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Protocol

Investigating the origin and evolution of
cerebral small vessel disease:
The RUN DMC – InTENse study

Annemieke ter Telgte1 , Kim Wiegertjes1, Anil M Tuladhar1,
Marlies P Noz2, José P Marques3, Benno Gesierich4,
Mathias Huebner4, Henk-Jan MM Mutsaerts5 ,
Suzette E Elias-Smale6, Marie-José Beelen7, Stefan Ropele8,
Roy PC Kessels9, Niels P Riksen2, Catharina JM Klijn1,
David G Norris3, Marco Duering4 and Frank-Erik de Leeuw1

Abstract

Background: Neuroimaging in older adults commonly reveals signs of cerebral small vessel disease (SVD). SVD is

believed to be caused by chronic hypoperfusion based on animal models and longitudinal studies with inter-scan intervals

of years. Recent imaging evidence, however, suggests a role for acute ischaemia, as indicated by incidental diffusion-

weighted imaging lesions (DWIþ lesions), in the origin of SVD. Furthermore, it becomes increasingly recognised that

focal SVD lesions likely affect the structure and function of brain areas remote from the original SVD lesion. However,

the temporal dynamics of these events are largely unknown.

Aims: (1) To investigate the monthly incidence of DWIþ lesions in subjects with SVD; (2) to assess to which extent

these lesions explain progression of SVD imaging markers; (3) to investigate their effects on cortical thickness, structural

and functional connectivity and cognitive and motor performance; and (4) to investigate the potential role of the innate

immune system in the pathophysiology of SVD.

Design/methods: The RUN DMC – InTENse study is a longitudinal observational study among 54 non-demented

RUN DMC survivors with mild to severe SVD and no other presumed cause of ischaemia. We performed MRI

assessments monthly during 10 consecutive months (totalling up to 10 scans per subject), complemented with clinical,

motor and cognitive examinations.

Discussion: Our study will provide a better understanding of the role of DWIþ lesions in the pathophysiology of SVD

and will further unravel the structural and functional consequences and clinical importance of these lesions, with an

unprecedented temporal resolution. Understanding the role of acute, potentially ischaemic, processes in SVD may

provide new strategies for therapies.
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Introduction

Cerebral small vessel disease (SVD) is the most impor-
tant vascular contributor to cognitive decline and
dementia and causes up to 25% of all ischaemic strokes
worldwide.1,2 SVD affects the structure and function of
the smallest cerebral blood vessels, including the perfo-
rating arterioles, capillaries and venules.3 Although
these small vessels themselves cannot yet be visualised
on conventional magnetic resonance imaging (MRI),
MRI reliably detects a spectrum of tissue alterations
thought to arise from SVD. These include white
matter hyperintensities (WMH), lacunes, microbleeds,
enlarged perivascular spaces, brain atrophy, and more
recently, acute (micro)infarcts and loss of white matter
microstructural integrity.2

Within this spectrum of imaging findings, WMH are
the most ubiquitous and extensively studied. The estab-
lished paradigm for WMH development is that they
arise slowly over the years and are caused by chronic
hypoperfusion.3 However, this notion is mainly based
on animal studies, which do not reliably capture the
complex pathophysiology of a disease that develops
over decades.4 In a recent meta-analysis including
human in vivo studies measuring cerebral blood flow
(CBF) using various techniques, evidence of reduced
CBF in individuals with more severe WMH was
observed, both globally and in the majority of grey
and white matter regions.6 However, this association
was not confirmed in all longitudinal studies.6 Studies
comparing CBF within WMH and potentially at risk
normal-appearing white matter show variable results.7–
9 These data suggest that additional processes may play
a role in the conversion of normal-appearing white
matter towards WMH.

The notion of gradual progression of SVD caused
by chronic hypoperfusion may also have arisen because
progression has usually been studied with inter-scan
intervals of several years. For instance, the majority
of de novo WMH over a four-year course appeared to
be due to growth of existing lesions, supporting the
notion of a slow, continuous process rather than a
series of acute events.10 However, sudden, rather than
chronic progression or even regression11,12 may go
unnoticed with MRI scan intervals of years.

