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Preface

This issue is the post-proceedings of the 22nd International Conference on Types for Proofs
and Programs, TYPES 2016, which was held in Novi Sad, Serbia, May 23-26, 2016.

The TYPES meetings are a forum to present new and on-going work on all aspects of
type theory and its applications, especially in formalized and computer assisted reasoning
and computer programming. The meetings have started in the late 1980s, from 1990 to
2008 they were the annual workshops of EU funded projects, from 2009 to 2015 TYPES
was run as an independent conference. TYPES 2016 was the annual meeting of the COST
Action CA15123 EUTypes - The European research network on types for programming
and verification. Previous TYPES meetings were held in Antibes (1990), Edinburgh (1991),
Baåstad (1992), Nijmegen (1993), Baåstad (1994), Turin (1995), Aussois (1996), Kloster Irsee
(1998), Lökeberg (1999), Durham (2000), Berg en Dal (2002), Turin (2003), Jouy-en-Josas
(2004), Nottingham (2006), Cividale del Friuli (2007), Turin (2008), Aussois (2009), Warsaw
(2010), Bergen (2011), Toulouse (2013), Paris (2014) and Tallinn (2015).

The TYPES conference is traditionally open for work in all areas of type theory, discussing
work in progress and work presented elsewhere or published. The post-proceedings is based
on an open call, not restricted to the participants of the meeting.

The program of the conference comprised three invited talks by Dale Miller, Simona
Ronchi della Rocca and Simon Gay, and 46 contributed talks. The meeting was attended by
over 120 participants. There was a satellite event CLA 2016 - 9th Workshop Computational
Logic and Applications.

The Program Committee members of TYPES 2016 were:
Thorsten Altenkirch (University of Nottingham), UK; Zena Ariola (University of Oregon),

USA; Andrej Bauer (University of Ljubljana), Slovenia; Marc Bezem (University of Bergen),
Norway; Małgorzata Biernacka (University of Wroclaw), Poland; Edwin Brady (University of
St Andrews), UK; Thierry Coquand (University of Gothenburg), Sweden; José Espírito Santo
(University of Minho), Portugal; Ken-etsu Fujita (Gunma University), Japan; Silvia Ghilezan
(University of Novi Sad) (co-chair), Serbia; Hugo Herbelin (INRIA Paris-Rocquencourt),
France; Jelena Ivetić (University of Novi Sad) (co-chair), Serbia; Marina Lenisa (University
of Udine), Italy; Elaine Pimentel (Federal University of Rio Grande do Norte), Brazil;
Andrew Polonsky (University Paris Diderot), France; Jakob Rehof (Technical University
of Dortmund), Germany; Claudio Sacerdoti Coen (University of Bologna), Italy; Carsten
Schürmann (IT University of Copenhagen), Denmark; Wouter Swierstra (Utrecht University),
The Netherlands; Nicolas Tabareau (INRIA), France; Tarmo Uustalu (Tallinn University of
Technology), Estonia.

There were 20 submissions to this open post-proceedings, which received at least two
reviews by 46 anonymous referees with a second round of reviewing.

We would like to thank the authors and the program committee members for their
contribution to this volume. We are grateful to the referees for their expertise which led
to improvement of the content. The submissions were handled via the EasyChair platform.
We thank Michael Wagner and Schloss Dagstuhl for the final editing and publishing of this
volume.

Silvia Ghilezan
Herman Geuvers
Jelena Ivetić
July 2018
22nd International Conference on Types for Proofs and Programs (TYPES 2016).
Editors: Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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Mechanized Metatheory Revisited:
An Extended Abstract
Dale Miller
Inria and LIX, École Polytechnique, Palaiseau, France

https://orcid.org/0000-0003-0274-4954

Abstract
Proof assistants and the programming languages that implement them need to deal with a range
of linguistic expressions that involve bindings. Since most mature proof assistants do not have
built-in methods to treat this aspect of syntax, many of them have been extended with various
packages and libraries that allow them to encode bindings using, for example, de Bruijn numerals
and nominal logic features. I put forward the argument that bindings are such an intimate aspect
of the structure of expressions that they should be accounted for directly in the underlying pro-
gramming language support for proof assistants and not added later using packages and libraries.
One possible approach to designing programming languages and proof assistants that directly
supports such an approach to bindings in syntax is presented. The roots of such an approach can
be found in the mobility of binders between term-level bindings, formula-level bindings (quanti-
fiers), and proof-level bindings (eigenvariables). In particular, by combining Church’s approach
to terms and formulas (found in his Simple Theory of Types) and Gentzen’s approach to sequent
calculus proofs, we can learn how bindings can declaratively interact with the full range of lo-
gical connectives and quantifiers. I will also illustrate how that framework provides an intimate
and semantically clean treatment of computation and reasoning with syntax containing bindings.
Some implemented systems, which support this intimate and built-in treatment of bindings, will
be briefly described.

2012 ACM Subject Classification Theory of computation → Proof theory, Theory of computa-
tion → Automated reasoning, Theory of computation → Higher order logic

Keywords and phrases mechanized metatheory, mobility of binders, lambda-tree syntax, higher-
order abstract syntax

Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.1

Category Invited Paper

Related Version A full version of this paper, titled “Mechanized metatheory revisited”, is avail-
able at http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pubs.html.

Funding This work was funded by the ERC Advanced Grant ProofCert.

Foreword This extended abstract is a non-technical look at the mechanization of formalized
metatheory. While this paper may be provocative at times, I mainly intend to shine light
on a slice of literature that is developing a coherent and maturing approach to mechanizing
metatheory.

1 Mechanization of metatheory

A decade ago, the POPLmark challenge suggested that the theorem proving community had
tools that were close to being usable by programming language researchers to formally prove
properties of their designs and implementations. The authors of the POPLmark challenge

© Dale Miller;
licensed under Creative Commons License CC-BY
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looked at existing practices and systems and urged the developers of proof assistants to make
improvements to existing systems.

Our conclusion from these experiments is that the relevant technology has developed
almost to the point where it can be widely used by language researchers. We seek
to push it over the threshold, making the use of proof tools common practice in
programming language research – mechanized metatheory for the masses. [5]

In fact, a number of research teams have used proof assistants to formally prove significant
properties of programming language related systems. Such properties include type preserva-
tion, determinancy of evaluation, and the correctness of an OS microkernel and of various
compilers: see, for example, [41, 42, 44, 59].

As noted in [5], the poor support for binders in syntax was one problem that held
back proof assistants from achieving even more widespread use by programming language
researchers and practitioners. In recent years, a number of enhancements to programming
languages and to proof assistants have been developed for treating bindings. These go by
names such as locally nameless [12, 76], nominal reasoning [3, 14, 69, 83], and parametric
higher-order abstract syntax [15]. Some of these approaches involve extending underlying
programming language implementations while the others do not extend the proof assistant
or programming language but provide various packages, libraries, and/or abstract datatypes
that attempt to orchestrate various issues surrounding the syntax of bindings. In the end,
nothing canonical seems to have arisen: see [4, 68] for detailed comparisons.

2 An analogy: concurrency theory

While extending mature proof assistants (such as Coq, HOL, and Isabelle) with facilities to
handle bindings is clearly possible, it seems desirable to consider directly the computational
principles surrounding the treatment of binding in syntax independent of a given programming
language. Developments in programming design has, of course, run into similar situations
where there was a choice to be made between accounting for features by extending existing
programming languages or by the development of new programming languages. Consider,
for example, the following analogous (but more momentous) situation.

Historically speaking, the first high-level, mature, and expressive programming languages
to be developed were based on sequential computation. When those languages were forced
to deal with concurrency, parallelism, and distributed computing, they were augmented with,
say, thread packages and remote procedure calls. Earlier pioneers of computer programming
languages and systems – e.g., Dijkstra, Hoare, Milner – saw concurrency and communications
not as incremental improvements to existing imperative languages but as a new paradigm
deserving a separate study. The concurrency paradigm required a fresh and direct examina-
tion and in this respect, we have seen a great number of concurrency frameworks appear:
e.g., Petri nets, CSP, CCS, IO-automata, and the π-calculus. Given the theoretical results
and understanding that have flowed from work on these and related calculi, it has been
possible to find ways for conventional programming languages to make accommodations
within the concurrency and distributed computing settings. Such understanding and accom-
modations were not likely to flow from clever packages added to programming languages:
new programming principles from the theory of concurrency and distributed computing were
needed.

Before directly addressing some of the computational principles behind bindings in syntax,
it seems prudent to critically examine the conventional design of a wide range of proof
assistants. (The following section updates a similar argument found in [52].)
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3 Dropping mathematics as an intermediate

Almost all ambitious theorem provers in use today follow the following two step approach to
reasoning about computation.

Step 1: Implement mathematics. This step is achieved by picking a general, well understood
formal system. Common choices are first-order logic, set theory, higher-order logic
[16, 36], or some foundation for constructive mathematics, such as Martin-Löf type theory
[18, 19, 45].

Step 2: Reduce reasoning about computation to mathematics. Computation is generally
encoded via some model theoretic semantics (such as denotational semantics) or as an
inductive definition over an operational semantics.

A key methodological element of this proposal is that we shall drop mathematics as an
intermediate and attempt to find more direct and intimate connections between computation,
reasoning, and logic. The main problem with having mathematics in the middle seems to be
that many aspects of computation are rather “intensional” but a mathematical treatment
requires an extensional encoding. The notion of algorithm is an example of this kind of
distinction: there are many algorithms that can compute the same function (say, the function
that sorts lists). In a purely extensional treatment, it is functions that are represented
directly and algorithm descriptions that are secondary. If an intensional default can be
managed instead, then function values are secondary (usually captured via the specification
of evaluators or interpreters).

For a more explicit example, consider whether or not the formula ∀wi. λx.x 6= λx.w

is a theorem. In a setting where λ-abstractions denote functions (the usual extensional
treatment), we have not provided enough information to answer this question: in particular,
this formula is true if and only if the domain type i is not a singleton. If, however, we are
in a setting where λ-abstractions denote syntactic expressions, then it is sensible for this
formula to be provable since no (capture avoiding) substitution of an expression of type i for
the w in λx.w can yield λx.x.

For a more significant example, consider the problem of formalizing the metatheory
of bisimulation-up-to [56, 72] for the π-calculus [57]. Such a metatheory can be used to
allow people working in concurrent systems to write hopefully small certificates (actual
bisimulations-up-to) in order to guarantee that bisimulation holds (usually witnessed directly
by only infinite sets of pairs of processes). In order to employ the Coq theorem prover, for
example, to attack such metatheory, Coq would probably need to be extended with packages in
two directions. First, a package that provides flexible methods for doing coinduction following,
say, the Knaster-Tarski fixed point theorems, would be necessary. Indeed, such a package has
been implemented and used to prove various metatheorems surrounding bisimulation-up-to
(including the subtle metatheory surrounding weak bisimulation) [11, 70, 71]. Second, a
package for the treatment of bindings and names that are used to describe the operational
semantics of the π-calculus would need to be added. Such packages exist (for example, see
[6]) and, when combined with treatments of coinduction, may allow one to make progress on
the metatheory of the π-calculus. Recently, the Hybrid systems [27] has shown a different
way to incorporate both induction, coinduction, and binding into a Coq (and Isabelle)
implementation. Such an approach could be seen as one way to implement this metatheory
task on top of an established formalization of mathematics.

There is another approach that seeks to return to the most basic elements of logic by
reconsidering the notion of terms (allowing them to have binders as primitive features) and the
notion of logical inference rules so that coinduction can be seen as, say, the de Morgan (and

TYPES 2016
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proof theoretic) dual to induction. In that approach, proof theory principles can be identified
in that enriched logic with least and greatest fixed points [7, 47, 58] and with a treatment of
bindings [81, 32]. Such a logic has been given a model-checking-style implementation [9] and
is the basis of the Abella theorem prover [8, 31]. Using such implementations, the π-calculus
has been implemented, formalized, and analyzed in some detail [80, 79] including some of
the metatheory of bisimulation-up-to for the π-calculus [13].

I will now present some foundational principles in the treatment of bindings that are
important to accommodate directly, even if we cannot immediately see how those principles
might fit into existing mature programming languages and proof assistants.

4 How abstract is your syntax?

Two of the earliest formal treatments of the syntax of logical expressions were given by
Gödel [35] and Church [16] and, in both of these cases, their formalization involved viewing
formulas as strings of characters. Clearly, such a view of logical expressions contains too much
information that is not semantically meaningful (e.g., white space, infix/prefix distinctions,
parenthesis) and does not contain explicitly semantically relevant information (e.g., the
function-argument relationship). For this reason, those working with syntactic expressions
generally parse such expressions into parse trees: such trees discard much that is meaningless
(e.g., the infix/prefix distinction) and records directly more meaningful information (e.g.,
the child relation denotes the function-argument relation). One form of “concrete nonsense”
generally remains in parse trees since they traditionally contain the names of bound variables.

One way to get rid of bound variable names is to use de Bruijn’s nameless dummy
technique [21] in which (non-binding) occurrences of variables are replaced by positive
integers that count the number of bindings above the variable occurrence through which
one must move in order to find the correct binding site for that variable. While such an
encoding makes the check for α-conversion easy, it can greatly complicate other operations
that one might want to do on syntax, such as substitution, matching, and unification. While
all such operations can be supported and implemented using the nameless dummy encoding
[21, 43, 61], the complex operations on indexes that are needed to support those operations
clearly suggests that they are best dealt within the implementation of a framework and not
in the framework itself.

The following four principles about the treatment of bindings in syntax will guide our
further discussions.

Principle 1: The names of bound variables should be treated in the same way we
treat white space: they are artifacts of how we write expressions and they have no
semantic content.

Of course, the name of variables are important for parsing and printing expressions (just as
is white space) but such names should not be part of the meaning of an expression. This first
principle simply repeats what we stated earlier. The second principle is a bit more concrete.

Principle 2: There is “one binder to ring them all.”1

With this principle, we are adopting Church’s approach [16] to binding in logic, namely,
that one has only λ-abstraction and all other bindings are encoded using that binder. For
example, the universally quantified expression (∀x.B x) is actually broken into the expression

1 A scrambling of J. R. R. Tolkien’s “One Ring to rule them all, ... and in the darkness bind them.”
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(∀(λx.B x)), where ∀ is treated as a constant of higher-type. Note that this latter expression
is η-equivalent to (∀ B) and universal instantiation of that quantified expression is simply
the result of using λ-normalization on the expression (B t). In this way, many details about
quantifiers can be reduced to details about λ-terms.

Principle 3: There is no such thing as a free variable.

This principle is taken from Alan Perlis’s epigram 47 [63]. By accepting this principle, we
recognize that bindings are never dropped to reveal a free variable: instead, we will ask for
bindings to move. This possibility suggests the main novelty in this list of principles.

Principle 4: Bindings have mobility and the equality theory of expressions must
support such mobility [51, 53].

Since the other principles are most likely familiar to the reader, I will now describe this last
principle in more detail.

5 Mobility of bindings

Since typing rules are a common operation in metatheory, I illustrate the notion of binding
mobility in that setting. In order to specify untyped λ-terms (to which one might attribute
a simple type via an inference), we introduce a (syntactic) type tm and two constants

abs : (tm→ tm)→ tm and app : tm→ tm→ tm.

Untyped λ-terms are encoded as terms of type tm using the translation define as

dxe = x, dλx.te = (abs (λx.dte)), and d(t s)e = (app dte dse).

The first clause here indicates that bound variables in untyped λ-terms are mapped to
bound variables in the encoding. For example, the untyped λ-term λw.ww is encoded as
(abs λw. app w w). This translation has the property that it maps bijectively α-equivalence
classes of untyped λ-terms to αβη-equivalence classes of simply typed λ-terms of type tm.

In order to satisfy Principle 3 above, we shall describe a Gentzen-style sequent as a triple
Σ : ∆ ` B where B is the succedent (a formula), ∆ is the antecedent (a multiset of formulas),
and Σ a signature, that is, a list of variables that are formally bound over the scope of the
sequent. Thus all free variables in the formulas in ∆∪{B} are bound by Σ. Gentzen referred
to the variables in Σ as eigenvariables (although he did not consider them as binders over
sequents).

The following inference rule is a familiar rule.

Σ : ∆, typeof x (int→ int) ` C
Σ : ∆,∀τ(typeof x (τ → τ)) ` C ∀L

This rule states (when reading it from conclusions to premise) that if the symbol x can be
attributed the type τ → τ for all instances of τ , then it can be assumed to have the type
int→ int. Thus, bindings can be instantiated (the ∀τ is removed by instantiation). On the
other hand, consider the following inferences.

Σ, x : ∆, typeof dxe τ ` typeof dBe β
Σ : ∆ ` ∀x(typeof dxe τ ⊃ typeof dBe τ ′) ∀R

Σ : ∆ ` typeof dλx.Be (τ → τ ′)
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These inferences illustrate how bindings can, instead, move during the construction of a
proof. In this case, the term-level binding for x in the lower sequent can be seen as moving
to the formula-level binding for x in the middle sequent and then to the proof-level binding
(as an eigenvariable) for x in the upper sequent. Thus, a binding is not lost or converted to a
“free variable”: it simply moves.

The mobility of bindings needs to be supported by the equality theory of expressions.
Clearly, equality already includes α-conversion by Property 1. We also need a small amount
of β-conversion. If we rewrite this last inference rule using the definition of the d·e translation,
we have the inference figure.

Σ, x : ∆, typeof x τ ` typeof (Bx) τ ′

Σ : ∆ ` ∀x(typeof x τ ⊃ typeof (Bx) τ ′) ∀R

Σ : ∆ ` typeof (abs B) (τ → τ ′)

Note that here B is a variable of arrow type tm→ tm and that instances of these inference
figures will create an instance of (B x) that may be a β-redex. As I now argue, that β-redex
has a limited form. First, observe that B is a schema variable that is implicitly universally
quantified around this inference rule: if one formalizes this approach to type inference in,
say, λProlog, one would write a specification similar to the formula

∀B∀τ∀τ ′[∀x(typeof x τ ⊃ typeof (Bx) τ ′) ⊃ typeof (abs B) (τ → τ ′)].

Second, any closed instance of (B x) that is a β-redex is such that the argument x is not
free in the instance of B: this is enforced by the nature of (quantificational) logic since the
scope of B is outside the scope of x. Thus, the only form of β-conversion that is needed to
support this notion of binding mobility is the so-called β0-conversion rule [50]: (λx.t)x = t

or equivalently (in the presence of α-conversion) (λy.t)x = t[x/y], provided that x is not free
in λy.t.

Given that β0-conversion is such a simple operation, it is not surprising that higher-order
pattern unification, which simplifies higher-order unification to a setting only needing α, β0,
and η conversion, is decidable and unitary [50]. For this reason, matching and unification
can be used to help account for the mobility of binding. Note also that there is an elegant
symmetry provided by binding and β0-reduction: if t is a term over the signature Σ ∪ {x}
then λx.t is a term over the signature Σ and, conversely, if λx.s is a term over the signature
Σ then the β0-reduction of ((λx.s) y) is a term over the signature Σ ∪ {y}.

To illustrate how β0-conversion supports the mobility of binders, consider how one specifies
the following rewriting rule: given a conjunction of universally quantified formulas, rewrite it
to be the universal quantification of the conjunction of formulas. In this setting, we would
write something like:

(∀(λx.A x)) ∧ (∀(λx.B x)) 7→ (∀(λx.(A x ∧B x))).

To rewrite an expression such as (∀λz(p z z))∧ (∀λz(q a z)) (where p, q, and a are constants)
we first need to use β0-expansion to get the expression

(∀λz((λw.(p w w))z)) ∧ (∀λz((λw.(q a w))z))

At this point, the pattern variables A and B in the rewriting rule can now be instantiated
by the closed terms λw.(p w w) and λw.(q a w), respectively, which yields the expression

(∀(λx.((λw.(p w w)) x ∧ (λw.(q a w)) x))).
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Finally, a β0-contraction yields the expected expression (∀(λx.(p x x) ∧ (q a x))). Note that
at no time did a bound variable become unbound. Since pattern unification incorporates
β0-conversion, such rewriting can be accommodated simply by calls to such unification.

The analysis of these four principles above do not imply that full β-conversion is needed
to support them. Clearly, full β-conversion will implement β0-conversion and several systems
(which we shall speak about more below) that support λ-tree syntax do, in fact, implement
β-conversion. Systems that only implement β0-conversion have only been described in print.
For example, the Lλ logic programming language of [50] was restricted so that proof search
could be complete while only needing to do β0-conversion. The πI -calculus (the π-calculus
with internal mobility [74]) can also be seen as a setting where only β0-conversion is needed
[53].

6 Logic programming provides a framework

As the discussion above suggests, quantificational logic using the proof-search model of
computation can capture all four principles listed in the previous section. While it might be
possible to account for these principles also in, say, a functional programming language (a
half-hearted attempt at such a design was made in [49]), the logic programming paradigm
supplies an appropriate framework for satisfying all these properties. Such a framework is
available using the higher-order hereditary Harrop [54] subset of an intuitionistic variant of
Church’s Simple Theory of Types [16]: λProlog [53] is a logic programming language based
on that logic and implemented by the Teyjus compiler [73] and the ELPI interpreter [24].

The use of logic programming principles in proof assistants pushes against usual practice:
since the first LCF prover [37], many (most?) proof assistants have had intimate ties to
functional programming. For example, such theorem provers are often implemented using
functional programming languages: in fact, the notion of LCF tactics and tacticals was
originally designed and illustrated using functional programming principles [37]. Also, such
provers frequently view proofs constructively and can output the computational content of
proofs as functional programs [10].

I argue here that a framework based on logic programming principles might be more
appropriate for mechanizing metatheory than one based on functional programming principles.
Note that the arguments below do not lead to the conclusion that first-order logic programming
languages, such as Prolog, are appropriate for metalevel reasoning: direct support for λ-
abstractions and quantifiers (as well as hypothetical reasoning) are critical and are not
supported in first-order logic programming languages. Also, I shall focus on the specification
of mechanized metatheory tasks and not on their implementation: it is completely possible
that logic programming principles are used in specifications while a functional programming
language is used to implement that specification language (for example, Teyjus and Abella
are both implemented in OCaml).

6.1 Expressions versus values
In logic programming, (closed) terms denote themselves and only themselves (in the sense
of free algebra). It often surprises people that in Prolog, the goal ?- 3 = 1 + 2 fails, but
the expression that is the numeral 3 and the expression 1 + 2 are, of course, different
expressions. The fact that they have the same value is a secondary calculation (performed
in Prolog using the is predicate). Functional programming, however, fundamentally links
expressions and values: the value of an expression is the result of applying some evaluation
strategy (e.g., call-by-value) to an expression. Thus the value of both 3 and 1 + 2 is 3 and
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these two expressions are, in fact, equated. Of course, one can easily write datatypes in
functional programming languages that denote only expressions: datatypes for parse trees are
such an example. However, the global notion that expressions denote values is particularly
problematic when expressions denote λ-abstractions. The value of such expressions in
functional programming is trivial and immediate: such values simply denote a function (a
closure). In the logic programming setting, however, an expression that is a λ-abstraction is
just another expression: following the principles stated in Section 4, equality of two such
expressions needs to be based on the rather simple set of conversion rules α, β0, and η. The
λ-abstraction-as-expression aspect of logic programming is one of that paradigm’s major
advantages for the mechanization of metatheory.

6.2 Syntactic types
Given the central role of expressions (and not values), types in logic programming are better
thought of as denoting syntactic categories. That is, such syntactic types are useful for
distinguishing, say, encodings of types from terms from formula from proofs or program
expressions from commands from evaluation contexts. For example, the typeof specification
in Section 5 is a binary relation between the syntactic categories tm (for untyped λ-terms)
and, say, ty (for simple type expression). The logical specification of the typeof predicate
might attribute integer type or list type to different expressions via clauses such as

∀T : tm ∀L : tm ∀τ : ty [typeof T τ ⊃ typeof L (list τ) ⊃ typeof (T :: L) (list τ)].

Given our discussion above, it seems natural to propose that if τ and τ ′ are both syntactic
categories, then τ → τ ′ is a new syntactic category that describes objects of category τ ′ with
a variable of category τ abstracted. For example, if o denotes the category of formulas (a
la [16]) and tm denotes the category of terms, then tm→ o denotes the type of term-level
abstractions over formulas. As we have been taught by Church, the quantifiers ∀ and ∃ can
then be seen as constructors that take expressions of syntactic category tm→ o to formulas:
that is, these quantifiers are given the syntactic category (tm→ o)→ o.

6.3 Substitution lemmas for free
Consider an attempt to prove the sequent

Σ : ∆ ` typeof (abs R) (τ → τ ′)

where the assumptions (the theory) contains only one rule for proving such a statement, such
as the clause used in the discussion of Section 5. Since the introduction rules for ∀ and ⊃
are invertible, the sequent above is provable if and only if the sequent

Σ, x : ∆, typeof x τ ` typeof (R x) τ ′

is provable. Given that we are committed to using a proper logic (such as higher-order
intuitionistic logic), it is the case that modus ponens is valid and that instantiating an
eigenvariable in a provable sequent yields a provable sequent. In this case, the sequent

Σ : ∆, typeof N τ ` typeof (R N) τ ′

must be provable (for N a term of syntactic type tm all of whose free variables are in Σ).
Thus, we have just shown, using nothing more than rather minimal assumptions about the
specification of typeof (and formal properties of logic) that if Σ : ∆ ` typeof (abs B) (τ → τ ′)
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and Σ : ∆ ` typeof N τ then Σ : ∆ ` typeof (B N) τ ′. (Of course, instances of the term
(B N) are β-redexes and the reduction of such redexes result in the substitution of N into
the bound variable of the term that instantiates B.) Such lemmas about substitutions
are common and often difficult to prove [85]: in this setting, this lemma is essentially an
immediate consequent of using logic and logic programming principles [8, 46]. In this way,
Gentzen’s cut-elimination theorem (the formal justification of modus ponens) can be seen as
the mother of all substitution lemmas. The Abella theorem prover’s implementation of the
two-level logic approach to reasoning about computation [33, 48] makes it possible to employ
the cut-elimination theorem in exactly the style illustrated above.

6.4 Dominance of relational specifications
Another reason that logic programming can make a good choice for metatheoretic reasoning
systems is that logic programming is based on relations (not functions) and that metatheoretic
specifications are often dominated by relations. For example, the typing judgment describe
in the Section 5 is a relation. Similarly, both small step (SOS) and big step (natural
semantics) approaches to operational semantics describe evaluation, for example, as a
relation. Occasionally, specified relations – typing or evaluation – describe a partial function
but that is generally a result proved about the relation.

A few logic programming-based systems have been used to illustrate how typing and
operational semantic specifications can be animated. The core engine of the Centaur project,
called Typol, used Prolog to animate metatheoretic specifications [17] and λProlog has been
used to provide convincing and elegant specifications of typing and operational semantics for
expressions involving bindings [2, 53].

6.5 Dependent typing
The typing that has been motivated above is rather simple: one takes the notions of syntactic
types as syntactic category – e.g., programs, formulas, types, terms, etc – and adds the arrow
type constructor to denote abstractions of one syntactic type over another one. Since typing
is, of course, an open-ended concept, it is completely possible to consider any number of
ways to refine types. For example, instead of saying that a given expression denotes a term
(that is, the expression has the syntactic type for terms), one could instead say that such
an expression denotes, for example, a function from integers to integers. For example, the
typing judgment t : tm (“t denotes a term”) can be refined to t : tm (int→ int) (“t denotes a
term of type int→ int). Such richer types are supported (and generalized) by the dependent
type paradigm [20, 38] and given a logic programming implementation in, for example, Twelf
[64, 66].

Most dependently typed λ-calculi come with a fixed notion of typing and with a fixed
notion of proof (natural deduction proofs encoded as typed λ-terms). The reliance described
here on logical connectives and relations is expressive enough to specify dependently typed
frameworks [26, 77, 78] but it is not committed to only that notion of typing and proof.

7 λ-tree syntax

The term higher-order abstract syntax (HOAS) was originally defined as an approach to
syntax that used “a simply typed λ-calculus enriched with products and polymorphism” [65].
A subsequent paper identified HOAS as a technique “whereby variables of an object language
are mapped to variables in the meta-language” [66]. The term HOAS is problematic for a
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number of reasons. First, it seems that few, if any, researchers use this term in a setting that
includes products and polymorphism (although simple and dependently typed λ-calculus
are often used). Second, since the metalanguage (often the programming language) can
vary a great deal, the resulting notion of HOAS can vary similarly, including the case where
HOAS is a representation of syntax that incorporates function spaces on expressions [22, 39].
Third, the adjective higher-order seems inappropriate here: in particular, the equality (and
unification) of terms discussed in Section 5 is completely valid without reference to typing.
If there are no types, what exactly is “higher-order”? For these reasons, the term “λ-tree
syntax” [8, 53], with its obvious parallel to the term “parse tree syntax,” has been introduced
as a more appropriate term for the approach to syntactic representation described here.

While λ-tree syntax can be seen as a kind of HOAS (using the broad definition of
HOAS given in [66]), there is little connections between λ-tree syntax and the problematic
aspects of HOAS that arise when the latter uses function spaces to encode abstractions.
For example, there are frequent claims that structural induction and structural recursive
definitions are either difficult, impossible, or semantically problematic for HOAS: see, for
example, [29, 39, 40]. When we consider specifically λ-tree syntax, however, induction (and
coinduction) and structural recursion in the λ-tree setting have been given proof theoretic
treatments and implementations.

8 Reasoning with λ-tree syntax

Proof search (logic programming) style implementations of specifications can provide simple
forms of metatheory reasoning. For example, given the specification of typing, both type
checking and type inference are possible to automate using unification and backtracking
search. Similarly, a specification of, say, big step evaluation can be used to provide a symbolic
evaluator for at least simple expressions [17].

There is, however, much more to mechanizing metatheory than performing unification
and doing logic programming-style search. One must also deal with negations (difficult for
straightforward logic programming engines): for example, one wants to prove that certain
terms do not have simple types: for example,

` ¬ ∃τ : ty. typeof (abs λx (app x x)) τ.

Proving that a certain relation actually describes a (partial or total) function has proved to
be an important kind of metatheorem to prove: the Twelf system [66] is able to automatically
prove many of the simpler forms of such metatheorems. Additionally, one should also deal
with induction and coinduction and be able to reason directly about, say, bisimulation of
π-calculus expressions as well as confluence of λ-conversion.

In recent years, several researchers have developed two extensions to logic and proof
theory that have made it possible to reason in rich and natural ways about expressions
containing bindings. One of these extensions involved a proof theory for least and greatest
fixed points: results from [47, 82] have made it possible to build automated and interactive
inductive and coinductive theorem provers in a simple, relational setting. Another extension
[32, 55] introduced the ∇-quantifier which allows logic to reason in a rich and natural way
with bindings: in terms of mobility of bindings, the ∇-quantifier provides an additional
formula-level and proof-level binder, thereby enriching the expressiveness of quantificational
logic.

Given these developments in proof theory, it has been possible to build both an interactive
theorem prover, called Abella [8, 30], and an automatic theorem prover, called Bedwyr [9],
that unfolds fixed points in a style similar to a model checker. These systems have successfully
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been able to prove a range of metatheoretic properties about the λ-calculus and the π-calculus
[1, 8, 81]. The directness and naturalness of the encoding for the π-calculus bisimulation is
evident in the fact that simply adding the excluded middle on name equality changes the
interpretation of that one definition from open bisimulation to late bisimulation [81].

Besides the Abella, Bedwyr, and Twelf system mentioned above, there are a number of
other implemented systems that support some or all aspects of λ-tree syntax: these include
Beluga [67], Hybrid [27], Isabelle [62], Minlog [75], and Teyjus [60]. See [28] for a survey and
comparison of several of these systems.

The shift from conventional proof assistants based on functional programming principles
to assistants based on logic programming principles does disrupt a number of aspects of
proof assistants. For example, when computations are naturally considered as functional,
it seems that there is a lost of expressiveness and effectiveness if one must write those
specifications using relations. Recent work shows, however, that when a relation actually
encodes a function, it is possible to use the proof search framework to actually compute
that function [34]. A popular feature of many proof assistants is the use of tactics and
tacticals, which have been implemented using functional programs since their introduction
[37]. There are good arguments, however, that those operators can be given elegant and
natural implementations using (higher-order) logic programs [23, 25, 53]. The disruptions
that result from such a shift seem well worth exploring.

9 Conclusions

I have argued that parsing concrete syntax into parse trees does not yield a sufficiently
abstract representation of expressions: the treatment of bindings should be made more
abstract. I have also described and motivated the λ-tree syntax approach to such a more
abstract framework. For a programming language or proof assistant to support this level
of abstraction in syntax, equality of syntax must be based on α and β0 (at least) and must
allow for the mobility of binders from within terms to within formulas (i.e., quantifiers) to
within proofs (i.e., eigenvariables). I have also argued that the logic programming paradigm
– broadly interpreted – provides an elegant and high-level framework for specifying both
computation and deduction involving syntax containing bindings. This framework is offered
up as an alternative to the more conventional approaches to mechanizing metatheory using
formalizations based on more conventional mathematical concepts. While the POPLmark
challenge was based on the assumption that increments to existing provers will solve the
problems surrounding the mechanization of metatheory, I have argued and illustrated here
that we need to make a significant shift in the underlying paradigm that has been built into
today’s most mature proof assistants.
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Abstract
This is a short survey of the use of intersection types for reasoning in a finitary way about terms
interpretations in various models of lambda-calculus.
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1 Introduction

Intersection types have been introduced by Coppo and Dezani [6], with the aim of enforcing
the typability power of simple types, but they quite immediately turned out to be a very
powerful tool to reason about the semantics properties of programming languages.

In the general framework of denotational semantics of λ-calculus, intersection types supply
a logical description of various kind of λ-models. In particular they allow for a finitary
description of the interpretation of terms, through type assignment systems, assigning types
to terms starting from a context (finite assignment of types to free variables). Terms are
interpreted by sets either of types or of pairs of the shape (context, type), so reasoning
about the interpretation of a term can be done via type inference; in fact, in order to prove
the equivalence between two terms, it is sufficient to show that they share the same type
derivations. Although the type inference is usually undecidable, such a logical description of
models supplies concrete tools to reason in a finitary way about the interpretation of terms,
since a derivation grasps a finite piece of the semantic-interpretations.

The aim of this brief survey is to illustrate how this technique can be applied to three
different classes of models, in the general settings of continuous, stable and relational
semantics. I recall that a λ-model is a reflexive object in a cartesian closed category, i.e., a
space D such that the set of morphisms from D to D is a retract of D (in a more concise way
D . [D→ D]) [2].

2 Continuous Semantics

The first local description of a continuous λ-model through intersection types is in [3]. Then
various instances of continuous models have been studied (see, between others, [7, 8, 13, 1]).
A general correspondence between intersection types and continuous λ-models has been
described in [18].
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x : {A} `C,∇ x : A
ax

Γ `C,∇ M : A A ≤∇ B
Γ `C,∇ M : B

≤∇
Γ, x : σ `C,∇ M : A

Γ, x : σ ∪ τ `C,∇ M : A
w

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ

Γ
⋃

B∈σ ∆B `C,∇ MN : A
→ E

Figure 1 The continuous parametric type assignment system.

I Definition 1.
Types (TC) are defined (starting from a countable set C of constants) as:

A, B ::= a | σ → A

where a ∈ C, and σ is a finite set of types.
Let ∇ be any pre-order on TC, extended to sets in the following way:

σ ⊆ τ ⇒ τ ≤ σ
σ ≤ τ, A ≤ B ⇒ σ ∪ {A} ≤ τ ∪ {B}

and closed under:

σ′ ≤ σ, A ≤ B ⇔ σ → A ≤ σ′ → B

Let '∇ be the congruence induced by ∇, and ≤∇ the partial order on TC/ '∇.

I Remark. In order to describe different approaches in a uniform manner, I do not use explicit
the intersection connective. A set of types {A1, ..., An} corresponds to the more standard
notation A1 ∧ ...∧ An, where the intersection connective ∧ is considered modulo idempotency,
associativity and commutativity.

The continuous type assignment system, parametric with respect to C,∇, assigning to
λ-terms types in TC is defined in Figure 1, where Γ,∆ (contexts) are functions from variables
to finite subsets of TC , such that Γ(x) 6= ∅ for a finite number of variables.

Every type assignment system of this kind can be seen as a finitary description of the
interpretation of terms in a continuous λ-model DC,∇. In fact, for every set of types TC and
every partial order ≤∇, the set of subsets of TC/ '∇ equipped with the partial order defined
as: (σ vC,∇ τ if and only if τ ≤∇ σ) is a prime-algebraic lattice DC,∇, whose prime elements
are the singleton over TC/ '∇.

Moreover, types are notations for step functions, interpreting σ → A as a step function
approximating f , for every continuous function f such that A ∈ f(τ), for each τ wC,∇ σ.
Under this interpretation DC,∇ is a linear solution of the domain equation D . [D ⇒c D],
where [.⇒c .] denotes the space of continuous functions ordered pointwise, and the linearity
of the solution means that both the immersion-projection functions map prime elements into
prime elements. Let us call linear continuous models the models of this class. So DC,∇ gives
rise to a linear continuous λ-model DC,∇. On the other direction, every linear continuous
model can be described through a set of types equipped by a suitable intersection relation.
Let J.KDC,∇ be the interpretation function in DC,∇, defined as usual: the following theorem
holds.
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I Theorem 2. Γ `C,∇ M : A if and only if A ∈ JMKDC,∇
ρ , for all ρ such that Γ(x) ⊆ ρ(x).

So the interpretation of a term inMC,∇ is simply the set of types that can be assigned to it.
I Remark. If we define a filter to be a set of types closed under ≤∇, it turns out that the set
of types derivable for a given term is a filter. This justifies the fact that models of this kind
have been called “filter models” in the literature.

I Example 3.
1. The filter model in [3] (where C is an infinite set of type constants and ∇ is the pre-

order induced by the empty set of rules) supplies a solution of the domain equation
D = C× [D⇒ D], through a coding where the type constant a codes the prime element
(a,⊥), the type σ → A codes the prime element (⊥, σ → A), and the equation is solved by
the bijection (⊥, σ → A) 7→ σ → A.

2. The D∞ model of Scott [19] is described by C = {a} and ∇ is induced by the rules
{a ≤ ∅ → a, ∅ → a ≤ a} ([18]).

3. The Park model [17] is described by C = {a}, and ∇ is induced by the rules {a ≤ {a} →
a, {a} → a ≤ a} ([13]).

3 Stable semantics

The stable semantics is based on the notion of stable functions, introduced by Berry [4]. Here
I will consider a particular class of models based on stable functions, namely the coherence
spaces of Girard [11, 10]. A general correspondence between intersection types and stable
λ-model has been described in [15], based on a previous work studying the correspondence
between intersection types and qualitative models [12].

I Definition 4. Let C be a countable set of constants. Types and coherence type theory are
mutually defined as follows.

Types (TC,∇) are defined as:

A, B ::= a | σ → A

where a ∈ C, and σ is a finite set of types, such that ˝∇ (σ). i.e., A ˝∇ B, for all
A, B ∈ σ, A 6'4 B.
A coherence type theory ∇ is a pair (˝∇,'∇), where

˝∇ is a symmetric and antireflexive relation on TC,∇, closed under

σ → A ˝∇ τ → B⇔ either A ˝∇ B or ∃A′ ∈ σ, ∃B′ ∈ τ such that A′ ˇ∇ B′

(where A′ ˇ∇ B′ means A′ 6˝∇ B′ and A′ 6'∇ B′).
'∇ is an equivalence on types, extended to sets to sets in such a way that:

σ '∇ τ ⇔ their elements are pairwise '∇ .

