule, an investor anticipates that

the price of a relatively cheaper stock would bounce back and that of a relatively

expensive one would fall. This Trading Rule 1 is summarised in Table 5.1.

5.2.2 Trading Rule 2

If Yt+1 were known at t, we would know which to buy and short-sell with ease.

However, Yt+1 is not known, but forecasted as ft+1 at time t. Thus, in Trading Rule

2, ft+1, the one-step ahead forecast of the spread, is compared with Yt at t. This

trading rule is introduced in Triantafyllopoulos and Han (2013) and illustrated for

pairs trading of Walmart Stores Inc. and Target Corporation.

Before making the direct comparisons between ft+1 and Yt at t, a prediction mar-

gin h (0 < h < 1) is introduced to allow uncertainty of the prediction by the

model. This prediction margin h is assumed to make sure that Yt+1, unknown
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Figure 5.2: Trading Rule 2

at t, would fall in the range of (ft+1 − h · |ft+1|, ft+1 + h · |ft+1|). Thus, when

ft+1 − h · |ft+1| < Yt < ft+1 + h · |ft+1|, a decision is made not to open a position

even when |B̂t| < 0.9 at time t. Figure 5.2 illustrates the proposed strategy.

Now that ft+1 with a prediction margin h is in comparison with Yt, Stock B is

bought and Stock A is short-sold when ft+1 + h · |ft+1| ≤ Yt and |B̂t| < 1. When

ft+1−h · |ft+1| ≥ Yt and |B̂t| < 1, a decision is made to buy Stock A and to short-sell

Stock B. This Trading Rule 2 is summarised in Table 5.2.
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Table 5.2: Trading Rule 2: which stock to buy and short-sell at t

Condition Buy Short-sell (SS)

When ft+1 − h · |ft+1| ≥ Yt Stock A Stock B
When ft+1 + h · |ft+1| ≤ Yt Stock B Stock A

5.2.3 Number of Shares To Buy and Short-sell

Even when one is sure which stock to buy and short-sell at t, another question re-

mains on how many shares to buy and short-sell. As in Whistler (2004), we use the

ratio rt which is defined as PA,t/PB.t.

If Yt ≥ 0, it indicates PA,t ≥ PB,t, leading to rt ≥ 1. Thus, when Yt ≥ 0 or rt ≥ 1,

100 shares of Stock A and 100 · rt shares of Stock B is traded. For example, when

Yt ≥ 0 (or rt ≥ 1) and µt ≥ Yt in Trading Rule 1, 100 shares of Stock A is bought

and 100 · rt shares of Stock B is short-sold. In Trading Rule 2, when Yt ≥ 0 (or

rt ≥ 1) and ft+1 − h · |ft+1| ≥ Yt, 100 shares of Stock A is bought and 100 · rt shares

of Stock B is short-sold. On the other hand, when Yt ≥ 0 (or rt ≥ 1) and µt < Yt in

Trading Rule 1, 100 shares of Stock A is short-sold and 100 · rt shares of Stock B is

bought. In Trading Rule 2, when Yt ≥ 0 (or rt ≥ 1) and ft+1 + h · |ft+1| ≤ Yt, 100

shares of Stock A is short-sold and 100 · rt shares of Stock B is bought.

If Yt < 0, it indicates PA,t < PB,t, leading to rt < 1. Thus, when Yt < 0 (or rt < 1),

100 shares of Stock B and 100 · rt shares of Stock A is traded. For example, when

Yt < 0 (or rt < 1) and µt ≥ Yt in Trading Rule 1, 100 shares of Stock B is short-sold

while 100 ·rt shares of Stock A is bought. In Trading Rule 2, when Yt < 0 (or rt < 1)

and ft+1 − h · |ft+1| ≥ Yt, 100 shares of Stock B is short-sold while 100 · rt shares of

Stock A is bought. On the other hand, when Yt ≥ 0 and µt < Yt in Trading Rule

1, 100 shares of Stock B is bought while 100 · rt shares of Stock A is short-sold. In

Trading Rule 2, when Yt ≥ 0 and ft+1 + h · |ft+1| ≤ Yt, 100 shares of Stock B is

bought while 100 · rt shares of Stock A is short-sold.

The earlier discussion on how many shares to trade is summarised in Table 5.3.
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Table 5.3: Number of Shares to Trade
rt Yt Stock A Stock B
≥ 1 ≥ 0 min(100,100 ∗ rt) max(100,100 ∗ rt)
< 1 < 0 max(100,100 ∗ rt) min(100,100 ∗ rt)

5.3 Illustration: AEM-NEM

We consider the pair consisting of Agnico-Eagle Mines Limited (abbreviated as

AEM) and Newmont Mininig Corporation (abbreviated as NEM) in the exchange.

The former has its headquarter in Toronto, Canada while the latter is based in

Colorado, U.S.A. However, both of them are listed and classified as in the same

sector of Basic Materials and also the same industry of Gold on the New York Stock

Exchange. More details on the companies can be found on the corporate web sites

of their own, which are http://www.agnicoeagle.com/ for Agnico-Eagle Mines

Limited (AEM) and http://www.newmont.com/ for Newmont Mining Corporation

(NEM) respectively.

The daily prices of AEM and NEM are considered over a period from 3rd Jan. 2012

to 18th Oct. 2013, and their historical share prices are available from Yahoo!Finance

(http://finance.yahoo.com/). Figure 5.3 shows the daily adjusted closing share

prices of the two stocks and their spread, defined by the difference of the two, as an

inset. For example, the spread Yt is obtained by Yt = PAEM,t−PNEM,t where PAEM,t

and PNEM,t are the share prices of AEM and NEM each at time t. A historical mean

of the spread from the two is indicated as -4.172301 over the period of 452 trading

days from 3rd Jan. 2012 to 18th Oct. 2013.

5.3.1 The Spread Models

For the detection of mean-reversion, a time-varying autoregressive model of order

1, which is represented in dynamic linear model, is applied to the spread of the

pair of AEM and NEM with variable forgetting factor. Assuming the unknown but

92

http://www.agnicoeagle.com/
http://www.newmont.com/
http://finance.yahoo.com/


AEM−NEM Share Prices

Trading day

S
ha

re
 P

ric
es

 (
in

 U
S

D
)

2012.0 2012.5 2013.0 2013.5

30
40

50
60

70

AEM

NEM

2012.0 2012.5 2013.0 2013.5

−2
0

−5
5

−−−− mean of bp = −4.172301

Figure 5.3: Share prices of Agnico-Eagle Mines Limited (AEM) and Newmont Min-
ing Corporation (NEM) with their spread time series as an inset

constant observational variance of Vt = V , a univariate DLM is specified as follows.

Yt = F′
tθt + νt, νt ∼ N(0, V ) (5.1)

θt = Gθt−1 + ωt, ωt ∼ Tnt−1(0, V W
∗
t ) (5.2)

(θ0 | D0) ∼ T0(m0, V C
∗
0) (5.3)

(τ | D0) ∼ Gamma(
n0

2
,
d0
2
) (5.4)

where F′
t = (1, Yt−1)

′, θt = (At, Bt), G = diag(φ1, φ2), and ωt = (ω1,t, ω2,t). Tnt−1

denotes the t-distribution with degrees of freedom nt−1, and the starred variance
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matrices of C∗
0 and W ∗

t represent the scale-free variance-covariance matrices.

As in Triantafyllopoulos and Montana (2011), both At and Bt are considered to

evolve via AR models over time, making φ1 and φ2 the AR coefficients as At =

φ1At−1 + ω1,t and Bt = φ2Bt−1 + ω2,t. Both coefficients of φ1 and φ2 are set as 0.95

so that At and Bt be weakly stationary.

At t = 0, the parameters are initialised such that m0 = (1, 1)′, C0 = I2, and

n0 = U0 = 1 for (θ0 | D0) ∼ Tn0 [m0, C0] and (τ | D0) ∼ Gamma
(

n0

2
, d0

2

)

where

E(τ | D0) =
n0

d0
= 1

U0
and U0 is a posterior point estimate of V at 0.