Similar to WMH, a previous study demonstrated
incidental lacunes to occur predominantly at the edge
of WMH.13 These findings suggest that WMH and inci-
dental lacunes share an underlying pathological mech-
anism, potentially being acute ischaemia.

Indeed, a recent study among five subjects with
moderate to severe WMH with 16 weekly MRI assess-
ments showed evidence of acute progression of
WMH.14 In three participants, a total of nine incidental
diffusion-weighted imaging lesions (DWIþ lesions)

were observed in the white matter, considered to be

suggestive of acute infarcts, which in the weeks there-

after approached the imaging characteristics of

WMH.14 Of note, patients did not experience any clin-

ical symptom, although detailed serial neuropsycholog-

ical examinations had not been performed.
A growing body of evidence now suggests that

DWIþ lesions are rather common in SVD, but

often go unnoticed because most of them remain clin-

ically silent and the imaging evidence for a DWIþ
lesion is strongest within the first four weeks.15

In cross-sectional studies, the prevalence of DWIþ
lesions ranged from 0% in a population-based

study including relatively young (58% of the cohort

being younger than 60 years) and cognitively healthy

individuals with low SVD burden16 to 8% in

patients with severe SVD and a history of a lacu-

nar stroke.17

In addition to the evolution of DWIþ lesions

into WMH, other studies have shown that these

lesions have different fates and may as well develop

into a lacune, transform into a (micro)haemorrhage

or even disappear.2,18–21 However, the exact temporal

dynamics of DWIþ lesions are largely unknown.
Apart from a focal effect of SVD on brain structure

and function, converging evidence suggests that SVD

also affects remote areas of the brain, well beyond the

original lesion.22–25 However, the time course of these

events is largely unknown as this cannot be accurately

monitored by longitudinal studies with large follow-

up intervals.
Therefore, to investigate the origin, evolution and

consequences of SVD, we set up the RUN DMC –

InTENse study (Radboud University Nijmegen

Diffusion tensor and Magnetic resonance imaging

Cohort – Investigating The origin and EvolutioN of

cerebral small vessel disease), a single-centre longitudi-

nal study performing MRI assessments every month

during 10 consecutive months (totalling up to 10

scans per subject), complemented with clinical, motor

function and cognitive examinations among non-

demented survivors of the RUN DMC study. For

these subjects, nine years of follow-up imaging and

clinical data were already available. Specifically, we

aim to investigate the monthly incidence of DWIþ
lesions and to assess to which extent they explain pro-

gression of SVD imaging markers. Furthermore,

we aim to investigate the effects of DWIþ lesions on

cortical thickness, on structural and functional connec-

tivity and on cognitive and motor performance.

Finally, in this study we will also explore the potential

role of the innate immune system in the pathophysiol-

ogy of SVD. Here, we present the design and protocol

of the RUN DMC – InTENse study.
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Methods

Participants

Individuals were recruited from the 503 subjects of the
RUN DMC study. This prospective study, on the
causes and consequences of SVD, comprised baseline
MRI and clinical data collection in 2006 and follow-up
examinations in 2011 and 2015.26 Individuals for the
RUN DMC – InTENse study were recruited between
February and September 2016.

Inclusion and exclusion criteria for the RUN DMC
– InTENse study are summarised in Table 1. In short,
we aimed to include 50 individuals with a high likeli-
hood of progression of SVD markers during the study
period, which could be attributed as much as possible
to the underlying SVD pathology. Therefore, we first
carefully scrutinised the medical history and previous
data collected in the RUN DMC study of all partici-
pants who underwent MRI in 2006 and 2015 and
excluded those with any evidence of other presumed
causes of ischaemia,27 including large-artery disease,
cardioembolic source and other determined cause of
stroke, i.e. vasculitis, or with evidence of intracranial
haemorrhage other than a microbleed on MRI. As cog-
nitive and motor decline were among our secondary
outcomes, patients with dementia and Parkinson’s dis-
ease (according to international diagnostic criteria28,29)