The stable parametric type assignment system, parametric with respect to C,∇ is defined
in Figure 2, where Γ,∆ (contexts) are functions from variables to finite sets of types, such that
Γ(x) = σ implies ˝∇ (σ) and such that Γ(x) 6= ∅ for a finite number of variables. Moreover
F∇(∆1, ...,∆n) means (x : σ ∈ ∆i and x : τ ∈ ∆j imply either ˝∇ (σ, τ) or σ '4 τ).

Every type assignment system of this kind can be seen as a finitary description of the
interpretation of terms in a stable linear λ-model. In fact, for every choice of C and ∇,
SC,∇ = (TC/ '∇,¨), where ¨ (coherence) is the set theoretic union of ˝∇ and '∇, is a

TYPES 2016
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x : {A} `C,∇ x : A
ax

Γ `C,∇ M : A A '∇ B
Γ `C,∇ M : B

'∇

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ F∇(Γ ∪ (
⋃

B∈σ ∆B))
Γ

⋃
B∈σ ∆B `C,∇ MN : A

→ E

Figure 2 The stable parametric type assignment system.

coherence space. Moreover, types supply a notation for finite pieces of stable functions,
interpreting σ → A as an element of the trace of every stable function f , such that A ∈ f(σ)
and ∀τ ⊆ σ, A ∈ f(τ) if and only if τ '∇ σ. Under this interpretation SC,∇ is a linear
solution of the domain equation D . [D ⇒s D], where [. ⇒s .] denotes the space of stable
functions ordered pointwise. Let define linear stable models the models of this class.

So SC,∇ gives rise to a λ-model, let SC,∇. On the other direction, every linear stable model
can be described through a set of types equipped by a suitable type theory. Let J.KSC,∇ be
the interpretation function in SC,∇, defined in the usual way; the following theorem holds.

I Theorem 5. Γ `C,∇ M : A if and only if A ∈ JMKSC,∇
ρ , for all ρ such that Γ(x) ⊆ ρ(x).

So the interpretation of a term in SC,∇ is simply the set of types that can be assigned to it.

I Example 6.
1. Let C be a countable infinite set, ∇ = (¨,'), where ¨ is the minimum relation induced

by the rules: a ˝ A,∀a ∈ C, A ∈ TC,∇ and ' is the minimum congruence on types,
satisfying the conditions of Def.4. Then (TC,∇,¨) supplies a solution of the equation
S = C & [S⇒s S], choosing the type a to describe the token (1, a), and σ → A to describe
the token (2, σ → A). The solution is induced by the bijection (2, σ → A) 7→ σ → A.

2. Let C = {a}, let ¨ be the minimum relation and let ' be the minimum congruence
induced by {a ' ∅ → a}. Then the resulting λ-model is (in some sense) the stable
corresponding to D∞, built in [12].

3. Let C = {a}, let ¨ be as in the previous point, and let ' be the minimum congruence
induced by {a ' {a} → a}. Then the resulting λ-model is (in some sense) the stable
corresponding to the Park model, built in [12].

4 Relational semantics

The relational semantics has been developed by Bucciarelli, Manzonetto and Ehrhard ([5]). A
general correspondence between intersection types and relational λ-model has been described
in [16].
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x : [A] `C,∇ x : A
ax

Γ `C,∇ M : A A '∇ B
Γ `C,∇ M : B

'∇

Γ, x : σ `C,∇ M : A
Γ `C,∇ λx.M : σ → A → I

Γ `C,∇ M : σ → A (∆B `C,∇ N : B)B∈σ

Γ ]B∈σ ∆B `C,∇ MN : A → E

Figure 3 The relational parametric type assignment system.

I Definition 7.
Types (TC) are defined (starting from a countable set C of constants) as:

A, B ::= a | σ → A

where σ is a finite multiset of types.
A relational type theory '∇ is a congruence on types, behaving on multisets in the
following way:

σ '∇ τ ⇔ σ = [A1, ..., An], τ = [B1, ..., Bn] and Ai '∇ Bi

and closed under:

σ → A '∇ σ′ → B ⇔ σ '∇ σ′, A ' B

I Remark. The multisets of types [A1, ..., An] is an alternative notation for A1 ∧ ...∧ An, where
the intersection connective enjoys associativity and commutativity, but not idempotence; so
the congruence on multisets needs to take into account the multiplicity of elements. Let [ ]
denote the empty multiset.

The relational parametric type assignment system, parametric with respect to C,∇ is defined
in Figure 3, where Γ,∆ (contexts) are functions from variables to finite multisets of types,
such that Γ(x) 6= [ ] for a finite number of variables. Moreover ] denotes the multiset union.

An arrow type denotes a relation from Mfin(TC/ '∇) and TC/ '∇, where Mfin(.) is
the set of finite multisets. It turns out that TC/ '∇ supplies a solution of the equation
U . [U ⇒r U], where U is a set and [. ⇒r .] denotes the space of relations betweenMfin(U)
and U. But this space does not supply directly a λ-model, as shown in [9], since it has not
enough points. It is necessary to consider the space Fin(UV ar, U), which consists of the
finitary morphisms from UV ar to U, where V ar is a countable set of variables, and gives rise
to a λ-model. An element of such a space can be represented by a pre-typing, which is a pair
(Γ; A) of a context and a type, both considered modulo '∇: in fact pre-typings are elements
of a space RC,∇ = Fin((TC/ '∇)V ar, TC/ '∇) which supplies a λ-model RC,∇; let J.KRC,∇ be
its interpretation function, defined in the usual way. The following theorem holds.

I Theorem 8. Γ `C,∇ M : A if and only if (Γ′; A) ∈ JMKRC,∇
ρ , where Γ′ = ]i∆i, (∆i; Ai) ∈ ρ(xi),

for every Ai ∈ Γ(xi).

TYPES 2016
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I Example 9.
Choosing C = {a} and the type theory induced by [ ] → a ' a, we obtain the model
studied in [5].
Choosing C = {a} and the type theory induced by [a] → a ' a, we obtain the model
studied in [14].

5 Conclusion

Comparing the three parametric type assignment systems in Figure 1, 2 and 3, it turns out that
the three systems are quite different, from a proof theoretical point of view. The continuous
system uses idempotent intersection, it enjoys weakening, and requires a subsumption rule.
The stable system uses idempotent intersection too, but it is relevant (in the sense that
weakening is unsound) and requires an equivalence rule. Finally, the relational system uses
non-idempotent intersection, is relevant, and requires an equivalence rule. Moreover the
interpretation of a term is the set of types derivable for it in the first two systems, while is
the set of pre-typings in the third one. Despite these differences, they supply a logical tools
for reasoning in a uniform way about the denotational semantics of terms, in particular for
comparing terms from a semantics point of view. In fact, the following theorem holds.

I Theorem 10. Let MC,∇ be a (continous, stable, relational) λ-model, and let vMC,∇ be the
order relation between interpretations of terms in it. Then:

(∀Γ, A. Γ `C,∇ M : A implies Γ `C,∇ N : A) if and only if M vMC,∇ N.
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The univalence axiom expresses the principle of extensionality for dependent type theory. How-
ever, if we simply add the univalence axiom to type theory, then we lose the property of canonicity
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3:2 Propositional Extensionality in Higher-Order Minimal Logic

1 Introduction

The univalence axiom of Homotopy Type theory (HoTT) [11] postulates a constant

isotoid : A ' B → A = B

that is an inverse to the obvious function A = B → A ' B. However, if we simply add
this constant to Martin-Löf type theory, then we lose the important property of canonicity –
that every closed term of type A computes to a unique canonical object of type A. When a
computation reaches a point where we eliminate a path (proof of equality) formed by isotoid,
it gets “stuck”.

As possible solutions to this problem, we may try to do with a weaker property than
canonicity, such as propositional canonicity: that every closed term of type N is propositionally
equal to a numeral, as conjectured by Voevodsky. Or we may attempt to change the definition
of equality to make isotoid definable [9], or add a nominal extension to the syntax of the type
theory (e.g. Cubical Type Theory [3]).

We could also try a more conservative approach, and simply attempt to find a reduction
relation for a type theory involving isotoid that satisfies all three of the properties above.
There seems to be no reason a priori to believe this is not possible, but it is difficult to do
because the full Homotopy Type Theory is a complex and interdependent system. We can
tackle the problem by adding univalence to a much simpler system, finding a well-behaved
reduction relation, then doing the same for more and more complex systems, gradually
approaching the full strength of HoTT.

In this paper, we present a system we call PHOML, or predicative higher-order minimal
logic. It is a type theory with three kinds of typing judgement. There are proofs which
inhabit propositions, which are the terms of type Ω. The canonical propositions are those
constructed from ⊥ by implication ⊃. There are terms which inhabit types, which are the
simple types over Ω. Thirdly, there are paths which inhabit equations M =A N , where M
and N are terms of type A.

There are two canonical forms for proofs of M =Ω N . For any term ϕ : Ω, we have
ref (ϕ) : ϕ =Ω ϕ. We also add univalence for this system, in this form: if δ : ϕ ⊃ ψ and
ε : ψ ⊃ ϕ, then univϕ,ψ (δ, ε) : ϕ =Ω ψ.

This entails that in PHOML, two propositions that are logically equivalent are equal.
Every function of type Ω→ Ω that can be constructed in PHOML must therefore respect
logical equivalence. That is, for any F and logically equivalent x, y we must have that Fx
and Fy are logically equivalent. Moreover, if for x : Ω we have that Fx is logically equivalent
to Gx, then F =Ω→Ω G. Every function of type (Ω→ Ω)→ Ω must respect this equality;
and so on. This is the manifestation in PHOML of the principle that only homotopy invariant
constructions can be performed in homotopy type theory. (See Section 3.1.)

We present a call-by-name reduction relation for this system, and prove that every typable
term reduces to a canonical form. From this, it follows that the system is consistent.

For the future, we wish to include the equations in Ω, allowing for propositions such as
M =A N ⊃ N =A M . We wish to expand the system with universal quantification, and
expand it to a 2-dimensional system (with equations between proofs). We then wish to add
more inductive types and more dimensions, getting ever closer to full homotopy type theory.

1.1 Related Work
Another system with many of the same aims is cubical type theory (CTT) [3]. A similar
canonicity result has been proved for CTT [6].
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The system PHOML is almost a subsystem of cubical type theory. We can attempt to
embed PHOML into cubical type theory, mapping Ω to the universe U , and an equation
M =A N to either the type PathAM N or to Id A M N . However, PHOML has more
definitional equalities than the relevant fragment of cubical type theory; that is, there are
definitionally equal terms in PHOML that are mapped to terms that are not definitionally
equal in cubical type theory. In particular, ref (x)+

p and p are definitionally equal, whereas
the terms compix[]p and p are not definitionally equal in cubical type theory (but they are
propositionally equal). See Section 3.2.1 for more information.

Other systems with similar aims include Harper and Licata [7], who prove canonicity for
a system that includes equality reflection; and Angiuli, Harper and Wilson [1] who prove
canonicity for a system with univalence, dependent types and some higher inductive types,
but without any universes.

The proofs in this paper have been formalized in Agda. The formalization is available at
https://github.com/radams78/TYPES2016.

2 Predicative Higher-Order Minimal Logic with Extensional Equality

We call the following type theory PHOML, or predicative higher-order minimal logic with
extensional equality.

2.1 Syntax
Fix three disjoint, infinite sets of variables, which we shall call term variables, proof variables
and path variables. We shall use x and y as term variables, p and q as proof variables, e as a
path variable, and z for a variable that may come from any of these three sets.

The syntax of PHOML is given by the grammar:

Type A,B,C ::= Ω | A→ B

Term L,M,N,ϕ, ψ, χ ::= x | ⊥ | ϕ ⊃ ψ | λx : A.M |MN

Proof δ, ε ::= p | λp : ϕ.δ | δε | P+ | P−
Path P,Q ::= e | ref (M) | P ⊃∗ Q | univϕ,ψ (P,Q) |

λλλe : x =A y.P | PMNQ

Context Γ,∆,Θ ::= 〈〉 | Γ, x : A | Γ, p : ϕ | Γ, e : M =A N

Judgement J ::= Γ ` valid | Γ `M : A | Γ ` δ : ϕ |
Γ ` P : M =A N

In the path λλλe : x =A y.P , the term variables x and y must be distinct. (We also have
x 6≡ e 6≡ y, thanks to our stipulation that term variables and path variables are disjoint.)
The term variable x is bound within M in the term λx : A.M , and the proof variable p is
bound within δ in λp : ϕ.δ. The three variables e, x and y are bound within P in the path
λλλe : x =A y.P . We identify terms, proofs and paths up to α-conversion. We write E[z := F ]
for the result of substituting F for z within E, using α-conversion to avoid variable capture.

We shall use the word “expression” to mean either a type, term, proof, path, or equation
(an equation having the form M =A N). We shall use E, F , S and T as metavariables that
range over expressions.

Note that we use both Roman letters M , N and Greek letters ϕ, ψ, χ to range over terms.
Intuitively, a term is understood as either a proposition or a function, and we shall use Greek
letters for terms that are intended to be propositions. Formally, there is no significance to
which letter we choose.

Note also that the types of PHOML are just the simple types over Ω; therefore, no
variable can occur in a type.
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2.1.1 Intuitive Explanation

The intuition behind the new expressions is as follows (see also the rules of deduction
in Figure 2). For any object M : A, there is the trivial path ref (M) : M =A M . The
constructor ⊃∗ ensures congruence for ⊃ – if P : ϕ =Ω ϕ′ and Q : ψ =Ω ψ′ then P ⊃∗ Q :
ϕ ⊃ ψ =Ω ϕ′ ⊃ ψ′. The constructor univ gives “univalence” (propositional extensionality)
for our propositions: if δ : ϕ ⊃ ψ and ε : ψ ⊃ ϕ, then univϕ,ψ (δ, ε) is a path ϕ =Ω ψ. The
constructors + and − denote the action of transport along a path: if P is a path of type
ϕ =Ω ψ, then P+ is a proof of ϕ ⊃ ψ, and P− is a proof of ψ ⊃ ϕ.

The constructor λλλ gives functional extensionality. Let F and G be functions of type
A→ B. If Fx =B Gy whenever x =A y, then F =A→B G. More formally, if P is a path of
type Fx =B Gy that depends on x : A, y : A and e : x =A y, then λλλe : x =A y.P is a path
of type F =A→B G.

Finally, if P is a path M =A→B M ′, and Q is a path N =A N ′, then PMNQ is a path
MN =B M ′N ′.

Note. The equations M =A N are quite different from the identity types in Martin-Löf
Type Theory. In Martin-Löf Type Theory, the only constructor for the identity type is ref ( ).
In our system, the constructors for M =A N to vary with the type A.

The equations φ =Ω ψ have two constructors:
ref (φ) is a canonical path of φ =Ω φ.
If δ : φ ⊃ ψ and ε : ψ ⊃ ϕ, then univϕ,ψ (δ, ε) is a canonical path of φ =Ω ψ.

The equations F =A→B G have two constructors:
ref (F ) is a canonical path of F =A→B F

If P is a path of Fx =B Gy that depends on x : A, y : A and e : x =A y, then
λλλe : x =A y.P is a canonical path of F =A→B G.

We therefore define the canonical paths to be those of the form ref (M), univφ,ψ (δ, ε) or
λλλe : x =A y.P (see Definition 19).

2.1.2 Substitution and Path Substitution

Intuitively, if N and N ′ are equal then M [x := N ] and M [x := N ′] should be equal. To
handle this syntactically, we introduce a notion of path substitution. If N , M and M ′ are
terms, x a term variable, and P a path, then we shall define a path N{x := P : M = M ′}.
The intention is that, if Γ ` P : M =A M

′ and Γ, x : A ` N : B then Γ ` N{x := P : M =
M ′} : N [x := M ] =B N [x := M ′] (see Lemma 17).

I Definition 1 (Path Substitution). Given terms M1, . . . , Mn and N1, . . . , Nn; paths P1,
. . . , Pn; term variables x1, . . . , xn; and a term L, define the path

L{x1 := P1 : M1 = N1, . . . , xn := Pn : Mn = Nn}

as follows.
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xi{~x := ~P : ~M = ~N} def= Pi

y{~x := ~P : ~M = ~N} def= ref (y) (y 6≡ x1, . . . , xn)

⊥{~x := ~P : ~M = ~N} def= ref (⊥)

(LL′){~x := ~P : ~M = ~N}
def= L{~x := ~P : ~M = ~N}L′[~x:= ~M ]L′[~x:= ~N ]L

′{~x := ~P : ~M = ~N}

(λy : A.L){~x := ~P : ~M = ~N}
def= λλλe : a =A a

′.L{~x := ~P : ~M = ~N, y := e : a = a′}
(ϕ ⊃ ψ){~x := ~P : ~M = ~N} def= ϕ{~x := ~P : ~M = ~N} ⊃∗ ψ{~x := ~P : ~M = ~N}

We shall often omit the endpoints ~M and ~N .

I Note 2. The case n = 0 is permitted, and we shall have that, if Γ ` M : A then
Γ `M{} : M =A M . There are thus two paths from a term M to itself: ref (M) and M{}.
They are not always equal; for example, (λx : A.x){} ≡ λλλe : x =A y.e, which (after we
define the reduction relation) will not be convertible with ref (λx : A.x).

The following lemma shows how substitution and path substitution interact.

I Lemma 3. Let ~y be a sequences of variables and x a distinct variable. Then
1. M [x := N ]{~y := ~P : ~L = ~L′}

≡M{x := N{~y := ~P : ~L = ~L′} : N [~y := ~L] = N [~y := ~L′], ~y := ~P : ~L = ~L′}
2. M{~y := ~P : ~L = ~L′}[x := N ]

≡M{~y := ~P [x := N ] : ~L[x := N ] = ~L′[x := N ], x := ref (N) : N = N}

Proof. An easy induction on M in all cases. J

I Note 4. The familiar substitution lemma also holds as usual: t[~z1 := ~s1][~z2 := ~s2] ≡
t[~z1 := ~s1[~z2 := ~s2], ~z2 := ~s2]. We cannot form a lemma about the fourth case, simplifying
M{~x := ~P}{~y := ~Q}, because M{~x := ~P} is a path, and path substitution can only be
applied to a term.

We introduce a notation for simultaneous substitution and path substitution of several
variables:

I Definition 5. A substitution is a function that maps term variables to terms, proof variables
to proofs, and path variables to paths. We write E[σ] for the result of substituting the
expression σ(z) for z in E, for each variable z in the domain of σ.

A path substitution τ is a function whose domain is a finite set of term variables, and
which maps each term variable to a path. Given a path substitution τ and substitutions ρ, σ
with the same domain {x1, . . . , xn}, we write

M{τ : ρ = σ} for M{x1 := τ(x1) : ρ(x1) = σ(x1), . . . , τ(xn) : ρ(xn) = σ(xn)} .

2.1.3 Call-By-Name Reduction
I Definition 6 (Call-By-Name Reduction). Define the relation of call-by-name reduction →
on the expressions. The inductive definition is given by the rules in Figure 1.

TYPES 2016
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Reduction on Terms

(λx : A.M)N →M [x := N ]
M →M ′

MN →M ′N

ϕ→ ϕ′

ϕ ⊃ ψ → ϕ′ ⊃ ψ
ψ → ψ′

ϕ ⊃ ψ → ϕ ⊃ ψ′

Reduction on Proofs

(λp : ϕ.δ)ε→ δ[p := ε] ref (ϕ)+ → λp : ϕ.p ref (ϕ)− → λp : ϕ.p
δ → δ′

δε→ δ′ε univϕ,ψ (δ, ε)+ → δ univϕ,ψ (δ, ε)− → ε

P → Q

P+ → Q+
P → Q

P− → Q−

Reduction on Paths

(λλλe : x =A y.P )MNQ→ P [x := M,y := N, e := Q]

ref (λx : A.M)NN ′ P →M{x := P : N = N ′}

ref (ϕ) ⊃∗ ref (ψ)→ ref (ϕ ⊃ ψ)

ref (ϕ) ⊃∗ univψ,χ (δ, ε)→ univϕ⊃ψ,ϕ⊃χ (λp : ϕ ⊃ ψ.λq : ϕ.δ(pq), λp : ϕ ⊃ χ.λq : ϕ.ε(pq))

univϕ,ψ (δ, ε) ⊃∗ ref (χ)→ univϕ⊃χ,ψ⊃χ (λp : ϕ ⊃ χ.λq : ψ.p(εq), λp : ψ ⊃ χ.λq : ϕ.p(δq))

univϕ,ψ (δ, ε) ⊃∗ univϕ′,ψ′ (δ′, ε′)
→ univϕ⊃ϕ′,ψ⊃ψ′ (λp : ϕ ⊃ ϕ′.λq : ψ.δ′(p(εq)), λp : ψ ⊃ ψ′.λq : ϕ.ε′(p(δq)))

P → P ′

PMNQ→ P ′MNQ
M →M ′

ref (M)NN ′ P → ref (M ′)NN ′ P

P → P ′

P ⊃∗ Q→ P ′ ⊃∗ Q
Q→ Q′

P ⊃∗ Q→ P ⊃∗ Q′

Figure 1 Reduction in PHOML.

We write � for the reflexive transitive closure of →, and we write ∗↔ for the reflexive
symmetric transitive closure of →. We say an expression E is in normal form iff there is no
expression F such that E → F .

I Lemma 7 (Confluence). If E � F and E � G, then there exists H such that F � H and
G� H.

Proof. The proof is given in Appendix B. J

I Lemma 8 (Reduction respects path substitution). If M → N then M{τ : ρ = σ} → N{τ :
ρ = σ}.
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Proof. Induction on M → N . The only difficult case is β-contraction. We have

((λx : A.M)N){τ : ρ = σ}
≡(λλλe : x =A x

′.M{τ : ρ = σ, x := e : x = x′})N [ρ]N [σ]N{τ : ρ = σ}
→M{τ : ρ = σ, x := N{τ} : N [ρ] = N [σ]}
≡M [x := N ]{τ : ρ = σ} (Lemma 3) J

I Note 9.
1. Reduction on proofs and paths does not respect term substitution. For example, let

M ≡ λx : Ω.x. Then we have

ref (λy : Ω.y′)⊥⊥ ref (⊥)→ y′{y := ref (⊥) : ⊥ = ⊥} ≡ ref (y′)
(ref (λy : Ω.y′)⊥⊥ ref (⊥))[y′ := M ] ≡ ref (λy : Ω.M)⊥⊥ ref (⊥) (1)

ref (y′) [y′ := M ] ≡ ref (M) ≡ ref (λx : Ω.x) (2)

Expression (1) does not reduce to (2). Instead, (1) reduces to

M{y := ref (⊥) : ⊥ = ⊥}≡ λλλe : x =Ω x′.x{y := ref (⊥) : ⊥ = ⊥, x := e : x = x′}
≡ λλλe : x =Ω x′.e .

2. Reduction on terms does respect substitution: if M → N then M [x := P ]→ N [x := P ],
as is easily shown by induction on M → N .

2.2 Rules of Deduction
The rules of deduction of PHOML are given in Figure 2.

2.2.1 Metatheorems
In the lemmas that follow, the letter J stands for any of the expressions that may occur to
the right of the turnstile in a judgement, i.e. valid, M : A, δ : ϕ, or P : M =A N .

I Lemma 10 (Context Validity). Every derivation of Γ,∆ ` J has a subderivation of
Γ ` valid.

Proof. Induction on derivations. J

I Lemma 11 (Weakening). If Γ ` J , Γ ⊆ ∆ and ∆ ` valid then ∆ ` J .

Proof. Induction on derivations. J

I Lemma 12 (Type Validity).
1. If Γ ` δ : ϕ then Γ ` ϕ : Ω.
2. If Γ ` P : M =A N then Γ `M : A and Γ ` N : A.

Proof. Induction on derivations. The cases where δ or P is a variable use Context Validity. J

I Lemma 13 (Generation).
1. If Γ ` x : A then x : A ∈ Γ.
2. If Γ ` ⊥ : A then A ≡ Ω.
3. If Γ ` ϕ ⊃ ψ : A then Γ ` ϕ : Ω, Γ ` ψ : Ω and A ≡ Ω.
4. If Γ ` λx : A.M : B then there exists C such that Γ, x : A `M : C and B ≡ A→ C.

TYPES 2016



3:8 Propositional Extensionality in Higher-Order Minimal Logic

Contexts

(〈〉) 〈〉 ` valid (ctxT ) Γ ` valid
Γ, x : A ` valid (ctxP ) Γ ` ϕ : Ω

Γ, p : ϕ ` valid

(ctxE) Γ `M : A Γ ` N : A
Γ, e : M =A N ` valid

(varT ) Γ ` valid
Γ ` x : A (x : A ∈ Γ) (varP ) Γ ` valid

Γ ` p : ϕ (p : ϕ ∈ Γ)

(varE) Γ ` valid
Γ ` e : M =A N

(e : M =A N ∈ Γ)

Terms

(⊥) Γ ` valid
Γ ` ⊥ : Ω (⊃) Γ ` ϕ : Ω Γ ` ψ : Ω

Γ ` ϕ ⊃ ψ : Ω

(appT ) Γ `M : A→ B Γ ` N : A
Γ `MN : B (λT ) Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Proofs

(appP ) Γ ` δ : ϕ ⊃ ψ Γ ` ε : ϕ
Γ ` δε : ψ (λP ) Γ, p : ϕ ` δ : ψ

Γ ` λp : ϕ.δ : ϕ ⊃ ψ

(convP ) Γ ` δ : ϕ Γ ` ψ : Ω
Γ ` δ : ψ (ϕ ∗↔ψ)

Paths

(ref) Γ `M : A
Γ ` ref (M) : M =A M

(⊃∗) Γ ` P : ϕ =Ω ϕ′ Γ ` Q : ψ =Ω ψ′

Γ ` P ⊃∗ Q : ϕ ⊃ ψ =Ω ϕ′ ⊃ ψ′

(univ)
Γ ` δ : ϕ ⊃ ψ Γ ` ε : ψ ⊃ ϕ
Γ ` univϕ,ψ (δ, ε) : ϕ =Ω ψ

(plus)
Γ ` P : ϕ =Ω ψ

Γ ` P+ : ϕ ⊃ ψ
(minus)

Γ ` P : ψ =Ω ψ

Γ ` P− : ψ ⊃ ϕ

(λλλ)
Γ, x : A, y : A, e : x =A y ` P : Mx =B Ny

Γ `M : A→ B Γ ` N : A→ B

Γ ` λλλe : x =A y.P : M =A→B N

(appE) Γ ` P : M =A→B M ′ Γ ` Q : N =A N
′ Γ ` N : A Γ ` N ′ : A

Γ ` PNN ′Q : MN =B M ′N ′

(convE) Γ ` P : M =A N Γ `M ′ : A Γ ` N ′ : A
Γ ` P : M ′ =A N

′ (M ∗↔M ′, N ∗↔N ′)

Figure 2 Rules of Deduction of λoe.
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5. If Γ `MN : A then there exists B such that Γ `M : B → A and Γ ` N : B.
6. If Γ ` p : ϕ, then there exists ψ such that p : ψ ∈ Γ and ϕ ∗↔ψ.
7. If Γ ` λp : ϕ.δ : ψ, then there exists χ such that Γ, p : ϕ ` δ : χ and ψ ∗↔(ϕ ⊃ χ).
8. If Γ ` δε : ϕ then there exists ψ such that Γ ` δ : ψ ⊃ ϕ and Γ ` ε : ψ.
9. If Γ ` e : M =A N , then there exist M ′, N ′ such that e : M ′ =A N ′ ∈ Γ and M

∗↔M ′,
N
∗↔N ′.

10. If Γ ` ref (M) : N =A P , then we have Γ `M : A and M ∗↔N ∗↔P .
11. If Γ ` P ⊃∗ Q : ϕ =A ψ, then there exist ϕ1, ϕ2, ψ1, ψ2 such that Γ ` P : ϕ1 =Ω ψ1,

Γ ` Q : ϕ2 =Ω ψ2, ϕ ∗↔(ϕ1 ⊃ ψ1), ψ ∗↔(ϕ2 ⊃ ψ2), and A ≡ Ω.
12. If Γ ` univϕ,ψ (δ, ε) : χ =A θ, then we have Γ ` δ : ϕ ⊃ ψ, Γ ` ε : ψ ⊃ ϕ, χ ∗↔ϕ, θ ∗↔ψ

and A ≡ Ω.
13. If Γ ` λλλe : x =A y.P : M =B N then there exists C such that Γ, x : A, y : A, e : x =A

y ` P : Mx =C Ny and B ≡ A→ C.
14. If Γ ` PMM ′Q : N =A N ′, then there exist B, F and G such that Γ ` P : F =B→A G,

Γ ` Q : M =B M ′, N ∗↔FM and N ′ ∗↔GM ′.
15. If Γ ` P+ : ϕ, then there exist ψ, χ such that Γ ` P : ψ =Ω χ and ϕ ∗↔(ψ ⊃ χ).
16. If Γ ` P− : ϕ, there exist ψ, χ such that Γ ` P : ψ =Ω χ and ϕ ∗↔(χ ⊃ ψ).

Proof. Induction on derivations. J

2.2.2 Substitutions

I Definition 14. Let Γ and ∆ be contexts. A substitution from ∆ to Γ1, σ : ∆ ⇒ Γ, is a
substitution whose domain is dom Γ such that:

for every term variable x : A ∈ Γ, we have ∆ ` σ(x) : A;
for every proof variable p : ϕ ∈ Γ, we have ∆ ` σ(p) : ϕ[σ];
for every path variable e : M =A N ∈ Γ, we have ∆ ` σ(e) : M [σ] =A N [σ].

I Lemma 15 (Well-Typed Substitution). If Γ ` J , σ : ∆⇒ Γ and ∆ ` valid, then ∆ ` J [σ].

Proof. Induction on derivations. J

I Definition 16. If ρ, σ : ∆ ⇒ Γ and τ is a path substitution whose domain is the term
variables in dom Γ, then we write τ : σ = ρ : ∆⇒ Γ iff, for each variable x : A ∈ Γ, we have
∆ ` τ(x) : σ(x) =A ρ(x).

I Lemma 17 (Path Substitution). If τ : σ = ρ : ∆⇒ Γ and Γ `M : A and ∆ ` valid, then
∆ `M{τ : σ = ρ} : M [σ] =A M [ρ].

Proof. Induction on derivations. J

I Proposition 18 (Subject Reduction). If Γ ` s : T and s� t then Γ ` t : T .

Proof. It is sufficient to prove the case s → t. The proof is by a case analysis on s → t,
using the Generation, Well-Typed Substitution and Path Substitution Lemmas. J

1 These have also been called context morphisms, for example in Hoffman [5].
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2.2.3 Canonicity
I Definition 19 (Canonical Object).

The canonical propositions, are given by the grammar

θ ::= ⊥ | θ ⊃ θ

A canonical proof is one of the form λp : ϕ.δ.
A canonical path is one of the form ref (M), univφ,ψ (δ, ε) or λλλe : x =A y.P .

I Lemma 20. Suppose ϕ reduces to a canonical proposition θ, and ϕ ∗↔ψ. Then ψ reduces
to θ.

Proof. This follows from the fact that → satisfies the diamond property, and every canonical
proposition θ is a normal form. J

2.2.4 Neutral Expressions
I Definition 21 (Neutral). The neutral terms, paths and proofs are given by the grammar

Neutral term Mn ::= x |MnN

Neutral proof δn ::= p | P+
n | P−n | δnε

Neutral path Pn ::= e | Pn ⊃∗ Q | Q ⊃∗ Pn | (Pn)MNQ

3 Examples

We present two examples illustrating the way that proofs and paths behave in PHOML. In
each case, we compare the example with the same construction performed in cubical type
theory.

3.1 Functions Respect Logical Equivalence
As discussed in the introduction, every function of type Ω→ Ω that can be constructed in
PHOML must respect logical equivalence. This fact can actually be proved in PHOML, in
the following sense: there exists a proof δ of

f : Ω→ Ω, x : Ω, y : Ω, p : x ⊃ y, q : y ⊃ x ` δ : fx ⊃ fy

and a proof of fy ⊃ fx in the same context. Together, these can be read as a proof of “if
f : Ω→ Ω and x and y are logically equivalent, then fx and fy are logically equivalent”.

Specifically, take

δ
def= (ref (f)xy univx,y (p, q))+ .

Note that this is not possible in Martin-Löf Type Theory.
In cubical type theory, we can construct a term δ such that

f : Prop→ Prop, x : Prop, y : Prop, p : x.1→ y.1, q : y.1→ x.1 ` δ : (fx).1→ (fy).1

In fact, we can go further and prove that equality of propositions is equal to logical equivalence.
That is, we can prove

PathU (Path Propx y) ((x.1→ y.1)× (y.1→ x.1)) .
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3.2 Computation with Paths
Let > def= ⊥ ⊃ ⊥. Using propositional extensionality, we can construct a path of type
> = > ⊃ >, and hence a proof of > ⊃ (> ⊃ >). Now, there are two canonical proofs of
> ⊃ (> ⊃ >). We might strongly expect that the proof we have constructed is the one that
we used to construct the path > = > ⊃ >, but let us check that this is the one that our
computation rules produce.

We define

> := ⊥ ⊃ ⊥, ι := λp : ⊥.p, I := λx : Ω.x, F := λx : Ω.> ⊃ x, H := λh.h> .

Let Γ be the context

Γ def= x : Ω, y : Ω, e : x =Ω y .

Then we have

Γ ` λp : > ⊃ x.e+(pι) : (> ⊃ x) ⊃ y
Γ ` λm : y.λn : >.e−m : y ⊃ (> ⊃ x)
Γ ` univ

(
λp : > ⊃ x.e−m,λm : y.λn : >.e−m

)
: (> ⊃ x) =Ω y

Let P ≡ univ (λp : > ⊃ x.e+(pι), λm : y.λn : >.e−m). Then

∴ ` λλλe : x =Ω y.P : F =Ω→Ω I (3)
∴ ` (ref (H))FI(λλλe : x =Ω y.P ) : (> ⊃ >) =Ω > (4)
∴ ` ((ref (H))FI(λλλe : x =Ω y.P ))− : > ⊃ (> ⊃ >) (5)

And now we compute:

((ref (H))FI(λλλe : x =Ω y.P ))−

�((h>){h := λλλe : x =Ω y.P : F = I})−

≡((λλλe : x =Ω y.P )>>(ref (>)))−

→(P [x := >, y := >, e := ref (>)])−

≡univ
(
λp : > ⊃ >.ref (>)+ (pι), λm : >.λn : >.ref (>)−m

)−
→λm : >.λn : >.ref (>)−m

Therefore, given proofs δ, ε : >, we have

((ref (H))FI(λλλe : x =Ω y.P ))−δε� δ .

Thus, the construction gives a proof of > ⊃ (> ⊃ >) which, given two proofs of >, selects
the first. We could have anticipated this: consider the context ∆ def= X : Ω, Y : Ω, p : X. By
replacing in our example some occurrences of > with X and others with Y , and replacing ι
with p, we can obtain a path

Y =Ω X ⊃ Y

and hence a proof of Y ⊃ (X ⊃ Y ). By parametricity, any proof that we can construct in
the context ∆ of this proposition must return the left input.
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3.2.1 Comparison with Cubical Type Theory

In cubical type theory, we say that a type A is a proposition iff any two terms of type A are
propositionally equal; that is, there exists a path between any two terms of type A. Let

isProp (A) def= Πx, y : A.PathAxy

and let Prop be the type of all types in U that are propositions:

Prop def= ΣX : U.isProp (X) .

Let ⊥ be any type in the universe U that is a proposition; that is, there exists a term of
type isProp (⊥). (⊥ may be the empty type, but we do not require this in what follows.)

Define

> := ⊥ → ⊥

Then there exists a term >Prop of type isProp (>) (we omit the details). Define

I := λX : Prop.X.1, F := λX : Prop.> → X.1, H := λh.h(>,>Prop)

Then we have

` > : U ` I : Prop→ U ` F : Prop→ U ` H : (Prop→ U)→ U

From the fact that univalence is provable in cubical type theory [3], we can construct a
term Q such that

` Q : Path (Prop→ U) I F .

Hence we have

` 〈i〉H(Qi) : PathU HI HF

which is definitionally equal to

` 〈i〉H(Qi) : PathU > → >>

From this, we can apply transport to create a term Q′ : > → > → >. Applying this to any
terms δ, ε : > gives a term that is definitionally equal to

Q′δε = mapid>mapid> δ

where mapid represents transport across the trivial path:

mapidA t
def= compiA [] t (i does not occur in A) .

(For the details of the calculation, see Appendix A.)
The cubical model of type theory given in [2] validates the equations mapidX x = x and

Q′δε = δ. However, these are not definitional equalities in the version of cubical type theory
given in [3].
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4 Computable Expressions

We now proceed with the proof of canonicity for PHOML. Our proof follows the lines
of the Girard-Tait reducibility method [10]: we define what it means to be a computable
term (proof, path) of a given type (proposition, equation), and prove: (1) every typable
expression is computable (2) every computable expression reduces to either a neutral or a
canonical expression. In particular, every closed computable expression reduces to a canonical
expression.

In this section, we use E, F , S and T as metavariables that range over expressions. In
each case, either E and F are terms and S and T are types; or E and F are proofs and S
and T are propositions; or E and F are paths and S and T are equations.

I Definition 22 (Computable Expression). We define the relation |= E : T , read “E is a
computable expression of type T”, as follows.
|= δ : ⊥ iff δ reduces to a neutral proof.
For θ and θ′ canonical propositions, |= δ : θ ⊃ θ′ iff, for all ε such that |= ε : θ, we have
|= δε : θ′.
If ϕ reduces to the canonical proposition θ, then |= δ : ϕ iff |= δ : θ.
|= P : ϕ =Ω ψ iff |= P+ : ϕ ⊃ ψ and |= P− : ψ ⊃ ϕ.
|= P : M =A→B M ′ iff, for all Q, N , N ′ such that |= N : A and |= N ′ : A and
|= Q : N =A N

′, then we have |= PNN ′Q : MN =B M ′N ′.
|= M : A iff |= M{} : M =A M .

Note that the last three clauses define |= M : A and |= P : M =A N simultaneously by
recursion on A.

I Definition 23 (Computable Substitution). Let σ be a substitution with domain dom Γ. We
write |= σ : Γ and say that σ is a computable substitution on Γ iff, for every entry z : T in Γ,
we have |= σ(z) : T [σ].

We write |= τ : ρ = σ : Γ, and say τ is a computable path substitution between ρ and σ,
iff, for every term variable entry x : A in Γ, we have |= τ(x) : ρ(x) =A σ(x).

I Lemma 24 (Conversion). If |= E : S and S ∗↔T then |= E : T .

Proof. This follows easily from the definition and Lemma 20. J

I Lemma 25 (Expansion). If |= F : T and E → F then |= E : T .

Proof. An easy induction, using the fact that call-by-name reduction respects path substitu-
tion (Lemma 8). J

I Lemma 26 (Reduction). If |= E : T and E → F then |= F : T .

Proof. An easy induction, using the fact that call-by-name reduction is confluent (Lemma
7). J

I Definition 27. We introduce a closed term cA for every type A such that |= cA : A.

cΩ
def= ⊥

cA→B
def= λx : A.cB

I Lemma 28. |= cA : A

Proof. An easy induction on A. J
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I Lemma 29 (Weak Normalization).
1. If |= δ : φ then δ reduces to either a neutral proof or canonical proof.
2. If |= P : M =A N then P reduces either to a neutral path or canonical path.
3. If |= M : A then M reduces either to a canonical proposition or a λ-term.

Proof. We prove by induction on the canonical proposition θ that, if |= δ : θ, then δ reduces
to a neutral proof or a canonical proof of θ.