5.3.1.1 Recursions of Parameter Estimates

Now that the forgetting factor λ is variable, it is decided at each time t as λt. The

recursive estimation procedure with updating equations can be achieved by

(d1) Posterior at t− 1

(θt−1 | Dt−1) ∼ Tnt−1(mt−1, Ct−1)

where Ct = Ut−1C
∗
t−1 and C∗

t−1 =
GCt−2G′

λt−2+F ′
t−1GCt−2G′Ft−1

(d2) Prior at t

(θt | Dt−1) ∼ Tnt−1(at, Rt)

where at = Gmt−1, Rt = Ut−1R
∗
t and R

∗
t =

1
λt−1

GC∗
t−1G

′

(d3) One-step forecast

(Yt | Dt−1) ∼ Tnt−1(ft, Qt)

where ft = F′
tGmt−1, Qt = Ut−1Q

∗
t and Q

∗
t =

1
λt−1

(F′
tGC

∗
t−1G

′Ft) + 1

(d4) Posterior at t

(θt | Dt) ∼ Tnt
(mt, Ct)

where mt = at +Ktet, Ct = UtC
∗
t and C∗

t =
GC∗

t−1G
′

λt−1+F′
tGC

∗
t−1G

′Ft

with Kt = R∗
tFt/Q

∗
t and et = Yt − ft

5.3.1.2 Recursion of τ = 1
V

The unknown V or τ = 1
V
is sequentially updated as new observation is obtained at

each time t. The posterior mean of τ is E(τ | Dt) =
nt

dt
= 1

Ut
where Ut is a posterior
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point estimate of V at t. The updating equations are summarised as

(e1) (τ | Dt−1) ∼ Gamma
(

nt−1

2
, dt−1

2

)

(e2) (τ | Dt) ∼ Gamma
(

nt

2
, dt

2

)

where nt = nt−1+1, dt = dt−1+ e
2
t/Q

∗
t and Q

∗
t =

1
λt−1

(F′
tGCt−1G

′Ft)+1 as in (d3).

5.3.2 The Variable Forgetting Factor Algorithms

According to Haykin (2001), the cost function Jt is defined as Jt =
1
2
E(|et|

2) where

et = Yt − ft. At t = 0, the upper and lower limits of the variable forgetting factor λ

are set as λ+ = 1 and λ− = 0.01 respectively for 0 < λt ≤ 1.

5.3.2.1 The SDvFF

In the SDvFF, the variable forgetting factor λt is recursively updated as follows.

λt = [λt−1 − α · ∇λ(t)]
λ+
λ−

(5.5)

where ∇λ(t) ≈ −etF
′
tGψt−1, ψt = (I − C∗

t FtF
′
t)Gψt−1 + StFtet, and

St =
GSt−1G′(λt−1+F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1+F′
tGSt−1G′Ft)

(λt−1+F′
tGC

∗
t−1G

′Ft)2
.

The cost function Jt is Jt =
1
2
E(|et|

2) when ∇λ(t) ≡
∂Jt
∂λ

, ψt ≡
∂mt

∂λ
, and St ≡

∂C∗
t

∂λ
.

At t = 0, λ0 is set as 0.8 for 0 < λt ≤ 1, α = 0.5, ∇λ(0) = 0, ψ0 = (1, 1)′, and

S0 = I2.

5.3.2.2 The GNvFF

In the GNvFF, the variable forgetting factor λt is recursively updated as follows.

λt =

[

λt−1 − α ·
∇λ(t)

∇2
λ(t)

]λ+

λ−

(5.6)

where ∇2
λ(t) ≈ (F′

tGψt−1)
2 − etF

′
tG

∂ψt−1

∂λ
,

ηt = (I − C∗
tFtF

′
t)Gηt−1 + LtFtet − 2StFtF

′
tGψt−1, and Lt =

A
B
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with A =
{

GLt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(F′
tGLt−1G

′Ft)
}

·
{

(λt−1 + F′
tGC

∗
t−1G

′Ft)
2
}

−
{

GSt−1G
′(λt−1 + F′

tGC
∗
t−1G

′Ft)−GC∗
t−1G

′(1 + F′
tGSt−1G

′Ft)
}

·
{

2(λt−1 + F′
tGC

∗
t−1G

′Ft)(1 + F′
tGSt−1G

′Ft)
}

and B = (λt−1 + F′
tGC

∗
t−1G

′Ft)
4.

The cost function Jt and ∇λ(t) are the same as those in the SDvFF while ηt ≡
∂ψt

∂λ

and Lt ≡
∂St

∂λ
.

At t = 0, λ0 is set as 0.8 for 0 < λt ≤ 1, α = 0.5, ∇λ(0) = 0, ψ0 = (1, 1)′, and

S0 = I2, which are the same as for the SDvFF. In addition, η0 = (1, 1)′, and L0 = I2

for the GNvFF.

5.3.2.3 The BBvFF(d, k)

In the BBvFF(d, k), the variable forgetting factor λt is recursively updated as follows.

λt = π̂t · λ+ + (1− π̂t) · λ− (5.7)

where π̂t = mode(πt) =
α1,t−1

α1,t+α2,t−2
from (πt | xt) ∼ Beta(α1,t, α2,t).

Suppose that (πt−1 | Dt−1) ∼ Beta(α1,t−1, α2,t−1) and p(πt | Dt−1) ∝ p(πt−1 | Dt−1)
k

as in Smith (1979) where k is a discount factor. When xt is defined as a binary

series, taking a value of either 1 or 0 at each time t according to

xt =

{

1, if |et|√
Qt

≤ d, with probability π

0, if |et|√
Qt
> d, with probability 1− π

where d(> 0) is a threshold specified by the modeller, (πt | Dt) ∼ Beta(α1,t, α2,t)

with α1,t = α1,t−1k − k + 1 + xt and α2,t = α2,t−1k − k + 2− xt.

At t = 0, the parameters α1,0 and α2,0 are set as 2 for (π0 | D0) ∼ Beta(α1,0, α2,0),

and d = 0.1 (d > 0) for a threshold of the binary series xt while a discount factor

k is 0 < k ≤ 1 and chosen to be either 0.95 or 0.5 for the illustration of this
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chapter. In the BBvFF(d, k), λ0 is not necessary because it is determined from

λ0 = π̂0 · λ+ + (1− π̂0) · λ− where π̂0 = mode(π0) =
α1,0−1

α1,0+α2,0−2
.

5.4 Comparisons By The VFF Algorithms

A daily balance represents the profits and losses of the day. For example, the po-

sition from time t − 1, if any, is closed at time t, and new position is opened at

t when needed. Profits and losses from those transactions are calculated for the

day’s balance at time t. On the other hand, a cumulative balance shows the accrued

profits and losses since the trading starts.

Figure 5.4 shows the estimated coefficients |B̂t| by four different VFF algorithms

when the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the

BBvFF(0.1,0.5) is applied to the spread time series of AEM-NEM. One of differences

among the four plots in Figure 5.4 may be seen over some period between 16th Oct.

2012 (200th trading day) and 13th Feb. 2013 (280th trading day). The spread time

series and the one-step ahead forecasts between 16th Oct. 2012 (200th trading day)

and 13th Feb. 2013 (280th trading day) are shown in Figure 5.6 while the estimated

coefficients |B̂t| over the period are enlarged in Figure 5.5.

Table 5.4 shows the comparison of the forecasting over the period between 16th

Oct. 2012 (200th trading day) and 13th Feb. 2013 (280th trading day) by the mean

absolute deviation (MAD) and the mean squared error (MSE) where the MAD is

defined by
∑n

i=1 |ei|
n

and the MSE is by
∑n

i=1 |ei|2
n

. In the table, Ŷt+1 = Yt represents a

naive forecast. The BBvFF(0.1,0.99) shows the lowest values for both of the MAD

and the MSE, indicating the most accurate forecasting among the five. Even the

BBvFF(0.1,0.5) is better than the GNvFF, the SDvFF, and the naive forecast.