were also excluded. Subsequently, considering previous

progression of WMH as the most important determi-

nant of future WMH progression, all remaining eligible

individuals were ranked by their WMH change

between 2006 and 2015. Individuals were then invited

by volume of WMH progression, those with the highest

progression first, until we attained a sample of 50 indi-

viduals. Figure 1 summarises the subject recruitment in

a flowchart.
Finally, the RUN DMC – InTENse study included

54 individuals with mild to severe SVD as documented

on preceding MRIs (2006, 2011, 2015). The median

[interquartile range] WMH volume at the RUN

DMC follow-up in 2015 and the annual WMH pro-

gression between 2006 and 2015 were 5.6[2.5;9.8] ml

and 0.35[0.20;0.58] ml/year, respectively. All individu-

als gave written informed consent. The study was

approved by the medical ethics committee region

Arnhem–Nijmegen.

Study design

The RUN DMC – InTENse study is a longitudinal

observational study encompassing 12 visits, that is, a

pre-visit, 10 monthly visits including a MRI and a

follow-up visit one year after the start of the study.

Table 2 depicts the type of data that was collected for

each study visit. Data collection took place between

March 2016 and November 2017.

Screening for exclusion criteria

Ultrasonography of the carotid arteries. During the pre-

visit, ultrasonography of the carotid arteries was per-

formed to detect an internal carotid artery stenosis

>50%, as indicated by a peak systolic velocity ratio

between the internal and common carotid artery >2.

The intima media thickness (mm) was determined and

averaged over a length of 1 cm in the far wall of the left

and right distal common carotid artery near the

bifurcation.
ECG. During the pre-visit, an ECG was made to

detect atrial fibrillation. All ECGs were assessed by a

cardiologist.

MRI acquisition

Participants were scanned on a 3T MRI system

(MAGNETOM Prisma, Siemens Medical Solutions,

Erlangen, Germany) with a 32-channel head coil. To

allow for detection of a spectrum of SVD consequen-

ces, the following sequences were applied:

• 3D fluid-attenuated inversion recovery (FLAIR) with

repetition time/echo time/inversion time (TR/TE/TI)

Table 1. Inclusion and exclusion criteria of the RUN DMC –
InTENse study.

Inclusion criteria

• Participated at least in RUN DMC waves 2006 and 2015

• Progression of WMH between 2006 and 2015

• Able to visit clinic monthly

Exclusion criteria

• Large artery disease defined as a carotid artery stenosis

>50% based on medical history or on ultrasound during the

pre-visit data collection of the RUN DMC – InTENse study

• Cardioembolism defined as atrial fibrillation (based on medi-

cal history or detected on ECG at baseline or pre-visit data

collection of the RUN DMC or the RUN DMC – InTENse

study, respectively), use of oral anticoagulants (either oral

anticoagulants or direct oral anticoagulants) prescribed for

arterial thromboembolism or any other cardioembolic source

(e.g. mitral insufficiency)

• Radiological or clinical evidence of a cortical ischaemic stroke

or transient ischaemic attack (e.g. aphasia or hemianopia)

• Evidence of vasculitis

• Any intracranial haemorrhage other than a microbleed

on MRI

• Dementia

• Parkinson’s disease

• 3T MRI contraindication

• Pre-existing structural brain lesion preventing MRI analysis

• Any disease with a life expectancy less than one year
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5000/394/1800 ms, 0.85� 0.85� 0.85 mm, 192 slices,

acquisition time (TA) 7.02 min;
• Magnetisation Prepared 2 Rapid Acquisition

Gradient Echoes (MP2RAGE),30 to obtain a quan-

titative T1 map and a uniform bias-corrected

T1-weighted image, TR/TI1/TI2 5500/700/2500 ms,

flip angle a1/a2 7/4�, 0.85� 0.85� 0.85mm,

256 slices, TA 11.51 min;
• Presaturated turbo flash sequence to obtain a quan-

titative B1 map (transmit radiofrequency [RF] map)

