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Role of Additives during Deracemization Using Temperature Cycling
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ABSTRACT: Temperature cycling, alongside Viedma ripen-
ing, has been established as a reliable method for
deracemizing racemic mixtures of chiral compounds that
crystallize as a conglomerate. Here we report that the speed of
temperature cycling can be increased by using chiral additives.
We also demonstrate that the chirality of the additive
determines the final enantiomeric state of the solid phase.
Viedma ripening experiments using equivalent conditions,
with and without chiral additives, are always found to be
slower.

1. INTRODUCTION

Strategies to create single chirality are an appealing topic in
chemistry both from a fundamental and application point of
view. Pharmaceutical companies for instance are increasingly
driven to produce enantiopure compounds, aiming to lower
the required amount of common drugs like ibuprofen,
omeprazole, cetirizine, ofloxacin, and many more, which are
still sold as racemates. Normally, synthesis of chiral
compounds results in a racemic mixture of the two
enantiomers. Because most physical and chemical properties
are identical, their separation (a procedure called resolution) is
not always straightforward and often requires several
operations. Traditional approaches involving resolution
techniques, e.g., diastereomeric resolution,1 kinetic resolution,2

all lead to a maximum yield of 50% in the absence of a
racemization reaction.
A new alternative was introduced by the Viedma ripening

process,3−8 which involves grinding of the solid state of
conglomerate-forming compounds, combined with a racemi-
zation reaction in solution. During this latter step, one of the
two enantiomers is selectively converted into the desired one,
reaching a final theoretical yield of 100% in the solid state.
More recently, the groups of Flood and Coquerel,9,10 as
previously suggested by Viedma,11 demonstrated that it is
possible to obtain an analogous result by applying temperature
cycles to the system, where the grinding is replaced by
continuous heating/cooling sequences. Both methods show a
sigmoidal increase in the enantiomeric excess (e.e.), with a
generally faster deracemization rate in the case of temperature
cycling. The speed of both processes can be influenced by
several parameters, e.g., the size of the crystals, the initial e.e.,
the growth and dissolution rates of the enantiomers, the
grinding speed in the case of Viedma ripening, and the selected
cooling/heating cycles in the case of temperature cycling.12−16

The reason why temperature cycling proceeds with a higher
rate is not yet understood. At present, two models have been
suggested to explain its mechanism. On the one hand, Uwaha

et al. show that chiral cluster incorporation besides monomers
could drive chiral amplification.17 On the other hand, crystal
growth rate dispersion, the difference in the growth rate
distributions for the crystal populations of the two
enantiomers, was proposed by Uchin et al. as the
explanation.16,18 Both these models can describe the
autocatalytic behavior of the process, leading to sigmoidal
deracemization curves.
Steendam et al. proved that by using chiral additives, the

speed of Viedma ripening can be significantly increased.19,20

The advantage of using an additive is not only displayed in
terms of a higher deracemization rate but also allows one to
choose the final configuration of the pure enantiomer.19,20 The
aim of this study is to determine if chiral additives can also
enhance the speed of temperature cycling and to compare the
overall speed with Viedma ripening.19

2. EXPERIMENTAL DETAILS
All the experiments were performed in 20 mL vials, sealed, and
positioned inside a double-jacketed vessel connected to a Julabo
thermostat that controlled the temperature cycles. The temperature
profile chosen was as follows: the temperature was initially kept
constant at 22 °C for 10 min, then increased to 40 °C in 15 min, kept
at 40 °C for 10 min, and successively decreased back to 22 °C in 20
min, for a total cycle length of 55 min. This cycle was repeated
continuously until deracemization was completed. In total, 0.8 g of
racemic compound 3, 10 mL of methanol, and the specific amount of
chiral additives (1 or 2) were added 15−20 min before the DBU (40
μL), to ensure full homogenization. The time zero of each experiment
corresponds to the time the DBU was added.

Viedma ripening experiments were performed at room temperature
in 20 mL vials with 0.8 g of racemic compound 3, 10 mL of methanol,
5 g of glass beads, and the specific amount of chiral additives (1 or 2,
see Figure 1). DBU (40 μL) was added after 15−20 min of
homogenization.
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Samples were taken by extracting 1 mL of suspension using a 5 mL
syringe, vacuum filtered on a P4 glass filter, and washed with ethanol.
The enantiomeric excess was measured using an Agilent chiral HPLC
with a Chirobiotic T column and a 1 mL min−1 flow. Eluent: ethanol.
Retention times were, respectively, 4.2 min (S) and 6.0 min (R).

3. RESULTS AND DISCUSSION
(R)- and (S)-phenylglycine, 1 and 2, were chosen as the
additives to promote the deracemization of 3, an amino acid
derivative and the first organic compound proven to
deracemize using Viedma ripening.4 We envisioned that it
should also be possible to deracemize this molecule using
temperature cycling in combination with chiral additives, as the
basic requirements are the same as for the Viedma ripening
process. The experiments were performed in methanol, and the
base DBU was used as a catalyst to allow fast racemization. In a
recent paper by Breveglieri et al., the same compound has been
thoroughly investigated in a temperature cycling application,
with a particular focus on how parameters like initial
enantiomeric excess, operating temperature range, and cooling
rate influence the deracemization pathway.21 Here we
concentrate on how additives can play a role in the process,
keeping therefore the temperature cycle constant and starting
all the experiments from an e.e. of 0%. The selected
temperature profile was chosen to ensure that each experiment
was completed in a relatively short time (i.e., between 15 and
50 h).
Starting with an e.e. of 0% and without any other bias,