If |= δ : ⊥ then δ reduces to a neutral proof. Now, suppose |= δ : θ ⊃ θ′. Then |= δp : θ′,
so δp reduces to either a neutral proof or canonical proof by the induction hypothesis. This
reduction must proceed either by reducing δ to a neutral proof, or reducing δ to a λ-proof
then β-reducing.

We then prove by induction on the type A that, if |= P : M =A N , then P reduces to a
neutral path or a canonical path. The two cases are straightforward.

Now, suppose |= M : A, i.e. |= M{} : M =A M . Let A ≡ A1 → · · · → An → Ω. Then

|= M{}cA1cA1
cA1{}cA2cA2

· · · cAn{} : McA1 · · · cAn =Ω McA1 · · · cAn .

Therefore, McA1 · · · cAn reduces to a canonical proposition. The reduction must consist
either in reducing M to a canonical proposition (if n = 0), or reducing M to a λ-expression
then performing a β-reduction. J

I Lemma 30. If |= M : A→ B then M reduces to a λ-expression.

Proof. Similar to the last paragraph of the previous proof. J

I Lemma 31. For any term ϕ that reduces to a canonical proposition, we have |= ref (ϕ) :
ϕ =Ω ϕ.

Proof. In fact we prove that, for any terms M and ϕ such that ϕ reduces to a canonical
proposition, we have |= ref (M) : ϕ =Ω ϕ.

It is sufficient to prove the case where ϕ is a canonical proposition. We must show that
|= ref (M)+ : ϕ ⊃ ϕ and |= ref (M)− : ϕ ⊃ ϕ. So let |= δ : ϕ. Then |= ref (M)+

δ : ϕ and
|= ref (M)− δ : ϕ by Expansion (Lemma 25), as required. J

I Lemma 32. |= ϕ : Ω if and only if ϕ reduces to a canonical proposition.

Proof. If |= ϕ : Ω then |= ϕ{}+ : ϕ ⊃ ϕ. Therefore ϕ ⊃ ϕ reduces to a canonical proposition,
and so ϕ must reduce to a canonical proposition.

Conversely, suppose ϕ reduces to a canonical proposition θ. We have ϕ{} � θ{}, and
θ{}� ref (θ) for every canonical proposition θ. Therefore, |= ϕ{} : ϕ =Ω ϕ by Expansion
(Lemma 25). Hence |= ϕ : Ω. J

I Lemma 33. If δ is a neutral proof and ϕ reduces to a canonical proposition, then |= δ : ϕ.

Proof. It is sufficient to prove the case where ϕ is a canonical proposition. The proof is by
induction on ϕ.

If ϕ ≡ ⊥, then |= δ : ⊥ immediately from the definition.
If ϕ ≡ ψ ⊃ χ, then let |= ε : ψ. We have that δε is neutral, hence |= δε : χ by the

induction hypothesis. J

I Lemma 34. Let |= M : A and |= N : A. If P is a neutral path, then |= P : M =A N .
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Proof. The proof is by induction on A.
For A ≡ Ω: we have that P+ and P− are neutral proofs, and M and N reduce to

canonical propositions (by Lemma 32), so |= P+ : M ⊃ N and |= P− : N ⊃M by Lemma
33, as required.

For A ≡ B → C: let |= L : B, |= L′ : B and |= Q : L =B L′. Then we have |= ML : C,
|= NL′ : C and PLL′Q is a neutral path, hence |= PLL′Q : ML =C NL′ by the induction
hypothesis, as required. J

I Lemma 35. If |= M : A then |= ref (M) : M =A M .
Proof. If A ≡ Ω, this is just Lemma 31.

So suppose A ≡ B → C. Using Lemma 30, Reduction (Lemma 26) and Expansion
(Lemma 25), we may assume that M is a λ-term. Let M ≡ λy : D.N .

Let |= L : B and |= L′ : B and |= P : L =B L′. We must show that

|= ref (λy : D.N)LL′ P : (λy : D.N)L =C (λy : D.N)L′ .

By Expansion and Conversion, it is sufficient to prove

|= N{y := P : L = L′} : N [y := L] =C N [y := L′] .

We have that |= (λy : D.N){} : λy : D.N =B→C λy : D.N , and so

|= (λλλe : y =D y′.N{y := e : y = y′})LL′P : (λy : D.N)L =C (λy : D.N)L′ ,

and the result follows by Reduction and Conversion. J

I Lemma 36. If |= P : ϕ =Ω ϕ′ and |= Q : ψ =Ω ψ′ then |= P ⊃∗ Q : ϕ ⊃ ψ =Ω ϕ′ ⊃ ψ′.
Proof. By Reduction (Lemma 26) and Expansion (Lemma 25), we may assume that P and
Q are either neutral, or have the form ref (−) or univ−,− (−,−) or λλλe : x =A y.−.

We cannot have that P reduces to a λλλ-path; for let ϕ′ reduce to the canonical proposition
θ1 ⊃ · · · ⊃ θn ⊃ ⊥. Then we have

|= P+pq1 · · · qn : ⊥

and so P+pq1 · · · qn must reduce to a neutral path. Similarly, Q cannot reduce to a λλλ-path.
If either P or Q is neutral then P ⊃∗ Q is neutral, and the result follows from Lemma 34.
Otherwise, let |= δ : ϕ ⊃ ψ and ε |= ϕ′. We must show that |= (P ⊃∗ Q)+δε : ψ′.
If P ≡ ref (M) and Q ≡ ref (N), then we have

(P ⊃∗ Q)+δε→ ref (M ⊃ N)+
δε→ δε .

Now, |= P−ε : ϕ, hence |= ε : ϕ by Reduction, and so |= δε : ψ. Therefore, |= Q+(δε) : ψ′,
and hence by Reduction |= δε : ψ′ as required.

If P ≡ ref (M) and Q ≡ univN,N ′ (χ, χ′), then we have

(P ⊃∗ Q)+δε→ univM⊃N,M⊃N ′ (λpq.χ(pq), λpq.χ′(pq))+
δε

→ (λpq.χ(pq))δε
� χ(δε)

We have |= P−ε : ϕ, hence |= ε : ϕ by Reduction, and so |= δε : ψ. Therefore, |= Q+(δε) : ψ′,
and hence by Reduction |= χ(δε) : ψ′ as required.

The other two cases are similar. J

I Lemma 37. If |= δ : φ ⊃ ψ and |= ε : ψ ⊃ φ then |= univφ,ψ (δ, ε) : φ =Ω ψ.
Proof. We must show that |= univφ,ψ (δ, ε)+ : φ ⊃ ψ and |= univφ,ψ (δ, ε)− : ψ ⊃ φ. These
follow from the hypotheses, using Expansion (Lemma 25). J
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5 Proof of Canonicity

I Theorem 38.
1. If Γ ` J and |= σ : Γ, then |= J [σ].
2. If Γ `M : A and |= τ : ρ = σ : Γ, then |= M{τ : ρ = σ} : M [ρ] =A M [σ].

Proof. The proof is by induction on derivations. Most cases are straightforward, using the
lemmas from Section 4. We deal with one case here, the rule (λT ).

Γ, x : A `M : B
Γ ` λx : A.M : A→ B

1. We must show that

|= λx : A.M [σ] : A→ B .

So let |= Q : N =A N
′. Define the path substitution τ by

τ(x) ≡ Q, τ(y) ≡ ref (σ(y)) (y ∈ dom Γ)

Then we have |= τ : (σ, x := N) = (σ, x := N ′) : Γ, x : A, and so the induction hypothesis
gives

|= M{τ} : M [σ, x := N ] =B M [σ, x := N ′]

We observe that M{τ} ≡ M [σ]{x := Q : N = N ′} (Lemma 3), and so by Expansion
(Lemma 25) and Conversion (Lemma 24) we have

|= (λx : A.M [σ]){}NN ′Q : (λx : A.M [σ])N =B (λx : A.M [σ])N ′

as required.
2. We must show that

|= λλλe : x =A y.M{τ : ρ = σ, x := e : x = y} : λx : A.M [ρ] =A→B λx : A.M [σ] .

So let |= P : N =A N
′. The induction hypothesis gives

|= M{τ : ρ = σ, x := P : N = N ′} : M [ρ, x := N ] =B M [σ, x := N ′] ,

and so we have

|=(λλλe : x =A y.M{τ : ρ = σ, x := e : x = y})NN ′P

:(λx : A.M [ρ])N =B (λx : A.M [σ])N ′

by Expansion and Conversion, as required. J

I Corollary 39. Let Γ be a context in which no term variables occur.
1. If Γ ` δ : φ then δ reduces to a neutral proof or canonical proof.
2. If Γ ` P : M =A N then P reduces to a neutral path or canonical path.

Proof. Let id be the substitution Γ ⇒ Γ such that id(x) def= x. If Γ ` valid then |= id : Γ
using Lemmas 33 and 34.

Therefore, if Γ ` E : T then |= E[id] : T [id], that is, |= E : T . Hence E reduces to a
neutral expression or canonical expression. J
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I Corollary 40 (Canonicity). Let Γ be a context with no term variables.
1. If Γ ` δ : ⊥ then δ reduces to a neutral proof.
2. If Γ ` δ : φ ⊃ ψ then δ reduces either to a neutral proof, or a proof λp : φ′.ε where φ ∗↔φ′

and Γ, p : φ ` ε : ψ.
3. If Γ ` P : φ =Ω ψ then P reduces either to a neutral path; or to ref (χ) where φ ∗↔ψ ∗↔χ;

or to univφ′,ψ′ (δ, ε) where φ ∗↔φ′, ψ ∗↔ψ′, Γ ` δ : φ ⊃ ψ and Γ ` ε : ψ ⊃ φ.
4. If Γ ` P : M =A→B M ′ then P reduces either to a neutral path; or to ref (N) where

M
∗↔M ′ ∗↔N ; or to λλλe : x =A y.Q where Γ, x : A, y : A, e : x =A y ` Q : Mx =B M ′y.

Proof. A closed expression cannot be neutral, so from the previous corollary every typed
closed expression must reduce to a canonical expression. We now apply case analysis to the
possible forms of canonical expression, and use the Generation Lemma. J

I Corollary 41 (Conistency). There is no δ such that ` δ : ⊥.

I Note 42. We have not proved canonicity for terms. However, we can observe that PHOML
restricted to terms and types is just the simply-typed lambda calculus with one atomic type
Ω and two constants ⊥ and ⊃; and our reduction relation restricted to this fragment is head
reduction. Canonicity for this system is already a well-known result (see e.g. [4, Ch. 4]).

6 Conclusion and Future Work

We have presented a system with propositional extensionality, and shown that it satisfies the
property of canonicity. This gives hope that it will be possible to find a computation rule for
homotopy type theory that satisfies canonicity, and that does not involve extending the type
theory, either with a nominal extension of the syntax as in cubical type theory or otherwise.

We now intend to do the same for stronger and stronger systems, getting ever closer to
full homotopy type theory. The next steps will be:

a system with infinitely many propositional universes Ω0, Ω1, . . . , where each equations
M =A N is an object of a universe Ωn for some n, allowing us to form propositions such
as M =A N ⊃ N =A M .
a system with universal quantification over the types A, allowing us to form propositions
such as ∀x : A.x =A x and ∀x, y : A.x =A y ⊃ y =A x

Ultimately, we hope to approach full homotopy type theory. The study of how the
reduction relation and its properties change as we move up and down this hierarchy of
systems should reveal facts about computing with univalence that might be lost when
working in a more complex system such as homotopy type theory or cubical type theory.
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A Calculation in Cubical Type Theory

We can prove that, if X is a proposition, then the type Σf : > → X.PathX x (fI) is
contractible (we omit the details). Let e[X,x, p] be the term such that

X : Prop, x : X.1, p : Σf : > → X.1.PathX.1x (fI)
`e[X,x, p] : Path (Σf : > → X.1.PathX.1x (fI)) 〈λt : >.x, 1X.1〉 p

Let step1[X,x] def= 〈〈λt : >.x, 1X.1〉, λp : Σf : > → X.1.PathX.1x (fI).e[X,x, p]〉. Then

X : Prop, x : X.1 ` step1[X,x] : isContr(Σf : > → X.1.PathX.1x (fI)) .

Let step2[X] ≡ λx : X.1.step1[X,x]. Then

X : Prop ` step2[X] : isEquiv (> → X.1)X.1 (λf : > → X.1.fI) .

Let E[X] ≡ 〈λf : > → X.1.fI, step2[X]〉. Then

X : Prop ` E[X] : Equiv (> → X.1)X.1

From this equivalence, we want to get a path from > → X.1 to X.1 in U . We apply the
proof of univalence in [3]

Let P [X] ≡ 〈i〉Glue[(i = 0) 7→ (> → X.1, E[X]), (i = 1) 7→ (X.1, equivkX.1)]X.1. Then

X : Prop ` P [X] : PathU (> → X.1)X.1

Let Q ≡ 〈i〉λx : Prop.P [X]i. Then

` Q : Path (Prop→ U)F I
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This is the term in cubical type theory that corresponds to λλλe : x =Ω y.P in PHOML
(formula 3). We now construct terms corresponding to formulas (4) and (5):

` 〈i〉H(Qi) : PathU (> → >)>

` λx : >.compi(H(Q(1− i)))[]x : > → > → >

Let us write output for this term:

output def= λx : >.compi(H(Q(1− i)))[]x .

And we calculate (using the notation from [3] section 6.2):

output
= λx : >.compi(Q(1− i)>)[]x
= λx : >.compi(P [>](1− i))[]x
= λx : >.compi(Glue[(i = 1) 7→ (> → >, E[>]), (i = 0) 7→ (>, equivk>)]>)[]x
= λx : >.glue[1F 7→ t1]a1

= λx : >.t1
= λx : >.(equivE[>] [] mapid> x).1
= λx : >.(contr(step1[>,mapid> x])[]).1
= λx : >.(compi

(Σf : > → >.Path> (mapid> x) (fI))
[]
〈λt : >.mapid> x, 1mapid>(x)〉).1

= λx : >.mapid>→> (λy : >.mapid> x)

Therefore,

outputmn

= mapid>→> (λy : >.mapid>m)n
≡ (compi(> → >)[](λ:>.mapid>m))n
= mapid>mapid>m

B Proof of Confluence

The proof follows the same lines as the proof given in [8].

I Definition 43 (Parallel One-Step Reduction). Define the notion of parallel one-step reduction
B by the rules given in Figure 3. Let B∗ be the transitive closure of B.

I Lemma 44.
1. If E → F then E B F .
2. If E � F then E B∗ F .
3. If E B∗ F then E � F .

Proof. These are easily proved by induction. J

Our reason for defining B is that it satisfies the diamond property:
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Reflexivity

E B E

Reduction on Terms

(λx : A.M)N BM [x := N ]
M BM ′

MN BM ′N

ϕB ϕ′ ψ B ψ′

ϕ ⊃ ψ B ϕ′ ⊃ ψ′

Reduction on Proofs

(λp : ϕ.δ)εB δ[p := ε] ref (ϕ)+ B λp : ϕ.p ref (ϕ)− B λp : ϕ.p

univϕ,ψ (δ, ε)+ B δ univϕ,ψ (δ, ε)− B ε

δ B δ′

δεB δ′ε

P BQ

P+ BQ+
P BQ

P− BQ−

Reduction on Paths

(λλλe : x =A y.P )MNQB P [x := M,y := N, e := Q]

ref (λx : A.M)NN ′ P BM{x := P : N = N ′}

ref (ϕ) ⊃∗ ref (ψ)B ref (ϕ ⊃ ψ)

ref (ϕ) ⊃∗ univψ,χ (δ, ε)B univϕ⊃ψ,ϕ⊃χ (λp : ϕ ⊃ ψ.λq : ϕ.δ(pq), λp : ϕ ⊃ χ.λq : ϕ.ε(pq))

univϕ,ψ (δ, ε) ⊃∗ ref (χ)B univϕ⊃χ,ψ⊃χ (λp : ϕ ⊃ χ.λq : ψ.p(εq), λp : ψ ⊃ χ.λq : ϕ.p(δq))

univϕ,ψ (δ, ε) ⊃∗ univϕ′,ψ′ (δ′, ε′)
Bunivϕ⊃ϕ′,ψ⊃ψ′ (λp : ϕ ⊃ ϕ′.λq : ψ.δ′(p(εq)), λp : ψ ⊃ ψ′.λq : ϕ.ε′(p(δq)))

P B P ′

PMNQB P ′MNQ
M BN

ref (M)NN ′ P B ref (M ′)NN ′ P

P B P ′ QBQ′

P ⊃∗ QB P ′ ⊃∗ Q

Figure 3 Parallel One-Step Reduction.

I Lemma 45 (Diamond Property). If E B F and E BG then there exists an expression H

such that F BH and GBH.

Proof. The proof is by case analysis on E B F and E BG. We give the details for one case
here:

ref (φ) ⊃∗ ref (ψ)B ref (φ ⊃ ψ) and ref (φ) ⊃∗ ref (ψ)B ref (φ′) ⊃∗ ref (ψ′)

where φ B φ′ and ψ B ψ′. In this case, we have ref (φ ⊃ ψ) B ref (φ′ ⊃ ψ′) and ref (φ′) ⊃∗
ref (ψ′)B ref (φ′ ⊃ ψ′). J

I Corollary 46. If E B∗ F and E B∗ G then there exists H such that F B∗ H and GB∗ H.

I Corollary 47. If E � F and E � G then F � H and G� H.

Proof. Immediate from the previous corollary and Lemma 44. J
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Abstract
Intuitionistic first-order logic extended with a restricted form of Markov’s principle is constructive
and admits a Curry-Howard correspondence, as shown by Herbelin. We provide a simpler proof of
that result and then we study intuitionistic first-order logic extended with unrestricted Markov’s
principle. Starting from classical natural deduction, we restrict the excluded middle and we
obtain a natural deduction system and a parallel Curry-Howard isomorphism for the logic. We
show that proof terms for existentially quantified formulas reduce to a list of individual terms
representing all possible witnesses. As corollary, we derive that the logic is Herbrand constructive:
whenever it proves any existential formula, it proves also an Herbrand disjunction for the formula.
Finally, using the techniques just introduced, we also provide a new computational interpretation
of Arithmetic with Markov’s principle.
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where P is a primitive recursive predicate [12]. When added to Heyting Arithmetic, Markov’s
principle gives rise to a constructive system, that is, one enjoying the disjunction and the
existential witness property [12] (if a disjunction is derivable, one of the disjuncts is derivable
too, and if an existential statement is derivable, so it is one instance of it). Furthermore,
witnesses for any provable existential formula can be effectively computed using either
Markov’s unbounded search and Kleene’s realizability [9] or much more efficient functional
interpretations [7, 3].

1.1 Markov’s Principle in First-Order Logic
The very shape of Markov’s principle makes it also a purely logical principle, namely an
instance of the double negation elimination axiom. But in pure logic, what exactly should
Markov’s principle correspond to? In particular, what class of formulas should P be restricted
to? Since Markov’s principle was originally understood as a constructive principle, it is
natural to restrict P as little as possible, while maintaining the logical system as constructive
as possible. As proven by Herbelin [8], it turns out that asking that P is propositional and
with no implication → symbols guarantees that intuitionistic logic extended with such a
version of Markov’s principle is constructive. The proof of this result employs a Curry-Howard
isomorphism based on a mechanism for raising and catching exceptions. As opposed to the
aforementioned functional interpretations of Markov’s principle, Herbelin’s calculus is fully
isomorphic to an intuitionistic logic: there is a perfect match between reduction steps at
the level of programs and detour eliminations at the level of proofs. Moreover, witnesses for
provable existential statements are computed by the associated proof terms. Nevertheless,
as we shall later show, the mechanism of throwing exceptions plays no role during these
computations: intuitionistic reductions are entirely enough for computing witnesses.

A question is now naturally raised: as no special mechanism is required for witness
computation using Herbelin’s restriction of Markov’s principle, can the first be further
relaxed so that the second becomes stronger as well as computationally and constructively
meaningful? Allowing the propositional matrix P to contain implication destroys the
constructivity of the logic. It turns out, however, that Herbrand constructivity is preserved.
An intermediate logic is called Herbrand constructive if it enjoys a strong form of Herbrand’s
Theorem [5, 4]: for every provable formula ∃αA, the logic proves as well an Herbrand
disjunction

A[m1/α] ∨ . . . ∨A[mk/α]

So the Markov principle we shall interpret in this paper is

MP : ¬¬∃αP → ∃αP (P propositional formula)

and show that when added to intuitionistic first-order logic, the resulting system is Herbrand
constructive. This is the most general form of Markov’s principle that allows a significant
constructive interpretation: we shall show how to non-trivially compute lists of witnesses
for provable existential formulas thanks to an exception raising construct and a parallel
computation operator. MP can also be used in conjunction with negative translations to
compute Herbrand disjunctions in classical logic, something which is not possible with
Herbelin’s form of Markov’s principle.

1.2 Restricted Excluded Middle
The Curry-Howard correspondence we present here is by no means an ad hoc construction, only
tailored for Markov’s principle. It is a simple restriction of the Curry-Howard correspondence
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for classical first-order logic introduced in [4], where classical reasoning is formalized by the
excluded middle inference rule:

Γ, a : ∀xQ ` u : C Γ, a : ∃x¬Q ` v : C
EMΓ ` u ‖a v : C

It is enough to restrict the conclusion C of this rule to be an existential statement
∃xP, with P propositional, and the Q in the premises ∀xQ,∃x¬Q to be propositional. We
shall show that the rule is intuitionistically equivalent to MP. With our approach, strong
normalization is just inherited and the transition from classical logic to intuitionistic logic
with MP is smooth and natural.

1.3 Markov’s Principle in Arithmetic
We shall also provide a computational interpretation of Heyting Arithmetic with MP. The
system is constructive and witnesses for provable existential statements can be computed.
This time, we shall restrict the excluded middle as formalized in [2] and we shall directly
obtain the desired Curry-Howard correspondence. As a matter of fact, the interpretation of
MP in Arithmetic ends up to be a simplification of the methods we use in first-order logic,
because the decidability of atomic formulas greatly reduces parallelism and eliminates case
distinction on the truth of atomic formulas.

1.4 Plan of the Paper
In Section 2, we provide a simple computational interpretation of first-order intuitionistic
logic extended with Herbelin’s restriction of Markov’s principle. We also show that the
full Markov principle MP cannot be proved in that system. In Section 3, we provide a
Curry-Howard correspondence for intuitionistic logic with MP, by restricting the excluded
middle, and show that the system is Herbrand constructive. In Section 4, we extend the
Curry-Howard to Arithmetic with MP and show that the system becomes again constructive.

2 Herbelin’s Restriction of Markov’s Principle

In [8] Herbelin introduced a Curry-Howard isomorphism for an extended intuitionistic logic.
By employing exception raising operators and new reduction rules, he proved that the logic
is constructive and can derive the axiom scheme

HMP : ¬¬∃αP→ ∃αP (P propositional and → not occurring in P)

Actually, Herbelin allowed P also to contain existential quantifiers, but in that case the
axiom scheme is intuitionistically equivalent to ¬¬∃α1 . . . ∃αn P→ ∃α1 . . . ∃αn P, again with
P propositional and → not occurring in P. All of the methods of our paper apply to this
case as well, but for avoiding trivial details, we keep the present HMP.

Our first goal is to show that HMP has a simpler computational interpretation and to
provide a straightforward proof that, when added on top of first-order intuitionistic logic,
HMP gives rise to a constructive system. In particular, we show that the ordinary Prawitz
reduction rules for intuitionistic logic and thus the standard Curry-Howard isomorphism [6]
are enough for extracting witnesses for provable existential formulas. The crucial insight,
as we shall see, is that HMP can never actually appear in the head of a closed proof term
having existential type. It thus plays no computational role in computing witnesses; it plays
rather a logical role, in that it may be used to prove the correctness of the witnesses.

We start by fixing the first-order language of logical formulas.

TYPES 2016
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I Definition 1 (Formula Language). The language L of formulas is defined as follows.
1. The terms of L are inductively defined as either variables α, β, . . . or constants c or

expressions of the form f(t1, . . . , tn), with f a function constant of arity n and t1, . . . , tn ∈
L.

2. There is a countable set of predicate symbols. The atomic formulas of L are all the
expressions of the form P(t1, . . . , tn) such that P is a predicate symbol of arity n and
t1, . . . , tn are terms of L. We assume to have a 0-ary predicate symbol ⊥ which represents
falsity.

3. The formulas of L are built from atomic formulas of L by the logical constants ∨,∧,→,∀,∃,
with quantifiers ranging over variables α, β, . . .: if A,B are formulas, then A ∧B, A ∨B,
A→ B, ∀αA, ∃αB are formulas. The logical negation ¬A can be introduced, as usual,
as an abbreviation of the formula A→ ⊥.

4. Propositional formulas are the formulas whose only logical constants are ∧,∨,→; we say
that a propositional formula is negative whenever ∨ does not occur in it. Propositional
formulas will be denoted as P,Q . . . (possibly indexed). Formulas of the form ∀α1 . . . ∀αn P,
with P propositional and negative, will be called simply universal.

To achieve our goals, we now consider the usual natural deduction system for intuitionistic
first-order logic [11, 6], in the language L, to which we add HMP. Accordingly, we add to the
associated lambda calculus the constantsMP : ¬¬∃αP→ ∃αP. The resulting Curry-Howard
system is called IL + HMP and is presented in Figure 1.

The reduction rules for IL + HMP presented in Figure 2 are just the ordinary ones
of lambda calculus. On the other hand, MP has no computational content and thus no
associated reduction rule. Of course, the strong normalization of IL + HMP holds by virtue
of the result for standard intuitionistic Curry-Howard.

I Theorem 2. The system IL + HMP is strongly normalizing.

As we shall see in Theorem 5, the reason why HMP cannot be appear in the head of a
closed proof term having existential type is that its premise ¬¬∃αP is never classically valid,
let alone provable in intuitionistic logic.

I Proposition 3. Assume that the symbol → does not occur in the propositional formula P.
Then ¬¬∃αP is not classically provable.

Proof. We provide a semantical argument. The formula ¬¬∃αP is classically provable if
and only if it is classically valid and thus if and only if ∃αP is classically valid. For every
such a formula, we shall exhibit a model falsifying it. Consider the model M where every
n-ary predicate is interpreted as the empty n-ary relation. We show by induction on the
complexity of the formula P that PM = ⊥ for every assignment of individuals to the free
variables of P, and therefore (∃αP)M = ⊥.

If P is atomic, then by definition of M, we have PM = ⊥ for every assignment of the
variables.
If P = P1 ∧ P2, then since by induction PM

1 = ⊥, (P1 ∧ P2)M = ⊥
If P = P1 ∨ P2, then since by induction PM

1 = ⊥ and PM
2 = ⊥, (P1 ∨ P2)M = ⊥ J

In order to derive constructivity of IL + HMP, we shall just have to inspect the normal
forms of proof terms. Our main argument, in particular, will use the following well-known
syntactic characterization of the shape of proof terms.
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Grammar of Untyped Proof Terms

t, u, v ::= x | tu | tm | λxu | λαu | 〈t, u〉 | uπ0 | uπ1 | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u] | H⊥→P| MP

where m ranges over terms of the first-order language of formulas L, x over proof-term variables, α
over first-order variables.

Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, where each xi is a proof-term
variable, and xi 6= xj for i 6= j.

Axioms Γ, x : A ` x : A Γ ` MP : ¬¬∃αP→ ∃αP Γ ` H⊥→P : ⊥ → P

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` uπ0 : A

Γ ` u : A ∧B
Γ ` uπ1 : B

Implication Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Introduction Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elimination Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, y : B ` w2 : C
Γ ` u [x.w1, y.w2] : C

Universal Quantification Γ ` u : ∀αA
Γ ` um : A[m/α]

Γ ` u : A
Γ ` λαu : ∀αA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[m/α]
Γ ` (m,u) : ∃αA

Γ ` u : ∃αA Γ, x : A ` t : C
Γ ` u [(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

Figure 1 Term Assignment Rules for IL + HMP.

Reduction Rules for IL

(λx.u)t 7→ u[t/x]

(λα.u)m 7→ u[m/α]
〈u0, u1〉πi 7→ ui, for i=0,1
ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1
(m,u)[(α, x).v] 7→ v[m/α][u/x], for each term m of L

Figure 2 Reduction Rules for IL + HMP.

I Proposition 4 (Head of a Proof Term). Every proof-term of IL + HMP is of the form

λz1 . . . λzn. ru1 . . . uk

where
r is either a variable or a constant or a term corresponding to an introduction rule: λx.t,
λα.t, 〈t1, t2〉, ιi(t), (m, t)
u1, . . . uk are either proof terms, first order terms, or one of the following expressions
corresponding to elimination rules: πi, [x.w1, y.w2], [(α, x).t].

Proof. Standard. J

We are now able to prove that IL + HMP is constructive.
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I Theorem 5 (Constructivity of IL + HMP).
1. If IL + HMP ` t : ∃αA, and t is in normal form, then t = (m,u) and IL + HMP ` u :

A[m/α].
2. If IL+HMP ` t : A∨B and t is in normal form, then either t = ι0(u) and IL+HMP ` u : A

or t = ι1(u) and IL + HMP ` u : B.

Proof.
1. By Proposition 4, t must be of the form ru1 . . . uk. Let us consider the possible forms of

r.
Since t is closed, r cannot be a variable.
We show that r cannot be MP. If r were MP : ¬¬∃xP → ∃αP for some P, then
IL + MP ` u1 : ¬¬∃αP. Since IL + HMP is contained in classical logic, we have that
¬¬∃αP is classically provable. However we know from Proposition 3 that this cannot
be the case, which is a contradiction.
We also show that r cannot be H⊥→P. Indeed, if r were H⊥→P for some P, then
IL + MP ` u1 : ⊥, which is a contradiction.
The only possibility is thus that r is one among λx.t, λα.t, 〈t1, t2〉, ιi(t), (m, t). In
this case, k must be 0 as otherwise we would have a redex. This means that t = r and
thus t = (m,u) with IL + HMP ` u : A(m).

2. The proof goes along the same lines of case 1. J

Finally, we prove that IL + HMP is not powerful enough to express full Markov’s principle
MP. Intuitively, the reason is that IL + HMP is a constructive system and thus cannot be
strong enough to interpret classical reasoning. This would indeed be the case if IL + HMP
proved MP, an axiom which complements very well negative translations.

I Proposition 6. IL + HMP 0 MP.

Proof. Suppose for the sake of contradiction that IL + HMP ` MP. Consider any proof
in classical first-order logic of a simply existential statement ∃αP. By the Gödel-Gentzen
negative translation (see [12]), we can then obtain an intuitionistic proof of ¬¬∃αPN , where
PN is the negative translation of P, and thus IL + HMP ` ∃αPN . By Theorem 5, there is a
first-order term m such that IL+HMP ` PN [m/α]. Since PN [m/α] is classically equivalent to
P[m/α], we would have a single witness for every classically valid simply existential statement.
But this is not possible: consider for example the first-order language L = {P, a, b} and the
formula F = (P(a) ∨ P(b))→ P(α) where P is an atomic predicate. Then the formula ∃αF
is classically provable, but there is no term m such that F [m/α] is valid, let alone provable:

it cannot be m = a, as it is shown by picking a model where P is interpreted as the set
{b}
it cannot be m = b, because we can interpret P as the set {a}. J

3 Full Markov Principle and Restricted Excluded Middle in
First-Order Logic

In this section we describe the natural deduction system and Curry-Howard correspondence
IL + EM−1 , which arise by restricting the excluded-middle in classical natural deduction
[4]. This computational system is based on delimited exceptions and a parallel operator.
We will show that on one hand full Markov principle MP is provable in IL + EM−1 and, on
the other hand, that IL + MP derives all of the restricted classical reasoning that can be
expressed in IL + EM−1 , so that the two systems are actually equivalent. Finally, we show that
the system IL+EM−1 is Herbrand constructive and that witnesses can effectively be computed.
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In order to computationally interpret Markov’s principle, we consider the rule EM−1 ,
which is obtained by restricting the conclusion of the excluded middle EM1 [4, 2] to be a
simply existential formula:

Γ, a : ∀αP ` u : ∃βQ Γ, a : ∃α¬P ` v : ∃βQ (P and Q propositional and negative)
Γ ` u ‖a v : ∃βQ

This inference rule is complemented by the axioms:

Γ, a : ∀αP ` H∀αP
a : ∀αP

Γ, a : ∃α¬P ` W∃α¬P
a : ∃α¬P

These last two rules correspond respectively to a term making an Hypothesis and a term
waiting for a Witness and these terms are put in communication via EM−1 ; the variable a
in u ‖a v represents their communication channel and all the free occurrences of a in u and
v are bound in u ‖a v. In the terms H∀αAa and W∃αAa the free variables are a and those of A
minus α. A term of the form H∀αP

a m, with m first-order term, is said to be active, if its only
free variable is a: it represents a raise operator which has been turned on. The term u ‖a v
supports an exception mechanism: u is the ordinary computation, v is the exceptional one
and a is the communication channel. Raising exceptions is the task of the term H∀αP

a , when it
encounters a counterexample m to ∀αP; catching exceptions is performed by the term W∃α¬P

a .
For this reason, the notation raise∀αAa , as in [8], would also have been just fine, as well as
the far less evocative notation a∀αA. In first-order logic, however, there is an issue: when
should an exception be thrown? Since the truth of atomic predicates depends on models,
one cannot know. Therefore, each time H∀αP

a is applied to a term m, a new pair of parallel
independent computational paths is created, according as to whether P[m/α] is false or true.
In one path the exception is thrown, in the other not, and the two computations will never
join again. To render this computational behaviour, we add the rule EM0 of propositional
excluded middle over negative formulas

Γ, a : ¬P ` u : A Γ, a : P ` v : A EM0Γ ` u | v : A

even if in principle it is derivable from EM−1 ; we also add the axiom

Γ, a : P ` HP : P

Communication channel variables are not used in terms of the form u | v because there is
no useful information that can be raised by u and handed to v: the premises of EM0 are
completely void of positive information, because they are negative formulas; a cannot occur
in u nor in v. But u | v does not prevent the computation to go on, thanks to the permutation
rules and because negative propositional assumptions do not stop the computation, that is,
do not prevent normal proofs of existential statements to terminate with an ∃-introduction
rule.

We call the resulting system IL + EM−1 (Figure 3) and present its reduction rules in
Figure 4; they just form a restriction of the system IL+EM described in [4]. The permutation
rules for EM−1 are left out, because the inference conclusion already behaves like a “data
type”, so there is no need to further transform it. The other reduction rules are based on the
following definition, which formalizes the raise and catch mechanism.
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Grammar of Untyped Proof Terms

t, u, v ::= x | tu | tm | λxu | λαu | 〈t, u〉 | uπ0 | uπ1 | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]

| (u | v) | (u ‖a v) | H∀αAa | W∃αP
a | HP

where m ranges over terms of L, x over proof-term variables, α over first-order variables, a over
hypothesis variables, A is either a negative formula or a simply universal formula, and P is negative.
In the term u ‖a v there must be some formula P, such that a occurs free in u only in subterms of
the form H∀αP

a and a occurs free in v only in subterms of the form W∃αP
a , and the occurrences of the

variables in P different from α are free in both u and v.
Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, a1 : B1, . . . , am : Bm,, where

x1, . . . , xn are distinct proof-term variables and a1, . . . , am are distinct EM hypothesis variables.
Axioms Γ, x : A ` x : A Γ, a : ∀αA ` H∀αAa : ∀αA Γ, a : ∃αP ` W∃αP

a : ∃αP
Γ, a : P ` HP : P Γ ` H⊥→P : ⊥ → P

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` uπ0 : A

Γ ` u : A ∧B
Γ ` uπ1 : B

Implication Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Introduction Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elimination Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, y : B ` w2 : C
Γ ` u [x.w1, y.w2] : C

Universal Quantification Γ ` u : ∀αA
Γ ` um : A[m/α]

Γ ` u : A
Γ ` λαu : ∀αA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[m/α]
Γ ` (m,u) : ∃αA

Γ ` u : ∃αA Γ, x : A ` t : C
Γ ` u [(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

EM0
Γ, a : ¬P ` u : C Γ, a : P ` v : C

Γ ` u | v : C (P propositional and negative)

EM−
1

Γ, a : ∀αP ` u : ∃β Q Γ, a : ∃α¬P ` v : ∃β Q
Γ ` u ‖a v : ∃β Q (P,Q propositional and negative)

Figure 3 Term Assignment Rules for IL + EM−1 .

I Definition 7 (Exception Substitution). Suppose v is any proof term and m is a term of L.
Then:
1. If every free occurrence of a in v is in a subterm of the form W∃αP

a , we define

v[a := m]

as the term obtained from v by replacing each subterm W∃αP
a corresponding to a free

occurrence of a in v by (m, HP[m/α]).
2. If every free occurrence of a in v is in a subterm of the form H∀αP

a , we define

v[a := m]

as the term obtained from v by replacing each subterm H∀αP
a m corresponding to a free

occurrence of a in v by HP[m/α].
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Reduction Rules for IL

(λx.u)t 7→ u[t/x] (λα.u)m 7→ u[m/α]

〈u0, u1〉πi 7→ ui, for i=0,1

ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1

(m,u)[(α, x).v] 7→ v[m/α][u/x], for each term m of L

Permutation Rules for EM0

(u | v)w 7→ uw | vw

(u | v)πi 7→ uπi | vπi

(u | v)[x.w1, y.w2] 7→ u[x.w1, y]w2 | v[x.w1, y]w2

(u | v)[(α, x).w] 7→ u[(α, x).w] | v[(α, x).w]

Reduction Rules for EM−
1

u ‖a v 7→ u, if a does not occur free in u

u ‖a v 7→ v[a := m] | (u[a := m] ‖a v), whenever u has some active subterm H∀αP
a m

Figure 4 Reduction Rules for IL + EM−1 .

As we anticipated, our system is capable of proving the full Markov Principle MP and thus
its particular case HMP.

I Proposition 8 (Derivability of MP). IL + EM−1 ` MP

Proof. First note that with the use of EM0, we obtain that IL+EM−1 ` P∨¬P for any atomic
formula P. Therefore IL + EM−1 can prove any propositional tautology, and in particular
IL + EM−1 ` P∨Q↔ ¬(¬P∧¬Q) for any propositional formulas P,Q, thus proving that each
propositional formula is equivalent to a negative one.

Consider now any instance ¬¬∃αQ→ ∃αQ of MP. Thanks to the previous observation,
we obtain

IL + EM−1 `
(
¬¬∃αQ→ ∃αQ

)
↔

(
¬¬∃αP→ ∃αP

)
for some negative formula P logically equivalent to Q. The following formal proof shows that
IL + EM−1 ` ¬¬∃αP→ ∃αP.

[¬¬∃αP](2)

[∃αP](1)

[∀α¬P]EM−1
¬P [P ]∃

⊥
∃⊥ (1)

¬∃αP
⊥
∃αP

[∃α¬¬P]EM−1

[P]EM0

[¬¬P]∃ [¬P]EM0

⊥
P

EM0P
∃P

∃αP EM−1∃αP (2)
¬¬∃αP→ ∃αP

Finally, this implies IL + EM−1 ` ¬¬∃αQ→ ∃αQ. J
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Conversely, everything which is provable within our system can be proven by means of
first-order logic with full Markov principle.

I Theorem 9. If IL + EM−1 ` F , then IL + MP ` F .

Proof. We just need to show that IL + MP can prove the rules EM−1 and EM0. For the case
of EM0, note that IL + MP ` ¬¬P→ P for all propositional formulas P, thanks to MP. Since
for every propositional Q we have IL + MP ` ¬¬(Q ∨ ¬Q), we obtain IL + MP ` Q ∨ ¬Q, and
therefore IL + MP can prove EM0 by mean of an ordinary disjunction elimination.