5.4.1 Case A: Decision by |B̂t|

In Case A, we only consider the rule |B̂t| < 1 proposed by Triantafyllopoulos and

Montana (2011) to detect mean-reversion.
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Table 5.4: Comparisons of the forecasting over the period between 16th Oct. 2012
(200th trading day) and 13th Feb. 2013 (280th trading day) by the mean absolute
deviation (MAD) and the mean squared error (MSE)

Ŷt+1 = Yt SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
MAD 0.908 0.806 0.761 0.728 0.754
MSE 1.536 1.248 1.062 0.995 1.059

5.4.1.1 Case A with Trading Rule 1

Figure 5.7 and 5.8 shows the daily and the cumulative balances from the trading at

each time t and only the cumulative balances by the DLM with each of four VFF

algorithms. According to the cumulative balances in the figures, all of them are in

losses for most of time. Table 5.5 shows the daily earnings (D.E.) on average, the

mean and the standard deviation (s.d.) of the cumulative balances over the period,

and the final balance on the final trading day of 18th Oct. 2013 (452nd trading day).

Among them, the SDvFF seems to perform better than the other three, keeping the

mean relatively at the highest level and the s.d. at the lowest level. Also, the SDvFF

earns USD 1.691 daily on average while the GNvFF and the BBvFF(0.1,0.99) loses

on average USD 1.098 and USD 0.058 per day respectively. Looking at the final

balance, the SDvFF even ends up its cumulative balance at USD 764.19 while the

BBvFF(0.1,0.5) at USD 103.29.

Table 5.5: Case A and Trading Rule 1: Comparisons of the daily earnings (D.E.)
on average, the cumulative balances over the period between 3rd Jan. 2012 (1st

trading day) and 18th Oct. 2013 (452nd trading day) by the mean, and the standard
deviation (s.d.) and the final balance (F.B.) on 18th Oct. 2013 (452nd trading day)
in USD

SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. 1.691 -1.098 -0.058 0.229
Mean -358.122 -856.461 -746.100 -473.772
s.d. 519.001 649.662 560.472 541.552
F.B. 764.19 -496.20 -26.20 103.29
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5.4.1.2 Case A with Trading Rule 2

Figure 5.9 and 5.10 shows the daily and the cumulative balances from the trading

at each time t and only the cumulative balances by the DLM with each of four VFF

algorithms in Case A with Trading Rule 2 under h = 0.01. According to the cumu-

lative balances in the figures, all of them struggle with some losses at the beginning

of the period. During the rest of trading, they enjoy the cumulative balances in the

black, still mostly for the SDvFF, ending up with the final cumulative balance at

USD 922.29, USD 2,054.78, USD 2,208.65, and USD 1,710.18 respectively for the

SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5). The average

cumulative balances are USD 648.662, USD 1,247.278, USD 1,818.474, and USD

1,685.890, and the daily earnings are USD 2.040, USD 4.546, USD 4.886, and USD

3.784 on average for each. According to the daily earnings and the cumulative bal-

ances both on average, the BBvFF(0.1,0.99) is the best performing in Case A with

Trading Rule 2 under h = 0.01, followed by the GNvFF, the BBvFF(0.1,0.5), and

the SDvFF.

Figure 5.11 and 5.12 shows the daily and the cumulative balances from the trading

at each time t and only the cumulative balances by the DLM with each of four

VFF algorithms in Case A with Trading Rule 2 under h = 0.03. During most of

the trading days, they enjoy the cumulative balances in the black, ending up with

the final cumulative balance at USD 1,378.74, USD 1,325.09, USD 2,130.71, and

USD 1,867.52 respectively for the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and

the BBvFF(0.1,0.5) while the average cumulative balances are USD 1,604.252, USD

827.091, USD 1,933.781, and USD 1,871.015. The daily earnings are USD 3.050,

USD 2.932, USD 4.714, and USD 4.132 on average for each. According to the daily

earnings and the cumulative balances both on average, the BBvFF(0.1,0.99) pro-

duces the most profitable results in Case A with Trading Rule 2 under h = 0.03,

followed by the BBvFF(0.1,0.5), the SDvFF, and the GNvFF.

Figure 5.13 and 5.14 shows the daily and the cumulative balances from the trading

at each time t and only the cumulative balances by the DLM with each of four VFF

algorithms in Case A with Trading Rule 2 under h = 0.05. For a while since the
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trading starts, all of them struggle with the cumulative balances in the red, but

the recovery of the cumulative balances by both the BBvFF(0.1,0.99) and the BB-

vFF(0.1,0.5) is quicker to be back in the black than the SDvFF and the GNvFF. At

the end, the final cumulative balance is at USD 1,207.48, USD 660.47, USD 1,918.13,

and USD 1,147.95 respectively for the SDvFF, the GNvFF, the BBvFF(0.1,0.99),

and the BBvFF(0.1,0.5). The average cumulative balances are USD 838.991, USD

609.987, USD 1,497.844, and USD 1,224.440, and the daily earnings are USD 2.671,

USD 1.461, USD 4.244, and USD 2.540 on average for each. According to the daily

earnings and the cumulative balances both on average, the BBvFF(0.1,0.99) is the

winner among the four, making the highest profits in Case A with Trading Rule 2

under h = 0.05, followed by the BBvFF(0.1,0.5), the SDvFF, and the GNvFF.

Table 5.6 summarises the daily earnings on average, the mean and the standard

deviation of the cumulative balances, and the final balance on 18th Oct. 2013

(452nd trading day) in USD for the DLM with each of four VFF algorithms.

Table 5.6: Case A and Trading Rule 2: Comparisons of the daily earnings (D.E.)
on average, the cumulative balances by the mean and the standard deviation (s.d.)
over the period between 3rd Jan. 2012 (1st trading day) and 18th Oct. 2013 (452nd

trading day), and the final balance (F.B.) on 18th Oct. 2013 (452nd trading day) in
USD

h = 0.01 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. 2.040 4.546 4.886 3.784
Mean 648.662 1,247.278 1,818.474 1,685.890
s.d. 537.441 772.829 964.357 951.765
F.B. 922.29 2,054.78 2,208.65 1,710.18

h = 0.03 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. 3.050 2.932 4.714 4.132
Mean 1,064.252 827.091 1,933.781 1,871.015
s.d. 630.426 527.777 1,061.888 1,026.035
F.B. 1,378.74 1,325.09 2,130.71 1,867.52

h = 0.05 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. 2.671 1.461 4.244 2.540
Mean 838.991 609.897 1,497.844 1,224.440
s.d. 748.599 583.855 980.317 864.153
F.B. 1,207.48 660.47 1,918.13 1,147.95
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Figure 5.4: Comparison of the estimated coefficients |B̂t| by the DLM with each of
the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Figure 5.5: Comparison of the estimated coefficients |B̂t| over the period from 16th
Oct. 2012 to 13th Feb. 2013 by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Figure 5.6: The spread time series of AEM-NEM with the one-step ahead forecast
over the period from 16th Oct. 2012 to 13th Feb. 2013 by the DLM with each of
the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Figure 5.7: Case A with trading rule 1: Trading results by the DLM with each of
the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Cumulative Profits and Losses (P/L) in USD by Case A and Trading Rule 1
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Figure 5.8: Case A with trading rule 1: Cumulative profits and losses (P/L) com-
parison by the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99),
and the BBvFF(0.1,0.5)
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Figure 5.9: Case A with trading rule 2 with margin of 0.01: Trading results by
the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BB-
vFF(0.1,0.5)
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Cumulative P/L in USD by Case A and Trading Rule 2 with h=0.01
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Figure 5.10: Case A with trading rule 2 with margin of 0.01: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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By SDvFF with h=0.03

Trading day

P/
L (

US
D)

2012.0 2012.5 2013.0 2013.5

−2
00

0
−1

00
0

0
10

00
20

00

Daily

Cumulative

By GNvFF with h=0.03

Trading day

P/
L (

US
D)

2012.0 2012.5 2013.0 2013.5

−1
00

0
−5

00
0

50
0

10
00

15
00

20
00

Daily

Cumulative

By BBvFF(0.1,0.99) with h=0.03

Trading day

P/
L (

US
D)