to correct for residual RF inhomogeneities in the T1

map with TR/TE 11310/2.23 ms, 3.3� 3.3� 2.5 mm,

42 slices, 100% slice gap, TA 23 s;
• Multi-shell DWI using multi-band accelerated echo

planar imaging (EPI, developed at the Center for

Magnetic Resonance Research, CMRR) including

99 diffusion-weighted directions (3� b¼ 200,

6� b¼ 500, 30� b¼ 1000, 60�b¼ 3000 s/mm2)

with uniform coverage within and across shells31

and 10 b¼ 0 images, one acquired before each

series of 10 diffusion-weighted images, multi-band

acceleration factor 3, TR/TE 3220/74 ms,

1.7� 1.7� 1.7 mm, 87 slices, TA 6.36 min;
• One b¼ 0 image to correct for susceptibility-induced

distortions in DWI32 with acquisition parameters

equal to the previous b¼0 images, but acquired in

opposite phase-encoding direction, TA 48 s;
• Multiple spin echo sequence to obtain a quantitative

T2-map (via model-based nonlinear inverse recon-

struction33,34) with TR/DTE 4000/10ms, 16 echoes,

0.7� 0.7� 3.0mm acquisition voxel size recon-

structed at 0.36� 0.36� 3.0mm, 48 slices, 10%

slice gap, TA 3.22 min;
• 3D multi-echo fast low angle shot (FLASH) provid-

ing magnitude and phase images for quantitative

susceptibility imaging and R2* mapping, TR/DTE
35/4.92ms, 6 echoes, 0.8� 0.8� 2.0mm, 72 slices,

no slice gap, TA 5.57 min;
• Resting-state functional MRI (rs-fMRI) using multi-

band accelerated EPI (CMRR) with multi-band

RUN DMC MRI 2006
N = 503

RUN DMC MRI 2015
N = 295

No MRI 2015
N = 208

Eligble for InTENse study
N = 155

Not eligble for InTENse study
N = 140

Deceased: N = 3
Carotid stenosis: N = 19
Cardioembolic source: N = 28
Radiological or clinical evidence of cortical
ischaemic stroke or TIA: N = 48
Vasculitis: N = 6
Intracranial haemorrhage: N = 7
Dementia and/or Parkinson’s disease: N = 15
MRI contraindication: N = 2
Meningioma: N = 1
Unable to visit clinic monthly: N = 11

Invited for InTENse study
N = 106

(after which intended sample
size was achieved) No study participation

N = 52

Study load: N = 47
Lost to follow-up: N = 1
Lost interest: N = 4

Participation InTENse study
N = 54

Figure 1. Flowchart of subject inclusion.
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acceleration factor 8, 700 measurements, TR/TE

700/39ms, 2.4� 2.4� 2.4mm, 64 slices, TA

8.19 min;
• Two spin-echo EPI acquisitions acquired with oppo-

site phase-encoding direction (anterior-posterior) to

compute displacement maps to correct for

susceptibility-induced distortions in rs-fMRI

images32 with TR/TE 7100/66ms, 2.4� 2.4� 2.4mm,

64 slices, TA 7.1 s each.

During the last two MRI sessions, the following

sequences were applied instead of rs-fMRI:

• Triggered single-slice quantitative flow of the carotid

and vertebral arteries, coupled to the peak of each

cardiac cycle, TR/TE 23.6/7.44ms, 0.6� 0.6� 5.0mm,

TA 2.26 min;
• pseudo-continuous arterial spin labelling (PCASL),

labelling duration 3000 ms and post-labelling delay

2000ms, TR/TE 5500/29.6ms, 3.8� 3.8� 3.8mm

acquisition voxel size reconstructed at

1.9� 1.9� 3.8mm, 24 slices, TA 5.30 min, including

two M0 acquisitions with opposite phase-encoding

direction and TA 11 s each.