In the case of EM−1 , if we are given the proofs of
∀αP
...
∃αC

and
∃α¬P

...
∃αC

in IL + MP, the

following derivation shows a proof of ∃αC in IL + MP.

[∀αP](1)

...
∃αC [¬∃αC](4)

⊥ (1)¬∀αP

[∃α¬P](2)

...
∃αC [¬∃αC](4)

⊥ (2)
¬∃α¬P

[¬P](3)

∃α¬P
⊥ (3)
¬¬P ¬¬P→ P

P
∀αP

⊥ (4)¬¬∃αC ¬¬∃αC→ ∃αC
∃αC

J

As in [4], all of our main results about witness extraction are valid not only for closed terms,
but also for quasi-closed ones, which are those containing only pure universal assumptions.

I Definition 10 (Quasi-Closed terms). An untyped proof term t is said to be quasi-closed, if
it contains as free variables only hypothesis variables a1, . . . , an, such that each occurrence
of them is in a term of the form H∀~αPi

ai
, where ∀~αPi is simply universal.

IL + EM−1 with the reduction rules in Figure 4 enjoys the Subject Reduction Theorem, as a
particular case of the Subject Reduction for IL + EM presented in [4].

I Theorem 11 (Subject Reduction). If Γ ` t : C and t 7→ u, then Γ ` u : C.

No term of IL + EM−1 gives rise to an infinite reduction sequence [4].

I Theorem 12 (Strong Normalization). Every term typable in IL+EM−1 is strongly normalizing.

We now update the characterization of proof-terms heads given in Proposition 4 to the
case of IL + EM−1 .

I Theorem 13 (Head of a Proof Term). Every proof term of IL + EM−1 is of the form:

λz1 . . . λzn.ru1 . . . uk

where
r is either a variable x, a constant HP or H∀αAa or W∃αP

a or an excluded middle term u ‖a v
or u | v, or a term corresponding to an introduction rule λx.t, λα.t, 〈t1, t2〉, ιi(t), (m, t)
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u1, . . . uk are either lambda terms, first order terms, or one of the following expressions
corresponding to elimination rules: πi, [x.w1, y.w2], [(α, x).t]

Proof. Standard. J

We now study the shape of the normal terms with the most simple types.

I Proposition 14 (Normal Form Property). Let P,P1, . . .Pn be negative propositional formulas,
A1, . . . , Am simply universal formulas. Suppose that

Γ = z1 : P1, . . . zn : Pn, a1 : ∀α1A1, . . . am : ∀αmAm

and Γ ` t : ∃αP or Γ ` t : P, with t in normal form and having all its free variables among
z1, . . . zn, a1, . . . am. Then:
1. Every occurrence in t of every term H∀αiAi

ai
is of the active form H∀αiAi

ai
m, where m is a

term of L.
2. t cannot be of the form u ‖a v.

Proof. We prove 1. and 2. simultaneously and by induction on t. There are several cases,
according to the shape of t:

t = (m,u), Γ ` t : ∃αP and Γ ` u : P[m/α]. We immediately get 1. by induction
hypothesis applied to u, while 2. is obviously verified.
t = λxu, Γ ` t : P = Q → R and Γ, x : Q ` u : R. We immediately get 1. by induction
hypothesis applied to u, while 2. is obviously verified.
t = 〈u, v〉, Γ ` t : P = Q∧R, Γ ` u : Q and Γ ` v : R. We immediately get 1. by induction
hypothesis applied to u and v, while 2. is obviously verified.
t = u | v, Γ, a : ¬Q ` u : ∃αP (resp. u : P) and Γ, a : Q ` v : ∃αP (resp. v : P). We
immediately get 1. by induction hypothesis applied to u and v, while 2. is obviously
verified.
t = u ‖a v. We show that this is not possible. Note that a must occur free in u, otherwise t
is not in normal form. Since Γ, a : ∀β A ` u : ∃αP, we can apply the induction hypothesis
to u, and obtain that all occurrences of hypothetical terms must be active; in particular,
this must be the case for the occurrences of H∀βAa , but this is not possible since t is in
normal form.
t = H∀αAi

ai
. This case is not possible, for Γ ` t : ∃αP or Γ ` t : P.

t = W∃αP
a . This case is not possible, since a : ∃αP is not in Γ.

t = HP. In this case, 1. and 2. are trivially true.
t is obtained by an elimination rule and by Theorem 13 we can write it as r t1 t2 . . . tn.
Notice that in this case r cannot correspond to an introduction rule neither be a term of
the form u ‖a v, because of the induction hypothesis, nor u | v, because of the permutation
rules and t being in normal form; moreover, r cannot be W∃αPb , otherwise b would be free
in t and b 6= a1, . . . , an. We have now two remaining cases:
1. r = xi (resp. r = HP). Then, since Γ ` xi : Pi (resp. Γ ` HP : P), we have that for

each i, either ti is πj or Γ ` ti : Q, where Q is a negative propositional formula. By
induction hypothesis, each ti satisfies 1. and also t, while 2. is obviously verified.

2. r = H∀αiAi
ai

. Then, t1 is a closed term of L. Let Ai = ∀γ1 . . . ∀γl Q, with Q propositional,
we have that for each i, either ti is a closed term of L or ti is πj or Γ ` ti : R, where R
is a negative propositional formula. By induction hypothesis, each ti which is a proof
term satisfies 1. and thus also t, while 2. is obviously verified. J
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If we omit the parentheses, we will show that every normal proof-term having as type an
existential formula can be written as v0 | v1 | . . . | vn, where each vi is not of the form u | v;
if for every i, vi is of the form (mi, ui), then we call the whole term an Herbrand normal
form, because it is essentially a list of the witnesses appearing in an Herbrand disjunction.
Formally:

I Definition 15 (Herbrand Normal Forms). We define by induction a set of proof terms,
called Herbrand normal forms, as follows:

Every normal proof-term (m,u) is an Herbrand normal form;
if u and v are Herbrand normal forms, u | v is an Herbrand normal form.

Our last task is to prove that all quasi-closed proofs of any existential statement ∃αA
include an exhaustive sequence m1,m2, . . . ,mk of possible witnesses. This theorem is
stronger than the usual Herbrand theorem for classical logic [4], since we are stating it for
any existential formula and not just for formulas with a single and existential quantifier.

I Theorem 16 (Herbrand Disjunction Extraction). Let ∃αA be a closed formula. Suppose
Γ ` t : ∃αA in IL + EM−1 for a quasi closed term t, and t 7→∗ t′ with t′ in normal form. Then
Γ ` t′ : ∃αA and t′ is an Herbrand normal form

(m0, u0) | (m1, u1) | . . . | (mk, uk)

Moreover, Γ ` A[m1/α] ∨ · · · ∨A[mk/α].

Proof. By the Subject Reduction Theorem 11, Γ ` t′ : ∃αA. We proceed by induction on
the structure of t′. According to Theorem 13, we can write t′ as ru1 . . . un. Note that since
t′ is quasi closed, r cannot be a variable; moreover, r cannot be a term HP or H∀αBb , otherwise
t′ would not have type ∃αA, nor a term W∃αP

b , otherwise t′ would not be quasi closed. r also
cannot be of the shape u ‖a v, otherwise Γ ` u ‖a v : ∃αQ, for some negative propositional
Q, but from Proposition 14 we know that this is not possible. By Theorem 13, we are now
left with only two possibilities.
1. r is obtained by an introduction rule. Then n = 0, otherwise there is a redex, and thus

the only possibility is t′ = r = (n, u) which is an Herbrand Normal Form.
2. r = u | v. Again n = 0, otherwise we could apply a permutation rule; then t′ = r = u | v,

and the thesis follows by applying the induction hypothesis on u and v.
We have thus shown that t′ is an Herbrand normal form

(m0, u0) | (m1, u1) | . . . | (mk, uk)

Finally, we have that for each i, Γi ` ui : A[mi/α], for the very same Γi that types (mi, ui)
of type ∃αA in t′. Therefore, for each i, Γi ` u+

i : A[m1/α] ∨ · · · ∨A[mk/α], where u+
i is of

the form ιi1(. . . ιik (ui) . . .). We conclude that

Γ ` u+
0 | u

+
1 | . . . | u

+
k : A[m1/α] ∨ · · · ∨A[mk/α] J

4 Markov’s Principle in Arithmetic

The original statement of Markov’s principle refers to Arithmetic and can be formulated in
the system of Heyting Arithmetic HA as

¬¬∃αP→ ∃αP, for P atomic
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By adapting IL + EM−1 to Arithmetic, following [2], we will now provide a new computational
interpretation of Markov’s principle. Note first of all that propositional formulas are decidable
in intuitionistic Arithmetic HA: therefore we will not need the rule EM−0 and the pure parallel
operator. For the very same reason, we can expect the system HA + EM−1 to be constructive
and the proof to be similar to the one of Herbrand constructivity for IL + EM−1 . In this
section indeed we will give such a syntactic proof. We could also have used the realizability
interpretation for HA + EM1 introduced in [2] (see [10]).

4.1 The system HA + EM−
1

We will now introduce the system HA + EM−1 . We start by defining the language:

I Definition 17 (Language of HA + EM−1 ). The language L of HA + EM1 is defined as follows.
1. The terms of L are inductively defined as either variables α, β, . . . or 0 or S(t) with t ∈ L.

A numeral is a term of the form S . . . S0.
2. There is one symbol P for every primitive recursive relation over N; with P⊥ we denote

the symbol for the complement of the relation denoted by P. The atomic formulas
of L are all the expressions of the form P(t1, . . . , tn) such that t1, . . . , tn are terms of
L and n is the arity of P. Atomic formulas will also be denoted as P,Q,Pi, . . . and
P(t1, . . . , tn)⊥ := P⊥(t1, . . . , tn).

3. The formulas of L are built from atomic formulas of L by the connectives ∨,∧,→,∀,∃ as
usual, with quantifiers ranging over numeric variables αN, βN, . . ..

The system HA + EM−1 in Figure 5 extends the usual Curry-Howard correspondence
for HA with our rule EM−1 and is a restriction of the system introduced in [2]. The purely
universal arithmetical axioms are introduced by means of Post rules, as in Prawitz [11].

As we anticipated, there is no need for a parallelism operator. Therefore EM−1 introduces
a pure delimited exception mechanism, explained by the reduction rules in Figure 6: whenever
we have a term u ‖a v and H∀αP

a m appears inside u, we can recursively check whether P[m/α]
holds, and switch to the exceptional path if it doesn’t; if it does, we can remove the instance
of the assumption. When there are no free assumptions relative to a left in u, we can forget
about the exceptional path.

Similarly to the previous sections, we extend the characterization of the proof-term heads
to take into account the new constructs.

I Theorem 18 (Head of a Proof Term). Every proof term of HA + EM−1 is of the form:

λz1 . . . λzn.ru1 . . . uk

where
r is either a variable x, a constant H∀αPa , W∃αPa , r or R, an excluded middle term u ‖a v,
or a term corresponding to an introduction rule λx.t, λα.t, 〈t1, t2〉, ιi(t), (m, t)
u1, . . . uk are either lambda terms, first order terms, or one of the following expressions
corresponding to elimination rules: πi, [x.w1, y.w2], [(α, x).t]

The new system proves exactly the same formulas that can be proven by making use of
Markov’s principle in Heyting Arithmetic.

I Theorem 19. For any formula F in the language L, HA + MP ` F if and only if
HA + EM−1 ` F .

Proof. The proof is identical as the one in the previous section. J
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Grammar of Untyped Terms

t, u, v ::= x | tu | tm | λxu | λαu | 〈t, u〉 | uπ0 | uπ1 | ι0(u) | ι1(u) | t[x.u, y.v] | (m, t) | t[(α, x).u]

| (u ‖a v) | H∀αP
a | W∃αP

a | True | Ruvm | rt1 . . . tn
where m ranges over terms of L, x over variables of the lambda calculus and a over EM1 hypothesis
variables. Moreover, in terms of the form u ‖a v there is a P such that all the free occurrences of a in
u are of the form H∀αP

a and those in v are of the form W∃αP⊥
a .

Contexts With Γ we denote contexts of the form e1 : A1, . . . , en : An, where ei is either a proof-term
variable x, y, z . . . or a EM−1 hypothesis variable a, b, . . .

Axioms Γ, x : A ` x : A Γ, a : ∀αNP ` H∀αP
a : ∀αNP Γ, a : ∃αNP⊥ ` W∃αPa : ∃αNP⊥

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` uπ0 : A

Γ ` u : A ∧B
Γ ` uπ1 : B

Implication Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Introduction Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elimination Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, y : B ` w2 : C
Γ ` u [x.w1, y.w2] : C

Universal Quantification Γ ` u : ∀αNA
Γ ` um : A[m/α]

Γ ` u : A
Γ ` λαu : ∀αNA

where m is any term of the language L and α does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[m/α]
Γ ` (m,u) : ∃αNA

Γ ` u : ∃αNA Γ, x : A ` t : C
Γ ` u [(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

Induction Γ ` u : A(0) Γ ` v : ∀αN.A(α)→ A(S(α))
Γ ` Ruvm : A[m/α] , where m is a term of L

Post Rules Γ ` u1 : A1 Γ ` u2 : A2 · · · Γ ` un : An
Γ ` u : A

where A1, A2, . . . , An, A are atomic formulas of HA and the rule is a Post rule for equality, for a Peano
axiom or for a classical propositional tautology or for booleans and if n > 0, u = ru1 . . . un, otherwise
u = True.

EM−
1

Γ, a : ∀αP ` u : ∃β Q Γ, a : ∃α¬P ` v : ∃β Q
Γ ` u ‖a v : ∃β Q (P atomic,Q negative propositional)

Figure 5 Term Assignment Rules for HA + EM1.

HA + EM−1 with the reduction rules in Figure 4 enjoys the Subject Reduction Theorem [2, 10].

I Theorem 20 (Subject Reduction). If Γ ` t : C and t 7→ u, then Γ ` u : C.

No term of HA + EM−1 gives rise to an infinite reduction sequence [1].

I Theorem 21 (Strong Normalization). Every term typable in HA + EM−1 is strongly normal-
izing.
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Reduction Rules for HA

(λx.u)t 7→ u[t/x] (λα.u)m 7→ u[m/α]

〈u0, u1〉πi 7→ ui, for i=0,1

ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1

(m,u)[(α, x).v] 7→ v[m/α][u/x], for each term m of L

Ruv0 7→ u

Ruv(Sn) 7→ vn(Ruvn), for each numeral n

Reduction Rules for EM−
1

u ‖a v 7→ u, if a does not occur free in u

u ‖a v 7→ v[a := n], if H∀αP
a n occurs in u and P[n/α] is closed and P[n/α] is false

(H∀αP
a )n 7→ True if P[n/α] is closed and P[n/α] is true

Figure 6 Reduction Rules for HA + EM1.

4.2 HA + EM−
1 is Constructive

We can now proceed to prove the constructivity of the system, that is the disjunction and
existential properties. We will do this again by inspecting the normal forms of the proof
terms; the first thing to do is adapting Proposition 14 to HA + EM−1 .

I Proposition 22 (Normal Form Property). Let P,P1, . . .Pn be negative propositional formulas,
A1, . . . Am simply universal formulas. Suppose that

Γ = z1 : P1, . . . zn : Pn, a1 : ∀α1A1, . . . am : ∀αmAm

and Γ ` t : ∃αP or Γ ` t : P, with t in normal form and having all its free variables among
z1, . . . zn, a1, . . . am. Then:
1. Every occurrence in t of every term H∀αiAi

ai
is of the active form H∀αiAi

ai
m, where m is a

term of L
2. t cannot be of the form u ‖a v.

Proof. The proof is identical to the proof of Proposition 14. We just need to consider the
following additional cases:

t = rt1t2 . . . tn. Then Γ ` ti : Qi for some atomic Qi and for i = 1 . . . n; thus 1. holds by
applying the inductive hypothesis to the ti, while 2. is obviously verified.
t = Rt1 . . . tn. This case is not possible, otherwise, since t3 is a numeral, t would not be
in normal form. J

Thanks to this, we can now state the main theorem. The proof of the existential property
is the same as the one for Theorem 16: we just need to observe that since we don’t have a
parallelism operator in HA + EM−1 , every Herbrand disjunction will consist of a single term.
The disjunction property will follow similarly.
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I Theorem 23 (Constructivity of HA + EM−1 ).
If HA + EM−1 ` t : ∃αA, then there exists a term t′ = (n, u) such that t 7→∗ t′ and
HA + EM−1 ` u : A[n/α]
If HA+EM−1 ` t : A∨B, then there exists a term t′ such that t 7→∗ t′ and either t′ = ι0(u)
and HA + EM−1 ` u : A, or t′ = ι1(u) and HA + EM−1 ` u : B

Proof. For both cases, we start by considering a term t′ such that t 7→∗ t′ and t′ is in normal
form. By the Subject Reduction Theorem 11 we have that HA + EM−1 ` t′ : ∃αA (resp.
HA + EM−1 ` t′ : A ∨ B). By Theorem 13 we can write t′ as rt1 . . . tn. Since t′ is closed, r
cannot be a variable x or a term H∀αP

a or W∃αP
a ; moreover it cannot be r, otherwise the type of

t′ would have to be atomic, and it cannot be R, otherwise the term would not be in normal
form. r also cannot have been obtained by EM−1 , otherwise HA + EM−1 ` r : ∃αP, for P
atomic and r = t1 ‖a t2; but this is not possible due to Proposition 22. Therefore, r must be
obtained by an introduction rule. We distinguish now the two cases:

HA + EM−1 ` t′ : ∃αB. Since the term is in normal form, n has to be 0, that is t′ = r and
r = (n, u); hence also HA + EM−1 ` u : A(n).
HA + EM−1 ` t′ : A ∨B. Then either t′ = ι0(u), and so HA + EM−1 ` u : A, or t′ = ι1(u),
and so HA + EM−1 ` u : B. J
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Abstract
Andromeda is an LCF-style proof assistant where the user builds derivable judgments by writing
code in a meta-level programming language AML. The only trusted component of Andromeda
is a minimalist nucleus (an implementation of the inference rules of an object-level type theory),
which controls construction and decomposition of type-theoretic judgments.

Since the nucleus does not perform complex tasks like equality checking beyond syntactic
equality, this responsibility is delegated to the user, who implements one or more equality checking
procedures in the meta-language. The AML interpreter requests witnesses of equality from user
code using the mechanism of algebraic operations and handlers. Dynamic checks in the nucleus
guarantee that no invalid object-level derivations can be constructed.

To demonstrate the flexibility of this system structure, we implemented a nucleus consisting
of dependent type theory with equality reflection. Equality reflection provides a very high level of
expressiveness, as it allows the user to add new judgmental equalities, but it also destroys desirable
meta-theoretic properties of type theory (such as decidability and strong normalization).

The power of effects and handlers in AML is demonstrated by a standard library that provides
default algorithms for equality checking, computation of normal forms, and implicit argument
filling. Users can extend these new algorithms by providing local “hints” or by completely re-
placing these algorithms for particular developments. We demonstrate the resulting system by
showing how to axiomatize and compute with natural numbers, by axiomatizing the untyped
λ-calculus, and by implementing a simple automated system for managing a universe of types.
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1 Introduction

A type theory can be interesting and very useful, yet lack metatheoretic properties (e.g.,
decidability) that permit a straightforward implementation. In fact, the more flexible and
expressive the theory, the less likely these properties will hold. Nevertheless, even very
expressive type theories deserve automated support in the form of proof assistants. The
question is how a useful proof assistant can make minimal demands on the properties of the
underlying object language. In this paper, we describe the structure of one such system.

Andromeda is an LCF-style proof assistant [12] in which (derivable) judgments are the
fundamental data of the system. These judgments are opaque except within a tiny, trusted
nucleus that implements rules of the underlying type theory (to construct new judgments
from old) and also implements valid inversion principles (to decompose judgments into
sub-judgments). The untrusted remainder of the hard-coded system is a small interpreter for
AML, an ML-like meta-language [18] extended with algebraic operations and handlers [21].

The AML interpreter builds and decomposes judgments by making (dynamically checked)
requests of the trusted nucleus. When these requests would fail (e.g., because a function is
being applied to an argument, and in violation of the appropriate typing rule the domain
type of the function is not syntactically identical to the type of the argument), the interpreter
triggers a suitable algebraic operation to request additional information (e.g., evidence of
equality between the mismatched types) from the user.

User-level AML code directs the construction of judgments, and consists of computations
that construct and pattern-match judgment values and user-level handlers that intercept and
respond to algebraic operations triggered during judgment construction. The consequence of
this design is that most proof-assistant functionality – including equality checking, normal-
ization, unification, and proof tactics – is handled at the user level. Effects and handlers
allow default implementations (necessarily incomplete for an undecidable object language)
that can be overridden using nested handlers, providing specialized algorithms for specific
trouble spots.

The specific expressive object language is largely independent of this system design, but
some readers may find our chosen type theory independently interesting. The type theory
currently implemented in Andromeda is dependent type theory with equality reflection, the
principle that propositionally equal terms are judgmentally equal:

Γ ` u : EqA(s, t)
Γ ` s ≡ t : A

From a mathematical point of view, equality reflection is appealing and natural, as it
makes equality in type theory behave like ordinary equality in mathematics. (In Coq, for
example, the types “vector of length 0 + n” and “vector of length n” are equal because
0 + n and n are judgmentally equal, but a “vector of length n + 0” requires an explicit
coercion to be used as a “vector of length n” because n+ 0 is only propositionally equal to n.)
From the perspective of homotopy type theory, equality reflection is suitable for “set-level”
mathematics, i.e., those mathematical structures that do not exhibit any higher homotopical
phenomena. Among these are substantial parts of algebra, analysis, and logic, including
many aspects of meta-theory of type theory.

Building equality reflection into a proof assistant has practical advantages. First, equality
reflection lets users axiomatize type-theoretic constructions such as natural numbers with
judgmental equalities, meaning that we can implement a smaller trusted core type theory
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with a wider variety of possible user extensions. Second, applications of equality reflection
are not recorded in the conclusion, and omitting the explicit equality eliminators keeps terms
smaller and simpler.

The proof assistant NuPRL [2] validated equality reflection by implementing so-called
computational type theory, a specific interpretation of type theory akin to realizability models.
More recently, however, equality reflection has fallen into disrepute among computer scientists
and computationally minded mathematicians. It causes the loss of useful meta-theoretic
properties such as strong normalization of terms and decidability of type checking [14], the
cornerstones of modern proof assistants like Coq [7], Agda [19] and Lean [10]. Even the
property “if an application of a lambda abstraction to an argument is well typed, then its
β-reduct is well typed” may not hold if the user assumes nonstandard type equalities.

Nevertheless, the use of effects and handlers allows Andromeda to take advantage of
equality reflection and to deal with its negative consequences gracefully.

Contributions. The present paper should be read as a progress report on the development
of Andromeda; the system and the underlying type theory may evolve as we gain more
experience and consider a wider variety of applications. We focus on the following points of
interest:

the goals of Andromeda and the structure of the system (§2);
the impact of equality reflection on both the design of the type-theoretic nucleus and the
details of its implementation (§3, Appendix A);
features of the meta-language that allow a variety of proof-development techniques to be
implemented at the user level (§4);
a discussion of the soundness of the system (§5);
a prototype standard library that provides user-extensible equality checking and implicit-
argument filling (§6);
axiomatization of additional type-theoretic structures (dependent sums, natural numbers,
untyped λ-calculus, and universes), with the desired judgmental equalities and support
for automation (§7).

Andromeda is free software, available at http://www.andromeda-prover.org/. Contri-
butions, questions, and requests are most welcome.

2 An overview of Andromeda

Andromeda follows design principles that are similar to those of other proof assistants:
The system should work well in the common case. Equality reflection affords many
possibilities for complicating one’s life, but we expect most applications to be very
reasonable. If the user introduces new computation and extensionality rules that play
nicely with the existing ones, the system should work smoothly. Nevertheless, less common
scenarios should still work, possibly with more effort on the part of the user.
The user cannot be expected to write down explicit typing annotations on all terms, or
hold in their head various bureaucratic matters, such as the typing contexts. Therefore,
the system should take care of low-level details.
There should be a clearly delineated nucleus that is the only part of the implementation
that the user has to trust3 in order to believe that Andromeda never produces an invalid

3 Except for trusting the OCaml compiler, the operating system, the hardware, and the absence of
malicious cosmic rays.
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judgment. The nucleus should be as small as possible and its functionality should
implement type theory in the most straightforward way possible.
A consequence of this minimalism is that the system should be user extensible, so that
additional functionality can be introduced without breaking trust.

Andromeda is implemented in the tradition of Robin Milner’s Logic for Computable
Functions (LCF) [12]. The current implementation, in OCaml [20], consists of around 9500
lines of source code, of which the nucleus comprises 1900 lines. These are very low numbers
that clearly classify Andromeda as a prototype. However, we do not expect the nucleus to
grow significantly.

The core of Andromeda is the trusted nucleus that directly implements inference rules
and inversion rules for dependent type theory with equality reflection. By design, it is the
only part of the system that can create and manipulate type-theoretic judgments. The
nucleus is small and simple, as it does not perform any proof search, unification, equality
checking, or normalization. (It cannot, since equality checking is in general undecidable and
there is no reasonable notion of normal form [14].) Whenever evidence of equality is needed
as a premise to an inference rule, it must be provided to the nucleus explicitly.

The user interacts with the system by writing code in the Andromeda meta-language
(AML), a general-purpose programming language in the style of ML. AML exposes the
nucleus datatype judgment as an abstract datatype of its own. Because judgments may only
be constructed by the nucleus, neither the OCaml implementation of AML nor any user
code written in AML need be trusted. AML handles only trivial syntactic equality checks.
All other evidence of equality is obtained from user-level code, through the mechanism of
algebraic operations and handlers [22, 3] (§4.3).

Users are free to organize their AML code in any way they see fit. In most cases they
would likely want a good axiomatization of standard type constructors (dependent sums,
inductive types, universes, etc.), equality checking algorithms that work well in the common
cases, and conveniences such as resolution of implicit arguments. These ought to be provided
by a standard library (§6). In principle, there may be several such libraries, or even several
equality checking algorithms in a single library. The handlers mechanism allows flexible and
local uses of several different equality checking algorithms.

AML is statically typed – and this caught many silly errors while we were coding a
standard library – but the AML type system is unrelated to the soundness of the system.
Bugs in AML code either prevent code from constructing the desired judgments or construct
an unintended judgment, but the abstract type of judgments and run-time checks in the
nucleus ensure that only derivable judgments are ever constructed. Any other memory-safe
metalanguage (e.g., one modeled on Python or Scheme) would be equally sound, if less
robust.

Andromeda in action

Before looking at the three constituent parts of Andromeda in more detail, we provide a
small worked example. At this point we cannot explain all the technical details, so we focus
on emphasizing the important points and showcasing what Andromeda can do.

We begin by declaring some constants that Andromeda adds to the ambient signature:
constant A : Type
constant a : A
constant b : A
constant P : A → Type
constant v : P a
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Andromeda manipulates only judgments. Thus the above declaration binds the AML variable
a to the nucleus judgment ` a : A, not to a bare symbol (and similarly for b, v, A and P).
Nevertheless, it is often convenient to think of a judgment as “a term with a given type,
possibly depending on some hypotheses”.

Let us first show that the type of transport is inhabited:
Π (x y : A), x ≡ y → P x → P y

In intensional type theory we would use a J eliminator, but here we should be able to use the
curried term λ x y ξ u, u. Indeed, u may be converted from P x to P y because these are
equal types by an application of the congruence rule for applications and equality reflection
of ξ : x ≡ y. The Andromeda standard library, which is implemented at the user-level,
does all this for us if we tell it to use ξ as an equality hint while checking that u has type P y:
λ (x y : A) (ξ : x ≡ y) (u : P x), (now hints = add_hint ξ in (u : P y))

The above is not a proof term but an AML computation that generates a judgment. In
particular, AML immediately evaluates the command inside the λ. While doing so it will find
it needs a witness for the equality between P x (the type of u) and P y (the type ascribed
to u); it requests one using the operations and handler mechanism. The standard library
handles this, employing an equality checking algorithm that eventually uses the hint ξ to
equate x and y, and passing back the requested evidence to AML. Then, AML asks the
nuclues to apply equality reflection to obtain the judgmental equality of P x and P y (at
which point the equality witness provided by the standard library is discarded) and to apply
conversion. The interaction betwen AML and the nuclues proceeds in this fashion until the
judgment witnessing transport is constructed.

If we need to write add_hint to guide the type checker, one might ask why this is better
than the intentional approach of applying a J eliminator with ξ to coerce u from P x to
P y. A single add_hint is like the incorporation of a computation rule that can handle an
arbitrarily complex development, whereas J is like a single application of a computation rule
that has to be repeated at every point where the rule is to be applied.

The other benefit, apparent even here, is that without J the proof term is smaller. In the
end, the judgment built by the nucleus is the expected one:
` λ (x : A) (y : A) (_ : x ≡ y) (u : P x), u

: Π (x : A) (y : A), x ≡ y → P x → P y

Although ξ does not appear explicitly in the conclusion, Andromeda is aware it was used.
This tracking process becomes apparent if we temporarily hypothesize an equality a ≡ b
and use it as a hint while constructing a judgment that v above has type P b,
assume ζ : a ≡ b in

now hints = add_hint ζ in (v : P b)

This AML expression causes the nucleus to build the hypothetical judgment:
ζ 0 : a ≡ b ` v : P b

The assume construct generated a fresh variable ζ0 of type a ≡ b and bound the AML
variable ζ to the judgment ζ0 : a ≡ b ` ζ0 : a ≡ b. Because ζ0 was used to convert
P a to P v, the nucleus produced a judgment that depends on it.

The AML interpreter communicates with user-level code by invoking operations to be
handled, but user-level operations are useful as well. Let us define a simple auto tactic for
automatically inhabiting simple types. We first need an AML function, called derive, which
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attempts to inhabit a given type from the currently available hypotheses by performing a
recursive search. This takes about 40 lines of uneventful code, shown in Appendix B. Then
we declare a new operation that takes no arguments and yields judgments,

operation auto : judgment

and install a global handler that handles it:

handle
| auto : ?Surr ⇒

match Surr with
| Some ?T ⇒ derive T
| None ⇒ failure
end

end

When the handler intercepts the operation auto, the surroundings of the occurrence of auto
may or may not have indicated an expected result type T. If it does, the handler calls
derive T to inhabit the type, otherwise it fails by triggering the operation failure (also
defined in the appendix) because it has no information on what type to inhabit.

Now we can use auto to inhabit types. For example,

λ (X : Type), (auto : X → X)

constructs the judgment

` λ (X : Type) (x : X), x
: Π (X : Type), X → X

Given types A, B, and C, the computation

auto : (A → B → C) → (A → B) → (A → C)

results in the judgment

` λ (x : A → B → C) (x0 : A → B) (x1 : A), x x1 (x0 x1)
: (A → B → C) → (A → B) → A → C

The Andromeda standard library (§6) takes full advantage of operations and handlers to
produce equality proofs and coercions, with default implementations that users can override
with local handlers when the standard heuristics fail.

3 The nucleus

The nucleus is the part of the system that implements the object-level type theory. Its
functionality includes the following:

formation and decomposition of term and type judgments,
construction of equality judgments,
substitution and syntactic equality checking,
pretty-printing of judgments and export to JSON.

Before discussing some of these features we take a closer look at the type theory implemented
by Andromeda, and engineering issues that it raises.
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3.1 Type theory with equality reflection
The Andromeda nucleus implements an extensional Martin-Löf type theory [17, 14] with
dependent products

∏
(x:A) B and equality types EqA(s, t). Complete rules are provided in

Appendix A. Fundamentally, the system is not too far removed from the more common
intensional Martin-Löf type theory, but instead of a J eliminator for equality types, we have
equality reflection and uniqueness of equality terms:

eq-reflection
Γ ` u : EqA(s, t)
Γ ` s ≡ t : A

eq-eta
Γ ` t : EqA(s, u) Γ ` v : EqA(s, u)

Γ ` t ≡ v : EqA(s, u)

The J eliminator can easily be derived from these rules, but direct use of equality reflection
is generally simpler. Streicher’s K eliminator and uniqueness of identity proofs [25] are also
derivable in this setting.

Equality reflection invalidates some common structural rules and inversion principles,
so we make further small changes to the type theory to compensate. First, it is usual for
products to satisfy an injectivity property, i.e., if

∏
(x:A1) A2 and

∏
(x:B1) B2 are equal then

A1 equals B1 and A2 equals B2. But in our type theory injectivity fails because under the
assumption

p : EqType((Nat→ Nat), (Nat→ Bool)) (1)

Nat → Nat and Nat → Bool are equal by reflection, without equality of Nat and Bool.4
This may seem a very technical point, but usually one relies on injectivity to prove that
β-reductions preserve types. Indeed, under assumption (1) the identity function on Nat also
has type Nat→ Bool, and hence by applying it to 0 and β-reducing, we can show that 0 has
type Bool, even though Nat and Bool are not equal.

Andromeda’s solution, following [14], is to add explicit typing annotations that can
typically be omitted in intentional type theories. A λ-abstraction λx:A.B . t is annotated
not only with the domain A of the bound variable but also with the type B of the body t,
and an application s @x:A.B t is similarly annotated with the type of the function being
applied. These annotations ensure that terms have unique types up to equality: working
again under the assumption (1), we can apply the identity function at type Nat→ Nat to get
(λx:Nat.Nat . x) @x:Nat.Nat 0 of type Nat, or at Nat→ Bool to get (λx:Nat.Nat . x) @x:Nat.Bool 0
of type Bool. Crucially, the typing annotations now prevent the latter term from β-reducing
to 0, as the β-rule requires that the function and the application match:

prod-beta
Γ, x :A ` s : B Γ ` t : A

Γ ` (λx:A.B . s) @x:A.B t ≡ s[t/x] : B[t/x]

Another principle that fails in the presence of equality reflection is strengthening, which
says that we may safely remove from the context any hypothesis that is not explicitly
mentioned in the conclusion of a judgment. Indeed,

p : EqType(Nat→ Nat,Nat→ Bool) ` (λx:Nat.Nat . x) @x:Nat.Bool 0 : Bool

4 The assumption that the Cantor space and the Baire space are equal may seem odd, but it is consistent.
For instance, in classical set theory and in the effective topos the two are isomorphic, and with a little
work we can arrange them to be equal.
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becomes invalid if we remove p, even though there is no explicit use of p in the conclusion.
For similar reasons exchange is not valid: given types X and Y , the context

x : X, p : EqType(X,Y ), q : EqY (x, x)

becomes invalid if we exchange the order of p and q, even though their types do not refer
to each other. The loss of strengthening and exchange is inconvenient; we discuss an
implementation-level solution in §3.2.

Perhaps the biggest difference between Andromeda and standard type theory is that we
currently postulate a single universe Type and the rule that makes Type an element of itself:

ty-type
Γ ctx

Γ ` Type : Type

From a logical point of view this is an inconsistent assumption, as Girard’s paradox implies that
every type is inhabited [11]. From an engineering point of view, however, Type : Type is very
useful. For Andromeda implementers, it allows a much simpler implementation strategy with
fewer different judgment forms. For Andromeda users, it allows postponing the complexities
of dealing with type universes and universe levels, and instead focus on other aspects of
derivations. (For the same reason, both Coq and Agda allow the assumption Type : Type
as an option.) Nevertheless, although users are unlikely to stumble into inconsistencies by
accident, we ultimately want a sound foundation, and plan to remove ty-type, as discussed
in §9.

3.2 Implementation of type theory
The type theory implemented in the nucleus differs from the one presented in several ways.
The changes are inessential from a theoretical point of view, but have significant practical
impact. We describe them in this section.

Signatures

In Andromeda the user extends the type theory by postulating constants, i.e., they work in
type theory over a signature. In this respect Andromeda is much like other proof assistants
that allow the user to state axioms and postulates. The signature is controlled by the nucleus
through an abstract datatype whose interface is very simple: there is an empty signature,
and a signature may be extended with a new constant of a given closed type (which may
refer to the previously declared constants). Because signatures are ever increasing, judgments
derived over a signature remain valid when the signature changes.

Inversion principles and natural types

The nucleus implements inversion principles for deconstruction of judgments into sub-
judgments; these are exposed in AML through pattern matching, cf. §4.4. For example,
an application Γ ` s @x:A.B t : C can be decomposed into Γ ` s :

∏
(x:A) B, Γ ` t : A and

Γ ` C type. The type-theoretic justification for this operation is an inversion principle: if
Γ ` s@x:A.B t : C is derivable then so are Γ ` s :

∏
(x:A) B, Γ ` t : A and Γ ` C type. Proving

the principle is not hard but neither is it a complete triviality, because the application could
have been formed with the use of type conversions. Similar inversion principles hold for other
term and type formers.
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If we decompose an application, as above, and put it back together using the application
formation rule, we get the judgment Γ ` s@x:A.B t : B[t/x]. The application has received its
“natural type”, which may not be the original type C. Nevertheless, the types are equal by
uniqueness of typing:

If Γ ` t : A1 and Γ ` t : A2 then Γ ` A1 ≡ A2.

The nucleus provides evidence of uniqueness of typing by generating, given Γ ` t : A, a witness
for equality of A and the natural type N (t) of t, which is read off the typing annotations:

N (Type) = Type N (
∏

(x:A) B) = Type

N (EqA(s, t)) = Type N (λx:A.B . t) =
∏

(x:A) B

N (s@x:A.B t) = B[t/x] N (reflA t) = EqA(t, t)

The natural types of variables and constants are read off the context and the signature,
respectively. Note that the natural type is the one we get if we deconstruct a term judgment
and construct it back again. In the standard library the equality of the original type and the
natural type is needed in several places during equality checking.

Assumption sets

The nucleus is responsible for decomposing judgments into their component parts, a facility
used by pattern matching in AML. For example, we can combine

f : Nat→ Nat ` f : Nat→ Nat and x : Nat ` x : Nat

(using weakening and application) to get

f : Nat→ Nat, x : Nat ` f @_:Nat.Nat x : Nat,

But if we naively pattern-match on this application to get the function part and the argument
part (as judgments), we would get the constituents in weakened form

f : Nat→ Nat, x : Nat ` f : Nat→ Nat and f : Nat→ Nat, x : Nat ` x : Nat.

In a system with strengthening, we could immediately see that x is unnecessary in the first
judgment and f in the second. The loss of strengthening is inconvenient enough that we
restore it by explicitly keeping track of dependencies on the assumptions in the context.

In the implementation we use terms with assumptions, which are ordinary terms that
have every subterm annotated with a set of variables, called the assumptions, indicating
explicitly which part of the context a subterm depends on. Thus Γ ` tα : Aβ means that we
may restrict Γ to variables in α to obtain a smaller context Γ�α in which it is still possible to
show that t has type A. Similarly, Γ�β suffices to derive the judgment that A is a type. The
types and terms appearing in the context are themselves annotated with assumptions, which
endows contexts with the structure of directed acyclic graphs. (In the implementation they
are stored as such.)