2012.0 2012.5 2013.0 2013.5

−1
00

0
0

10
00

20
00

30
00

Daily

Cumulative

By BBvFF(0.1,0.5) with h=0.03

Trading day

P/
L (

US
D)

2012.0 2012.5 2013.0 2013.5

−1
00

0
0

10
00

20
00

30
00

40
00

Daily

Cumulative

Figure 5.11: Case A with trading rule 2 with margin of 0.03: Trading results by
the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BB-
vFF(0.1,0.5)
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Cumulative P/L in USD by Case A and Trading Rule 2 with h=0.03
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Figure 5.12: Case A with trading rule 2 with margin of 0.03: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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By SDvFF with h=0.05
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Figure 5.13: Case A with trading rule 2 with margin of 0.05: Trading results by
the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BB-
vFF(0.1,0.5)
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Cumulative P/L in USD by Case A and Trading Rule 2 with h=0.05

Trading day

P/
L (

US
D)

2012.0 2012.5 2013.0 2013.5

−5
00

0
50

0
10

00
15

00
20

00
25

00
30

00 SDvFF

GNvFF

BBvFF(0.1,0.99)

BBvFF(0.1,0.5)

Figure 5.14: Case A with trading rule 2 with margin of 0.05: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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5.4.2 Case B: Decision by Monitoring Results

In Case B, we consider online monitoring results by the dynamic generalised linear

model with the particle filter developed for multi-categorical time series in Chapter 4

of this thesis. An online monitoring process is achieved by sequentially applying the

dynamic generalised linear model (DGLM) to the categorical time series generated

at each time t. The particle filter is adopted for inference for multi-categorical

time series. For illustrative purposes, three categories are assumed in this section

according to the value of |B̂t|. With two thresholds of 0.9 and 1.0, there are three

categories: Category 1 for 0 ≤ |B̂t| < 0.9, Category 2 for 0.9 ≤ |B̂t| < 1, and

Category 3 for 1.0 ≤ |B̂t|. For example, when |B̂t| = 0.7 is obtained from the DLM

with a VFF algorithm at t, it is counted as 1 for Category 2, and 0s for the other

categories. As more observations are made for a category, the posterior probability of

that category would increase. Sequential application of the DGLM with the particle

filter to the multi-categorical time series aims to monitor the behaviour of |B̂t| in

real time. Now that the online monitoring process applies, a position is opened at t

only when the posterior probability for Category 1 is greater than 0.5. Figure 5.15,

5.16, 5.17, and 5.18 show the resulting posterior probabilities of three categories,

obtained from the application of the online monitoring process. Each of them takes

the values of |B̂t| by the DLM with each of VFF algorithms for the observations of

multi-categorical time series.

5.4.2.1 Case B with Trading Rule 1

Figure 5.19 and 5.20 show the daily and the cumulative balances from the trading

at each time t and only the cumulative balances by the DLM with each of four VFF

algorithms. Table 5.4.2.1 shows the daily earnings (D.E.) on average, the mean

and the standard deviation (s.d.) of the cumulative balances over the period, and

the final balance on the final trading day of 18th Oct. 2013 (452nd trading day).

Among the four, the BBvFF(0.1,0.99) outperforms the other three, making more

daily earnings on average at USD 4.135. The BBvFF(0.1,0.99) keeps the cumulative

balances at USD 292.654 on average, ending up with its cumulative balance at USD

1,869.12 on the final trading day. For the daily earnings, the BBvFF(0.1,0.99) is

followed by the BBvFF(0.1,0.5) at USD 2.627, the GNvFF at USD 2.074, and the
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SDvFF at USD 1.954.

Table 5.7: Case B and Trading Rule 1: Comparisons of the daily earnings (D.E.)
on average, the cumulative balances over the period between 3rd Jan. 2012 (1st

trading day) and 18th Oct. 2013 (452nd trading day) by the mean, and the standard
deviation (s.d.) and the final balance (F.B.) on 18th Oct. 2013 (452nd trading day)
in USD

SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. 1.954 2.074 4.135 2.627
Mean -243.451 -78.915 292.654 23.755
s.d. 482.010 454.475 681.782 484.235
F.B. 883.01 937.39 1,869.12 1,187.37

5.4.2.2 Case B with Trading Rule 2

Figure 5.21 and 5.22 shows the daily and the cumulative balances from the trading at

each time t and only the cumulative balances by the DLM with each of four VFF al-

gorithms in Case B with Trading Rule 2 under h = 0.01. The BBvFF(0.1,0.99) ends

up with the biggest cumulative balance on the final trading day at USD 1,343.37,

followed by the BBvFF(0.1,0.5) at USD 1,270.24, the GNvFF at USD 547.53, and

the SDvFF at USD -156.02. Daily earning on average, shown in Table 5.4.2.2, is the

highest with the BBvFF(0.1,0.99) at USD 2.972, followed by the BBvFF(0.1,0.5) at

USD 2.810, the GNvFF at USD 1.211, and the SDvvFF, where the SDvvFF loses

USD 0.345.

Figure 5.23 and 5.24 shows the daily and the cumulative balances from the trading

at each time t and only the cumulative balances by the DLM with each of four VFF

algorithms in Case B with Trading Rule 2 under h = 0.03. The final cumulative

balance at USD -16.13, USD 779.20, USD 1,024.12, and USD 954.10 respectively for

the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5) while the

average cumulative balances are USD 101.098, USD 432.415, USD 658.227, and USD

847.556. The daily earnings are USD 1.724, USD 2.266, and USD 2.111 on average

for the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5) while the SDvFF

loses USD 0.036. According to the daily earnings on average, the BBvFF(0.1,0.99)

produces the most profitable results in Case B with Trading Rule 2 under h = 0.03,
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followed by the BBvFF(0.1,0.5), the GNvFF, and the SDvFF.

Figure 5.25 and 5.26 shows the daily and the cumulative balances from the trading at

each time t and only the cumulative balances by the DLM with each of four VFF al-

gorithms in Case B with Trading Rule 2 under h = 0.05. The BBvFF(0.1,0.99) ends

up with the biggest cumulative balance on the final trading day at USD 1,477.58,

followed by the GNvFF at USD 882.38, the BBvFF(0.1,0.5) at USD 548.34, and the

SDvFF at USD -211.24. Daily earning on average, shown in Table 5.4.2.2, is the

highest with the BBvFF(0.1,0.99) at USD 3.269, followed by the GNvFF at USD

1.952, the BBvFF(0.1,0.5) at USD 1.213, and the SDvvFF, where the SDvvFF loses

USD 0.467.

Table 5.4.2.2 summarises the daily earnings on average, the mean and the standard

deviation of the cumulative balances, and the final balance on 18th Oct. 2013 (452nd

trading day) in USD for the DLM with each of four VFF algorithms.

5.5 Conclusion of Chapter 5

For illustrative purposes, two trading rules of Trading Rule 1 and Trading Rule 2 for

algorithmic pairs trading are suggested in this chapter. As for decision rules whether

to open a position at t, two different criteria are also suggested as Case A and Case

B. A key difference between Case A and B is the condition to open a position, and

Trading Rules propose a rule on which asset to buy and short-sell between the two.