All imaging sequences were automatically aligned

using an auto-align localiser sequence. If necessary,

manual adjustments were made. For PCASL, the label-

ling plane was manually positioned perpendicular to

the orientation of the internal carotid arteries distal

to the bifurcation using acquired single-slice coronal

and sagittal phase contrast vessel images covering the

head and neck.
To reduce within-subject variability in MRI scans,

we followed recommendations as previously

described,35 that is, careful positioning of the partici-

pant in the scanner, use of same scanner and head coil

throughout the study, automated checks of sequence

parameters on every acquired dataset and standardised

visual image quality control.

Table 2. Schedule of all assessments in the RUN DMC – InTENse study.

Study visit

Month

Assessment Pre-visit 1 2 3 4 5 6 7 8 9 10 1-y FU

Screening

Ultrasonography carotid arteries x

ECG x

MRI x x x x x x x x x x

Cognitive assessment

Full cognitive assessment x x

Test of Attentional Performance x x x x x x x x x x x x

Motor assessment

Timed Up & Go test x x x x x x x x x x

Six-meter walk test x x x x x x x x x x

Physical assessment

Blood pressure, pulse rate x x x x x x x x x x x

Weight, length, BMI x x

Abdominal circumference x x

Additional laboratory investigations

Glucose level x

Lipid profile x

Structured questionnaires

Educational level x

Barthel index x x

IADL x x

CES-D x x

Substance use x x x x x x x X x x x x

Trigger factors and events x x x x x x x X x x x x

Medication use x x x x x x x X x x x x

Blood sampling x x x

Note: Physical activity was assessed once in the month March to take out seasonal effects. 1-y FU: 1-year follow-up; IADL: Instrumental Activities of

Daily Living; CES-D: Center of Epidemiologic Studies Depression Scale.
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Cognitive assessment

Full cognitive assessment. During the pre-visit and
one-year follow-up visit, participants underwent an
extensive cognitive assessment, directed to measure
especially (change in) information processing speed
and attention and executive functioning, being the cog-
nitive domains particularly affected by SVD.36,37

Information processing speed was assessed using
cards I and II of the Stroop Color-Word test,38 the
Symbol Digit Modalities task39 and the Trail Making
Test A (TMT-A).40 Attention and executive function-
ing was assessed using Stroop card III, TMT-B, the
Brixton Spatial Anticipation Test41 and a verbal fluen-
cy task in which participants had to name as many
animals as possible in one minute. Furthermore, the
Mini-Mental State Examination (MMSE)42 was
administered to evaluate global cognitive functioning.
Working memory was investigated with the Digit Span
Forward and Backward of the Wechsler Adult intelli-
gence Scale-III43 and verbal memory with the three-
trial version of the Rey Auditory Verbal Learning
Test (RAVLT)44 including delayed free recall and rec-
ognition after approximately 30 min, during which no
other memory or language tests were carried out. At
one-year follow-up, a parallel version of the RAVLT
was used to prevent material-specific learning effects.
Additionally, during the pre-visit premorbid intelli-
gence level was determined with the Dutch version of
the National Adult Reading Test (NART).45

Test of Attentional Performance. To investigate pos-
sible acute effects of SVD, participants performed two
subtasks of the Test of Attentional Performance
(TAP)46 on a laptop, parallel to each monthly MRI
session. The computer session started with the
Alertness subtask, a sensitive test for attention and
processing speed, which has also found to correlate
with executive dysfunction, working memory deficits
and apathy in patients with CADASIL.47 The
Alertness subtask consists of four sessions including
20 trials, in which participants are instructed to press
a response button as quickly as possible once an X
(target stimulus) appears on the screen. During sessions
two and three, the trials are preceded by an auditory
warning cue. Furthermore, to examine mental flexibil-
ity as part of executive functioning, participants per-
formed successively the letter, digit and alternating
sessions of the Flexibility subtask, in which the target
stimulus is a letter, digit or alternating a letter or digit.
During each trial, a letter and digit are presented on
each side of the screen. Participants were instructed to
respond as soon as possible by pressing the button on
the side of the target stimulus. The letter and digit ses-
sions contain 50 trials and the alternate session
100 trials. For both subtasks, reaction times are given

as output. To reduce non-specific learning effects on

the TAP, which are generally observed between the

first two test administrations, participants performed

the TAP for practice purposes during the pre-visit,

but these results are not taken into account.