choosing the final end state of the deracemization is not
possible.3,4 For the present compound, however, all the
experiments in the absence of additives led to only one single
configuration, namely, the (R)-enantiomer. As was also
reported by Steendam et al.,19 this behavior can be attributed
to the presence of chiral impurities, the nature of which is
unknown. We will refer to these as (S)-impurities, assuming
that their influence agrees with Lahav’s rule of reversal,22

according to which chiral tailor-made additives selectively
hamper the nucleation or growth of the enantiomorphs with
the same configuration, leading to crystals of the opposite
handedness. In all the experiments we performed without
additives, the deracemization was completed in about 2−3
days. When using additives, they take control over the process
and the effect of the impurities is neutralized.19 Amounts of the
additive as small as 0.1% are capable of significantly speeding
up the deracemization.
Figure 2 displays a series of experiments in which different

concentrations of both configurations of additives were used in
combination with temperature cycling. One might expect that
the action of the additives is amplified by increasing their
concentrations, but we find this is only true up to a maximum.
As shown in the figure, an increase in the additive
concentrations of up to a value of 2% results in a linear

upsurge in the deracemization rate. Higher amounts, however,
have an opposite effect. Therefore, we conclude that a value of
2% is optimal for a fast deracemization given the chosen
experimental conditions.
Interestingly, Figure 2 confirms that the (S)-impurities still

play a role, as they collaborate with the (S)-phenylglycine to a
faster deracemization toward the formation of the (R)-
enantiomer. At the same time, they compete with the
counter-additive (R)-phenylglycine, making the process in
the direction of the (S)-enantiomer slower. The 0.1% (R)-
phenylglycine, however, is already sufficient to lead to an (S)
end state.
A too high concentration of additives (beyond 2% with the

current working conditions) is not beneficial for the process
anymore and has severe influence on the deracemization. The
curve corresponding to a 3% additive concentration achieves
deracemization toward the (R)-enantiomer but displays a
curious effect for the (S)-enantiomer, in which the final e.e.
returns to 0%. The 5% cases never achieve any significant e.e.,
regardless of the configuration of the additive involved. We see
at least two possible explanations for this effect: (1) the high
concentration of additives also affects the crystals of the other
enantiomer or (2) the additives have an effect on the
racemization rate. In order to test this, we performed
racemization experiments for different additive concentrations.
As shown in Figure 3, the additives indeed cause a significant
decrease in the racemization rate and consequently also in the
deracemization during temperature cycling. To corroborate

Figure 1. Additives (R)-phenylglycine (1), (S)-phenylglycine (2) and
the chosen target compound rac-(2-methylbenzylidene)-phenyl-
glycinamide (3).

Figure 2. Deracemization experiments for various concentrations of
additives (R) and (S)-phenylglycine.

Figure 3. Racemization experiments in solution for 1%, 3% and 5%
concentrations of the additive (S)-phenylglycine. The same trend is
observed for (R)-phenylglycine.
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this, a few experiments with larger amounts of DBU have been
performed showing that complete deracemization is indeed
possible in the presence of high concentrations of additives,
making the effect of additives on the racemization rate the
most likely explanation for the observed behavior.
Having obtained these results, we can now make a valid

comparison of the deracemization rates of the temperature
cycling and Viedma ripening, with and without the use of chiral
additives. Although Viedma ripening experiments were already
performed by Steendam et al.,19 in the current work a new set
of experiments was carried out to ensure comparable
experimental conditions to those used for the temperature
cycling. An overview of the four deracemization conditions is
presented in Figures 4 and 5. Temperature cycling, along the

lines of Viedma ripening, shows an increase in the
deracemization rate when chiral additives are used. A
concentration of 0.1% allows Viedma ripening to reduce its
deracemization time approximately by a factor of 2 (green line,
Figure 5). It is remarkable that the same concentration of
chiral additives allows temperature cycling to speed up its
deracemization time also by a factor 2, reaching therefore
completion still much faster (red line, Figure 5). Note that the
presence of the (S)-impurities should to be taken into account,

as the rate at 0% of additives for both Viedma ripening and
temperature cycling would probably be slower in their absence.
Figure 5 reflects the situation of only one configuration of

chiral additive at a specific concentration, a single temperature
profile for temperature cycling and well-defined experimental
parameters which were kept identical for each experiment.
Although the deracemization times may slightly vary by
changing one or more of these conditions, we expect the
overall trend to remain the same. Therefore, this indicates that
temperature cycling, in combination with chiral additives, has a
tendency to proceed in a faster manner than Viedma ripening
under comparable conditions. Furthermore, even though the
effect of a chiral additive in the two deracemization processes
has been compared here for only the present compound, we
expect the results to be qualitatively similar for other
compounds.

4. CONCLUSIONS
With this work we demonstrate that the speed of temperature
cycling can be increased by using enantiopure phenylglycine,
making this process the fastest out of the four deracemization
routes investigated here, namely, Viedma ripening and
temperature cycling with and without additives. Like for
Viedma ripening, the choice of enantiomer for the additive
determines the chiral outcome of the temperature cycling. In
addition, while it is not clear which of the models best explains
the temperature cycling mechanism without additives, in the
present case the use of chiral additives induces a growth-
inhibition process that corresponds to an extreme case of
growth rate dispersion.19,22 This may help to gain a deeper
understanding of the mechanism behind temperature cycling.
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Figure 4. Evolution of the deracemization of compound 3 via temperature cycling (TC) and Viedma ripening (VR) without or with the use of
enantiopure phenylglycine as an additive. Only the case of the additive (S)-phenylglycine is shown.

Figure 5. Comparison between the Viedma ripening (VR) and
temperature cycling (TC) experiments with 0.1% (S)-phenylglycine
and without chiral additives.
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