For both cases A and B, the DLM with VFF algorithms are applied to the spread

time series of AEM-NEM over the period of 452 trading days from 3rd Jan. 2012

(1st trading day) to 18th Oct. 2013 (452nd trading day). In Case A, the decision is

made by the rule |B̂t| < 1 proposed by Triantafyllopoulos and Montana (2011) to

detect mean-reversion. In Case B, the behaviour of |B̂t| is monitored online and the

position is opened at t when the posterior probability for Category 1 (0 ≤ |B̂t| < 0.9)

is greater than 0.5. In Case B, number of categories and the threshold, specified as

0.5 in this chapter, to decide when to exercise the trading can be differently set by

the modeller. In Trading Rule 1, Yt is compared with the level or the mean response

µt at t while ft+1 is chosen for comparison with Yt in Trading Rule 2. In Case A,

114



Table 5.8: Case B (threshold=0.5 for category 1) and Trading Rule 2: Comparisons
of the daily earnings (D.E.) on average, the cumulative balances by the mean and
the standard deviation (s.d.) over the period between 3rd Jan. 2012 (1st trading
day) and 18th Oct. 2013 (452nd trading day), and the final balance (F.B.) on 18th
Oct. 2013 (452nd trading day) in USD

h = 0.01 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. -0.345 1.211 2.972 2.810
Mean -145.788 226.472 633.767 900.780
s.d. 279.660 364.439 856.141 831.830
F.B. -156.02 547.53 1,343.37 1,270.24

h = 0.03 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. -0.036 1.724 2.266 2.111
Mean 101.098 432.415 658.227 847.556
s.d. 292.086 343.961 818.804 740.414
F.B. -16.13 779.20 1,024.12 954.10

h = 0.05 SDvFF GNvFF BBvFF(0.1,0.99) BBvFF(0.1,0.5)
D.E. -0.467 1.952 3.269 1.213
Mean -92.484 374.920 739.997 460.875
s.d. 284.180 380.639 922.310 688.686
F.B. -211.24 882.38 1,477.58 548.34

the BBvFF(0.1,0.99) produces the highest daily earnings at USD 4.886 on average

by Trading Rule 2 with h = 0.01 while the BBvFF(0.1,0.99) earns USD 4.135 by

Trading Rule 1 in Case B. In both cases, the BBvFF(0.1,0.99) is found to be the

most profitable algorithm.
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Figure 5.15: The posterior probabilities by applying the particle filter to multi-
categorical time series of the counts, based on the values of |B̂t| obtained from the
DLM with the SDvFF
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The Particle Filter of GNvFF
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Figure 5.16: The posterior probabilities by applying the particle filter to multi-
categorical time series of the counts, based on the values of |B̂t| obtained from the
DLM with the GNvFF
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The Particle Filter of BBvFF(0.1,0.99)
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Figure 5.17: The posterior probabilities by applying the particle filter to multi-
categorical time series of the counts, based on the values of |B̂t| obtained from the
DLM with the BBvFF(0.1,0.99)
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The Particle Filter of BBvFF(0.1,0.5)
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Figure 5.18: The posterior probabilities by applying the particle filter to multi-
categorical time series of the counts, based on the values of |B̂t| obtained from the
DLM with the BBvFF(0.1,0.5)
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By SDvFF w/ PF
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Figure 5.19: Case B with trading rule 1: Trading results by the DLM with each of
the SDvFF, the GNvFF, the BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Cumulative Profits and Losses (P/L) in USD by Case B and Trading Rule 1
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Figure 5.20: Case B with trading rule 1: Cumulative profits and losses (P/L) com-
parison by the DLM with each of the SDvFF, the GNvFF, the BBvFF(0.1,0.99),
and the BBvFF(0.1,0.5)

121

Chapter4/Chapter4Figs/CaseB_TR1_PF_P2.eps


By SDvFF w/ PF and h=0.01
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Figure 5.21: Case A with trading rule 2 with margin of 0.01: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Cumulative P/L in USD by Case B and Trading Rule 2 with h=0.01
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Figure 5.22: Case A with trading rule 2 with margin of 0.01: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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By SDvFF w/ PF and h=0.03
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Figure 5.23: Case A with trading rule 2 with margin of 0.03: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Cumulative P/L in USD by Case B and Trading Rule 2 with h=0.03
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Figure 5.24: Case A with trading rule 2 with margin of 0.03: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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By SDvFF w/ PF and h=0.05
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Figure 5.25: Case A with trading rule 2 with margin of 0.05: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Cumulative P/L in USD by Case B and Trading Rule 2 with h=0.05
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Figure 5.26: Case A with trading rule 2 with margin of 0.05: Cumulative profits
and losses (P/L) comparison by the DLM with each of the SDvFF, the GNvFF, the
BBvFF(0.1,0.99), and the BBvFF(0.1,0.5)
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Chapter 6

Conclusions

This thesis is concerned with online detection of mean-reversion in algorithmic pairs

trading. In pairs trading, a pair of assets is chosen when their prices are expected to

show similar movements. Examples can be a pair of stocks from the same industry,

an index and an exchange-traded-fund (ETF) tracking the index, an ETF and the

asset held by the ETF, and so on. Although pairs trading is heavily dependent on

the assumption of mean-reversion of the spread, the mean-reversion of any pair does

not hold for good. Thus, the mean-reversion is detected locally rather than globally.

Chapter 2 reviews literature on time series and Bayesian forecasting, pairs trad-

ing, the spread model in dynamic linear model, variable forgetting factor, and dy-

namic generalised linear model (DGLM). Assuming mean-reversion of the spread,

the time-varying and non-stationary dynamics of the spread can be implemented in a

time-varying autoregressive model of order 1 (TV-AR(1)), represented in state space

model. As the spread model, a TV-AR(1) with constant forgetting factor is proposed

in dynamic linear model by Triantafyllopoulos and Montana (2011). According to

the conditions for mean-reversion or a state of the model by Triantafyllopoulos and

Montana (2011), the detection of mean-reversion in dynamic linear model depends

on the value of autoregressive coefficient Bt.

Chapter 3 introduces the variability of forgetting factor and two algorithms for vari-

able forgetting factor from the field of signal processing and control engineering using

two widely applied methods of the steepest descent method and the Gauss-Newton
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method. Also, the beta-Bernoulli variable forgetting factor algorithm (BBvFF),

named after the conjugacy of beta and Bernoulli distributions, is developed and

proposed. For Monte Carlo simulation, several sets of time series are generated and

iterated for 1,000 times where the assessment is based on the mean square error.

The results show that the BBvFF(0.1, k) outperforms the other variable forgetting

factor algorithms.

In algorithmic pairs trading, in addition to the detection of mean-reversion and the

forecast of the spread, the trading rules also need to be implemented and executed

online. As discussed earlier in Chapter 2 and 3, the detection of mean-reversion of

the spread at time t solely relies on the value of |B̂t| at that time. Whatever happens

before and after the time t, the algorithm detects mean-reversion as long as |B̂t| < 1.

A trader or an investor may think that this is too dangerous to take the risks of

algorithmic pairs trading. In particular, when the spread shows volatile movements,

algorithmic pairs trading may end up with huge loss, and there is no way to avoid the

extreme. Thus, we find the need to monitor the behaviour of |B̂t|, slicing the range

which |B̂t| can be located into categories. For this, in Chapter 4, DGLM for multi-

categorical time series is developed and the states are approximated by the moments.

In Chapter 4, DGLM for multi-categorical time series is developed, and recursions

are based on the approximated moments using the linear Bayes estimates and se-

quential Monte Carlo methods. West et al. (1985) show the approximation for

DGLM of a univariate time series, using Bayes linear methods. In Chapter 4, the

approximation for DGLM using the linear Bayesian methods is extended to a mul-

tivariate case. Assuming the multivariate normal distribution for the states in the

evolution model, the particle filters are applied to multi-categorical time series for

approximation of the posterior distribution of the states by the moments. The

particle filter using the optimal importance kernel is shown to outperform the boot-

strap filter using the prior distribution as the importance density. It proves that

the importance density plays a key role in importance sampling, and the optimal

importance kernel is a better choice.

In Chapter 5, an opportunity by algorithmic pairs trading is proposed, applying
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the methodologies developed in Chapter 3 and 4. An illustration aims to show how

the algorithms from the previous chapters can be applied for the algorithmic pairs

trading. It is shown that algorithmic pairs trading can be successful even with sim-

ple trading rules. For an illustration of algorithmic pairs trading, a pair of stocks,

Agnico-Eagle Mines Limited and Newmont Mining Corporation, listed on New York

Stock Exchange (NYSE), are presented. Two different decision rules are considered

of Case A and Case B. Case A considers only the condition for the mean-reversion

by Triantafyllopoulos and Montana (2011) while Case B takes into account of the

online monitoring process. Trading Rule 1 compares Yt and µt to see which of a

pair to buy and short-sell while Trading Rule 2 uses Yt and ft+1 with a prediction

margin h. In Case A, the BBvFF(0.1,0.99) produces the highest daily earnings at

USD 4.886 on average by Trading Rule 2 with h = 0.01 while the BBvFF(0.1,0.99)

earns USD 3.484 by Trading Rule 1 in Case B. In both cases, the BBvFF(0.1,0.99)

is found to be the most profitable algorithm.