This means that Andromeda can compose and decompose judgments without information
loss. The application above will be recorded internally as:

f : (Nat∅ → Nat∅)∅, x : Nat∅ ` (f{f} @_:Nat∅.Nat∅
x{x}){f,x} : Nat∅.

and it is straightforward to recover the two original sub-judgments.
Constants from the signature are not included in assumption sets, since they are om-

nipresent anyhow.
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Context joins

The standard rules of inference require the contexts of the premises to match, for instance
the application rule term-app does not allow a change of the context:

Γ ` s :
∏

(x:A) B Γ ` t : A
Γ ` s@x:A.B t : B[t/x]

If we implemented the rule exactly as is, the user would have to plan dependence on hypotheses
carefully in advance, which is impractical. Instead, we rely on admissibility of weakening
to enlarge contexts as necessary. In every inference rule we accept premises with arbitrary
contexts that are then joined to form a single extended context, for instance the application
rule becomes

Γ ` s :
∏

(x:A) B ∆ ` t : A
Γ ./ ∆ ` s@x:A.B t : B[t/x]

The context join Γ ./ ∆ is the smallest context that extends both Γ and ∆. In terms
of directed acyclic graphs it is just the union of graphs. A context join fails if there is a
hypothesis that has different types in Γ and ∆, or if the join would create a cyclic dependency
of hypotheses. In practice such failures are infrequent; λ, Π, and assume create globally fresh
object-level variables, so there is no direct way to create two contexts with the same variable
at different types.5

Andromeda automatically tracks assumption sets and contexts. Even though the imple-
mentation makes an effort to keep them small, they may not be unique or minimal: they
merely reflect a history of how judgments were constructed.

4 The Andromeda meta-language

The Andromeda meta-language (AML) is a programming language in the style of ML [18].
We review its structure and capabilities, focusing on the parts that are peculiar to Andromeda.
For constructs that are standard in the ML-family of languages, such as type definitions,
let-bindings, recursive functions, etc., we refer the reader to the Andromeda reference page.6

In order to distinguish the expressions of AML from the expressions of the object-level
type theory, we refer to the former as computations to emphasize that their evaluation may
have side effects (such as printing things on the screen), and to the latter as (type-theoretic)
terms. We refer to the types of AML as ML-types.

Keep in mind that the ML-level computations can never enter the object-level terms, as
the nucleus knows nothing about AML. What looks like AML code inside an object-level
term is always just AML code that constructs a judgment. For example, a pattern match
inside a λ-abstraction, λ(x:A), match . . . end, is a computation that evaluates the match
statement immediately to obtain an object-level term, which is then abstracted. In contrast,
the ML-level function fun x ⇒ match . . . end does suspend the evaluation of its body.

5 An indirect method to obtain unjoinable contexts is to take a single judgment with the context
X:Type, x:X and explicitly substitute in two different ways, replacing X with two distinct types.

6 http://www.andromeda-prover.org/meta-language.html

http://www.andromeda-prover.org/meta-language.html
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4.1 ML-types

AML is equipped with static type inference in the style of Hindley-Milner parametric
polymorphism [9]. It supports definitions of parametric ML-types, including inductive types.
The only non-standard aspect of the ML-type inference arises from the fact that application
is overloaded, as it is used both for invoking ML-level application and for building object-level
applications. For instance the type of f, defined by

let f x y = x y

could be either judgment→ judgment→ judgment or (α→ β)→ α→ β; in such cases the
inferred type constraints are postponed until we are sure that x will be a judgment or that at
least one of x and y will not. This strategy works well in practice, with only the occasional
application constraint remaining unresolved at the top level.

4.2 Pattern matching

AML pattern matching in match statements and let-bindings is more flexible than that of
Standard ML and related languages. AML patterns need not be linear (i.e., a pattern variable
may appear several times in a pattern) and variables may be interpolated into patterns.
Pattern variables are prefixed with ? so that they can be distinguished from interpolated
variables. For example,

the pattern (?x, ?y) matches any pair,
the pattern (?x, ?x) matches a pair whose components are equal,
the pattern (?x, y) matches a pair whose second component equals the value of y.

Equality in pattern matching always means syntactic identity (α-equivalence in the case of
object-level terms), not arbitrary judgmental equalities. The flexibility of pattern matching
is handy when we match on values of type judgment; see §4.4, where we also discuss patterns
for deconstruction of typing judgments.

4.3 Operations and handlers

During evaluation of a computation of ML-type judgment the interpreter may need evidence
of equality between two types (in order to present it to the nucleus), which it gets by passing
control back to user code, together with information on what needs to be done, and how to
resume the evaluation once the evidence is obtained. To accomplish this, AML is equipped
with algebraic operations and handlers [22] in the style of Eff [3]. We recommend [23, 3] for
background reading, and give just a quick overview here. A more detailed discussion on the
use of algebraic operations and handlers for the purposes of computing judgments can be
found in §4.4.

One way to think of an operation is as a generalized resumable exception: when an
operation is invoked it “propagates” outward to the innermost handler that handles it. The
handler may then perform an arbitrary computation, and using yield c it may resume the
execution at the point at which the operation was invoked, yielding the value of c as the result
of the operation. Similarly, we can think of a handler as a generalized exception handler,
except that it handles one or more operations, as well as values (computations which do not
invoke an operation). An example of handlers in action is given in §7.1.
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4.4 The datatype judgment
In Andromeda the user always works with an entire judgment Γ ` t : A, and never a bare
term t. Similarly a type A never stands by itself, but always in a judgment Γ ` A : Type.
The judgments are represented by values of a special primitive type judgment.

Judgment forms

The OCaml interface for the nucleus uses distinct abstract datatypes to represent the different
judgment forms. These distinctions are not visible to the user, because AML exposes all
forms through the single datatype judgment whose values are judgments of the form Γ ` t : A.
This is possible because Type : Type and equality reflection let us express the three forms
Γ ` A type, Γ ` s ≡ t : A, and Γ ` A ≡ B as Γ ` A : Type, Γ ` p : EqA(s, t), and
Γ ` q : EqType(A,B), respectively.

We hope the user finds it simpler to access all object-level entities in a uniform way. On
the other hand, having more precise judgment types in AML would help catch potential
errors. We discuss this particular design choice in §9.

In AML no direct datatype constructors for judgment are available. (Even at the level of
OCaml implementation the datatype constructors are invisible outside the nucleus.) Instead,
the user may invoke primitive computations of type judgment that look like term constructors,
but really correspond to inference rules of type theory. For instance, an application c1 c2,
where c1 and c2 are computations of type judgment, computes an instance of the term-app
rule (actually, the version with context joins). The user does not have to provide the explicit
typing annotations on the application, as these are derived using a bidirectional typing
strategy, as described next.

Inferring and checking modes of evaluation

There are two modes of AML evaluation, inferring and checking. In inferring mode the type
of the result is unconstrained. In checking mode the type is prescribed in advance: there
is given a type A (or more precisely, a judgment Γ ` A : Type) and the computation must
evaluate to a judgment of the form ∆ ` t : A where ∆ extends Γ.

For instance, an application c1 c2 is evaluated in inferring mode as follows. First c1 is
evaluated in inferring mode to Γ ` s :

∏
(x:A) B (we discuss what happens if the type of s is

not a product below), then c2 is evaluated in checking mode at type A to ∆ ` t : A, and the
result is Γ ./ ∆ ` s@x:A.B t : B[t/x].

Judgment computations

The following primitives for computing judgments are provided:
Primitives for term and type formation:

Type Π(x:c1), c2 c1 c2 λ(x:c1), c2 c1 ≡ c2 refl c.

Note that the notation c1 ≡ c2 is used for the equality type, rather than for judgmental
equality, which the user never writes down explicitly. We emphasize again that these
are not datatype constructors for forming terms and types of the object-level type
theory, but primitive computations, with possible side effects, that build judgments from
sub-judgments by passing through the nucleus.
Type ascription c1 : c2, which first evaluates c2 to Γ ` A : Type and then evaluates c1 in
checking mode at type A.
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Top-level constant declarations, which introduce new constants.
The computation assume x : c1 in c2, which evaluates c1 in inferring mode to Γ ` A : Type,
and then c2 with x let-bound to Γ, xi :A ` xi : A, where xi is a freshly generated name.
This should not be confused with constant declarations: a constant is an omnipresent
part of the signature, while an assumption is local to a judgment in which it appears,
and is tracked in assumption sets. Furthermore, we may replace an assumption with a
term, using the substitution primitive, but not a constant.
Substitution c1 wherex = c2, which replaces x with the value of c2 in the value of c1,
assuming the types match.
The computation occurs c1 c2, which evaluates c1 to a judgment ∆ ` x : A and c2 to
a judgment Γ ` t : B, and checks whether x appears in Γ. It returns None if not, and
Some(Ξ ` C : Type) if x appears in Γ as a variable of type C.
Computations that generate witnesses for the β-rule and the congruence rules. There are
no primitive computations for extensionality rules eq-eta and prod-eta because they
can be declared with a constant by the user. Indeed, we do so in the standard library.
The computation natural c, which witnesses uniqueness of typing. It evaluates c to a
judgment Γ ` t : A and outputs a witness for equality of A and the natural type N (t) of t.
The witnesses are needed when a tactic deconstructs a term and puts it back together,
thus obtaining the original term at its natural type.

Judgment patterns

Apart from computations that form judgments, we also need flexible ways of analyzing and
deconstructing them. In AML this is done with the match statement and judgment patterns
of the form ` p1 : p2, where p2 may be omitted, and p1 and p2 are among the following:

Anonymous pattern _, pattern variables ?x, and interpolated variables x.
Patterns for matching terms and types:

Type Π(?x:p1), p2 p1 p2 λ(?x:p1), p2 p1 ≡ p2 refl p.

Note that the patterns for products and abstractions “open up” the binders so that it is
possible to pattern-match under the binders; the judgment matched by p2 can have the
bound variable in its context.
Patterns for matching free variables _atom ?x and constants _constant ?x.

More precisely, when Γ ` t : A is matched with ` p1 : p2, the term t is matched with p1 and
the type A with p2. Assuming the match succeeds, the pattern variables in p1 and p2 are
bound to sub-judgments that are obtained through inversion lemmas §3.2. The contexts
of the sub-judgments are kept minimal thanks to assumption sets. Examples of pattern
matching are shown in Appendix B.

Pattern matching is always executed at the AML level; patterns and the match statements
exist only as computations, and are not part of the object-level terms. To highlight this point,
we show the difference between a match inside λ-abstraction and an AML function. Assuming
a type A with two constants a, b : A and an endofunction f : A → A, the computation

(λ (x : A), match x with
| ` ?g ?y ⇒ y
| ` _ ⇒ b

end ) (f a)

evaluates to the judgment ` (λ (x : A), b) (f a) : A, while
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(fun x ⇒ match x with
| ` ?g ?y ⇒ y
| ` _ ⇒ b

end ) (f a)

evaluates to the judgment ` a : A. In the former case matching occurred inside the
abstraction, so x evaluated to ` x : A and the second clause matched; in the latter case
matching took place when the function was applied, so x was bound to ` f a : A and the
first clause matched.

The AML interpreter matches a judgment against a pattern by first asking the nucleus to
invert the judgment. The nucleus returns information about which inversion was used and
what constituent parts it produced, from which the interpreter calculates whether the pattern
matches and how. If there are sub-patterns, the process continues recursively. Pattern
matching uses syntactic equality (up to α-equivalence) and never triggers any operations,
although an inexhaustive match may fail.

At present there are no judgment patterns for analyzing the context of a judgment.
Instead, the primitive computation context c evaluates c to a judgment Γ ` t : A and gives
the list of all hypotheses in Γ, sorted so that each hypothesis is preceded by its dependencies.

Equality checks and coercions

AML only verifies syntactic equality automatically. It delegates any other equality Γ `
s ≡ t : A by triggering the operation equal (Γ ` s : A) (Γ ` t : B), which passes control
back to the user-level AML code. The operation may go unhandled, in which case an error
is reported, or it may be intercepted by a handler in the user code. The handler may do
whatever it wants, but the intended use is for it to attempt to calculate evidence of the
given equality. The handler yields None if it fails to compute the evidence (in which case the
interpreter reports an error), or Some(∆ ` ξ : EqA(s, t)) if it finds a witness ∆ ` ξ : EqA(s, t).
Note that the handler is itself a piece of AML code that may recursively trigger further
operations and handling thereof.

Apart from equality checking, there are other situations in which the AML interpreter
triggers an operation:

It may happen that AML needs to know why a given type Γ ` A : Type is equal to a
product type. Unless A is already syntactically equal to a product type, the interpreter
triggers an operation as_prod (Γ ` A : Type). It expects a handler to yield None upon
failure, or Some(∆ ` ξ : EqType(A,

∏
(x:B) C)) witnessing that A is equal to a product

type.
Similarly, if AML needs to know why Γ ` A : Type is equal to an equality type, it
triggers an operation as_eq (Γ ` A : Type). It expects the handler to yield None or
Some(∆ ` ξ : EqType(A,EqB(s, t))).
If an inferring term evaluates to Γ ` t : A in checking mode at type ∆ ` B : Type, the
interpreter does not ask for evidence that A and B are equal, but instead triggers the
operation coerce (Γ ` t : A) (∆ ` B : Type) that gives the user code an opportunity to
replace t with a value of type B. The handler must yield:

NotCoercible to indicate failure to coerce t to B,
Convertible(Ξ ` ξ : EqType(A,B)) to indicate that A and B are equal, so that AML
may apply conversion to t, or
Coercible(Ξ ` s : B) to have t replaced with s.

This mechanism allows the user to implement various strategies for coercion of values,
and control them completely through handlers.
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If the head c1 of an application c1 c2 evaluates to a term Γ ` t : A where A is not a product
type, the interpreter asks the user code to convert t to a function by triggering the operation
coerce_fun (Γ ` t : A). The handler should yield NotCoercible, Convertible(∆ ` ξ :
EqType(A,

∏
(x:B) C)), or Coercible(∆ ` s :

∏
(x:B) C), as the case may be.

4.5 References and dynamic variables
As a convenience, AML provides ML-style mutable references. They are used to store the
current state of implicit arguments in the standard library (see §6.3).

AML also supports dynamic variables. These are globally defined mutable values with
dynamic binding discipline. A dynamic variable x is declared and initialized with the top-level
command dynamic x = c. The computation now x = c1 in c2 changes x to the value of c1
locally in the computation of c2.

AML maintains a dynamic variable hypotheses. It is a list of judgments that plays a
role in evaluation of computations under binders. To evaluate λ(x:A), c, AML generates
a fresh variable xi of type A, binds x to the judgment xi : A ` xi : A, prepends it to
hypotheses, evaluates c, and abstracts xi to get the final result. By accessing hypotheses
the computation c may discover under what binders it is evaluated. For example, in §2 the
handler for the auto tactic searched hypotheses for ways of inhabiting a type.

The standard library uses dynamic variables betas, etas, hints, and reducing to store
β-hints, η-hints, general hints, and reduction directives. It is important for these variables to
follow a dynamic binding discipline so that local equality hints work correctly (see §6.2).

5 Soundness of Andromeda

Soundness in Andromeda has both theoretical and engineering aspects.
Theoretical soundness pertains to the differences between the original type theory, (Ap-

pendix A) and the type theory implemented in the nucleus (§3.2), which uses assumption
sets, context joins, and natural types. In the following we write sσ for a term s decorated
with assumptions σ, i.e., if we remove assumptions sets from the decorated term sσ we get
the ordinary term s. We follow a similar convention for types and context.

I Claim 5.1. Given a context Γ, a term s and a type A:
1. If Γ ` s : A is derivable in the original type theory, then ∆δ ` sσ : Aα is derivable for

some ∆δ, sσ, and Aα such that ∆ is a subcontext of Γ.
2. If Γγ ` sσ : Aα is derivable in the implemented type theory, then Γ ` s : A is derivable in

the original type theory.
We cannot call the statement a theorem because we have not yet proved it in detail. We
leave the task as future work for this progress report, and note that we do not anticipate
a particularly enlightening or difficult proof, just the usual grinding of cases by structural
induction. The most interesting part of the proof will likely by the formalization of the
implemented type theory from §3.2, which we have postponed because it has been regularly
modified as we gained experience with the implementation.

The second aspect of soundness is an engineering question: how do we know that the
implementation of Andromeda works as intended?

I Claim 5.2. If Andromeda evaluates a computation to a judgment, then the judgment is
derivable from the implemented type theory with respect to the signature containing all the
constants declared by the user.
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Let us reiterate the design choices we have made to give credence to the claim. In
the OCaml implementation the datatypes representing the judgment forms are all abstract
and kept opaque by an interface to a small trusted OCaml module, the nucleus. We rely
on the soundness of OCaml’s type system to ensure that the untrusted remainder of the
system cannot forge new values of these abstract types.7 The nucleus is kept as simple as
possible, and it only supports very straightforward type-theoretic constructions which directly
correspond to applications of inference rules and admissible rules. Everything else, the AML
type inference, the core AML intepreter, the implementation of operations and handlers,
and the user code, is on the other side of the barrier and does not influence soundness. In
particular, the nucleus does not know anything about AML at all, does not trigger operations,
and no AML code can ever enter the object-level terms (so there is no question about having
pattern matching, exotic terms involving AML code, or any other part of AML at the object
level).

Formally verifying the 1900 lines of the nucleus code is still a tall order to handle, and at
present we have no plans to do it. Once we have formulated the implemented type theory, a
careful code review of the nucleus will probably unearth some bugs, and hopefully not very
many!

There is a third kind of soundness, namely the consistency of the underlying type theory.
Obviously, since we included Type : Type the theory is at present inconsistent in the sense
that all types are inhabited and all judgmental equalities derivable. As soon as we remove
Type : Type the theory becomes consistent, since what remains are just bare products and
equality types with reflection, and these are consistent in virtue of having a model (such as
the hereditarily finite sets). We discuss removal of Type : Type in §9.

6 The standard library

To test the viability of our design we implemented a small standard library in AML. By
design, anything that is implemented in AML is safe: it may not work as expected, or diverge,
but it will never produce an invalid judgment, or derive an invalid equality. (Of course, this
does not say much until we have dealt with Type : Type.)

6.1 Equality checking
The most substantial part of the library is a user-extensible equality checking algorithm with
rudimentary support for implicit arguments, based on similar ones by Stone and Harper [24]
and Coquand [8]. It computes a witness of equality Γ ` s ≡ t : A in two phases:

The type directed phase computes the weak head-normal form (whnf) of type A to
see whether any extensionality rules apply. For instance, if A normalizes to a product∏

(x:B) C, the algorithm applies function extensionality prod-eta to reduce the equality
to Γ, y :B ` s @x:B.C y ≡ s @x:B.C y : B[y/x] at a smaller type. Similarly, if A is an
equality type the equality checks succeeds immediately by uniqueness of equality proofs
eq-eta. Extensionality rules including prod-eta and eq-eta are user defined (see §6.2).
Once the type-directed phase simplifies the type so that no further extensionality rules
apply, the normalization phase computes the weak head-normal forms of s and t and
compares them structurally, which generates new equality problems involving subterms.

7 If we were to reimplement the system in an unsafe language such as C, or if we lacked faith in OCaml,
additional mechanisms such as cryptographic signatures could be used.
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The equality checking algorithm relies on the computation of weak head-normal forms
of terms, which is also implemented by the standard library. Given a term Γ ` t : A, the
library computes a witness Γ ` ξ : EqA(t, t′) where t′ is in weak head-normal form. It does
so by chaining together a sequence of computation rules using transitivity of equality. By
default the only computation rule is prod-beta for reducing β-redices, but the user may
install additional rules as explained in §6.2.

6.2 Equality hints

The equality checking algorithm can be extended by the user with new rules, which we call
equality hints. There are three kinds:

an η-hint, or an extensionality hint, is a term whose type has the form∏
(x1:A1) · · ·

∏
(xn:Am)

∏
(y1:B)

∏
(y2:B) EqC1(t1, s1)→ · · · → EqCm

(tm, sm)→ EqB(y1, y2).

It is a universally quantified equation with equational preconditions, where the left-hand
and the right-hand side of the equation are distinct variables. The equality checking
algorithm matches such a hint against the goal. If the match succeeds, the goal is reduced
to deriving the preconditions.
a β-hint, or a computation hint, is a term whose type is a universally quantified equation∏

(x1:A1) · · ·
∏

(xn:Am) EqC(s, t).

The weak head-normal form algorithm matches the left-hand side s of the equation against
the term. If the match succeeds, it performs a reduction step from s to t.
a general hint is a term whose type is a universally quantified equation∏

(x1:A1) · · ·
∏

(xn:Am) EqC(s, t).

The equality checking algorithm matches such a hint against the goal during the type
directed phase to see whether it can immediately dispose of the goal.

In addition, the user may give a reduction strategy for a given constant by specifying which of
its arguments should be reduced eagerly. This is necessary for the equality checking algorithm
to work correctly when we introduce new eliminators. For instance, when we axiomatize
simple products A×B, the extensionality rule

∏
(A:Type)

∏
(B:Type)

∏
(x,y:A×B)

EqA(fstAB x, fstAB y)→ EqA(sndAB x, sndAB y)→ EqA×B(x, y)

only works correctly if we also specify that the normal form of a projection fstAB t should
have t normalized, and similarly for snd. Another example is the recursor for natural numbers,
which should eagerly reduce the number at which it is applied.

Examples of equality hints and uses of reduction strategies will be shown in §7. Let us
only remark that the hints and reduction strategies may be installed locally, even under a
binder using a temporary equality assumption, and that the user is free to install whatever
hints they wish, including ones that break completeness of the algorithm. However, as long
as hints are confluent and strongly normalizing, the algorithm behaves sensibly.
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6.3 Implicit arguments
The standard library provides basic support for implicit arguments. In other systems these
are usually implemented with meta-variables, which are not available in AML. In their place,
we use ordinary fresh variables generated using the assume construct. We refer to these as
implicit variables. We collect constraints through the operations and handlers mechanism,
and resolve them using a simple first-order unification procedure.

More precisely, in the standard library we declare operations
operation ? : judgment
operation resolve : judgment → judgment

The user may place ? anywhere where they want the term to be derived automatically, and
call resolve c to replace the implicit variables with their derived values in the judgment
computed by c.

The handler provided by the library keeps a list of implicit variables it has introduced so far,
as well as their types and known solutions. The operation ? may be triggered either in checking
or inferring mode. In checking mode at type A and under binders x1 : B1, . . . , xn : Bn, the
handler introduces a fresh implicit variable M of type

∏
(x1:B1) . . .

∏
(xn:Bn) A and yields

M x1 . . . xn. In inferring mode the type A is not available. For simplicity, at present the
library will report an error, although it might be better to create an implicit variable for the
A : Type.

During equality checking we may discover that M x1 . . . xn should be equal to a term t

in which M does not occur. In this case, using assume again, the handler generates a term
ξ : Eq(M,λx1 . . . xm . t), stores it, and also installs it as a β-hint, so that subsequent equality
checks take it into account.

The operation resolve c is used to replace the implicit variables with their inferred
values in the judgment computed by c. Such replacement does not happen automatically
because the library cannot guess when is the best moment for doing so. It may be necessary
to evaluate several computations before all the implicit variables become known, so we let
the user control when resolution should happen.

While we feel quite encouraged by our implementation of equality checking, the implicit
arguments feel a bit heavy-handed, and are quite slow. They are a satisfactory proof of
concept and a demonstration of the flexibility of operations and handlers, but we need to
improve it quite a bit before it becomes useful.

7 Examples

In this section we show Andromeda at work through several examples.

7.1 Proving equality with handlers
As explained in §4.3, when AML is faced with proving a non-trivial equality, it delegates it
to user code by triggering the operation equal. To see how this works, let us walk through a
computation that constructs a term witnessing symmetry of equality (without the standard
library installed):
λ (A : Type) (x y : A) (p : x ≡ y),

( handle
refl x : y ≡ x

with
| equal x y ⇒ yield (Some p)
end)
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The λ-abstraction introduces a type A, elements x, y of type A, and a witness p of equality
between x and y. Next, the type ascription is evaluated, with the enveloping handler installed.
First y ≡ x is evaluated to the equality type EqA(y, x) and then refl x is evaluated in
checking mode at this type. This triggers a sub-computation of x and verification that x
equals y (and a trivial equality check that x equals to itself). At this point AML triggers the
operation equal x y, asking for evidence of equality. The enveloping handler intercepts the
operation and yields the evidence p.

The result of the computation is displayed by Andromeda without typing annotations
and assumption sets as
` λ (A : Type) (x : A) (y : A) (_ : x ≡ y), refl x

: Π (A : Type) (x : A) (y : A), x ≡ y → y ≡ x

7.2 Dependent sums
Our second example shows how to axiomatize dependent sums. This time we use the
standard library and rely on its equality checking. We start by postulating the type and
term constructors:
constant Σ : Π (A : Type) (B : A → Type), Type
constant existT : Π (A : Type) (B : A → Type) (a : A), B a → Σ A B

Next, we postulate the projections and tell the standard library that that the third argument
of a projection should be evaluated eagerly, so that we get a working extensionality rule later
on:
constant π1 : Π (A : Type) (B : A → Type), Σ A B → A
now reducing = add_reducing π1 [lazy , lazy , eager]

constant π2 : Π (A : Type) (B : A → Type) (p : Σ A B), B (π1 A B p)
now reducing = add_reducing π2 [lazy , lazy , eager]

It remains to postulate equalities, and install them as hints. The β-rules are straightforward,
except that we must install the β-rule for the first projection before we postulate the second
projection, or else Andromeda does not know why the second projection is well typed:
constant π1 _β :

Π (A : Type) (B : A → Type) (a : A) (b : B a),
(π1 A B ( existT A B a b) ≡ a)

now betas = add_beta π1 _β

constant π2 _β :
Π (A : Type) (B : A → Type) (a : A) (b : B a),

(π2 A B ( existT A B a b) ≡ b)

now betas = add_beta π2 _β

Similarly, to convince Andromeda that the extensionality rule is well typed, we need to
install a local hint, as follows (the function symmetry is part of the standard library and it
computes the symmetric version of an equality):
constant Σ_η :

Π (A : Type) (B : A → Type) (p q : Σ A B)
(ξ : π1 A B p ≡ π1 A B q),
now hints = add_hint ( symmetry ξ ) in
π2 A B p ≡ π2 A B q → p ≡ q

now etas = add_eta Σ_η
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7.3 Natural numbers
The standard library provides functions for calculating weak head-normal forms that can be
used as a computation device at the level of type-theoretic terms. We show how this is done
by axiomatizing natural numbers and computing with them.

We postulate the type of natural numbers and its constructors
constant nat : Type
constant O : nat
constant S : nat → nat

and the induction principle
constant nat_rect : Π (P : nat → Type),

P O → (Π (n : nat), P n → P (S n)) → Π (m : nat), P m

The weak head-normal form of the eliminator should have the fourth argument normalized:
now reducing = add_reducing nat_rect [lazy , lazy , lazy , eager]

To get computation going, we need the computation rules for the eliminator:
constant nat_β_O :

Π (P : nat → Type) (x : P O) (f : Π (n : nat), P n → P (S n)),
nat_rect P x f O ≡ x

constant nat_β_S :
Π (P : nat → Type) (x : P O) (f : Π (n : nat), P n → P (S n))

(m : nat),
nat_rect P x f (S m) ≡ f m ( nat_rect P x f m)

which we install as β-hints:
now betas = add_betas [nat_β_O , nat_β_S]

At this point, we can compute with the recursor, but there is a better way. In Andromeda
there is no built-in notion of “definition” at the level of type theory (one can always use
ML-level let-bindings, but those are always evaluated which has the undesirable effect of
complete unfolding of all definitions). Instead, we break down a definition into a declaration
of the constant and its defining equality. If we install the defining equality as a β-hint, a
definition behaves like it would in other proof assistants, but that is just one possibility.

For example, we may define addition as follows:
constant ( + ) : nat → nat → nat
constant plus_def :

Π (n m : nat), n + m ≡ nat_rect (λ _, nat) n (λ _ x, S x) m

Note that plus_def could be written as
constant plus_def ’ :

( + ) ≡ (λ (n m : nat), nat_rect (λ _, nat) n (λ _ x, S x) m)

The difference between the two is visible when we use them as β-hints: plus_def will unfold
only after it has been applied to two arguments, whereas plus_def’ will do so immediately.

We can derive Peano axioms by using plus_def as a local β-hint:
let plus_O =

now betas = add_beta plus_def in
(λ n, refl n) : Π (n : nat), n + O ≡ n

let plus_S =
now betas = add_beta plus_def in

(λ n m, refl (n + (S m))) : Π (n m : nat), n + (S m) ≡ S (n + m)
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We are free to use the Peano axioms for computation rather than plus_def, so we install
them globally as β-hints:
now betas = add_betas [plus_O , plus_S ]

It should be clear from this that Andromeda is quite flexible, which is good for experimentation
and tight control of how things are done, but is also bad because the user has to be more
specific in what they want. The overall usability of the system depends on having a good
standard library with sensible default settings.

The definition of multiplication and its Peano axioms are derived similarly:
constant ( * ) : nat → nat → nat
constant mult_def :

Π (n m : nat), n * m ≡ nat_rect (λ _, nat) O (λ _ x, x + n) m

let mult_O =
now betas = add_beta mult_def in

(λ n, refl O) : Π (n : nat), n * O ≡ O

let mult_S =
now betas = add_beta mult_def in

(λ n m, refl (n * (S m))) : Π (n m : nat), n * (S m) ≡ n * m + n

now betas = add_betas [mult_O , mult_S ]

To compute with numbers, we use the standard library function whnf that computes evidence
that the given term is equal to its weak head-normal form:
do now reducing = add_reducing S [eager] in

now reducing = add_reducing ( * ) [eager , eager] in
now reducing = add_reducing ( + ) [eager , eager] in

whnf ((S (S (S O))) * (S (S (S (S O)))))

The do command is the top-level command for evaluating a computation. Notice that
we locally set the arguments of the successor constructor, addition, and multiplication to
be computed eagerly. The effect of this is that the weak head-normal form is not weak
or head-normal anymore, but rather a strongly normalizing call-by-value strategy. Thus
Andromeda outputs
` refl (S (S (S (S (S (S (S (S (S (S (S (S O ))))))))))))

: S (S (S O)) * S (S (S (S O))) ≡
S (S (S (S (S (S (S (S (S (S (S (S O )))))))))))

It would be easy to obtain just the result, which is the left-hand side of the equality type.
Notice that the proof of equality between 3 × 4 and 12 is a reflexivity term, even though
the normalization procedure generated the proof by stringing together a large number of
reduction steps. In order to keep equality proofs small, the standard library aggressively
replaces equality proofs with reflection terms, using the fact that whenever p : EqA(s, t) then
also reflA t : EqA(s, t).

7.4 Untyped λ-calculus
An example that cannot be done easily in proof assistants based on intensional type theory
is in order. Let us axiomatize the untyped λ-calculus as a type that is judgmentally equal to
its own function space, and show that it possesses a fixed-point operator.

We first postulate that there is a type equal to its function space:
constant D : Type
constant D_reflexive : D ≡ (D → D)
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We must not install D_reflexive as a β-hint because it would lead to non-termination.
Instead, we install it and its symmetric version as general hints:
now hints = add_hints [ D_reflexive , symmetry D_reflexive ]

With these, whenever AML needs to know that D and D → D are equal, the standard library
will provide D_reflexive, or its symmetric version, as evidence.

Now, we can simply define the fixed-point operator:
let fix =

(λ f,
let y = (λ x : D, f ((x : D → D) x)) in
y y)

: (D → D) → D

The self-application of x is well-typed because Andromeda knows that x of type D also has
type D → D, thanks to the hints. We did have to explicitly coerce x to the function type.
(An alternative would be to use the coercion mechanism, which is demonstrated in §7.5.)
Once we overcome the problem of typing the fixed-point operator, the usual mechanisms
suffice to show that it does in fact compute fixed points:
let fix_eq =

(λ f, refl (fix f)) : Π (f : D → D), fix f ≡ f (fix f)

It is a bit trickier to give a type to a term without weak head-normal form, such as
(λx. x x)(λx. x x). We must block β-reduction of this particular β-redex, without blocking
all of them. To achieve this, we first introduce an alias D’ for the type D:
constant D’ : Type
constant eq_D_D ’ : D ≡ D’

Next, we define the auxiliary term δ and give it the type D → D:
let δ = (λ x : D, (x : D → D) x)

We now form the self-application δ δ at type D’:
let Ω =

now hints = add_hints [eq_D_D ’, symmetry eq_D_D ’] in
(δ : D’ → D’) (δ : D) : D

We have the desired term in which β-reduction is blocked because the inner λ-abstractions
are typed at D and the outer application at D’. From here, Andromeda happily computes
with Ω without ever attempting to reduce it (installing eq_D_D’ as a global hint would be a
mistake).

The preceding example should be taken as a proof of concept only. We have reached the
limits of our small standard library. A more serious development of the untyped λ-calculus
would use a custom equality-checking algorithm instead of manually juggling hints and type
ascriptions.

7.5 Universes
The final example shows how to use coercions and operations to implement a universe à la
Tarski. We postulate a universe U, whose elements should be thought of as names of types,
with an operation El that converts the names to the corresponding types:
constant U : Type
constant El : U → Type
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Because El is an eliminator, its normal form should have the argument in normal form, so
we tell the library to normalize it eagerly:
now reducing = add_reducing El [eager]

Next, we postulate that the universe contains names for products and equality types, and
install the relevant equations as β-hints:
constant pi : Π (a : U), (El a → U) → U
constant El_pi :

Π (a : U) (b : El a → U), El (pi a b) ≡ (Π (x : El a), El (b x))
now betas = add_beta El_pi

constant eq : Π (a : U), El a → El a → U
constant El_eq :

Π (a : U) (x y : El a), El (eq a x y) ≡ (x ≡ y)
now betas = add_beta El_eq

For testing purposes we put the name b of a basic type B into the universe:
constant B : Type
constant b : U
constant El_b : El b ≡ B
now betas = add_beta El_b

In principle we can work with U and El, but explicit uses of El gets tedious quickly. Ideally
we want Andromeda to translate between names and their types automatically, which is
achieved with a handler that intercepts coercion requests. It is easy to coerce names to types
with El, for instance:
handle

(λ x : b, x) : pi b (λ _, b)
with

| coerce (` ?t : U) (` Type) ⇒ yield ( Coercible (El t))
end

In the λ-abstraction AML found the name b but expected a type, therefore it triggered a
coercion operation. The handler intercepted it and yielded El b. The process was repeated
when AML found pi b (λ _, b) instead of a type. The final result printed by Andromeda
is
` λ (x : El b), x : El (pi b (λ (_ : El b), b))

We have to work harder to perform the reverse coercion, when a type is encountered where
its code was expected. One first has to implement an AML function name_of that takes a
type and returns its name, if it can find one. We do not show its implementation here, and
ask the interested readers to consult the examples that come with the source code. Using
name_of we can handle translation between types and names in both directions with the
handler
let universe_handler =
handler

| coerce (` ?a : U) (` Type) ⇒ yield ( Coercible (El a))
| coerce (` ?T : Type) (` U) ⇒

match name_of T with
| None ⇒ yield NotCoercible
| Some ?name ⇒ yield ( Coercible name)
end

end

We added a clause that intercepts coercions from Type to U and uses name_of. The handler
automatically translates names to types and vice versa. For instance, the computation
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with universe_handler handle
(Π (x : b), x ≡ x) : U

evaluates to
` pi b (λ (y : El b), eq b y y) : U

In one direction the handler coerced the name b to the type B, and in the other the type
Π (x : B), x ≡ x to its name, as shown above.

8 Related work

Andromeda draws heavily on the experience and ideas from other proof assistants. It is
difficult to do justice to all of them. Its overall design follows the tradition of LCF [12] and
its descendants [15, 16, 13]. However, LCF and many of its descendants use Church’s simple
type theory [6], whereas Andromeda is based on the dependent type theory of Martin-Löf [17].
Consequently, Andromeda cannot advantageously integrate the ML-level and the object-level
types. There is by necessity a sharp distinction between the statically typed ML-level and
the dynamically evaluated type-theoretic judgments.

It makes sense to compare Andromeda to other proof assistants based on dependent
type theory [19, 7, 10]. For instance, the evaluation strategy for judgments in Andromeda is
based on bidirectional type-checking found in dependently-typed assistants. Andromeda is
primarily a special-purpose programming language, whereas Coq, Agda, and Lean are tools
for interactive proof development. The difference in philosophy of design is visible in the level
of control given to the user. Andromeda gives the user full control of the system, and expects
them to implement their own proof development tools, whereas Coq and Agda provide more
of an end-user environment with a rich selection of ready-made tools. It is interesting to note
that recently Coq and Agda have both started giving the user more control. New versions of
Coq allow the use of tactics inside type-theoretic terms [26, §2.11.2] and allow fine-tuning of
Coq’s unification algorithm [27]. Agda even lets the user install new normalization rules [1]
that might break the system.

We already mentioned that NuPRL [2] validates equality reflection by interpreting types
as partial equivalence relations on terms of a computational model, namely an extension of
the untyped λ-calculus. We do not wish to make such a commitment in Andromeda, and
instead allow interpretations that are inconsistent with computational type theory.

9 Future work

We feel that Andromeda shows a promising way to design a proof assistant based on type
theory with equality reflection, but much remains to be done.

Syntactic sugar and end-user support

AML turned out to be a useful tool for the implementers of the standard library. If we
imagine that the end-user is a mathematician who just wants to do mathematics, without
learning the intricacies of operations and handlers, then we need further support for creating
a more user friendly environment. There ought to be ways of introducing new syntactic
constructs, and reasonable error reporting by the standard library. We are not quite sure
how to provide such functionality. The approach taken by Bowman [4] seems interesting.
Another possibility is to allow user-defined notations in the style of Coq, or to completely
separate the end-user interface and AML.
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Formal verification of the meta-theoretic properties

While we carefully designed the underlying type theory and made sure it is precisely clear
what the type-theoretic rules are, we have not formally verified that the system has the desired
meta-theoretic properties, such as uniqueness of typing, validity of inversion principles, and
well-behaved context joins. We expect no trouble here, but do insist on formal verification.
In the early stages of implementation we managed to delude ourselves more than once about
the properties of the underlying type theory.

Recording derivations

Like all LCF-style proof assistants, Andromeda does not record derivations, only their
conclusions. (In fact, all practical proof assistants do this, though some implement type
theories that allow derivations to be reconstructed.) There might be situations in which
we wish to record or communicate the derivation. For instance, we might want to send the
derivation to another proof assistant for independent verification. This can be accomplished
with a minor modification of AML: if we implement all calls of AML to the nucleus as
operations (whose default handler is the nucleus), then the user can intercept them and
do whatever they like: record them, communicate them, or modify them to obtain a proof
translation. Alternatively, the judgment type in the nucleus could be made into the type of
derivations with no breaking changes to the interface.

Removal of Type : Type

A major forthcoming modification of the current system is elimination of Type : Type. The
syntax of AML takes advantage of Type : Type to conflate term and type judgments within a
single abstract type judgment.

But the nucleus does not rely on Type : Type at all and separates the various judgment
forms into separate abstract datatypes. There is no technical difficulty in removing Type :
Type, but the question is what to replace it with. One possibility is to add a basic type
U and a basic type family El indexed by U, and then use these as a Tarski-style universe,
with a standard library employing techniques of §7.5 to make the system usable. (This can
be extended to multiple universes if desired.) Paolo Capriotti’s recently suggested such a
setup [5], based on semantic considerations in categories of presheaves. Finally, AML could
be modified to support several abstract datatypes, one for each form of object-level judgment.

Once this is done, several interesting possibilities arise. The user could hypothesize any
universe structure they like, including putting back Type : Type. We might even be able to
remove equality reflection from the nucleus, and make it user-definable. We hope to report
on these exciting developments in the near future.
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A The rules of type theory

In this appendix we give the formulation of type theory in a declarative way that minimizes
the number of judgments, and so is better suited for a semantic account. We omit formal
treatment of bound variables and substitution, which is standard.