Motor assessment

Parallel to each MRI session, participants performed

two motor function tasks. Functional mobility was

examined using the Timed Up & Go test.48 The

number of steps and the time required (s) were

reported. Gait speed (m/s) was determined over a dis-

tance of 6 m. For both tests, participants were

instructed to walk at their preferred walking speed.

Physical assessment

Blood pressure and pulse rate. Blood pressure and pulse

rate were measured in sitting position after 5 min of

rest. During the pre-visit, blood pressure was assessed

once on both sides. Next, blood pressure and pulse rate

were measured three times with 1-min rest between

each measurement, both during the pre-visit and

every subsequent monthly visit at the arm with the

highest recording. Furthermore, blood pressure and

pulse rate were measured once during the pre-visit

after 1 min in standing position. All measurements

were performed with the same blood pressure monitor

and time of day was reported.
Weight, length and waist circumference. Body weight

and length were measured without shoes in light cloth-

ing. The body mass index (BMI) was calculated as

weight divided by height squared (in meters).

Additionally, waist circumference was measured

between the lowest rib and the iliac crest after a

normal expiration.

Additional laboratory investigations

Glucose level. During the pre-visit, random plasma glu-

cose level was tested through a finger prick test. In case

of a glucose level 7.8–11.0 mmol/l, the overnight fasting

plasma glucose level was measured parallel to the third

MRI visit. In case of a random plasma glucose level

>11.0 mmol/l, we considered this as indication for dia-

betes mellitus.
Lipid profile: Lipid profile after overnight fasting

was determined, including total cholesterol, high den-

sity lipoprotein cholesterol (HDL-C), low density lipo-

protein cholesterol (LDL-C), non-HDL cholesterol

and triglycerides in EDTA plasma.
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Structured questionnaires

Educational level. During the pre-visit, educational level
was determined using a seven-point Dutch rating
scale,49 ranging between one (less than primary
school) and seven (academic degree).

Physical activity. The Physical Activity for the Elderly
(PASE)50 was used to assess physical activity. This
standardised questionnaire evaluates leisure, household
and occupational or voluntary activities of the past
seven days. To take out seasonal effects, the PASE
was administered once in March in all participants.

Activities of daily living. During the pre-visit and the one-
year follow-up visit, disability and level of indepen-
dence were assessed using the Barthel Index51 and the
Instrumental Activities of Daily Living (IADL).52

Depressive symptoms. During the pre-visit and the one-
year follow-up visit using the Center of Epidemiologic
Studies Depression Scale (CES-D),53 the presence of
depressive symptoms was assessed.

Substance use. Participants were asked about smoking
habits, alcohol consumption and drug use. For each we
recorded during the pre-visit whether they ever used the
substance, age started, current consumption and if
quitted, age quitted and previous consumption.
Thereafter, during each visit, changes in substance
use were recorded.

Trigger factors and events. Any clinical event for which
participants sought medical attention or any stressful
life event, investigated through the List of Threatening
Experiences (LTE),54 during the past year and subse-
quently since each previous study visit was reported.
Furthermore, prior to MRI scanning, participants
were asked about fever, influenza and alcohol con-
sumption during the previous 24 h and cigarette smok-
ing and liquid consumption during the previous 1 h. In
case of hospitalisation during the study period, the
treating physician was contacted to obtain the relevant
information on the event, which was adjudicated by the
appropriate specialist to confirm the diagnosis. In case
of death, the general practitioner was contacted to
obtain information about the cause of death.