In DGLM for multi-categorical time series developed in Chapter 4, the evolution of

the states is assumed to be a random walk where Gt is set up to be an identity matrix

I. However, in some other applications, the evolution model of the states can imply

the components of the states such as trend, seasonality, and irregular variation. For

further research, these components of Gt can be treated as parameters to estimate.

With regard to algorithmic pairs trading, how long the detected mean-reversion lasts

can be a topic for research. Others may be how to select a pair or a portfolio of the

pairs, and more sophisticated trading strategy to guarantee the earnings.
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Appendix A

A.1 Generating Functions

By definition, the generating function is such that f(x) =
∑∞

i=0 aix
i for the se-

quence of a0, a1, · · · . The generating function f(x) transforms problems about the

sequences into problems of the function. For example, the sequence of a0, a1, · · ·

are generated by the generating function f(x) and the function f(x) has an as

the coefficients of xn in its power series representation. For example, suppose that

f(x) = (1−x−x2)−1. This function f(x) can be expanded as a power series so that

f(x) = 1+x+2x2+3x3+5x4+8x5+13x6+ · · · where the sequence of a0, a1, a2, · · ·

becomes a0 = 1, a1 = 1, a2 = 2 and so on.

If a univariate and discrete random variable of interest is X , the moment generating

function is defined by MX(t) = E(etX) and the cumulant generating function by

KX(t) = log {MX(t)}. Both of them can be represented by the power series expan-

sion.

For the moment generating function,

MX(t) = E(etX)

=
∞
∑

n=0

E(Xn)
tn

n!
by power series expansion

131



By differentiation, the moments about the origin can be found as

M
(r)
X (0) = E(Xr) =

drMX(t)

dtr
t=0

For the cumulant generating function,

KX(t) = log {MX(t)}

=

∞
∑

n=1

κn
tn

n!
by power series expansion

where κn, the coefficients of tn

n!
is called as the cumulant of X .

The moments about the origin can be found by differentiation as

K
(r)
X (0) = κr =

drKX(t)

dtr
t=0

where κr is called as the cumulant, having the first and the second moment of a

distribution for a univariate random variable X as κ1 = dKX(t)
dt t=0 = E(X) and

κ2 =
d2KX(t)
dt2 t=0 = Var(X).

Comparing the coefficients of
(

tn

n!

)

in both the moment generating function and the

cumulant generating function shows the basic relationship between the two as

κ1 = M
(1)
X (t) = E(X)

κ2 = M
(2)
X (t)− κ21 = Var(X)

Thus, we aim to find κ1 and κ2.

132



A.2 Digamma and Trigamma Functions

By definition, Γ(z + 1) = z! and Γ(z) =
∫∞
0
tz−1e−tdt in Euler’s integral.

Γ(z) can be approximated by Stirling’s formula as

Γ(z) ≈ e−zzz−1/2(2π)1/2
(

1 +
1

12z
+

1

288z2
−

139

51840z3
−

571

2488320z4
+ · · ·

)

as z → ∞ in |arc(z)| < π.

In Abramowitz and Stegun (1965), Ψ(z) and Ψ(1)(z) is referred to as a digamma

function and a trigamma function each, and defined as Ψ(z) = d
dz
{logΓ(z)} and

Ψ(1)(z) = d
dz

{

Ψ(z) = d2

dz2
logΓ(z)

}

respectively.

From an approximation by Stirling’s formula of Γ(z), logΓ(z) can be written by

logΓ(z) ≈ −z + (z − 1/2)log(z) + log(2π)1/2

+log

(

1 +
1

12z
+

1

288z2
−

139

51840z3
−

571

2488320z4
+ · · ·

)

Thus, a digamma and a trigamma function are obtained as

Ψ(z) =
d

dz
{logΓ(z)}

≈ log(z)−
1

2z
+ · · · (1)

Ψ(1)(z) =
d

dz
Ψ(z) =

d2

dz2
{logΓ(z)}

≈
1

z
+

1

2z2
+ · · · (2)

As an approximation of a digamma and a trigamma function, Ψ(z) ≈ log(z) and

Ψ(1)(z) ≈ 1
z
are adopted in this thesis.
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A.3 Distributions

A.3.1 Continuous Distribution

A.3.1.1 Beta Distribution

The beta distribution is defined on the interval [0, 1] and commonly used as the

conjugate prior distribution for the binomial probability in Bayesian inference. The

probability density function of the beta distribution is characterised by two positive

shape parameters, usually denoted by α and β. When a random variable X is

distributed by the beta distribution with parameters of α and β, it is denoted by

X ∼ Beta(α, β) or p(X) = Beta(X | α, β). If α = β = 1, the distribution becomes

the standard uniform distribution. In Bayesian statistics, the beta distribution with

α = β = 0.5 is sometimes used as a noninformative prior density. The density

function is

p(X) =
Γ(α+ β)

Γ(α)Γ(β)
Xα−1(1−X)β−1

where α > 0, β > 0, and X ∈ [0, 1]. The mean, the variance, and the mode are

E(X) = α
α+β

, Var(X) = αβ
(α+β)2(α+β+1)

, and mode(X) = α−1
α+β−2

respectively.

A.3.1.2 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalisation of the beta distribution,

named after Johann Peter Gustav Lejeune Dirichlet, a German mathematician. It

is commonly used as the the conjugate prior distribution for the parameters of the

multinomial distribution in Bayesian inference. The probability density function of

the Dirichlet distribution is

p(X) =
Γ(α1 + · · ·+ αk)

Γ(α1) · · ·Γ(αk)
Xα1−1

1 · · ·Xαk−1
k

where X = (X1, . . . , Xk), x1, . . . , Xk ≥ 0 with
∑k

i=1Xi = 1, and αi > 0. It is

denoted by X ∼ Dirichlet(α1, . . . , αk) or p(X) = Dirichlet(X | α1, . . . , αk). The
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mean, the variance, the covariance, and the mode are respectively

E(Xi) =
αi
α0

Var(Xi) =
αi(α0 − αi)

α2
0(α0 + 1)

Cov(Xi, Xj) = −
αiαj

α2
0(α0 + 1)

mode(Xi) =
αi − 1

α0 − k

where α0 ≡
∑k

i=1 αi.

A.3.2 Discrete Distribution

A.3.2.1 Binomial Distribution

The binomial distribution represents the number of ‘success’ in n independent Bernoulli

trials where π is a ‘success’ probability in each trial. Each trial belongs to one of two

categories where a category is regarded commonly as a ‘success’ with a probability

of π1 and the other as a ‘failure’ with π2 = 1−π1, having
∑2

i=1 πi = 1. The binomial

distribution can be represented as X ∼ Bin(n; π1, 1− π1) or p(X) = Bin(X | n; π1)

where n is the number of Bernoulli trials and a positive integer.

The probability mass function of the binomial distribution is

p(X | π1) =

(

n

X

)

πX1 · (1− π1)
n−X

=
n!

X ! · (n−X)!
πX1 · (1− π1)

n−X

whereX is the number of ‘success’ in n independent Bernoulli trials, X ∈ {0, 1, . . . , n},

and π1 is a ‘success’ probability in each trial with 1 − π1 as a ‘failure’ probabil-

ity, satisfying 0 ≤ π1 < 1. The mean and the variance is E(X) = n · π1 and

Var(X) = n · π1 · (1− π1) respectively.