A.1 Syntax

Contexts

Γ,∆ ::= • empty context
| Γ, x :A context Γ extended with x : A

Terms and types

s, t, A,B ::= Type universe
|

∏
(x:A) B product

| EqA(s, t) equality type
| x variable
| λx:A.B . t λ-abstraction
| s@x:A.B t application
| reflA t reflexivity

A.2 Judgments

Γ ctx Γ is a well formed context
Γ ` t : A t is a well formed term of type A in context Γ
Γ ` s ≡ t : A s and t are equal terms of type A in context Γ

We use the following abbreviations:

Γ ` A type abbreviates Γ ` A : Type
Γ ` A ≡ B abbreviates Γ ` A ≡ B : Type

A.3 Contexts
ctx-empty

• ctx

ctx-extend
Γ ctx Γ ` A type x 6∈ dom(Γ)

(Γ, x :A) ctx
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A.4 Terms and types
Conversion

term-ty-conv
Γ ` t : A Γ ` A ≡ B

Γ ` t : B

Variable
term-var

(Γ, x :A) ctx
Γ, x :A ` x : A

term-var-skip
(Γ, y :B) ctx Γ ` x : A

Γ, y :B ` x : A

Universe
ty-type

Γ ctx
Γ ` Type type

Product
ty-prod
Γ ` A type Γ, x :A ` B type

Γ `
∏

(x:A) B type

term-abs
Γ, x :A ` t : B

Γ ` (λx:A.B . t) :
∏

(x:A) B

term-app
Γ ` s :

∏
(x:A) B Γ ` t : A

Γ ` s@x:A.B t : B[t/x]

Equality type

ty-eq
Γ ` A type Γ ` s : A Γ ` t : A

Γ ` EqA(s, t) type

term-refl
Γ ` t : A

Γ ` reflA t : EqA(t, t)

A.5 Equality
General rules

eq-refl
Γ ` t : A

Γ ` t ≡ t : A

eq-sym
Γ ` t ≡ s : A
Γ ` s ≡ t : A

eq-trans
Γ ` s ≡ t : A Γ ` t ≡ u : A

Γ ` s ≡ u : A

Conversion
eq-ty-conv
Γ ` s ≡ t : A Γ ` A ≡ B

Γ ` s ≡ t : B

Equality reflection

eq-reflection
Γ ` u : EqA(s, t)
Γ ` s ≡ t : A
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Computation
prod-beta

Γ, x :A ` s : B Γ ` t : A
Γ ` (λx:A.B . s) @x:A.B t ≡ s[t/x] : B[t/x]

Extensionality

eq-eta
Γ ` t : EqA(s, u) Γ ` v : EqA(s, u)

Γ ` t ≡ v : EqA(s, u)

prod-eta
Γ ` s :

∏
(x:A) B Γ ` t :

∏
(x:A) B

Γ, x :A ` (s@x:A.B x) ≡ (t@x:A.B x) : B
Γ ` s ≡ t :

∏
(x:A) B

A.5.1 Congruences
Type formers

cong-prod
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y]

Γ `
∏

(x:A) B ≡
∏

(y:C) D

cong-eq
Γ ` A ≡ B Γ ` s ≡ u : A Γ ` t ≡ v : A

Γ ` EqA(s, t) ≡ EqB(u, v)
Products

cong-abs
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y] Γ, x :A ` s ≡ t[x/y] : B

Γ ` (λx:A.B . s) ≡ (λy:C.D . t) :
∏

(x:A) B

cong-app
Γ ` A ≡ C Γ, x :A ` B ≡ D[x/y]

Γ ` s ≡ u :
∏

(x:A) B Γ ` t ≡ v : A
Γ ` (s@x:A.B t) ≡ (u@y:C.D v) : B[t/x]

Equality types
cong-refl

Γ ` A ≡ B Γ ` s ≡ t : A
Γ ` reflA s ≡ reflB t : EqA(s, s)

B The auto tactic

We include here the complete code for implementing a simple auto tactic from § 2.
We first define the map function to show how AML syntax works, and the auxiliary apply

function that folds application of a function over a list of arguments:
let rec map f xs =

match xs with
| [] ⇒ []
| ?x :: ?xs ⇒ (f x) :: (map f xs)
end

let rec apply f xs =
match xs with
| [] ⇒ f
| ?x :: ?xs ⇒ apply (f x) xs
end
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Next, we declare the failure operation that is triggered when the search fails:
operation failure : judgment

Next we define the function subgoals that takes a goal A and a hypothesis B and computes
a list of subgoals that together with B imply A. For instance, if B is equal to C → D → A
then the computed subgoals are [C, D]:
let rec subgoals A B =

match B with
| ` A ⇒ []
| ` ?P → ?Q ⇒ P :: ( subgoals A Q)
| _ ⇒ [ failure ]
end

The function derive takes a goal A and attempts to derive it. If the goal is an implication,
it introduces the antecedent as a hypothesis and calls itself recursively. Otherwise it tries to
prove the goal from the current hypotheses by simple backchaining:
let rec derive A =

match A with
| ` ?P → ?Q ⇒ λ (x : P), derive Q
| ` _ ⇒ backchain A hypotheses
end

and backchain A lst =
match lst with
| [] ⇒ failure
| (` ?f : ?B) :: ?lst ⇒

handle
apply f (map derive ( subgoals A B))

with
failure ⇒ backchain A lst

end
end

Note how backchain uses a handler to intercept failure, just like an ordinary exception
handler does. Finally, we declare an operation auto and define a global handler that handles
it. The handler only works when auto is used in checking mode:
operation auto : judgment

handle
| auto : ?T’ ⇒

match T’ with
| Some ?T ⇒ derive T
| None ⇒ failure
end

end

Now we can use auto to inhabit types. For example,
(λ (X : Type), auto : X → X)

computes to
` λ (X : Type) (x : X), x : Π (X : Type), X → X

and given the types
constant A : Type
constant B : Type
constant C : Type
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the computation
auto : (A → B → C) → (A → B) → (A → C)

results in
` λ (x : A → B → C) (x0 : A → B) (x1 : A), x x1 (x0 x1)

: (A → B → C) → (A → B) → A → C
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We elaborate in detail a realizability model for Martin-Löf dependent type theory with the
purpose to analyze a subtle distinction between two constructive notions of finiteness of a set
A. The two notions are: (1) A is Noetherian: the empty list can be constructed from lists over
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1 Introduction

We will analyze in detail in type theory the following observation. Let P be a unary predicate
of natural numbers. Define

P = {n ∈ N | ∀k < n. Pk ∨ ¬Pk}

Of course, in classical mathematics P = N, but in constructive mathematics this is not true
for all P . Let D be a unary predicate of lists over P with D` expressing that ` contains
a duplicate, that is, two occurrences of the same natural number (which by definition is in
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The proof is as follows. Let ` be a list over P and assume D(x :: `) for all x ∈ P (IH). We
clearly have D` ∨ ¬D`, so we can reason by contradiction. Assume ¬D`. We clearly have
` = nil ∨ ¬` = nil, so we can reason by cases. If ` = nil, we use 0 ∈ P and apply IH to get
D(0 :: nil), which is absurd. If ` 6= nil, then ` contains a largest natural number, say m ∈ P .
If Pm ∨ ¬Pm, then m + 1 ∈ P and we can apply IH to get D((m + 1) :: `), which per
construction yields D`, as m+ 1 is larger than all elements of `, and therefore not duplicating
some element of `. This conflicts with the assumption ¬D`, so we conclude ¬(Pm ∨ ¬Pm),
which is also absurd, since ¬¬(Pm ∨ ¬Pm) is a constructive tautology. This completes the
proof of the inductivity of D.

Since D is inductive in the way above, and Dnil is absurd, D cannot be an inductive
bar in the tree of lists over P . (The concept of an inductive bar making a tree of lists
well-founded will be formalized by the concept of a Noetherian relation in Section 3.) This
should not come as a surprise, since classically P = N, so the tree of lists without duplicates
is classically not well-founded, since it is always possible to extend a list without introducing
a duplicate. The above argument shows that we can also do this constructively with lists
over P , for any unary predicate P .

In view of the above, only a non-classical axiom can cause P to have fewer elements.
Of course we cannot downright postulate ∃n ∈ N.¬(Pn ∨ ¬Pn) without running into
inconsistency. But we can consistently postulate Φ = ¬∀n ∈ N. Pn ∨ ¬Pn. From Φ we
immediately infer ¬∀n ∈ N. n ∈ P , so P 6= N. Since one easily (and constructively) sees
that P is downward closed, Φ “somehow” achieves that P is finite. Of course the results in
the previous paragraphs still stand, and Φ does not make P finite in the sense that D is an
inductive bar.

In order to better understand in which way Φ achieves that P is finite, assume f : N→ P

is an injection. Then we would be able to find arbitrarily large elements in P , and hence
prove ∀n ∈ N. Pn ∨ ¬Pn, conflicting with Φ. As a consequence, no f : N→ P is injective.
In other words, for every f : N→ P we have ¬∀m,n ∈ N. fm=fn→ m=n. By an appeal to
Markov’s Principle we get ∃m,n ∈ N. fm = fn ∧m 6= n, that is, there exists a prefix of f
which contains a duplicate. If we view lists over P not containing duplicates as a tree, then
we have just proved that this tree is well-founded, which is another way of saying that P is
finite. (This notion of finiteness will be made precise by the concept of a streamless relation
in Section 3.)

The results in the previous two paragraphs capitalize on Markov’s Principle (a weak form
of classical reasoning) being consistent with Φ (a non-classical axiom). They are known
to co-exist in, for example, the recursive model of type theory. In that model, Φ can be
validated by the unsolvability of the halting problem. Although this model has been known
for quite some time, it is an important side-goal of this paper to give a detailed account. Our
main objective is to formalize the argument above in type theory, and prove that finiteness
based on equality being Noetherian is strictly stronger than finiteness based on equality
being streamless. This confirms a conjecture formulated by Coquand and Spiwack in [3]. We
also give a novel proof that every Noetherian relation is streamless. This proof is due to the
last author [11, Chapter 4] and formalized in Coq [10].

In type theory, a subset of N is a type Σx:N. Px given a type family P : N→ U. Elements
of this Σ-type (to be defined in Section 2) are pairs (n, p) consisting of a natural number
n and a proof p : Pn. It may happen that also p′ : Pn, with p′ different from p. This
phenomenon is called proof relevance. We do not want to count (n, p) and (n, p′) as two
elements of the subset of N defined by P . Therefore we only count the first projections of
objects in Σx:N. Px. Another approach would be to take the type Σx:N. ‖Px‖, where ‖_‖
stands for propositional truncation, a way of making all inhabitants of Px indistinguishable,
see [15, Section 3.7].
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The remainder of the paper is organized as follows. In Section 2, we define the basic
type theory. We introduce Noetherian relations and streamless relations in Section 3 and
prove that any Noetherian relation is streamless. The realizability model is constructed in
Section 4, with realizers for Markov’s Principle in Section 5 and for the unsolvability of the
halting problem in Section 6. This shows that the type theory can be consistently extended
with these two axioms. Then, in Section 7 we show that it cannot be proved in type theory
that any streamless set is Noetherian. We conclude with a discussion of related work, in
particular the Kleene Tree, in Section 8. For readers already familiar with dependent type
theory and inductive bars it might be efficient to read the conclusion first.

2 Dependent Type Theory

We closely follow the approach of Coquand and Spiwack [3]. We define Martin-Löf dependent
type theory as a set of typing rules defining a typing relation Γ ` M : A where M and A
are terms in an extension Λ of the untyped lambda calculus, and Γ is a context. A context
is a sequence x1 : A1, . . . , xn : An, where the xi are pairwise distinct variables and the
Ai are terms of Λ (representing types). The approach of [3] makes the construction of a
realizability model easier: all typable terms are already terms of Λ realizing their types, and
their computational behaviour can be studied in Λ.

An important aspect is that the type theory is open-ended, new constants and inductive
definitions can be (and will be) added. If the type theory is extended, then also Λ is
extended, and the realizability model is extended accordingly. We start by describing the
main characteristics of Λ.

2.1 The Underlying Computational System
The calculus Λ is an extension of the untyped lambda calculus with two sorts of constants,
constructors and operators. Constructors typically represent types (e.g., the type of the
natural numbers), type forming constructions (e.g., the sum of two types), and term forming
constructions (e.g., 0, S, nil). Operators typically represent destructors (e.g., recursors),
operations (e.g., the length of a list), and convenient abbreviations.

The abstract syntax for terms of Λ is

M,N ::= x | λx.M |M N | c | o,

where c is the syntactic category of the constructors and o that of the operators. We write
FV(M) to denote the set of free variables in M ; we call M closed if FV(M) is empty. The
computational behavior of the terms is determined by β-reduction plus so-called ι-reduction
rules. The latter are left-linear and mutually disjoint (non-overlapping), ensuring confluence
of βι-reduction [8]. (Confluence is important to warrant the correct interpretation of elements
of an inductive type as βι-equivalence classes of terms. For example, the normal forms 0 and
S0 are in different classes because of confluence.) All ι-reduction rules are of the form

o p1 . . . pk = M,

where o is an operator and p1, . . . , pk are so-called constructor patterns. For any ι-reduction
rule we require FV(M) ⊆ FV(o p1 . . . pk), that is, no new variables can be introduced.
Constructor patterns p1, . . . , pk are defined by the following abstract syntax

p ::= x | c p1 . . . pl,

where c is a constructor.
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`
Γ ` A

Γ, x : A `

Γ `
Γ ` U

Γ ` A : U
Γ ` A

Γ ` A Γ, x : A ` B
Γ ` Πx:A.B

Γ `
Γ ` x : A x:A ∈ Γ Γ `M : A Γ ` B

Γ `M : B
A =βι B

Γ ` A Γ ` Πx:A.B Γ, x : A `M : B
Γ ` λx.M : Πx:A.B

Γ `M : Πx:A.B Γ ` N : A
Γ `MN : B(N)

Γ ` A : U Γ, x : A ` B : U
Γ ` Πx:A.B : U

Figure 1 General typing rules of Martin-Löf type theory with universe U.

Constructors, as well as operators with their ι-reduction rules, will be introduced in the
sequel, as need arises, always complying with the above syntax.

Notational conventions.

We tacitly assume capture-free substitution and consider terms up to α-conversion. We
write M =βι N or just M = N if M and N are βι-convertible. By M(x/N) we denote the
result of substituting N for all the free occurences of the variable x in M . We may write
M(N) if the variable x is clear from the context. For example, (λx.M)N = M(x/N) and
(λx.M)N = M(N) both denote a β-step. We abbreviate (λx. xx)(λx. xx) to Ω.

2.2 General rules of the type theory

There are three forms of judgments in the type theory:

Γ ` and Γ ` A and Γ `M : A.

The judgment Γ ` means that Γ is a well-typed context, Γ ` A means that the type A is
well-formed in the context Γ, and Γ `M : A means that the term M has the type A in the
context Γ. We (mostly) use metavariables A,B for types, and M,N for terms, but recall
that they are all terms of Λ.

For the general rules, we have a constructor U for the universe since we want type families
to be first-class citizens. We add an operator Pi for dependent products, with ι-reduction
PiAB x = B x. For readability, we write Πx:A.B instead of PiA (λx.B), and A→ B instead
of PiA (λx.B) if x does not occur free in B. The typing rules are the standard rules for the
Martin-Löf type theory, given in Figure 1.
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We can derive, for example, A : U `, and so ` U → U, and in some more steps
A : U ` A→ U. The latter A→ U is the type of unary predicates on a type A (also called
type families over A). The former U→ U is the type of functions on the universe. Both are
large types, i.e., types not in U. Types in U are called small types.

2.3 Specific rules of the type theory
We extend the type theory by specific inductive types, which are all standard. We add
constants and give typing rules, as well as ι-reduction rules for the operators.

Empty type

We define the empty type with no constructors:

Γ `
Γ ` N0 : U

and its elimination rule (also known as the ex falso rule):

Γ ` A : U
Γ ` ExF : N0 → A

We define negation as the abbreviation ¬ := λA.A→ N0.

Sum

We have the sum type with its two constructors:

Γ ` A : U Γ ` B : U
Γ ` A+B : U

Γ ` A : U Γ ` A+B : U
Γ ` inl : A→ A+B

Γ ` B : U Γ ` A+B : U
Γ ` inr : B → A+B

and may perform case analysis on terms of type A+B:

Γ ` A : U Γ ` B : U Γ ` C : U Γ ` (A+B) : U
Γ ` case : (A→ C)→ (B → C)→ A+B → C

where the ι-reductions are given by:

caseM N (inl a) = M a

caseM N (inr b) = N b

With negation and sum type used for constructive disjunction we can define the concept
of decidability that will play an important role in the sequel.

I Definition 1. We call a type A : U decidable if A : U ` M : A + ¬A for some M . The
type A + ¬A will often be abbreviated by decA. In such cases we also say that decA is
inhabited, without explicit reference to Γ or M . Predicates are called decidable if they are
pointwise decidable. For example, P : A → U is decidable if Πa:A. dec (Pa) is inhabited;
R : A→ A→ U is decidable if Πa, a′:A. dec (Raa′) is inhabited. The latter is an example of
how we denote two Π-abstractions with the same base type A.

Unit type

We have the unit type with one single constructor:

Γ `
Γ ` N1 : U

Γ `
Γ ` 0 : N1

TYPES 2016



6:6 Realizability at Work

Booleans

We have the type for Booleans with two constructors:
Γ `

Γ ` N2 : U
Γ `

Γ ` 0 : N2

Γ `
Γ ` 1 : N2

and a conditional expression:
Γ ` C : N2 → U

Γ ` brec : C 0→ C 1→ Πb:N2. C b

with the ι-reduction given by

brecM N 0 = M

brecM N 1 = N

Note that brec does not make it possible to define a function f : N2 → U with, e.g., f i = Ni,
since that would require C = λb.U, which cannot be typed. Therefore, certain useful
operators have to be defined ad-hoc. Here we define a decidable equality for Booleans:

Γ `
Γ ` beq : N2 → N2 → U

whose ι-reductions are given by:

beq 0 0 = N1
beq 0 1 = N0
beq 1 0 = N0
beq 1 1 = N1

Natural numbers

We have the type N with the two well-known constructors:
Γ `

Γ ` N : U
Γ `

Γ ` 0 : N
Γ `

Γ ` S : N→ N

Notice that 0 is ad-hoc polymorphic and is a constructor of N1,N2 and N. We have the
recursor (dependent eliminator) rec:

Γ ` C : N→ U
Γ ` rec : C 0→ (Πn:N. C n→ C (S n))→ Πn:N. C n

with ι-reductions given by

recM N 0 = M

recM N (Sn) = N n (recM N n).

We also define a decidable equality on natural numbers:
Γ `

Γ ` eq : N→ N→ U

whose ι-reductions are given by:

eq 0 0 = N1
eq (Sx) 0 = N0
eq 0 (Sx) = N0
eq (Sx) (S y) = eq x y.

By double induction one can easily prove:
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I Lemma 2. There exist proofs deqN2 , deqN such that

` deqN2 : Πx, y: N2. dec (beqx y) ` deqN : Πn,m: N. dec (eqnm)

Lists

We have the usual type of lists over A, denoted by [A]:

Γ ` A : U
Γ ` [A] : U

Γ ` A : U
Γ ` nil : [A]

Γ ` A : U
Γ ` cons : A→ [A]→ [A]

and the list recursor, writing a :: l for cons a l here and below:

Γ ` A Γ ` C : [A]→ U
Γ ` lrec : C nil→ (Πa:A.Πl:[A]. C l→ C(a :: l))→ Πl:[A]. C l

with ι-reductions given by

lrecM N nil = M

lrecM N (a :: l) = N a l (lrecM N l).

Dependent pairs

We have the Σ-type for dependent pairs:

Γ ` A : U Γ, x : A ` B : U
Γ ` Σx:A.B : U

Γ ` Σx:A.B : U Γ `W : A Γ ` P : B(W )
Γ ` (W,P ) : Σx:A.B

with dependent eliminator (recursor):

Γ ` A : U Γ, x : A ` B : U Γ ` Σx:A.B : U Γ ` C : (Σx:A.B)→ U
Γ ` srec : (Πx:A.Πp:B.C (x, p))→ Πy:(Σx:A.B). C y

with ι-reduction given by:

srecQ (w, p) = Qw p

We use similar notational conventions for Σx:A.B as for Πx:A.B. This means that the actual
syntax is SigA (λx.B). When x does not appear free in B, we may abbreviate Σx:A.B as
A×B.

3 Noetherian relations and streamless relations

In this section we define the concepts Noetherian and streamless for relations. When applied
to the equality relation on a type A, they yield two classically equivalent definitions of
finiteness. We first extend the type theory with new constants and rules to facilitate these
definitions.

3.1 Auxiliary constants and rules
Given a list l of elements of a type A and a predicate P on A, we define a predicate existsP l
to be true if l contains an element that satisfies P . Formally, we add a typing rule for exists

Γ ` A : U
Γ ` exists : (A→ U)→ [A]→ U
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and ι-reductions given by:

existsP nil = N0
existsP (a :: l) = (P a) + existsP l

Note that exists is not definable by list recursion since it would require C = λl.U, which
cannot be typed. A similar remark holds for good which we define now.

Given a binary relation R on a type A and a list l over A, we define a predicate goodR l
to be true if l contains elements that are related by R in the same order in which they occur
in l. Formally, we define a typing rule for good by

Γ ` A : U
Γ ` good : (A→ A→ U)→ [A]→ U

and ι-reductions by:

goodR nil = N0
goodR (a :: l) = exists (Ra) l + goodR l

The following functions are actually definable by the recursors in Section 2.3. We define
the length function on lists:

Γ ` A : U
Γ ` length : [A]→ N

with ι-reductions given by:

length nil = 0
length (h :: t) = S(length t)

Given a function f from natural numbers to a type A, the function take f returns for
every natural number n the list consisting of the first n values of f . Formally, we define a
typing rule for take by

Γ ` A : U
Γ ` take : (N→ A)→ N→ [A]

and, writing fn for (take f n), ι-reductions:

f0 = nil
f(S n) = (f n) :: (fn).

Given a type A and a predicate P on [A], we define by induction the predicate barAP
of lists over A that are “barred” by P . The classical intuition is that a list is “barred”
by P if every extension eventually satisfies P . More precisely, by the inductive definition
below, barAP is the smallest predicate which contains P and which is closed under inductive
shortening, that is, holds of l whenever it holds of a :: l for all a : A. Since the type A will
be the same in this section, we will use the abbreviation bAr for barA, where the capital in
bAr should remind the reader of the implicit argument A. We add the following typing rules
for proving that the list l is barred by P :

Γ ` A : U
Γ ` bAr : ([A]→ U)→ [A]→ U

Γ ` A : U Γ ` l : [A] Γ ` P : [A]→ U Γ ` X : P l
Γ ` baseX : bArP l

Γ ` A : U Γ ` l : [A] Γ ` P : [A]→ U Γ ` Y : Πa:A. bArP (a :: l)
Γ ` stepY : bArP l
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The eliminator for bArP will be called a bar recursor, but should not be confused with
Spector’s bar recursor from [13]. The latter is an ingenious combinator of much greater proof
theoretic strength than the one here. Our bar recursor has the following type:

Γ ` A : U Γ ` P : [A]→ U Γ ` C : [A]→ U

Γ ` barrec : (Πl:[A]. P l→ C l)→ (Πl:[A]. (Πa:A.C (a :: l))→ C l)→ Πl:[A]. bArP l→ C l

and its computational behaviour is described by the following ι-reductions:

barrecB S l (baseX) = B lX

barrecB S l (stepY ) = S l (λa. barrecB S (a :: l) (Y a)).

3.2 Definition of streamless and Noetherian
Streamless and Noetherian can both be defined as properties of a binary relation R : A→
A → U. Informally speaking, R is streamless if every stream, i.e., infinite sequence in A,
contains two elements related by R in the reversed order as they appear in the sequence.1

I Definition 3. A relation R : A→ A→ U on a type A : U is streamless if every function
f : N→ A from natural numbers to A has a prefix that is R-good, i.e.,

streamlessR := Πf :N→ A.Σn:N. goodR (fn)

The equality relation on A being streamless expresses that every stream contains a duplicate,
i.e., is constructively non-injective. This is classically equivalent to saying that A is finite.

Noetherian is not so easily explained, it is an acquired taste. We call P an inductive bar
in [A] if bArP nil holds, that is, if nil is barred by P . By the inductive definition of bArP
this means that nil can be obtained from lists satisfying P by inductive shortening. We call
a relation R Noetherian if (goodR) is an inductive bar.

I Definition 4. A relation R : A→ A→ U on a type A : U is Noetherian if bAr (goodR) nil
holds:

NoetherianR := bAr (goodR) nil

The equality relation on A being Noetherian is also classically equivalent to A being finite.
However, unlike streamless, Noetherian allows us to use induction on bAr. It is exactly this
which allows us to prove that Noetherian relations are streamless. The novelty of this proof
is that it does not use a relation l ≺ f of a list being a prefix of a function, and hence not an
equality relation on the type A. Of course, adding equality would not be problematic, but
is it somehow pleasing that equality is not used for proving a result that does not involve
equality (the normal form of any such proof would not involve equality anyway). A nice
corollary of the next theorem is that every Noetherian relation is reflexive, a fact that would
otherwise require a non-trivial proof.

I Theorem 5. There is a proof M such that

A : U, R : A→ A→ U `M : NoetherianR→ streamlessR

1 The name streamless may well be considered a misnomer if R is not an equality relation. Classically,
streamless means that there is no f such that i > j → Rij for all i, j (R the complement of R).
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Proof. We prove in the context A : U, R : A→ A→ U, f : N→ A that the following type is
inhabited:

Πl:[A]. bAr (goodR) l→ subGRf l→ subExRf l→ Σm:N. goodR (fm), (1)

where subGRf l and subExRf l are defined as the following abbreviations.

subGRf l := goodR l→ goodR (f(length l))
subExRf l := Πa:A. (exists (Ra) l→ exists (Ra) (f(length l)))

These abbreviations express that the good/exists properties of l imply those of f(length l),
which will suffice to show (1) . Also note that they both trivially hold for nil, so that (1)
with l = nil implies Theorem 5. (Note that both are trivially implied by l = f(length l).)

We prove (1) by induction on bAr (goodR) l, that is, using the last rule of the previous
section with the predicate P := (goodR) and the predicate

C := λl:[A]. subGRf l→ subExRf l→ Σm:N. goodR (fm).

Thus the proof of (1) will be of the form barrecHbHs with Hb : Πl:[A]. P l→ C l and

Hs : Πl:[A]. (Πa:A.C(a :: l))→ Cl,

corresponding to the base case and the step case, respectively, elaborated below.

Base case. To construct Hb : Πl:[A]. P l→ C l, assume l : [A] such that goodR l,
subGRf l, and subExRf l. From subGRf l and goodR l we immediately get the goal
goodR (f(length l)).

Step case. To construct Hs : Πl:[A]. (Πa:A.C(a :: l))→ Cl, assume l : [A] such that
Πa:A.C(a :: l). We have to show C l. The latter expands to subGRf l → subExRf l →
Σm:N. goodR (fm), so we assume subGRf l and subExRf l, and show Σm:N. goodR (fm).
Expanding the induction hypothesis (Πa:A.C(a :: l)) yields

Πa:A. subGRf (a :: l)→ subExRf (a :: l)→ Σm:N. goodR (fm).

We apply this to a = f(length l), and proceed to proving the two assumptions in the following
two subcases.

Subcase subGRf (f(length l) :: l). Expanding the abbreviation subG we get

goodR (f(length l) :: l)→ goodR (f(length (f(length l) :: l))).

Since (length (f(length l) :: l)) reduces to S(length l), the conclusion of the above formula
reduces to goodR (f(length l) :: f(length l)). Using the definition of good in both the
antecedent and the consequent it becomes clear that we have to prove:

(exists (R (f (length l))) l + goodR l)→
(exists (R (f(length l))) (f(length l)) + goodR (f(length l))).

The latter is easily proved by cases using the assumption subExRf l with a = f(length l) for
the left summand and the assumption subGRf l for the right summand.

Subcase subExRf (f(length l) :: l). Expanding the abbreviation subEx and reducing we
get

Πa:A. exists (Ra) (f(length l) :: l)→
exists (Ra) (f(length l) :: f(length l)).
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Using the definition of exists we get by reducing

Πa:A. ((Ra (f(length l))) + exists (Ra) l)→
((Ra (f(length l))) + exists (Ra) (f(length l))).

The latter follows easily from the assumption subExRf l. This finishes the second subcase
of the step case and we are done. J

4 The Model Construction

In this section, we construct the realizability model for the type theory, based on the
underlying computational system Λ. Terms are interpreted by βι-equivalence classes of the
terms of Λ. Types are interpreted by sets of such equivalence classes. Typically, if Γ `M : A,
then the interpretation of M is an element of the interpretation of A (both relative to the
interpretation of Γ).

We use the realizability model to show the unprovability of the converse of Theorem 5.
For this result, we use (the functional version of) Markov’s principle and a non-classical
axiom ¬Πn:N. (Hn) + ¬(Hn) for a halting predicate H. Both will be shown to be true in
the model in later sections.

4.1 Pointed DCPOs and fixpoints
We recall Pataraia’s fixpoint theorem [12], which states that every monotone endofunction2
on a pointed directed complete partial order (DCPO) has a least fixpoint.

I Definition 6. Let (P,≤) be a partial order. A subset X of P is directed if it is nonempty
and, for every x, y ∈ X, there exists z ∈ X such that x ≤ z and y ≤ z.

I Definition 7. A partial order (P,≤) is a directed complete partial order (DCPO) if every
directed subset of P has a least upper bound (supremum) in P . A DCPO (P,≤) is pointed
if the empty set has a supremum, which is then the least element ⊥P of P .

I Definition 8. An endofunction f : P → P is monotone if it is order-preserving, i.e., for
every x, y ∈ P , x ≤ y implies f(x) ≤ f(y).

I Theorem 9. Every monotone endofunction function on a pointed DCPO has a least
fixpoint, which is also the least pre-fixpoint.

A short proof can be found in [6]. The standard argument, transfinite iteration of the function
starting at the least element, also works. The reason is that the transfinite sequence is
directed.

We will use Pataraia’s Theorem with the following DCPO. Let D be a set. Elements
of the DCPO are pairs (S, F ) where S ∈ P (D), that is, S is a subset of D, and F is a
function S → P (D), viewed as a single-valued set of pairs. We can order such pairs by
(S, F ) ≤ (S′, F ′) if S ⊆ S′ and F ⊆ F ′. The latter conjunct can be rephrased by saying that
F is the restriction of F ′ to S. This does not yield a complete lattice on pairs (S, F ), even
though (P (D) ,⊆) is. For example, if D = {d, e} and S = {d} and Fd maps d to {d} and Fe
maps d to {e}, then there is no F such that Fd, Fe ⊆ F . (It is tempting but wrong to think
that F mapping d to {d, e} extends Fd and Fe.)

2 An endofunction is a function with the same domain and codomain.
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However, if X is a directed set of pairs (S, F ), then the pair

(
⋃

(S,F )∈X

S ,
⋃

(S,F )∈X

F )

is the least upper bound of X. Note that, since X is directed,
⋃

(S,F )∈X F is a function
from

⋃
(S,F )∈X S to P (D) as required. If X = ∅, we get the least element (∅, ∅) by the

same formula above. It follows that the set of pairs ordered as above is a pointed DCPO.
Consequently, every monotone endofunction has a least fixpoint.

4.2 Realizability model
We shall now define the realizability model. The domain D is the set of terms in the extended
untyped lambda calculus modulo βι-equality. Hence, elements of D are equivalence classes of
terms. For simplicity, however, we will often call them just terms, and write M to denote
the equivalence class of M . Next, we define which elements of D represent types and how to
find the subset of elements associated with each type.

We shall first prepare the interpretation of the inductive types. Define Num ⊆ D as the
smallest set containing 0 and closed under the successor, i.e., Sn is in Num if n is in Num.
Formally, we define Num as the least fixpoint of the following monotone endofunction ΨNum
on P (D):

ΨNum(X) := {0} ∪ {Sn | n ∈ X}.

The poset (P (D) ,⊆) is a complete lattice, hence the least fixpoint exists by the Knaster-
Tarski theorem, which is a special case of Pataraia’s theorem.

Similarly, given a set A ⊆ D, we define List(A) ⊆ D as the least fixpoint of the following
monotone endofunction ΨList(A) on (P (D) ⊆):

ΨList(A)(X) := {nil} ∪ {cons a l | a ∈ A ∧ l ∈ X}.

Informally, List(A) consists of classes that are βι-equivalent to lists over A.
Note that bAr is an inductively defined function on [A]→ U. Given a set A ⊆ D, consider

the poset (List(A) → P (D) ,≤), where Q ≤ Q′ if Q(l) ⊆ Q′(l) for all l in List(A)3. This
poset forms a complete lattice, hence every monotone function on it has a least fixpoint.
Given also a function P in List(A) → P (D), define Bar(A,P ) as the least fixpoint of the
following monotone endofunction ΨBar(A,P ) on (List(A)→ P (D) ,≤):

ΨBar(A,P )(Q)(l) := {baseX | X ∈ P (l)} ∪ {stepY | ∀a ∈ A. Y a ∈ Q (cons a l)}.

Finally, we introduce the DCPO L of pairs (S, F ) with S ⊆ D and F ∈ S → P (D) as
described in Section 4.1. Here S is to be viewed as a set of types, and F as a function giving
the set of elements F (T ) ⊆ D for each T ∈ S. We are now ready to define which terms of
Λ are types, and which elements each type has. We do so in two stages, first for the small
types and then for all types, using monotone endofunctions Φ0 and Φ1 on L, respectively.

An important observation is that only constructors play a role here, not operators, and
that the only difference between Φ0 and Φ1 is that the latter includes the constructor U.

3 Abusing notation, we denote by A→ B the set of functions from the set A to the set B in the ambient
naive set theory in which we develop the realizability model.
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We define (T0,El0) in L to be the least fixpoint of the following monotone endofunction
Φ0 on L:

Φ0(S, F ) := (S1 ∪ S2 ∪ · · · ∪ S9, F1 ∪ F2 ∪ · · · ∪ F9)

where

S1 = {N0}
F1 = {(N0, ∅)}
S2 = {N1}
F2 = {(N1, {0})}
S3 = {N2}
F3 = {(N2, {0, 1})}
S4 = {N}
F4 = {(N,Num)}
S5 = {A+B | A,B ∈ S}
F5 = {(A+B, {inl a | a ∈ F (A)} ∪ {inr b | b ∈ F (B)}) | A,B ∈ S}
S6 = {[A] |A ∈ S}
F6 = {([A], List(F (A))) | A ∈ S}
S7 = {Πx:A.B | A ∈ S ∧ ∀a ∈ F (A). B(a) ∈ S}
F7 = {(Πx:A.B, {M | ∀a ∈ F (A).M a ∈ F (B(a))}) | Πx:A.B ∈ S7}
S8 = {Σx:A.B | A ∈ S ∧ ∀a ∈ F (A). B(a) ∈ S}
F8 = {(Σx:A.B, {(a,M) | a ∈ F (A) ∧M ∈ F (B(a))}) | Σx:A.B ∈ S8}
S9 = {bArP l | A ∈ S ∧ l ∈ List(F (A)) ∧ ∀l′ ∈ List(F (A)). P l′ ∈ S}
F9 = {(bArP l,Bar(F (A), List(F (A)) 3 l′ 7→ F (P l′))(l)) | bArP l ∈ S9}

In the last line, the notation List(F (A)) 3 l′ 7→ F (P l′) denotes the function which maps l′
in List(F (A)) to F (P l′).

The endofunction Φ0 is monotone on the DCPO L, hence the least fixpoint (T0,El0)
exists by Theorem 9.

I Definition 10. (T0,El0) is the least fixpoint of Φ0 above.

Given T0, we define

Φ1(S, F ) := ({U} ∪ S1 ∪ S2 ∪ · · · ∪ S9, {(U, T0)} ∪ F1 ∪ F2 ∪ · · · ∪ F9)

with Si, Fi for i = 1, . . . , 9 are as defined earlier. The endofunction Φ1 is monotone.

I Definition 11. (T1,El1) is the least fixpoint of Φ1 above.

I Remark. An important observation about the definitions of Φ0 and Φ1 is that F occurs
negatively in some clause, namely in S7 for dependent products. This is the reason that
we use DCPOs and not CPOs. Type-theoretically, the construction of the model goes by
induction-recursion [5], as opposed to mutual induction. A different device, replacing negative
occurrences by positive conditions on the complements, has been used in [1] and can be
traced back to Scott and Feferman.
I Remark. The set T1 is intended to contain all representatives of types in the type theory,
both small and large, but it actually contains much more. Likewise, for A ∈ T1, El1(A)
intends to contain all interpretations of terms of type A in the type theory, but it actually
contains much more. For instance, the set El1(N→ N) contains all (total) recursive functions
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on Num. In particular, elements in T1 or El1(A) (with A ∈ T1) may not be normalizing. For
instance, let

f := λn. rec 0 (λm. λx. 0)n

and, deliberately using the term Ω which is not typable,

g := λn. rec 0 Ω (f n).

Then f always returns 0 on a numeral, i.e., f n is βι-equivalent to 0 for any n in Num, so
that also gn=βι 0 for all numerals n. The term g is in El1(N→ N), but is not even weakly
normalizing, since g reduces to itself by a contraction of Ω. Likewise, for the term

h := λn. (rec N Ω (f n)

we have hn=βι N for all numerals n. Hence Pi Nh is in T0, but is not weakly normalizing.
We have f, g ∈ El0(Pi Nh) = El0(N→ N). While we have ` f : N→ N, it is neither possible
to derive ` g : N → N, nor ` Pi Nh, let alone ` f : Pi Nh or ` g : Pi Nh. The realizability
model is not a term model. This is not a bug, but a feature that we will exploit: types that
are inhabited in the model, can be consistently added as axioms to the type theory.

The following lemma states that El0 and El1 agree on T0.

I Lemma 12. (T0,El0) ≤ (T1,El1).

Proof. The claim follows from Theorem 9, since (T1,El1) is a prefixpoint of Φ0. J

From the fact that (T1,El1) (resp. (T0,El0)) is a fixpoint of Φ1 (resp. Φ0), we obtain the
following lemma.

I Lemma 13. For i = 0, 1, the following conditions hold:
1) N0 ∈ Ti, and Eli(N0) = ∅;
2) N1 ∈ Ti, and Eli(N1) = {0};
3) N2 ∈ Ti, and Eli(N2) = {0, 1};
4) N ∈ Ti, and Eli(N) = Num;
5) A+B ∈ Ti if A,B ∈ Ti, and then

Eli(A+B) = {inl a | a ∈ Eli(A)} ∪ {inr b | b ∈ Eli(B)} ;

6) [A] ∈ Ti if A ∈ T0, and then Eli([A]) = List(El0(A));
7) Πx:A.B ∈ Ti if A ∈ Ti and B(a) ∈ Ti for all a ∈ Eli(A), and then

Eli(Πx:A.B) = {M | ∀a ∈ Eli(A),M a ∈ Eli(B(a))} ;

8) Σx:A.B ∈ Ti if A ∈ Ti and B(a) ∈ Ti for all a ∈ Eli(A), and then

Eli(Σx:A.B) = {(W,P ) |W ∈ Eli(A) ∧ P ∈ Eli(B(W ))} ;

9) bArP l ∈ Ti if A ∈ T0, l ∈ El0([A]) and P l′ ∈ T0 for all l′ ∈ El0([A]), and then

Eli(bArP l) = Bar(El0(A),El0([A]) 3 l′ 7→ El0(P l′))(l);

10) U ∈ T1, and El1(U) = T0 (but not U ∈ T0).
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4.3 Soundness
We now give the semantics of expressions and types a priori, that is, without any assumption
of them being well-typed.

I Definition 14. An environment is a mapping from the set of variables to the domain D.
We let ρ, ρ′, . . . range over environments and let Env denote the set of all environments. By
ρ(x/a) we denote the environment ρ′ with ρ′(x) = a and ρ′(y) = ρ(x) for variables y 6= x.