Medication use. Baseline medication use and any change
therein during the study period were reported and clas-
sified according to the Anatomical Therapeutic
Chemical (ATC) classification system (World Health
Organization, Collaborating Centre for Drug
Statistics and Methodology, www.whocc.no/atc_ddd_
index/).

Blood sampling

30 ml blood was collected at three different time points.
During the pre-visit and the last study visit, non-fasting
blood (serum and plasma) was collected for future bio-
chemical analyses. Part of the samples was stored for
future DNA and biomarker analyses. Parallel to the
third MRI visit, fasting EDTA blood was drawn for
immunological analyses. Briefly, flow cytometry analy-
sis was used to determine monocyte subsets and ex vivo
stimulation of peripheral blood mononuclear cells was
performed to explore cytokine production capacity, as
described previously.55

Primary and secondary outcomes

The primary outcome is the monthly incidence of
DWIþ lesions. Secondary outcomes are the evolution
of DWIþ lesions on MRI (into WMH, lacune, micro-
bleed or disappear) and the effects of these lesions on
cortical thickness, structural and functional connectiv-
ity and cognitive and motor performance.

Sample size consideration

This study is powered to detect an increase in WMH,
proposed to be caused by DWIþ lesions. The progres-
sion of WMH is low (<0.5 ml/year) in individuals with
mild SVD, but higher (>2.0 ml/year) in individuals
with severe SVD.56 The current study is powered to
detect a mean increase of 1.2 ml WMH over a 40-
week period in individuals with mild to severe SVD.
To detect this increase (with a power of 80% and an
a¼ .05), a sample size of 39 participants is required.
Taking into account a loss to follow-up of 20%, we
aimed to include 50 participants.

Discussion

To the best of our knowledge, the RUN DMC –
InTENse study is the first study performing both neu-
roimaging and extensive clinical assessments with such
a high frequency among a relatively large number of
individuals with SVD.

The main innovative aspect of the study includes its
high-frequency serial imaging design. Due to our
monthly visits, we are less likely to miss acute events
and we are able to closely monitor the evolution of
SVD lesions. Another strong element of our study
includes the in-depth phenotyping of subjects with
SVD. Since all individuals were retrieved from the
RUN DMC study, nine years of prior imaging and
clinical data was available. Therefore, we could care-
fully select our participants, making sure to include
individuals with a high likelihood of SVD progression
during the study period and to exclude individuals with
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other possible or additional causes of ischaemia, such

as carotid stenosis or atrial fibrillation. Moreover, our

participants have extensive experience with participa-

tion in research, reducing the chance of drop-out.

Another powerful aspect of the study includes the

state of the art multimodal imaging protocol, enabling

us to apply advanced imaging analyses such as

advanced diffusion modelling and iron mapping.
However, a few limitations should also be noted.

First, although recruitment from the RUN DMC is a

major strength, the sample of relatively healthy indi-

viduals selected in the RUN DMC – InTENse study

may not be representative of the entire population, lim-

iting the external validity of our results. Second,

although the current study contains the largest

sample size of individuals with short-term serial imag-

ing data in its field, we acknowledge that the sample

size is still relatively small.
The RUN DMC – InTENse study will shed new

light on the role of DWIþ lesions in the pathophysiol-

ogy of SVD, which will be of importance for clinical

practice. Determining the role of acute, potentially

ischaemic, processes in SVD progression might be

informative for the development of new treatment

strategies. Furthermore, the occurrence of DWIþ
lesions may be used as surrogate marker in future clin-

ical trials aimed at slowing SVD progression. Finally,

our study will provide a time lapse of (remote) sequelae

in the brain following the development of a DWIþ
lesion and will provide insight in the effects of these

lesions on cognitive and motor performance.
To conclude, the RUN DMC – InTENse study will

provide a better understanding of the role of DWIþ
lesions in the pathophysiology of SVD and will further

unravel the structural and functional consequences and

the clinical importance of these lesions, with an unprec-

edented temporal resolution. Understanding the role of

acute, potentially ischaemic, processes in SVD may

provide new strategies for therapies.
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