135



A.3.2.2 Multinomial Distribution

The multinomial distribution is a multivariate generalisation of the binomial distri-

bution. Assuming that there are n independent trials and k categories, each trial

belongs to one of k categories where each category has a ‘success’ probability of

Π = (π1, . . . , πk) and
∑k

i=1 πi = 1. Suppose that X = (X1, . . . , Xk) and Xi rep-

resents number of events for a category i in n trials with a probability πi where

Xi ∈ {0, 1, . . . , n} and
∑k

i=1Xi = n. The multinomial distribution can be repre-

sented as X ∼ Multin(n; π1, . . . , πk) or p(X) = Multin(X | n; π1, . . . , πk) where n is

a positive integer.

The probability mass function of the multinomial distribution is

p(X | Π) =

(

n

X1 · · · Xk

)

πX1
1 · · ·πXk

k

=
n!

X1! · · ·Xk!
πX1
1 · · ·πXk

k

where X = (X1, . . . , Xk), Xi ∈ {0, 1, . . . , n},
∑k

i=1Xi = n and Π = (π1, . . . , πk)

with
∑k

i=1 πi = 1 satisfying 0 ≤ πi < 1. The mean and the variance is E(Xi) = n ·πi

and Var(Xi) = n · πi · (1− πi) respectively.

The moment generating function is

MX(t) = MX(t1, . . . , tk) = E

{

exp

(

k
∑

i=1

ti ·Xi

)}

=

{

k
∑

i=1

πi · e
ti

}n
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The cumulant generating function is

KX(t) = KX(t1, . . . , tk) = log {MX(t1, . . . , tk)}

= n · log

{

k
∑

i=1

πi · e
ti

}
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Appendix B

B.1 The Derivations of The Updating Equations in
Dynamic Linear Model

This appendix is for Section 2.5 of Chapter 2, Section 3.2 of Chapter 3, and Section

4.2 of Chapter 4. However, the derivations are based on the specification for a uni-

variate time series in Section 2.5 of Chapter 2, assuming the Gaussianity.

B.1.1 When τ = 1
V

is known as a constant V

Supposing that (a1) is true, (a2) holds from (2.6) as shown by

E(θt | V,Dt−1) = E(Gθt−1 + ωt | V,Dt−1) = GE(θt−1 | V,Dt−1)

= Gmt−1 = at

Var(θt | V,Dt−1) = Var(Gθt−1 + ωt | V,Dt−1)

= GVar(θt−1 | V,Dt−1)G
′ +Var(ωt | V,Dt−1)

= GV C∗
t−1G

′ + VW ∗
t = V (GC∗

t−1G
′ +W ∗

t )

= V R∗
t

Therefore, we can say that (θt | V,Dt−1) ∼ N2(at, V R
∗
t ) as in (a2).
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Similarly, (a3) holds from (2.5) and (2.6) as shown by

E(Yt | V,Dt−1) = E(F′
tθt + ǫt | V,Dt−1) = E(F′

tGθt−1 + F′
tωt + νt | V,Dt−1)

= F′
tGE(θt−1 | V,Dt−1) + F′

tE(ωt | V,Dt−1) + E(νt | V,Dt−1)

= F′
tGmt−1 = ft

Var(Yt | V,Dt−1) = Var(F′
tθt + νt | V,Dt−1) = Var(F′

tGθt−1 + F′
tωt + νt | V,Dt−1)

= F′
tGVar(θt−1 | V,Dt−1)G

′Ft + F′
tVar(ωt | V,Dt−1)Ft

+Var(νt | V,Dt−1)

= F′
tGV C

∗
t−1G

′Ft + F′
tVW

∗
t Ft + V

= V (F′
tGC

∗
t−1G

′Ft + F′
tW

∗
t Ft + 1)

= V {F′
t(GC

∗
t−1G

′ +W ∗
t )Ft + 1}

= V (F′
tR

∗
tFt + 1)

= V Q∗
t

Now it is seen that (Yt | V,Dt−1) ∼ N2(ft, V Q
∗
t ) as in (a3).

For (a4), it can be proved either using the normal distribution theory or using

Bayes’ theorem. Firstly, using the normal distribution theory, the joint distribution

of (Yt, θt | Dt−1) at time t is calculated and then the conditional distribution of
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(θt | Yt, Dt−1) is derived from the joint distribtuion of (Yt, θt | Dt−1).

Cov(Yt, θt | Dt−1) = Cov(F′
tθt + νt, θt | Dt−1)

= F′
tCov(θt, θt | Dt−1) + Cov(νt, θt | Dt−1)

= F′
tVar(θt | Dt−1) = F′

t(V R
∗
t )

= V F′
tR

∗
t

Cov(θt, Yt | Dt−1) = Cov(θt,F
′
tθt + νt | Dt−1)

= Cov(θt, θt | Dt−1)Ft + Cov(θt,νt | Dt−1)

= Var(θt | Dt−1)Ft + 0

= V R∗
tFt

With the results above, the joint distribution of (Yt, θt | Dt−1) at time t is

(

Yt

θt

∣

∣

∣

∣

∣

Dt−1

)

∼ N2

[(

ft

at

)

,

(

V Q∗
t V F′

tR
∗
t

V R∗
tFt V R∗

t

)]

(3)

From (3), the conditional distribution of (θt | Yt, Dt−1), or (θt | Dt), can be found

as

(θt | Dt) ∼ N2(mt, V C
∗
t )

where mt = at + V R∗
tFt(V Q

∗
t )

−1(Yt − ft)

= at +Ktet

and

V C∗
t = V R∗

t − V R∗
tFt(V Q

∗
t )

−1V F′
tR

∗
t

= V R∗
t − V R∗

tFt(V Q
∗
t )

−1V F′
tR

∗
t

= V R∗
t − V KtQ

∗
tK

′
t by multiplying

V Q∗
t

V Q∗
t

to the latter term

Kt can be referred to as the regression matrix of θat on Yt and also as the Kalman

gain while Ct = Rt −KtQtK
′
t is a Riccati equation.
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Secondly, using Bayes’ theorem, (a4) also can be proved to hold as follows. The

likelihood function of the observed series {Yt} is (Yt | θt, Dt−1) ∼ N(F′
tθt, V ) from

the observation equation (2.5) and from (a2) the prior distribution of θt is (θt |

V,Dt−1) ∼ N2(at, V R
∗
t ), which can be written up to proportionality as

p(Yt | θt, Dt−1) ∝ exp

{

−
(Yt − F′

tθt)
′(Yt − F′

tθt)

2V

}

and

p(θt | V,Dt−1) ∝ exp

{

−
(θt − at)

′R∗−1
t (θt − at)

2V

}

Therefore, by Bayes’ theorem,

p(θt | Yt, Dt−1) =
p(θt | Dt−1)p(Yt | θt, Dt−1)

p(Yt | Dt−1)

∝ p(θt | Dt−1)p(Yt | θt, Dt−1) as a function of θt

∝ exp

{

−
(Yt − F′

tθt)
′(Yt − F′

tθt)

2V
−

(θt − at)
′R∗−1

t (θt − at)

2V

}

Taking the logarithm and multiplying by -2 for both,

−2 ln(p(θt | Yt, Dt−1) ∝
(Yt − F′

tθt)
′(Yt − F′

tθt)

V
+

(θt − at)
′R∗−1

t (θt − at)

V
∝ (Yt − F′

tθt)
′(Yt − F′

tθt) + (θt − at)
′R∗−1

t (θt − at)

= θ′t(R
∗−1
t + FtF

′
t)θt − 2θ′t(R

∗−1
t at + FtYt) + L1 (4)

By the matrix inversion lemma,

(R∗−1
t + FtF

′
t)(C

∗
t ) = I

or R∗−1
t + FtF

′
t = C∗−1

t (5)

141



C∗−1
t mt = (R∗−1

t + FtF
′
t)(at +Ktet)

= R∗−1
t at +R∗−1

t Ktet + FtF
′
tat + FtF

′
tKtet

= R∗−1
t at +R∗−1

t

RtFt
Q∗
t

et + FtF
′
tat + FtF

′
t

R∗
tFt
Q∗
t

et

= R∗−1
t at +

Ft
Q∗
t

et + FtF
′
t

R∗
tFt
Q∗
t

et + FtF
′
tat

= R∗−1
t at + Ft

(

et
Q∗
t

+ F′
t

R∗
tFt
Q∗
t

et + F′
tat

)

= R∗−1
t at + Ft

{

et
Q∗
t

(1 + F′
tR

∗
tFt) + F′

tat

}

= R∗−1
t at + Ft (et + F′

tat)

= R∗−1
t at + FtYt (6)

By taking (5) and (6) into (4), the density function of −2 ln(p(θt | Yt, Dt−1)) reduces

to

= θ′tC
∗−1
t θt − 2θ′tC

∗−1
t mt + L1

= (θt −mt)
′C∗−1

t (θt −mt) + L2 as a function of θt

where L1 and L2 are constants with regard to a function of θt.