I Definition 15. Let M be a term, i.e., either an expression or a type, and ρ an environment.
The semantics [[M ]]ρ ∈ D of M in ρ denotes the (βι-equivalence class of the) result of the
simultaneous substitution in M of all free occurrences of variables x by ρ(x).

We write [[M ]] to denote [[M ]]ρ with ρ being the empty environment, or when M is closed.
We may also write M for [[M ]]ρ in that case.

As usual, we need a substitution lemma.

I Lemma 16. For all M,N and ρ, we have [[(λx.M)N ]]ρ = [[M(N)]]ρ = [[M ]]ρ(x/[[N ]]ρ).

Proof. By a routine induction on the structure of M . J

We have to take into account certain sanity conditions on environments with respect to
typing contexts.

I Definition 17. An environment ρ is Γ-correct if for all (x : A) ∈ Γ, [[A]]ρ ∈ T1 and
ρ(x) ∈ El1([[A]]ρ).

The following lemma states that the type theory is sound with respect to the semantics.

I Lemma 18. For all Γ,M,A and for any Γ-correct ρ we have the following:
1. if Γ ` A, then [[A]]ρ ∈ T1;
2. if Γ `M : A, then [[A]]ρ ∈ T1 and [[M ]]ρ ∈ El1([[A]]ρ).

Proof. Since the rules in Figure 1 mix (1) and (2), we prove the lemma by simultaneous
induction on derivations. We start with the general typing rules in Figure 1.

Suppose Γ ` U by Γ `, and ρ is Γ-correct. Then, the claim holds trivially since
[[U]]ρ = U ∈ T1 by Lemma 13.

Suppose Γ ` A by Γ ` A : U, and ρ is Γ-correct. We have [[A]]ρ ∈ El1(U) by induction
hypothesis and El1(U) = T0 ⊆ T1 by Lemma 12, from which the claim follows.

Suppose Γ ` Πx:A.B by Γ ` A and Γ, x : A ` B, and ρ is Γ-correct. We have to prove
that [[Πx:A.B]]ρ ∈ T1. By induction hypothesis on Γ ` A, we have [[A]]ρ ∈ T1. By Lemma 13
and an appeal to the Substitution Lemma, it suffices that [[B]]ρ(x/a) ∈ T1 for all a ∈ El1([[A]]ρ).
For this, it suffices by induction hypothesis on Γ, x : A ` B that ρ(x/a) is (Γ, x : A)-correct,
which follows from a ∈ El1([[A]]ρ).

Suppose Γ ` x : A by (x : A) ∈ Γ. Then the claim follows by that ρ is Γ-correct and
[[x]]ρ = ρ(x).

Suppose Γ ` M : B by A =βι B, Γ ` M : A and Γ ` B. By induction hypothesis on
Γ ` M : A, we have [[A]]ρ ∈ T1 and [[M ]]ρ ∈ El1([[A]]ρ). By A=βι B, we have [[A]]ρ = [[B]]ρ,
hence we get [[B]]ρ ∈ T1 and [[M ]]ρ ∈ El1([[B]]ρ)4

4 We do not use the induction hypothesis on Γ ` B. In fact, we do not use the hypothesis Γ ` B. This
manifests that the typing rules are more restrictive than the semantics.
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Suppose Γ ` λx.M : Πx:A.B by Γ ` A, and Γ ` Πx:A.B and Γ, x : A ` M : B.
By induction hypothesis, we have [[A]]ρ ∈ T1 and [[Πx:A.B]]ρ ∈ T1. We have to show
[[λx.M ]]ρ ∈ El1([[Πx:A.B]]ρ). By the Substitution Lemma, it suffices that [[λx.M ]]ρ a =
[[M ]]ρ(x/a) ∈ El1([[B]]ρ(x/a)) for all a ∈ El1([[A]]ρ). This follows from induction hypothesis on
Γ, x : A `M : B, noting that ρ(x/a) is (Γ, x : A)-correct.

Suppose Γ `M N : B(N) by Γ `M : Πx:A.B and Γ ` N : A. By induction hypothesis,
we have [[Πx:A.B]]ρ ∈ T1, [[M ]]ρ ∈ El1([[Πx:A.B]]ρ), and [[A]]ρ ∈ T1, [[N ]]ρ ∈ El1([[A]]ρ). By
Lemma 13, it follows that [[M ]]ρ [[N ]]ρ ∈ El1([[B]]ρ([[N ]]ρ)). Using the Substitution Lemma,
we conclude [[M N ]]ρ = [[M ]]ρ [[N ]]ρ ∈ El1([[B]]ρ([[N ]]ρ)) = El1([[B]]ρ(x/[[N ]]ρ)) = El1([[B(N)]]ρ).

Suppose Γ ` Πx:A.B : U by Γ ` A : U and Γ, x : A ` B : U. By induction hypothesis
on Γ ` A : U and by Lemma 13, we know that [[U]]ρ = U ∈ T1, and [[A]]ρ ∈ El1(U) = T0.
We have to show [[Πx:A.B]]ρ ∈ T0. By Lemma 13 again and by the Substitution Lemma,
it suffices that [[B]]ρ(x/a) ∈ T0 for all a ∈ El0([[A]]ρ). Recalling that El0 and El1 agree on
T0 (Lemma 12), hence in particular on [[A]]ρ, this follows from induction hypothesis on
Γ, x : A ` B : U since ρ(x/a) is (Γ, x : A)-correct.

We are done with the general typing rules. We move on to the specific typing rules in
Section 2.3. In the following, we will often tacitly use that El1(U) = T0 ⊆ T1 and that El1
extends El0 (Lemma 12).

Regarding the empty type, we have U ∈ T1 and N0 ∈ El1(U) from Lemma 13. If
Γ ` ExF : N0 → A by Γ ` A : U, then by induction hypothesis, we have [[A]]ρ ∈ T0. It follows
that N0 → [[A]]ρ ∈ T0, and ExF ∈ El0(N0 → [[A]]ρ) since El0(N0) is empty.

Regarding the typing rules for the unit type, we get the claim from Lemma 13.
Regarding Booleans, we get the claim from Lemma 13 for the typing rules for N2, 0 and

1. Suppose Γ ` brec : C 0→ C 1→ Πb:N2. C b by Γ ` C : N2 → U. By induction hypothesis,
we have N2 → U ∈ T1 and [[C]]ρ ∈ El1(N2 → U), so [[C 0]]ρ ∈ T0, [[C 1]]ρ ∈ T0, and [[C b]]ρ ∈ T0
for all b ∈ El1(N2). It follows that [[C 0 → C 1 → Πb:N2. C b]]ρ ∈ T1. Let M ∈ El0([[C 0]]ρ)
and N ∈ El0([[C 1]]ρ). For every b ∈ El1(N2), we have either b = 0 or b = 1. Hence we get
brec ∈ El1([[C 0→ C 1→ Πb:N2. C b]]ρ) from the ι-reduction for brec. We get the claim for
the typing rule for beq from Lemma 13 and the ι-reduction for beq.

Regarding natural numbers, the only non-trivial rules are those for rec and eq. Suppose
Γ ` rec : C 0 → (Πn:N. C n→ C (S n)) → Πn:N. C n by Γ ` C : N → U. By induction
hypothesis, we have N → U ∈ T1 and [[C]]ρ ∈ El1(N → U). It follows that [[C 0]]ρ ∈ T0,
[[Πn:N. C n→ C (S n)]]ρ ∈ T0 and [[Πn:N. C n]]ρ ∈ T0, hence [[C 0→ (Πn:N. C n→ C (S n))→
Πn:N. C n]]ρ ∈ T0. We have to prove that recM N n ∈ El0([[C n]]ρ) for all M ∈ El0([[C 0]]ρ),
N ∈ El0([[Πn:N. Cn→ C(Sn)]]ρ) and n ∈ El0(N). This is proved by induction on n ∈
El0(N) = Num, using the ι-rule for rec. It follows that rec ∈ El0([[C 0→ (Πn:N. C n→ C (Sn))
→ Πn:N. C n]]ρ). Suppose Γ ` eq : N→ N→ U by Γ `. That N→ N→ U ∈ T1 follows from
Lemma 13. In order to show eq ∈ El1(N→ N→ U), we have to prove eqmn ∈ T0 for all m
and n in Num. This is proved by nested induction on m and n.

Regarding lists, if Γ ` [A] : U by Γ ` A : U, then by induction hypothesis we get
[[A]]ρ ∈ T0. It follows from Lemma 13 that [[[A]]]ρ = [[[A]]ρ] ∈ T0. If Γ ` nil : [A] by
Γ ` A : U, the claim follows easily from the induction hypothesis and Lemma 13. The
case for Γ ` cons : A → [A] → [A] by Γ ` A : U is similar. Suppose Γ ` lrec : C nil →
(Πa:A.Πl:[A]. C l→ C (a :: l)) → Πl:[A]. C l by Γ ` A and Γ ` C : [A] → U. By induction
hypothesis on Γ ` C : [A] → U, we have [[[A] → U]]ρ ∈ T1 and [[C]]ρ ∈ El1([[[A] → U]]ρ).
From Lemma 13, it follows that [[Cnil]]ρ ∈ T0, [[Πa:A.Πl:[A]. C l→ C (a :: l)]]ρ ∈ T1 and
[[Πl:[A]. C l]]ρ ∈ T1, hence [[C nil → (Πa:A.Πl:[A]. C l→ C (a :: l)) → Πl:[A]. C l]]ρ ∈ T1. In
order to show that lrec ∈ El1([[C nil → (Πa:A.Πl:[A]. C l→ C(a :: l)) → Πl:[A]. C l]]ρ), we
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have to prove, for all M ∈ El1([[C nil]]ρ), N ∈ El1([[Πa:A.Πl:[A]. C l→ C (a :: l)]]ρ) and l ∈
El1([[[A]]ρ]), that lrecM N l ∈ El1([[C l]]ρ). This is proved by induction on l ∈ El1([[[A]]ρ]) =
List([[A]]ρ), using the ι-rewrite rules for lrec.

Sum types can be dealt with in a similar (but simpler) manner as list types.
Regarding dependent pairs, if Γ ` Σx:A.B : U by Γ ` A : U and Γ, x : A ` B :

U, then we argue analogously to the case for Γ ` Πx:A.B : U. Suppose Γ ` (W,P ) :
Σx:A.B by Γ ` Σx:A.B : U, Γ ` W : A and Γ ` P : B(W ). We obtain Σx:A.B ∈ T1
by induction hypothesis. To show that [[(W,P )]]ρ = ([[W ]]ρ, [[P ]]ρ) ∈ El1([[Σx:A.B]]ρ), it
suffices to prove [[W ]]ρ ∈ El1([[A]]ρ) and [[P ]]ρ ∈ El1([[B]]ρ([[W ]]ρ)) = El1([[B(W )]]ρ), both
of which follow from induction hypothesis. Suppose Γ ` srec : (Πx:A.Πp:B.C (x, p)) →
Πy:(Σx:A.B). C y by Γ ` A : U, Γ, x : A ` B : U, Γ ` Σx:A.B : U, and Γ ` C : (Σx:A.B)→
U. Induction hypotheses give us [[A]]ρ ∈ T0, [[B]]ρ(x/a) ∈ T0 for all a ∈ El0([[A]]ρ), [[Σx:A.B]]ρ ∈
T0, and [[C]]ρ ∈ El1([[Σx:A.B]]ρ → U). It follows that [[Πx:A.Πp:B.C (x, p)]]ρ ∈ T0 and
[[Πy:(Σx:A.B). C y]]ρ ∈ T0, and hence [[Πx:A.Πp:B.C (x, p) → Πy:(Σx:A.B). C y]]ρ ∈ T0.
By using the ι-rule for srec and by Lemma 13, we get srec ∈ El0([[Πx:A.Πp:B.C (x, p) →
Πy:(Σx:A.B). C y]]ρ).

Regarding the constant bAr, if Γ ` bAr : ([A] → U) → [A] → U by Γ ` A : U, then
we have [[([A] → U) → [A] → U]]ρ ∈ T1 by induction hypothesis and Lemma 13. To show
that bAr ∈ El1([[([A] → U) → [A] → U]]ρ) = El1(([[[A]]]ρ → U) → [[[A]]]ρ → U), it suffices
that bArP l ∈ T0 for all P ∈ El1([[[A]]]ρ → U) and l ∈ El0([[[A]]]ρ). This follows from
Lemma 13, since P l′ ∈ T0 for all l′ ∈ El0([[[A]]]ρ). Suppose Γ ` baseX : bArP l by Γ ` A : U,
Γ ` l : [A], Γ ` P : [A]→ U and Γ ` X : P l. By induction hypothesis, we have [[A]]ρ ∈ T0,
[[l]]ρ ∈ El1([[[A]]]ρ), and [[P ]]ρ ∈ El1([[[A] → U]]ρ) = El1([[[A]]]ρ → U), hence [[P ]]ρ l′ ∈ T0 for
all l′ ∈ El1([[[A]]]ρ). This proves bArP l ∈ T0. The induction hypothesis on Γ ` X : P l gives
us [[X]]ρ ∈ El1([[P ]]ρ [[l]]ρ), which proves [[baseX]]ρ ∈ El1([[bArP l]]ρ) by Lemma 13. The case
for Γ ` stepY : bArP l follows analogously. We will elaborate the last and most interesting
case in some detail. Suppose

Γ ` barrec : (Πl:[A]. P l→ C l)→
(Πl:[A]. (Πa:A.C (a :: l))→ C l)→ Πl:[A]. bArP l→ C l

by Γ ` A : U , Γ ` P : [A] → U , and Γ ` C : [A] → U . By induction hypothesis, using
Lemma 13 many times, we get that the type of barrec is in T1. In order to show that barrec
is an element of the corresponding set

El1(([[Πl:[A]. P l→ C l)→
(Πl:[A]. (Πa:A.C (a :: l))→ C l)→ Πl:[A]. bArP l→ C l]]ρ),

it suffices that

El1(bAr [[P ]]ρ l) ⊆ {M ∈ D | barrecB S lM ∈ El1([[C]]ρ l)}

for all B ∈ El1([[Πl:[A]. (P l→ C l)]]ρ), S ∈ El1([[Πl:[A]. ((Πa:A.C (a :: l))→ C l)]]ρ), and
l ∈ El1([[[A]]]ρ). We prove this by fixpoint induction, recalling that, for fixed A, El1(bAr [[P ]]ρ l)
is defined as the fixpoint of ΨBar(El1([[A]]ρ), El1([[[A]]]ρ)3l 7→El1([[P ]]ρl)). The latter operator will
be abbreviated to Ψ, as A and P do not change in the proof.

We show that the function

φ : El1([[[A]]]ρ) 3 l 7→ {M ∈ D | barrecS B lM ∈ El1([[C]]ρ l)}

is a prefixpoint of Ψ, i.e., Ψ(φ)(l) ⊆ φ(l) for all l ∈ El1([[[A]]]ρ). By definition, there are
two forms of elements in Ψ(φ)(l). The first is baseX with X ∈ El1([[P ]]ρ l). Then we have
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barrecB S l (baseX) = B lX ∈ El1([[C]]ρ l by the assumptions on B and l. The second
is stepY with, for all a ∈ El1([[A]]ρ), Y a ∈ φ (a :: l), that is, barrecB S (a :: l) (Y a) ∈
El1([[C]]ρ (a :: l)). Then we have barrecB S l (stepY ) = S l (λa. barrecB S (a :: l) (Y a) ∈
El1([[C]]ρ l) by the assumptions on S and l.

It remains to prove that the auxiliary rules are sound. These rules define the type and
computational behaviour of the constants exists, good, length, take.

Regarding the constant exists, if Γ ` exists : (A → U) → [A] → U by Γ ` A : U, then
we have [[(A → U) → [A] → U]]ρ ∈ T1 by induction hypothesis and Lemma 13. To show
that exists ∈ El1([[(A→ U)→ [A]→ U]]ρ) = El1(([[A]]ρ → U)→ [[[A]]]ρ → U), it suffices that
existsP l ∈ T0 for all P ∈ El1([[A]]ρ → U) and l ∈ List(El0([[A]]ρ). This follows by induction
on l from the ι-reduction rules for exists. The argumentation for the other constants is very
similar, and will hence be left to the reader. J

We obtain that if an expression M has a type A, then M realizes A.

I Corollary 19. If `M : A, then A ∈ T1 and M ∈ El1(A).

5 A Realizer for Markov’s Principle

Markov’s Principle is the following type:

MP := Πf :N→N2. (¬¬Σn:N. beq (f n) 1)→ Σn:N. beq (f n) 1

Clearly ` MP : U, so MP ∈ T1 by Corollary 19. As a proposition, MP is classically true but
unprovable in Heyting Arithmetic [14]; MP is not inhabited in our type theory. However, as
we will show in this section, MP can be consistently added to the type theory: El1(MP) is
non-empty. In other words, MP is true in the realizability model.

The realizer RMP ∈ El1(MP) to be defined below essentially performs an unbounded
search for an n such that f n = 1. This is possible since the computational system, based on
untyped lambda calculus, is Turing complete. To prove that the search always finds such
an n, we use Markov’s Principle on the metalevel. This is possible since we are allowed to
reason classically in the ambient naive set theory.

Recall that beq : N2 → N2 → U , beq 1 1 = N1 and 0 : N1. Let Y be any fixed point
operator in the untyped lambda calculus, for example Y := λf. (λx. f (xx)) (λx. f (xx)).
Then Y F = F (Y F ) for any F , in particular for

F := λs f n. brec (s f (Sn)) (n, 0) (f n)

Then we have, for search := Y F , that

search f n = (F search) f n = brec (search f (Sn)) (n, 0) (f n)

This means that search f 0 performs the required search for the first n such that f n = 1. If
n is found, (n, 0) is returned, that is, the pair consisting of the numeral n and the proof term
0 of type beq (f n) 1.

We define RMP = λf p. search f 0 and it remains to prove RMP ∈ El1(MP). Note that p
does not occur in search f 0. This is typical for realizability: realizers of negative statements
carry no computational content, they only witness that the statement that is negated has no
realizers. To show RMP ∈ El1(MP), let f ∈ El1(N→N2) and p ∈ El1(¬¬Σn:N. beq (f n) 1).
We have to prove that search f 0 ∈ El1(Σn:N. beq (f n) 1). Towards a contradiction, assume
the latter set is empty. Then, any term foo is in El1(¬Σn:N. beq (f n) 1). It follows that
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p foo ∈ El1(N0). This is absurd, so El1(Σn:N. beq (f n) 1) is non-empty. Since it is decidable
for any numeral n, whether or not (n, 0) ∈ El1(Σn:N. beq (f n) 1), it follows by Markov’s
Principle that there exists a pair (n, 0) ∈ El1(Σn:N. beq (f n) 1). Hence there is also such a
pair with the smallest n, that is, search f 0 ∈ El1(Σn:N. beq (f n) 1). Note the role of p in
the above argument: it serves to prove termination of the search but does not influence the
actual outcome.

6 A Realizer for the Undecidability of the Halting Problem

The purpose of this section is to argue that, in addition to MP, we can consistently add the
undecidablity of the halting problem to the type theory. Define

Ht := λn.Σk:N. beq (t n n k) 1

for t : N→ N→ N→ N2 as described below. The intention is that Ht is a halting predicate,
with t the characteristic function of Kleene’s T -predicate [7, 2]. Using rec, we can define
all primitive recursive functions, and actually many more. Since Kleene’s T -predicate is
primitive recursive, its characteristic function t is definable in the type theory. Kleene’s
T -predicate, T e xw, is based on a standard encoding of partial recursive functions as natural
numbers. The first argument e of T is such a code of a partial recursive function, whereas
the second argument x encodes an input to this function. The third argument w encodes
a (terminating) computation sparked off by the function with code e on input with code x.
Hence, Ht n holds if and only if the function encoded by n terminates on the input coded by
n.

Let UH be the type:

UH := ¬Πn:N. (Ht n+ ¬Ht n).

Clearly ` UH : U, so UH ∈ T1 by Corollary 19. We want to show that El1(UH) is non-empty.
As UH is negative, it suffices to show that Πn:N. (Ht n+ ¬Ht n) cannot be realized. Then any
term realizes UH, so El1(UH) contains all terms of Λ (!). Towards a contradiction, assume
f ∈ El1(Πn:N. (Ht n+ ¬Ht n)). Diagonalizing over f we define:

d = λn. case Ω 1 (f n)

such that in view or the definition of Ht we have for all n : N:

dn = Ω ⇐⇒ f n = inl(k, 0) ⇐⇒ T (n, n, k),

where (k, 0) ∈ El1(Σk:N. beq (t n n k) 1).
As a lambda term, d represents a partial recursive function with code a numeral nd5.

Then we have dnd = Ω ⇐⇒ T (nd, nd, k) where inl(k, 0) = f nd, a plain contradiction with
the choice of T and f . Therefore f as above cannot exist, and any term realizes UH. We
conclude that UH can be consistently added to the type theory.

7 A set that is provably streamless but not provably Noetherian

In this section we shall prove that the converse of Theorem 5 is unprovable in type theory.
The argument sketched in the introduction is that the converse is false when MP and UH

5 The code nd can in principle be constructed from d, but this is outside the scope of this paper.

TYPES 2016



6:20 Realizability at Work

are assumed. The unprovability in type theory then follows from the realizability model in
which MP and UH are both valid. We start by some auxiliary definitions.

Given a predicate P on natural numbers, we define a binary relation P= to be the equality
on the set of natural numbers n which satisfy P , irrelevant of the proof of P n. Formally, we
define a typing rule for P= by

Γ ` P : N→ U
Γ ` P= : (Σn:N. P n)→ (Σn:N. P n)→ U

and ι-reduction, with P= written infix, given by

(n, hn) P= (m,hm) = eqnm.

Since eq is decidable, P= is decidable for any P .
Given a predicate P on natural numbers, we define a predicate Pn to be true if Pk is

decidable for all k < n. Formally, we define a typing rule for P by

Γ ` P : N→ U
Γ ` P : N→ U

and ι-reductions give by

P0 = N1
P (Sn) = (P n+ ¬P n)× Pn

The realizability model can easily be extended with sound interpretations of the above.

I Lemma 20. There is a proof M such that

P : N→ U, n : N `M : Pn→ ¬¬P (Sn).

Proof. We have to prove absurdity from Pn and ¬P (Sn). Assume Pn+ ¬Pn, then by Pn
we get P (Sn), which contradicts the assumption ¬P (Sn). Hence ¬(Pn + ¬Pn), which is
absurd, as ¬¬(A+ ¬A) is a constructive tautology. J

I Corollary 21. There is a proof M such that P : N→ U `M : Πn:N.¬¬Pn.

Proof. By induction on n, using P0 and basic facts about ¬¬. J

Recall the terminology and notaion on decidability from Definition 1. We have the
following easy lemmas about decidability.

I Lemma 22. There exists proofs M1,M2,M3,M4 such that

A : U, P : A→ U ` M1 : (Πx:A. dec (P x))→ Πl:[A]. dec (existsP l) :
A : U, R : A→ A→ U ` M2 : (Πx:A.Πy:A. dec (Rxy))→ Πl:[A]. dec (goodR l);

P : N→ U ` M3 : Πp1:Σn:N. P n.Πp2:Σn:N. P n. dec (p1
P= p2);

P : N→ U ` M4 : Πl:[Σn:N. P n]. dec (good P= l).

Proof. The first two are easily proved by induction on l, where the second uses the first.
The third follows from the definition of P= and Lemma 2. The fourth follows from the second
and the third. Note that the fourth typing states that it is decidable whether a list over a
subset of natural numbers contains proof-irrelevant duplicates. J
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In order to prove that the converse of Theorem 5 is not provable in the type theory, we
construct a set which is provably not Noetherian, but can be proved streamless using MP
and UH.

The following lemma is an abstract form of the argument in the introduction. In order to
see this, recall that (good Q= ) is a predicate expressing that a list contains a proof-irrelevant
duplicate.

I Lemma 23. Let A in bAr be the type Σn:N. Qn. There is a proof M such that

Q : N→ U `M : (Πn:N.¬¬Qn)→ Πl:[Σn:N. Qn]. bAr (good Q= ) l→ good Q= l.

Proof. Let Q : N → U and hQ : Πn:N.¬¬Qn. We use induction on bAr (good Q= )l. If
bAr (good Q= ) l by good Q= l, the claim holds immediately. Assume as induction hypothesis
Πx:(Σn:N. Qn). good Q= (x :: l). We have to prove good Q= l. By Lemma 22 we can reason by
contradiction. Assume ¬(good Q= l). We prove this is absurd and we are done. We perform
case analysis on the shape of l. In case l = nil, if h0 : Q 0, then good Q= ((0, h0) :: nil) by the
induction hypothesis. This is absurd, so ¬Q 0, which is absurd by assumption hQ. In case l
is a non-empty list, let (n, hn) be a maximum element in l, that is, for any (m,hm) such that
exists ( Q= (m,hm)) l, we have that n ≥ m. A maximum element exists since l is non-empty.
It suffices to prove ¬Q (Sn), which contradicts hQ. Assume we have a proof hSn : Q (Sn).
By induction hypothesis, we have good Q= ((Sn, hSn) :: l). Since we assumed ¬(good Q= l), it
must be that exists ( Q= (Sn, hSn)) l, which contradicts with (n, hn) being a maximum element
in l. J

Noticing that it is absurd that the empty list is good, we deduce, from Lemma 23 and
Corollary 21, that it is absurd that H= is Noetherian.

I Lemma 24. There is a proof M such that H : N→ U `M : ¬(Noetherian H= ).

On the other hand, in the presence of MP and UH, for Ht : N→ U as defined in Section 6,
we can prove that Ht= is streamless.

I Lemma 25. There is a proof M such that

`M : MP→ UH→ streamless Ht= .

Proof. Assume MP and UH. Given f : N→ Σn:N.Htn, we want to prove Σn:N. good Ht= (fn).

Noting that (good Ht= ) is decidable by Lemma 22, we can construct a function e : N→ N2 such

that eq (e n) 1 is true if and only if good Ht= (fn) is true, for all n : N. Thus, we may apply

MP and it then suffices to prove ¬¬Σn:N. good Ht= (fn). Suppose ¬Σn:N. good Ht= (fn), or

equivalently, Πn:N.¬good Ht= (fn). Then, for any given n : N, the list f(S(Sn)) gives us a
proof of Ht n+ ¬Ht n

6. This contradicts UH. J

6 Informally, the list f(S(Sn)) contains a maximum element (m, hm) such that m ≥ n. The proof hm of
Htm gives us H n + ¬H n.
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We have now shown that, in the presence of MP and UH, there is a relation that is
streamless but cannot be Noetherian. Recalling that MP and UH are consistent with the
type theory we work in, we conclude that it is unprovable in the type theory that every
streamless relation is Noetherian.

I Theorem 26. There is no proof M such that

`M : streamless Ht= → Noetherian Ht= .

I Corollary 27. There is no proof M such that

`M : ΠA:U.ΠR:A→ A→ U. streamlessR → NoetherianR.

8 Related work and concluding remarks

We have constructed a realizability model for Martin-Löf dependent type theory, viewed as
a set of typing rules typing terms of an untyped lambda-calculus Λ. Similar realizability
models have been given by Martin Löf [9] and Beeson [1]. We have paid extra attention to
the details, in particular to those of the type of an inductive bar.

The purpose of the model is to demonstrate a particular unprovability result. It may be
illuminating to discuss this result in connection with the well-known Kleene Tree [7, 2], a
primitive recursive relation P on binary sequences which defines an infinite tree without an
infinite recursive branch. The Kleene Tree is the prime example that Brouwer’s Fan Theorem
(an intuitionistic version of König’s Lemma) fails in recursive analysis. In the context of this
paper, Kleene’s result yields that, with A = N2 and for a specific decidable P : [N2]→ U, the
following type is not inhabited:

(Πf :N→ A.Σn:N. P (fn)) → bArP nil.

For comparison, our result, with A = Σn:N.Htn and Q := good Ht= , states that the following
type is not inhabited:

(Πf :N→ A.Σn:N. Q (fn)) → bArQ nil.

The important difference between the two results is the instantiation of the type A, that is,
A = N2 for Kleene and A = Σn:N.Htn for us. Clearly, A = N2 is the simpler of the two. On
the other hand, with Ql := good Ht= l expressing that the list l contains a duplicate, we are
allowed far less expressive power than Kleene’s P . This explains to some extent why we
use a more complicated base type A = Σn:N.Htn, which is the simplest type we could find
defining a subset of the natural numbers that is not finite in the sense of Noetherian, and at
the same time finite in the sense of streamless in a consistent extension of the type theory.
This confirms a conjecture formulated by Coquand and Spiwack in [4]. We conclude by
formulating an open problem: does there exist a decidable P such that Σn:N. Pn distinguishes
between Noetherian and streamless?

References
1 M. Beeson. Recursive models for constructive set theories. Annals of Mathematical Logic,

23:127–178, 1982.
2 M. J. Beeson. Foundations of Constructive Mathematics, volume 6 of Ergebnisse der Math-

ematik und ihrer Grenzgebiete. Springer, 1985.



M. Bezem, T. Coquand, K. Nakata, and E. Parmann 6:23

3 T. Coquand and A. Spiwack. A proof of strong normalisation using domain theory. Logical
Methods in Computer Science, 3(4), 2007.

4 T. Coquand and A. Spiwack. Constructively finite? In L. Lambán, A. Romero, and
J. Rubio, editors, Contribuciones científicas en honor de Mirian Andrés Gómez, pages
217–230. Publicaciones de la Universidad de La Rioja, 2010. ISBN 978-84-96487-50-5.

5 P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. Journal of Symbolic Logic, 65(2):525–549, 2000.

6 M. Escardó. Joins in the frame of nuclei. Applied Categorical Structures, 11:117–124, 2003.
7 S.C. Kleene. Recursive functions and intuitionistic mathematics. In L.M. Graves, E. Hille,

P.A. Smith, and O. Zariski, editors, Proceedings of the International Congress of Mathem-
aticians, pages 679–685. AMS, 1952.

8 J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
Introduction and survey. Theoretical Computer Science, 121(1&2):279–308, 1993.

9 P. Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and
J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 73–118, Amsterdam, 1975. North-Holland.

10 E. Parmann. https://github.com/epa095/noetherian-implies-streamless.
11 E. Parmann. Case Studies in Constructive Mathematics. PhD thesis, University of Bergen,

2016.
12 D. Pataraia. A constructive proof of Tarski’s fixed-point theorem for DCPOs. Presented

at the 65th Peripatetic Seminar on Sheaves and Logic, November 1997.
13 C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an

extension of principles formulated in current intuitionistic mathematics. In J.C.E. Dekker,
editor, Recursive function theory, Proc. Symp. in pure mathematics V, pages 1–27. AMS,
1962.

14 A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics. Springer, 1973.

15 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. The Univalent Foundations Program, Institute for Advanced Study, 2013.
URL: https://homotopytypetheory.org/book.

TYPES 2016

https://github.com/epa095/noetherian-implies-streamless
https://homotopytypetheory.org/book




Parametricity, Automorphisms of the Universe,
and Excluded Middle

Auke B. Booij
School of Computer Science, University of Birmingham, Birmingham, UK
abb538@cs.bham.ac.uk

Martín H. Escardó
School of Computer Science, University of Birmingham, Birmingham, UK
m.escardo@cs.bham.ac.uk

Peter LeFanu Lumsdaine
Mathematics Department, Stockholm University, Stockholm, Sweden
p.l.lumsdaine@math.su.se

Michael Shulman1

Department of Mathematics, University of San Diego, San Diego, USA
shulman@sandiego.edu

Abstract
It is known that one can construct non-parametric functions by assuming classical axioms. Our
work is a converse to that: we prove classical axioms in dependent type theory assuming specific
instances of non-parametricity. We also address the interaction between classical axioms and the
existence of automorphisms of a type universe. We work over intensional Martin-Löf dependent
type theory, and for some results assume further principles including function extensionality,
propositional extensionality, propositional truncation, and the univalence axiom.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases relational parametricity, dependent type theory, univalent foundations,
homotopy type theory, excluded middle, classical mathematics, constructive mathematics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.7

Acknowledgements The first-named author would like to thank Uday Reddy for discussions
about parametricity. We would also like to thank Jean-Philippe Bernardy for helpful comments,
and Andrej Bauer for discussions and questions. The fact that the implication DNE→ LEM in
Lemma 14 requires 0-valued function extensionality was spotted by one of the referees. Since
then, we have formalized the results to make sure we didn’t miss similar assumptions. All results
of the paper, except Section 3.1, are formalized in Agda [3]. All results of Sections 3.1 and 3.2
are formalized in Coq [6] in the files Spaces/BAut/Rigid.v and Spaces/Universe.v. So some
results have been formalized twice, and no numbered result has been left unformalized.

1 Supported by The United States Air Force Research Laboratory under agreement number FA9550-15-
1-0053. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the United States Air Force Research Laboratory, the U.S.
Government, or Carnegie Mellon University.

© Auke B. Booij, Martín H. Escardó, Peter LeFanu Lumsdaine, and Michael Shulman;
licensed under Creative Commons License CC-BY

22nd International Conference on Types for Proofs and Programs (TYPES 2016).
Editors: Silvia Ghilezan, Herman Geuvers, and Jelena Ivetić; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abb538@cs.bham.ac.uk
mailto:m.escardo@cs.bham.ac.uk
mailto:p.l.lumsdaine@math.su.se
mailto:shulman@sandiego.edu
https://doi.org/10.4230/LIPIcs.TYPES.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 Parametricity, Automorphisms of the Universe, and Excluded Middle

1 Introduction: Parametricity in dependent type theory

Broadly speaking, parametricity statements assert that type-polymorphic functions definable
in some system must be natural in their type arguments, in some suitable sense. Reynolds’
original theory of relational parametricity [12] characterizes terms of the polymorphically
typed λ-calculus System F. This theory has since been extended to richer and more expressive
type theories: to pure type systems by Bernardy, Jansson, and Paterson [2], and more
specifically to dependent type theory by Atkey, Ghani, and Johann [1].

Most parametricity results are meta-theorems about a formal system and make claims
only about terms in the empty context. For instance, Reynolds’ results show that the only
term of System F with type ∀α.α→ α definable in the empty context is the polymorphic
identity function Λα.λ(x : α).x. Similarly, Atkey, Ghani, and Johann [1, Thm. 2] prove
that any term f :

∏
X:U X → X definable in the empty context of MLTT must satisfy

e(fX(a)) = fY (e(a)) for all e : X → Y and a : X in their model; it follows that f acts as the
identity on every type in their model, and hence no such closed term f can be provably not
equal to the polymorphic identity function.

Keller and Lasson showed that excluded middle is incompatible with parametricity of
the universe of types (in its usual formulation) [7]. In this paper, we show, within type
theory, that certain violations of parametricity are possible if and only if certain classical
principles hold. For example, we show that there is a function f :

∏
X:U X → X whose value

at the type 2 of booleans is different from the identity if and only if excluded middle holds
(Theorem 1, where one direction uses function extensionality).

These are theorems of dependent type theory, so they apply not only to closed terms
but in any context, and the violations of parametricity are expressed using negations of
Martin-Löf’s identity type rather than judgemental (in-)equality of terms. Similarly, we show
that excluded middle also follows from certain kinds of non-trivial automorphisms of the
universe.

We work throughout in intensional Martin-Löf type theory, with at least Π-, Σ-, identity,
finite, and natural numbers types, and a universe closed under these type-formers. For
concreteness, this may be taken to be the theory of [11], or of [14, A.2]. When results require
further axioms – e.g. function extensionality, or univalence of the universe – we include these
as explicit assumptions, to keep results as sharp as possible.

By the law of excluded middle, we mean always the version from univalent foundations [14,
3.4.1], namely that P + ¬P for all propositions P . Here a type is called a “proposition” (a
“mere proposition” in the terminology of [14]) if it has at most one element, meaning that
any two of its elements are equal in the sense of the identity type. Note that ¬P (meaning
P → 0) is not itself a proposition unless we assume function extensionality, at least for
0-valued functions.

The propositional truncation of a type A is the universal proposition ‖A‖ admitting a
map from A. We axiomatize this as in [14, §3.7], and always indicate explicitly when we are
assuming it. It is shown in [9] that propositional truncation implies function extensionality.

When propositional truncations exist, the disjunction of two propositions P ∨Q is defined
to be ‖P +Q‖. If P and Q are disjoint (i.e. ¬(P + Q) holds), then P + Q is already a
proposition and hence equivalent to P ∨ Q. In particular, when we have propositional
truncations, the law of excluded middle could equivalently assert that P ∨ ¬P for all
propositions P .

By a logical equivalence of types X and Y , written X ↔ Y , we mean two functions
X → Y and Y → X subject to no conditions at all.
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By an equivalence of types X and Y we mean a function e : X → Y that has both
a left and a right inverse, i.e. functions s, r : Y → X with e(s(y)) = y for all y : Y and
r(e(x)) = x for all x : X. This notion of equivalence is logically equivalent to having a single
two-sided inverse, which is all that we will need in this paper. But the notion of equivalence
is better-behaved in univalent foundations (see [14, Chapter 4]); the reason is that the type
expressing “being an equivalence” is a proposition, in the presence of function extensionality,
whereas the type expressing “having a two-sided inverse” may in general have more than one
inhabitant, in particular affecting the consistency of the univalence axiom.

2 Classical axioms from non-parametricity

In this section, we give a number of ways in which classical axioms can be derived from
specific violations of parametricity.

2.1 Polymorphic endomaps
Say that a function f :

∏
X:U X → X is natural under equivalence if for any two types X

and Y and any equivalence e : X → Y , we have e(fX(x)) = fY (e(x)) for any x : X, where
we have written fX as a shorthand for f(X) and used the equality sign = to denote identity
types.

I Theorem 1. If there is a function f :
∏

X:U X → X such that f2 is not pointwise equal
to the identity (i.e. ¬

∏
x:2 f2(x) = x) and f is natural under equivalence, then the law of

excluded middle holds. Assuming function extensionality, the converse also holds.

Proof. First we derive excluded middle from f . To begin, note that if ¬
∏

x:2 f2(x) = x, then
we cannot have both f2(tt) = tt and f2(ff) = ff, since then we could prove

∏
x:2 f2(x) = x

by case analysis on x. But then by case analysis on f2(tt) and f2(ff), we must have
(f2(tt) = ff) + (f2(ff) = tt). Without loss of generality, suppose f2(tt) = ff.

Now let P be an arbitrary proposition. We do case analysis on fP +1(inr(?)) : P + 1.
1. If it is of the form inl(p) with p : P , we conclude immediately that P holds.
2. If it is of the form inr(?), then P cannot hold, for if we had p : P , then the map

e : 2→ P + 1 defined by e(ff) = inl(p) and e(tt) = inr(?) would be an equivalence, and
hence e(f2(x)) = fP +1(e(x)) for all x : 2 and so inl(p) = e(ff) = e(f2(tt)) = fP +1(e(tt)) =
fP +1(inr(?)) = inr(?), which is a contradiction.

Therefore P or not P .
For the converse, [14, Exercise 6.9], suppose excluded middle holds, let X : U and

x : X, and consider the type
∑

x′:X(x′ 6= x), where a 6= b means ¬(a = b). By excluded
middle, this is either contractible or not. (A type Y is contractible if

∑
y:Y
∏

y′:Y (y = y′).
Assuming function extensionality, this is a proposition.) If it is contractible, define fX(x) to
be the center of contraction (the point y in the definition of contractibility); otherwise define
fX(x) = x. J

I Remark.
1. If we assume univalence, any f :

∏
X:U X → X is automatically natural under equivalence,

so that assumption can be dispensed with. And, of course, if function extensionality
holds (which follows from univalence) then the hypothesis ¬

∏
x:2 f2(x) = x is equivalent

to f2 6= λ(x : 2).x.
2. We do not know whether the converse direction of Theorem 1 is provable without function

extensionality.
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7:4 Parametricity, Automorphisms of the Universe, and Excluded Middle

The preceding proof can be generalized as follows. We say that a point x : X is isolated
if the type x = y is decidable for all y : Y , i.e. if we have

∏
y:X(x = y) + (x 6= y).