Therefore, (θt | Dt) ∼ N(mt, V C
∗
t ) since p(θt | Dt) ∝ exp

{

−
(θt−mt)′C

∗−1
t (θt−mt)

2V

}

.

B.1.2 τ = 1
V

is unknown, but assumed as a constant V

The updating equations are derived by marginalisation of the distributions when

τ = 1
V
is known as V with respect to the appropriate prior/posterior gamma distri-

bution for τ . The only difference is that the variance-covariance matrices are in the

student T distributions including the relevant estimates of V .

B.1.3 Derivation of The Updating Equations for τ
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By applying Bayes’ theorem, the posterior for τ is

p(τ | Dt) ∝ p(τ | Dt−1)p(Yt | τ,Dt−1)

From (c1) in Section 2.5.3, the prior distribution at time t of τ is given by

p(τ | Dt−1) =
(dt−1

2
)
nt−1

2

Γ(nt−1

2
)
τ

nt−1
2

−1e−τ
dt−1

2

where nt, dt, and τ > 0.

On the other hand, from (a3),

p(Yt | τ,Dt−1) =

(

τ

2πQ∗
t

)1/2

e

(

− τ(Yt−ft)
2

2Q∗
t

)

Therefore, the posterior distribution at time t of τ reduces to

p(τ | Dt) ∝ τ
(nt−1+1)

2
−1e

− τ
2

(

dt−1+
e2t
Q∗
t

)

∝ τ
nt
2
−1e−dt

τ
2 (7)

by taking nt = nt−1 + 1 and dt = dt−1 + e2t/Q
∗
t .

The posterior distribution of τ with parameters nt

2
and dt

2
is denoted by (τ | Dt) ∼

Gamma
(

nt

2
, dt

2

)

, and the density function is

p(τ | Dt) =
(dt
2
)
nt
2

Γ(nt

2
)
τ

nt
2
−1e−τ

dt
2

where nt, dt, and τ > 0. Since nt indicates the degrees of freedom, each observation

increases the degrees of freedom nt by 1. Thus, nt = nt−1+1 while dt is determined

by dt−1 +
e2t
Q∗

t
.
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Appendix C

C.1 Computation of a Jacobian in Dynamic Gen-
eralised Linear Model

This appendix is about the computation of a Jacobian in Section 4.4.3.1. The result

of |J | =
∏n

i=1 e
ηi

(1+
∑n

i=1 e
ηi )n+1 in (4.6) is obtained from the followings.

From the definition, the Jacobian |J | is obtained by

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂π1
∂η1

∂π1
∂η2

· · · ∂π1
∂ηn

∂π2
∂η1

∂π2
∂η2

· · · ∂π2
∂ηn

... · · ·
. . .

...
∂πn
∂η1

∂πn
∂η2

· · · ∂πn
∂ηn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eη1A−eη1eη1
A2

−eη1eη2
A2 · · · −eη1eηn

A2

−eη2eη1
A2

eη2A−eη2eη2
A2 · · · −eη2eηn

A2

... · · ·
. . .

...
−eηneη1
A2

−eηneη2
A2 · · · eηnA−eηneηn

A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where A = 1 +
∑n

i=1 e
ηi .

The following steps show the detailed computation for the Jacobian |J |.

Step 1

(Step 1-1) Add 1st row to 2nd row

(Step 1-2) Add new 2nd row from (Step 1-1) to 3rd row

(Step 1-3) Add new 3rd row from (Step 1-2) to 4th row

.............................................................

(Step 1-(n-1)) Add new (n− 1)th row from (Step 1-(n-2)) to nth row.
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These operations reveals that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eη1A−eη1eη1
A2

−eη2eη1
A2 · · · −eηneη1

A2

eη1A−eη1eη1−eη1eη2
A2

eη2A−eη2eη1−eη2eη2
A2 · · · −eηneη1−eηneη2

A2

eη1A−eη1eη1−eη1eη2−eη1eη3
A2

eη2A−eη2eη1−eη2eη2−eη2eη3
A2 · · · −eηneη1−eηneη2−eηneη3

A2

... · · ·
. . .

...
eη1A−eη1eη1−···−eη1eηn

A2
eη2A−eη2eη1−···−eη2eηn

A2 · · · eηnA−eηneη1−···−eηneηn
A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Since A = 1 +
∑n

i=1 e
ηi , the entries of the nth row reduce to {an,i} = eηi

A2 for i =

1, . . . , n. The entries of the (n − 1)th row also become {an−1,i} = eηi(1 + eηn) for

i = 1, . . . , n−1 and {an−1,n} = −eηn(eη1 + · · ·+ eηn−1). Accordingly, the matrix gets

simpler as follows.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eη1A−eη1eη1
A2

−eη2eη1
A2 · · · −eηneη1

A2

eη1A−eη1eη1−eη1eη2
A2

eη2A−eη2eη1−eη2eη2
A2 · · · −eηneη1−eηneη2

A2

eη1A−eη1eη1−eη1eη2−eη1eη3
A2

eη2A−eη2eη1−eη2eη2−eη2eη3
A2 · · · −eηneη1−eηneη2−eηneη3

A2

... · · ·
. . .

...
eη1(1+eηn )

A2
eη2 (1+eηn )

A2 · · · −eηneη1−eηneη2−···−eηneηn−1

A2

eη1

A2
eη2

A2 · · · eηn

A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Step 2

(Step 2-1) Add (nth row) ×(eη1 + · · ·+ eηn−1) to (n− 1)th row

(Step 2-2) Add (nth row) ×(eη1 + · · ·+ eηn−2) to (n− 2)th row

(Step 2-3) Add (nth row) ×(eη1 + · · ·+ eηn−3) to (n− 3)th row

..........................................................................

(Step 2-(n-1)) Add (nth row) ×(eη1) to 1st row
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The result of this operation is obtained by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eη1

A 0 0 · · · 0
eη1

A
eη2

A 0 · · · 0
... · · ·

. . .
...

...
eη1

A
eη2

A · · · eηn−1

A 0
eη1

A2
eη2

A2 · · · eηn−1

A2
eηn

A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Step 3 Determinants computation

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eη1

A 0 0 · · · 0
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A
eη2

A 0 · · · 0
... · · ·

. . .
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eη2
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A 0
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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A
·
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∣

∣
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A
eη3
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A2 · · · eηn−1
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A2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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eη1

A
·
eη2
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·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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A 0 0 · · · 0
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A
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...
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A
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A
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A
0

eη3

A2
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∣

∣

∣

∣

∣

∣
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∣
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·
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·

∣
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. . .
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A 0
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= · · · =
eη1

A
·
eη2

A
· · ·

eηn−1

A
·
eηn

A2
=

eη1 · · · eηn

An+1

=

∏n
i=1 e

ηi

(1 +
∑n

i=1 e
ηi)n+1

(8)

Thus, assuming that (Πt | Dt−1) ∼ Dirichlet(r1,t, . . . , rn+1,t), the density function
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of (ηt | Dt−1) is obtained by

p(ηt | Dt−1) =
Γ(
∑n+1

i=1 ri,t)
∏n+1

i=1 Γ(ri,t)

e
∑n

i=1 ri,tηi,t

(1 +
∑n

i=1 e
ηi,t)

∑n+1
i=1 ri,t

as shown in (4.5).
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