I Lemma 2. A point x : X is isolated if and only if X is equivalent to Y + 1, for some
type Y , by a map that sends x to inr(?).

Proof. Since inr(?) is isolated, such an equivalence certainly implies that x is isolated.
Conversely, from

∏
y:X(x = y) + (x 6= y) we can construct a function d : X → 2 such

that d(y) = tt if and only if x = y and d(y) = ff, and if and only if x 6= y. Let Y be∑
y:X(d(y) = ff); it is straightforward to show X ' Y + 1.
If we had function extensionality (for 0-valued functions), we could dispense with d and

define Y =
∑

y:X(x 6= y), since then x 6= y would be a proposition. In general we use
d(y) = ff as it is always a proposition (since 2 has decidable equality, hence its identity
types are propositions by Hedberg’s theorem); this is necessary to show that the composite
Y + 1→ X → Y + 1 acts as the identity on Y . J

I Theorem 3. If there is a function f :
∏

X:U X → X such that fX(x) 6= x for some
isolated point x : X and f is natural under equivalence, then the law of excluded middle holds.
Assuming function extensionality, the converse also holds.

Proof. To derive excluded middle from f , let Y and X ' Y + 1 be as in Lemma 2, and let
P be an arbitrary proposition. We do case analysis on fP×Y +1(inr(?)) : P × Y + 1.
1. If it is of the form inl((p, y)) with p : P , we conclude immediately that P holds.
2. If it is of the form inr(?), then P cannot hold, for if we had p : P , then the map

e : X → P × Y + 1 defined by e(x) = inr(?) (where x is the isolated point) and
e(y) = inl((p, y)) for y 6= x would be an equivalence, and hence e(fX(x)) = fP×Y +1(e(x)),
and so inl((p, fX(x))) = e(fX(x)) = fP×Y +1(e(x)) = fP×Y +1(inr(?)) = inr(?), which is
a contradiction.

Therefore either P or not P holds. The converse is proven exactly as in Theorem 1. J

Finally, if our type theory includes propositional truncations, we can dispense with
isolatedness.

I Theorem 4. In a type theory with propositional truncations, there is an equivalence-natural
function f :

∏
X:U X → X and a type X : U with a point x : X such that fX(x) 6= x if and

only if excluded middle holds.

Proof. For the “if” direction, note that propositional truncation implies function extension-
ality [9], so the converse direction of Theorem 1 applies. For the “only if” direction, assume
that we are given f :

∏
X:U X → X, a type X : U and a point x : X with fX(x) 6= x. Let P

be any proposition, and define

Z =
∑
y:X
‖x = y‖ ∨ P, z = (x, |inl(| reflx |)|) : Z, y = pr1(fZ(z)) : X.

Recall that A ∨B denotes the truncated disjunction ‖A+B‖. This binds more tightly than
Σ, so Z =

∑
y:X(‖x = y‖ ∨ P ). We write |a| : ‖A‖ for the witness induced by a point a : A.

Now the second projection pr2(fZ(z)) tells us that ‖x = y‖ ∨ P . However, if P holds,
then pr1 : Z → X is an equivalence that maps z to x. Thus fZ(z) 6= z and hence x 6= y.
In other words, P → (x 6= y), hence (x = y) → ¬P and so also ‖x = y‖ → ¬P . But since
‖x = y‖∨P , we have ¬P ∨P , which (in the presence of function extensionality) is equivalent
to excluded middle. J
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I Remark.
1. If x : X happens to be isolated, then the type Z defined in the proof of Theorem 4 is

equivalent to the type P × Y + 1 used in the proof of Theorem 3.
2. Since propositional truncation implies function extensionality [9], it makes excluded

middle into a proposition. Thus, the existence hypothesis of Theorem 4 can be truncated
or untruncated without change of meaning.

3. The hypothesis can also be formulated as “there is a type X such that fX is apart from
the identity of X”, where two functions g, h : A→ B of types A and B are apart if there
is a : A with g(a) 6= h(a). We don’t know whether it is possible to derive excluded middle
from the weaker assumption that fX is simply unequal to the identity function of X, or
even that f is unequal to the polymorphic identity function.

The above can be applied to obtain classical axioms from other kinds of violations of
parametricity. As a simple example, consider f :

∏
X:U (X → X)→ (X → X). Parametric

elements of this type are Church numerals. Given f , we can define a polymorphic endomap
g :
∏

X:U X → X by gX = fX(idX), where idX is the identity function. If f is natural under
equivalence, then so is g, and hence the assumption that f2(id2) is not the identity function
gives excluded middle, assuming function extensionality.

2.2 Maps of the universe into the booleans
A function f : U → 2 is invariant under equivalence, or extensional, if we have f(X) = f(Y )
for any two equivalent types X and Y . We say that it is strongly non-constant if we have
X,Y : U with f(X) 6= f(Y ). Assuming function extensionality, Escardó and Streicher [5,
Thm. 2.2] showed that if f : U → 2 is extensional and strongly non-constant, then the weak
limited principle of omniscience holds (any function N→ 2 is constant or not). Alex Simpson
strengthened this as follows (also reported in [5, Thm. 2.8]):

I Theorem 5 (Simpson). Assuming function extensionality for 0-valued functions, there is
an extensional, strongly non-constant function f : U → 2 if and only if weak excluded middle
holds (meaning that ¬A+ ¬¬A for all A : U).

Proof. In one direction, suppose weak excluded middle, and define f : U → 2 by f(A) = ff
if ¬A and f(A) = tt if ¬¬A. Then f(0) = ff and f(1) = tt, so f is strongly non-constant.
Extensionality follows from the observation that if A ' B then ¬A↔ ¬B and ¬¬A↔ ¬¬B.

In the other direction, suppose f : U → 2 is extensional, and strongly non-constant
witnessed by types X,Y : U with f(X) 6= f(Y ). Suppose without loss of generality that
f(X) = tt and f(Y ) = ff. For any A : U , define Z = ¬A×X +¬¬A× Y . If A, then ¬A ' 0
and ¬¬A ' 1 (using function extensionality), so Z ' Y and f(Z) = ff. Similarly, if ¬A,
then Z ' X and so f(Z) = tt. On the other hand, f(Z) must be either tt or ff and not both.
If it is tt, then it is not ff, and so ¬A; while if it is ff, then it is not tt, and so ¬¬A. J

In Theorem 6 below we reuse Simpson’s argument to establish a similar conclusion for
polymorphic functions into the booleans.

2.3 Polymorphic maps into the booleans
A function f :

∏
X:U X → 2 is invariant under equivalence if we have fY (e(x)) = fX(x) for

any equivalence e : X → Y and point x : X. Such a function “violates parametricity” if it is
non-constant. Equivalence invariance means that some such violations are literally impossible:
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7:6 Parametricity, Automorphisms of the Universe, and Excluded Middle

for instance, there cannot be a type X with points x, y : X such that fX(x) 6= fX(y) if there
is an automorphism of X that maps x to y.

A violation of constancy across types, rather than at a specific type, is equivalent to weak
excluded middle.

I Theorem 6. Assuming function extensionality for 0-valued functions, weak excluded middle
holds if and only if there is an f :

∏
X:U X → 2 that is invariant under equivalence, together

with X,Y : U with isolated points x : X and y : Y such that fX(x) 6= fY (y).

Proof. Assuming weak excluded middle, to show the existence of such an f , let X : U and
x : X. Then use weak excluded middle to decide ¬(

∑
x′:X x 6= x′) + ¬¬(

∑
x′:X x 6= x′). In

the left case, expressing that there are no other elements in X than x, define fX(x) = ff, and
in the right case define fX(x) = tt. So, for example, f1(?) = ff and f2(tt) = tt, showing that
we constructed a non-constant f as required.

For the other direction, without loss of generality, fX(x) = tt and fY (y) = ff. By
assumption, X is equivalent to 1 +X ′ via an equivalence that sends x to inl(?), and similarly
Y is equivalent to 1 + Y ′ via an equivalence that sends y to inl(?). Let A : U and define

Z = (1 + ¬A×X ′)× (1 + ¬¬A× Y ′),
z = (inl(?), inl(?)).

By the invariance under equivalence of f ,
1. if ¬A then Z ' X via an equivalence that sends z to x, thus fZ(z) = tt,
2. if A then Z ' Y via an equivalence that sends z to y, thus fZ(z) = ff.
The contrapositives of these two implications are respectively

fZ(z) = ff → ¬¬A,
fZ(z) = tt → ¬A.

Hence we can decide ¬A by case analysis on the value of fZ(z). J

Provided our type theory includes propositional truncations, we can dispense with
isolatedness as in Theorem 4, assuming the types x = x and y = y are propositions.

I Theorem 7. In a type theory with propositional truncations, weak excluded middle holds
if and only if there is an f :

∏
X:U X → 2 that is invariant under equivalence, together with

X,Y : U with x : X and y : Y such that fX(x) 6= fY (y), where the types x = x and y = y

are propositions.

Proof. Assuming weak excluded middle, the existence of such an f is shown as in the proof
of Theorem 6.

For the other direction, without loss of generality, fX(x) = tt and fY (y) = ff. Note that
since x = x and y = y are propositions, so are x = x′ and y = y′ for any x′ : X and y′ : Y ,
since as soon as they have a point they are equivalent to x = x and y = y respectively. Let
A : U and define

Z =
(∑

x′:X
(x = x′) ∨ ¬A

)
×

∑
y′:Y

(y = y′) ∨ ¬¬A

 ,

z = ((x, |inl(refl)|), (y, |inl(refl)|)).

By invariance under equivalence of f , we have the following.
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1. If ¬A then Z ' X via an equivalence that sends z to x, thus fZ(z) = tt. This works
because the left factor of Z becomes equivalent to X, and the right factor equivalent to 1
by the assumptions that y = y is a proposition and ¬A.

2. Similarly, if A then Z ' Y via an equivalence that sends z to y, thus fZ(z) = ff, now
using the fact that x = x is a proposition.

The contrapositives of these two implications are respectively

fZ(z) = ff → ¬¬A,
fZ(z) = tt → ¬A.

Hence we can decide ¬A by case analysis on the value of fZ(z). J

I Remark. In a type theory with pushouts, the assumptions that x = x and y = y are
propositions can be removed by using the join (x = x′) ∗ ¬A instead of the disjunction
(x = x′) ∨ ¬A in the left factor of Z, and similarly for the right factor of Z. (The join B ∗C
of types B and C is the pushout of B and C under B×C.) This works since joining with an
empty type is the identity, while joining with a contractible type gives a contractible result;
see Theorem 9 below for details. Indeed, the join of two propositions is their disjunction,
by [13, Lemma 2.4]; but the version using joins does not quite subsume the one using
disjunctions, since if joins are not already assumed to exist, we do not know how to show
that the disjunction of two propositions is their join.

2.4 Decompositions of the universe

Theorem 5 can be interpreted as saying that the universe U cannot be decomposed into two
disjoint inhabited parts without weak excluded middle. In fact, disjointness of the parts is
not necessary. All that is needed is that both parts be proper, i.e. not the whole of U :

I Theorem 8. In a type theory with propositional truncation and function extensionality
for 0-valued functions, suppose we have equivalence-invariant P,Q : U → U such that for all
Z : U we have P (Z) ∨Q(Z), and that we have types X and Y such that ¬P (X) and ¬Q(Y ).
Then weak excluded middle holds.

Proof. For any A : U , let Z = ¬A×X + ¬¬A× Y as in Simpson’s proof. If A, then Z ' Y ,
and so ¬Q(Z); thus Q(Z)→ ¬A. But if ¬A, then Z ' X, and so ¬P (Z); thus P (Z)→ ¬¬A.
Hence the assumed P (Z) ∨Q(Z) implies ¬A ∨ ¬¬A, which is equivalent to ¬A+ ¬¬A since
¬A and ¬¬A are (by function extensionality) disjoint propositions. J

The proof of Theorem 7 can be similarly adapted.

I Theorem 9. In a type theory with propositional truncation and 0-valued function exten-
sionality, suppose we have P,Q :

∏
X:U X → U that are invariant under equivalence, i.e. if

X ' Y by an equivalence sending x : X to y : Y , then PX(x) ' PY (y), and likewise for Q.
Suppose also that for all Z : U and z : Z we have PZ(z) ∨QZ(z), and types X,Y with points
x : X and y : Y such that ¬PX(x) and ¬QY (y). Finally, suppose either that our type theory
has pushouts or that the types x = x and y = y are propositions. Then weak excluded middle
holds.
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7:8 Parametricity, Automorphisms of the Universe, and Excluded Middle

Proof. For variety in contrast to Theorem 7, suppose we have pushouts; we leave the other
case to the reader. Let A : U and define

Z =
(∑

x′:X
(x = x′) ∗ ¬A

)
×

∑
y′:Y

(y = y′) ∗ ¬¬A

 ,

z = ((x, inl(refl)), (y, inl(refl))).

Then if A, ¬A ' 0, so (x = x′) ∗ ¬A ' (x = x′), and thus the first factor of Z is equivalent
to
∑

x′:X(x = x′), which is a “singleton” or “based path space” and hence equivalent to
1. On the other hand (still assuming A), ¬¬A ' 1, so (y = y′) ∗ ¬¬A ' 1, and thus the
right factor of Z is equivalent to

∑
y′:Y 1 and hence to Y . Thus, A implies Z ' Y , and it is

easy to check that this equivalence sends z to y. Hence A→ ¬QZ(z), and so QZ(z)→ ¬A.
A dual argument shows that ¬A → ¬PZ(z) and thus PZ(z) → ¬¬A, so the assumption
PZ(z) ∨QZ(z) gives weak excluded middle. J

Since a function
∏

X:U X → B, for any fixed B, is the same as a function (
∑

X:U X)→ B,
we can interpret Theorem 9 as saying that the universe

∑
X:U X of pointed types also cannot

be decomposed into two proper parts without weak excluded middle.
The results discussed so far illustrate that different violations of parametricity have

different proof-theoretic strength: some violations are impossible, while others imply varying
amounts of excluded middle.

3 Classical axioms from automorphisms of the universe

There have been attempts to apply parametricity to show that the only automorphism of
a universe of types is the identity. Nicolai Kraus observed in the HoTT mailing list [8]
that, assuming univalence, automorphisms of a universe U living in a universe V correspond
to elements of the loop space2 Ω(V,U), while elements of the higher loop space Ω2(V,U)
correspond to “polymorphic automorphisms”

∏
X:U X ' X, which are at least as strong

as polymorphic endomaps. In particular, nontrivial elements of Ω2(V,U) imply violations
of parametricity for

∏
X:U X → X. This suggests that parametricity may play a role in

automorphisms of the universe.
We are not aware of a proof that parametricity implies that the only automorphism of the

universe is the identity. However, in the spirit of the above development, we can show that
automorphisms with specific properties imply excluded middle. First, however, we observe
that if we do have excluded middle then we can construct various nontrivial automorphisms
of the universe.

3.1 Automorphisms from excluded middle
The simplest automorphism of the universe is defined as follows. By propositional exten-
sionality we mean that any two logically equivalent propositions are equal. (This follows
from propositional univalence, i.e. univalence asserted only for propositions. The converse
holds at least assuming function extensionality; we do not know whether this assumption is
necessary.)

2 The loop space Ω(X, x) of a type X at a point x : X is the identity type x = x; see [14, §2.1].
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I Theorem 10. Assuming excluded middle, function extensionality, and propositional exten-
sionality, there is an automorphism f : U ' U such that f(1) ' 0.

Proof. Given a type X, we use excluded middle to decide if it is a proposition (this works
because under function extensionality, being a proposition is itself a proposition). If it is, we
define f(X) = ¬X, and otherwise we define f(X) = X. Assuming propositional extensionality
and excluded middle, we have ¬¬X = X for any proposition; thus f(f(X)) = X whether X
is a proposition or not, and hence f is a self-inverse equivalence. J

We can try to construct other automorphisms of the universe by permuting some other
subclass of types. For instance, if we have propositional truncation, then given any two
non-equivalent types A and B, excluded middle implies that for any type X we have
‖X = A‖ + ‖X = B‖ + (X 6= A ∧ X 6= B), so that the universe U decomposes as a sum
UA + UB + U 6=A,B , where

UA =
∑
X:U
‖X = A‖ , UB =

∑
X:U
‖X = B‖ , U 6=(A,B) =

∑
X:U

(X 6= A ∧X 6= B).

(This requires function extensionality for X 6= A and X 6= B to be propositions, but
not univalence.) Thus, if UA ' UB we can switch those two summands to produce an
automorphism of U :

I Theorem 11. Assuming function extensionality and excluded middle, if A 6' B and
UA ' UB, then there is an automorphism f : U ' U such that ‖f(A) = B‖, hence f 6= id.

Proof. We use the above decomposition and the given equivalence UA ' UB to produce f .
And since f maps UA to UB , by definition of UB we have ‖f(A) = B‖. J

This leads to the question, when can we have UA ' UB but A 6' B? Theorem 10 is
the simplest example of this: assuming propositional extensionality, both U0 and U1 are
contractible, hence equivalent to 1. More generally, let us call a type X rigid if UX is
contractible; then we have:

I Theorem 12. Assuming function extensionality and excluded middle, if A and B are rigid
types with A 6' B, then there is an automorphism f : U ' U such that f(A) ' B.

Proof. This follows from Theorem 11. In the rigid case we get the stronger conclusion that
f(A) ' B, since UB is contractible. J

More generally, under excluded middle any permutation of the rigid types yields an
automorphism of the universe.

If we assume UIP, then every type is rigid, so that with UIP and excluded middle there
are plenty of automorphisms of the universe. If we instead assume univalence – as we will do
for the rest of this subsection – most types are not rigid. For instance, any type with two
distinct isolated points, such as N, is not rigid, since we can swap the isolated points to give
a nontrivial automorphism and hence a nontrivial equality in UX . In particular, if excluded
middle holds and X is a set (i.e. its identity types are all propositions), then all points of X
are isolated. Thus, with excluded middle and univalence, no set with more than one element
(i.e. with points x, y : X such that x 6= y) is rigid.

However, there exist types that are connected (i.e. ‖X‖ and
∏

x,y:X ‖x = y‖), but that
are not trivial; indeed, as remarked above, UA is such a type. Moreover, if we also assume
higher inductive types, then from any group G that is a set we can construct a connected
type BG such that Ω(BG) ' G [10, §3.2].

TYPES 2016



7:10 Parametricity, Automorphisms of the Universe, and Excluded Middle

This leads us to ask, when is BG rigid for a set-group G? Since BG is a 1-type (i.e.
its identity types are all sets), UBG is a 2-type (i.e. its identity types are all 1-types).
Hence it is contractible as soon as its loop space is connected and its double loop space is
contractible. In general, the connected components of Ω(UBG) are the outer automorphisms
of G (equivalence classes of automorphisms of G modulo conjugation), while Ω2(UBG) is
the center of G (the subgroup of elements that commute with everything). A group with
trivial outer automorphism group and trivial center is sometimes known as a complete group
(though there is no apparent relation to any topological notion of completeness), and there
are plenty of examples.

For instance, the symmetric group Sn is complete in this sense except when n = 2 or 6.
Thus, BSn is rigid for n /∈ {2, 6}. (Note also that BSn can be constructed without higher
inductive types – but with univalence – as U[n], where [n] is a finite n-element type, although
of course this type only lives in a larger universe V .) In particular, assuming univalence and
excluded middle, there are countably infinitely many rigid types, and hence uncountably
many nontrivial automorphisms of U (one induced by every permutation of the types BSn

for n /∈ {2, 6}).
This does not exhaust the potential automorphisms of U . For instance, we have:

I Theorem 13. Let X be an n-type for some n ≥ −1, and let A and B be n-connected rigid
types such that X ×A 6' X ×B. Then assuming univalence and excluded middle, there is an
automorphism f : U ' U such that ‖f(X ×A) = (X ×B)‖.

Proof. We will show that UX×A ' UX×B, by showing that both are equivalent to UX . It
suffices to consider A. We have (Z 7→ Z × A) : UX → UX×A, and since both types are
connected it suffices to show that it induces an equivalence of loop spaces ΩUX → ΩUX×A, or
equivalently that the induced map L : (X ' X)→ (X×A ' X×A) is an equivalence. Since
A is n-connected for n ≥ −1, we have ‖A‖; so since being an equivalence is a proposition we
may assume given a0 : A.

We claim that for all a : A, x : X, and f : X ×A→ X ×A we have

pr1(f(x, a)) = pr1(f(x, a0)). (1)

Since this goal is an equality in the n-type X, it is an (n−1)-type. And since A is n-connected,
the map a0 : 1→ A is (n− 1)-connected by [14, Lemma 7.5.11]. Thus, by [14, Lemma 7.5.7],
it suffices to assume that a = a0, in which case (1) is clear.

It follows from (1) that if we define M : (X ×A→ X ×A)→ (X → X) by M(f)(x) =
pr1(f(x, a0)), then M preserves composition and identities. Thus it preserves equivalences,
inducing a map (X × A ' X × A) → (X ' X). We easily have M ◦ L = id, so to prove
L ◦M = id it suffices to show that M is left-cancellable, i.e. that (Mf = Mg) → (f = g).
Since M preserves composition, for this it suffices to show that if Mf = id then f = id. But
if Mf = id, then by (1) we have pr1(f(x, a)) = x for all a : A. Thus f(x, a) = (x, gx(a)),
where gx : A ' A for each x : X. But A is rigid, so each gx = id, hence f = id. J

For instance, we could take n = 0 and X = 2, so that X ×A ' A+A. Thus if A and B
are any connected rigid types, an automorphism of U can swap A+A with B +B.

There might also be rigid types that are not of the form BG, or types A,B not built out
of rigid ones but such that A 6' B and UA ' UB . But now we will leave such questions and
turn to the converse: when does an automorphism of U imply excluded middle?
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3.2 Excluded middle from automorphisms
In fact, without function extensionality, we can only derive a slightly weaker form of excluded
middle from a nontrivial automorphism of the universe. As defined in the introduction, the
law of excluded middle (LEM) is∏

P :U
isProp(P )→ P + ¬P.

We will instead derive the law of double-negation elimination (DNE), which is∏
P :U

isProp(P )→ ¬¬P → P.

Notice that if 0-valued function extensionality holds, then ¬P is a proposition (even if P is
not a proposition) and hence, if P is a proposition, P + ¬P is a proposition equivalent to
P ∨¬P . In first-order or higher-order logic, the corresponding schemas or axioms of excluded
middle and double-negation elimination are equivalent, but, in type theory, one direction
seems to require some amount of function extensionality:

I Lemma 14.
1. LEM implies DNE.
2. DNE implies LEM assuming 0-valued function extensionality.

Proof. (1): Assume LEM and let P : U with isProp(P ) and assume ¬¬P . By excluded
middle, either P or ¬P . In the first case we are done, and the second contradicts ¬¬P .
(2): Assume DNE and let P : U with isProp(P ). By 0-valued function extensionality, P +¬P
is a proposition, and hence DNE gives P + ¬P , because we always have ¬¬(P + ¬P ). J

I Lemma 15. DNE holds if and only if every proposition is logically equivalent to the
negation of some type.

Proof. (⇒): DNE gives that any proposition P is logically equivalent to the negation of
the type ¬P . (⇐): For any two types A and B, we have that A → B implies ¬B → ¬A.
Hence A→ B also gives ¬¬A→ ¬¬B. And, because X → ¬¬X for any type X, we have
¬¬¬X → ¬X. Therefore, if P is logically equivalent to the negation of X, we have the chain
of implications ¬¬P → ¬¬¬X → ¬X → P . J

Our first automorphism of the universe constructed from excluded middle swapped the
empty type with the unit type. We now show that conversely, any such automorphism
implies DNE and hence, assuming 0-valued function extensionality, also LEM. In fact, not
even an embedding of U into itself that maps the unit type to the empty type is possible
without classical axioms:

I Theorem 16. Assuming propositional extensionality, if there is a left-cancellable map
f : U → U with f(1) = 0, then DNE holds.

Proof. For an arbitrary proposition P , we have:

P ↔ P = 1 (by propositional extensionality)
↔ f(P ) = f(1) (because f is left-cancellable)
↔ f(P ) = 0 (by the assumption that f(1) = 0)
↔ ¬f(P ) (by propositional extensionality).
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7:12 Parametricity, Automorphisms of the Universe, and Excluded Middle

(Note that if ¬f(P ), then f(P )↔ 0, so f(P ) is a proposition and we can apply propositional
extensionality to get f(P ) = 0.) Hence P is logically equivalent to the negation of the type
f(P ), and therefore Lemma 15 gives DNE. J

I Corollary 17. Assuming propositional extensionality, if there is an automorphism of the
universe that maps the unit type to the empty type, then DNE holds.

Now let us further assume univalence and propositional truncations. This implies function
extensionality, so the difference between DNE and LEM disappears. Furthermore, we can
additionally generalize the result as follows. Say that a type A is inhabited if the unique
map A → 1 is surjective. This is equivalent to giving an element of the propositional
truncation ‖A‖.

I Lemma 18. Assuming univalence and propositional truncations, if A is an inhabited type,
then any proposition P is logically equivalent to the identity type (P ×A) = A.

Proof. If P then P ' 1, so (P ×A) ' A, and hence by univalence (P ×A) = A. Conversely,
assume (P × A) = A. Then ‖P ×A‖ = ‖A‖ = 1 by univalence, as A is inhabited. So
‖P‖ × ‖A‖ = 1, and hence P = 1. J

Using this, we can weaken the hypothesis of Lemma 16 to the requirement that f maps some
inhabited type to the empty type, and get the same conclusion, at the expense of requiring
univalence rather than just propositional extensionality:

I Lemma 19. Assuming univalence and propositional truncations, if there is a left-cancellable
map f : U → U with f(A) = 0 for some inhabited type A, then excluded middle holds.

Proof. For an arbitrary proposition P , we have:

P ↔ (P ×A) = A (by Lemma 18)
↔ f(P ×A) = f(A) (because f is left-cancellable)
↔ f(P ×A) = 0 (by the assumption that f(A) = 0)
↔ ¬f(P ×A) (by propositional extensionality).

Hence P is logically equivalent to the negation of the type f(P ×A), and therefore Lemma 15
gives DNE. But univalence gives function extensionality, and hence Lemma 14 gives LEM. J

I Theorem 20. Assuming univalence and propositional truncations, if there is an auto-
morphism of the universe that maps some inhabited type to the empty type, then excluded
middle holds.

I Corollary 21. Assuming univalence and propositional truncations, if there is an auto-
morphism g : U → U of the universe with g(0) 6= 0, then the double negation

¬¬
∏
P :U

isProp(P )→ P + ¬P

of the law of excluded middle holds.

(Note that this is not the same as∏
P :U

isProp(P )→ ¬¬(P + ¬P ),

which is of course constructively valid without extra assumptions.)
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Proof. Let f be the inverse of g. If g(0) then ‖g(0)‖, and because f maps g(0) to 0, we
conclude that excluded middle holds by Theorem 20. But the assumption g(0) 6= 0 is
equivalent to ¬¬g(0) by propositional extensionality, and so it implies the double negation
of excluded middle. J

It is in general an open question for which X the existence of an automorphism f : U → U
with f(X) 6= X implies a non-provable consequence of excluded middle [4]. Not even for
X = 1 do we know whether this is the case. However, the following two cases for X follow
from the case X = 0 discussed above:

I Corollary 22. Assuming univalence and propositional truncations, for universes U : V, if
there is an automorphism f : V → V with f(X) 6= X for X = LEMU or X = ¬¬LEMU ,
then ¬¬LEMU holds.

Proof. Suppose that ¬LEMU , and hence X = 0. By Corollary 21, we obtain ¬¬LEMV ,
which implies ¬¬LEMU , contradicting the assumption. J
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Abstract
HAHA is a tool that helps in teaching and learning Hoare logic. It is targeted at an introductory
course on software verification. We present a set of new features of the HAHA verification
environment that exploit Coq. These features are (1) generation of verification conditions in Coq
so that they can be explored and proved interactively and (2) compilation of HAHA programs
into CompCert certified compilation tool-chain.

With the interactive Coq proving support we obtain an interesting functionality that makes
it possible to carefully examine step-by-step verification conditions and systematically discover
flaws in their formulation. As a result Coq back-end serves as a kind of specification debugger.
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1 Introduction

Mainstream imperative programming languages give programmers a platform in which they
describe computation as a sequence of operations that transform the state of a computing
machine (and interact with the outside world). The resulting programs, as produced by
humans, may contain mistakes. A systematic approach to eliminate mistakes leads to
an arrangement where one has to provide (at least approximately) the solution again, in
a different way, and then confront the two solutions to check if they match well enough. In
the mainstream software engineering this is achieved on the one hand by various requirement
management frameworks and on the other hand by various testing methodologies.

Software verification techniques bring here an alternative paradigm, which is based on
Hoare logic [18]. The different description of the software artefact consists here in giving
explicit specification for invariant properties of states that hold between atomic instructions.
The obvious advantage of this approach over testing is that a verified condition ensures
correctness not limited to a finite base of available test cases, but for all allowed situations.

It is worth stressing that this possibility requires understanding of mechanisms that make
it possible to generalise beyond the results of experiments that are directly available to our
perception. However, this requires good command of additional theoretical constructions,
which are complicated by themselves and require additional educational effort.
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8:2 Coq Support in HAHA

The experience of our faculty, most probably shared by other places, shows that typical
student sees Hoare logic as tedious, boring, obscure and, above all, impractical. Therefore, it
is important to counter this view by showing them the topic in an attractive modern way.

There is a wide variety of mature software verification tools (e.g. ESC/Java [10, 20],
Frama-C [5, 12], Verifast [19], Microsoft VCC [13], KeY [6]) that have proven to be usable
in the verification process of software projects. However their design is geared towards
applications in large scale software development, rather than education, which results in
automatising of various tasks at the cost of making the principles behind them difficult to
understand. In particular, the base logic behind such systems, with automatic verification
condition generation, handling of procedure call stack and heap, is much more complicated
than the initial one designed by Hoare. This opens room for tools in which students are
exposed to basic techniques only, and HAHA1 verification environment fits into this scope.

HAHA was successfully applied in the curriculum of University of Warsaw [26]. So far it
relied on the proving back-end of Z3 [15]. However, development of a Hoare logic proof with
help of Z3 has limitations. In particular, the process of invariant writing is not systematic –
in case the formulas are too weak or in some way incorrect, the process of problem discovery
is based on guesswork. For some formulas Z3 is able to generate counterexamples, which
helps in error correction. Still, the solver does not always find them.

This was our main reason to develop a verification condition generator that produces
formulas in the format acceptable for an interactive theorem prover, in our case Coq. The
interactive prover enables here the possibility to stepwise examine the verification condition
assumptions so that complete understanding is obtained on how they are used to arrive at
the prescribed conclusion. Such a stepwise examination is very similar to examination of
a program operation with a debugger, but this time the main focus is not on the code of the
program, but on another class of statements in an artificial language, namely specifications.

A successful application of this workflow requires two basic elements. First, the formulas
should be generated in a comprehensive way that can be easily related to the point of the code
they come from and students should be able to quickly start proof construction on their own.
Second, most of the generated verification conditions should be discharged automatically. It
is acceptable that only few of them are left for manual proof development. We show here
how these goals were achieved.

In addition, HAHA can be considered as a small programming language. Therefore, it
is crucial to be able to compile programs written in it. As the programs, once verified, are
supposed to be highly dependable, we decided to connect compilation to a highly dependable
compiler chain of CompCert [22]. As a result we obtained a basis for a miniature platform
that enables development of highly dependable small programs.

The paper is structured as follows. Overview of HAHA and its features is in Section 2.
Section 3 presents the translation of HAHA programs with assertions to Coq. It is followed
in Section 4 by description of the Coq proof tactic to automate handling of most of the proof
goals. Section 5 illustrates how Coq can be used to debug specifications. Translation of
HAHA programs to CompCert languages is shown in Section 6. We conclude in Section 7.

2 Overview of HAHA

We present the features of HAHA tool and programming language by showing how a particular
example procedure can be verified with its help. The code of the procedure is presented

1 HAHA is available from the page http://haha.mimuw.edu.pl

http://haha.mimuw.edu.pl
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function i n s e r t (A : ARRAY[ Z ] , n : Z , e : Z) : ARRAY[ Z ]

var j : Z
stop : BOOLEAN
B : ARRAY[ Z ]

begin
B := A
j := n−1
stop := f a l s e
while j >= 0 /\ not stop do
begin

i f (B[ j ] <= e ) then begin
stop := true

end
e l s e begin

B[ j +1] := B[ j ]
j := j−1

end
end
B[ j +1] := e
i n s e r t := B

end

Figure 1 The insert procedure implemented in the HAHA programming language.

in Figure 1 and it describes the well known insert procedure that inserts an element into
a sorted array, so that the array remains sorted after the operation.

The input language of HAHA is that of while programs over integers and arrays. The
code of programs is packaged into functions, which serve as the basic structural component
that is sufficient for code management in the small. The basic language constructs of HAHA
are standard and similar to those of Pascal programming language so we omit its grammar.
We only remark here that one bigger departure from the standard Pascal syntax is that
we do not use semicolon to terminate statements. As a consequence one line can hold only
one statement, which agrees with major coding style guidelines [17, 25]. This design choice
brings some difficulties in applying standard LALR parser generators, but it has the effect
of keeping the source code of programs more legible for humans. As for the semantics, we
designed the language so that its mechanisms and datatypes match those supported by state
of the art satisfiability solvers, e.g. Z3 [15] or CVC4 [1]. The main datatypes of the language
are arbitrary precision integer numbers and unbounded arrays. This design choice makes it
possible to postpone discussion on programming mistakes associated with strict keeping of
the available ranges and integer bounds to other stages of instruction.

In our example the function insert from Figure 1 works as follows. It takes three input
arguments, the array A to insert element to, the length n of its range filled with values of
interest, and the value e to insert into the array. We assume that the input array is sorted
and the function looks for the location into which the value e can be inserted by traversing
the array in a loop from the index n−1 down to 0. In case the first element that is not
greater than e is found, a boolean flag stop is set. Then the function inserts e in the found
place so that the ordering of the resulting array is preserved.

The procedure cannot directly modify the input array.2 Therefore, we have to copy its
content to an array B and then operate on it. The array with inserted element e is returned
as the result, which is realised by the final, typical for Pascal, assignment insert := B.

2 We keep input array immutable to avoid more complicated binary verification conditions and be at the
same time able to refer to the input array in the postcondition.
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1 predicate s o r t ed (A : ARRAY[ Z ] , l : Z , h : Z) =
2 f o r a l l i : Z , j : Z , l <= i /\ i <= j /\ j < h −> A[ i ] <= A[ j ]
3
4 function i n s e r t (A : ARRAY[ Z ] , n : Z , e : Z) : ARRAY[ Z ]
5 precondition n >= 0 // length i s non−negat ive
6 precondition s o r t : s o r t e d (A, 0 , n ) // array i s so r t e d
7 postcondition s o r t ed ( i n s e r t , 0 , n+1) // the r e s u l t i s s o r t e d
8 var j : Z
9 stop : BOOLEAN

10 B : ARRAY[ Z ]
11 begin
12 B := A
13 { s o r t e d (B, 0 , n ) /\ n >= 0 }
14 j := n−1
15 { s o r t e d (B, 0 , n ) /\ j = n−1 /\ n >= 0 }
16 stop := f a l s e
17 { s o r t e d (B, 0 , n ) /\ j = n−1 /\ n >= 0 /\ not stop }
18 while j >= 0 /\ not stop do
19 invariant 0 <= j+1 /\ j+1 <= n
20 invariant onSort ing : s o r t ed (B, 0 , n ) /\ ( j+1 < n −> s o r t e d (B, 0 , n+1))
21 invariant j+1 < n −> f o r a l l k : Z , j < k /\ k <= n −> e <= B[ k ]
22 invariant stop −> ( f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] < e )
23 invariant j+1 < n −> B[ j +1] > e
24 begin
25 i f (B[ j ] <= e ) then begin
26 stop := true
27 end
28 e l s e begin
29 B[ j +1] := B[ j ]
30 { 0 < j+1 /\ j+1 <= n }
31 { s t r o n g e r S o r t i n g : so r t e d (B, 0 , n+1) }
32 { f o r a l l k : Z , j < k /\ k <= n −> e <= B[ k ] }
33 { stop −> ( f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] <= e ) }
34 { B[ j ] > e /\ B[ j +1] = B[ j ] }
35 j := j−1
36 end
37 end
38 { ( j+1 = 0 \/ stop ) /\ 0 <= j+1 /\ j+1 <= n }
39 { s o r t e d (B, 0 , n ) /\ ( j+1 < n −> s o r t e d (B, 0 , n+1)) }
40 { stop −> f o r a l l k : Z , 0 <= k /\ k <= j −> B[ k ] < e }
41 { j+1 < n −> B[ j +1] > e }
42 B[ j +1] := e
43 { s o r t e d (B, 0 , n+1) }
44 i n s e r t := B
45 end

Figure 2 The insert procedure with the specifications.

The HAHA environment does not accept directly a program written in the form presented
in Figure 1. HAHA programs must contain all necessary specifications to be valid. The
version of the program, which is accepted by the HAHA parser, is presented in Figure 2.

The code starts with additional definitions of predicates, which encapsulate under com-
prehensible identifiers essential properties that we deal with in description of the procedure
states. We define there, in particular, the predicate sorted
predicate s o r t ed (A : ARRAY[ Z ] , l : Z , h : Z) =

f o r a l l i : Z , j : Z , l <= i /\ i <= j /\ j < h −> A[ i ] <= A[ j ]

As we can see, interpreting the expressions in natural way, the predicate holds true when the
argument array A is ordered in the range A[l ] ,. . . , A[h−1].

Another addition to the original code is a range of lines that describes the input-output
property of the function. This area contains a number of properties of the input (marked
with the keyword precondition) and a property of the result (marked with postcondition).
The preconditions express that (1) the area of the values that are relevant for the procedure
has at least one element, and (2) the array A is sorted in the range A[1],. . . ,A[n−1]. Note
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Figure 3 The user interface of HAHA.

that we can name a precondition as it is the case with the second one in our code.
For educational purposes the language has an assertion mechanism that forces program-

mers to insert state descriptions between every two consecutive instructions of their code. We
can see that the assertions are enclosed within curly brackets { ... }. This makes it possible to
stay very close to the original Hoare logic. In addition, programmers immediately see how big
the relevant state they have to keep in mind is and observe its subtle changes along the code
of their procedure. This feature forces them to explicate their understanding of programs,
and as a result makes them aware of all the program details. To avoid literal repetition of
assertions, we forbid assertions to occur at the beginning or at the end of a block. We can
see this feature in our example by observing the lack of asserts in the loop body before the
if keyword in line 25 in Figure 2. The asserts may be named as in line 31 and distributed in
many statements enclosed in brackets to support structured reading of the properties (see,
for example, the block of asserts between lines 30 and 34).

Loop invariants are a necessary element of any system based on Hoare logic. HAHA
makes it possible to describe them through its invariant keyword, which can be used before
the loop body to describe the constant property of the state at the entry to the loop, before
the loop condition is checked. The textual location of the invariants is a little bit different
than their reference point, but it remains in accordance with standard approach [2, 7]. Again
the invariants can be named (see line 20) and understood separately, but they are combined
into a conjunction when treated as a precondition for the body of the loop.

The way the procedure looks like in the user interface of HAHA is presented in Figure 3.
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We can see there a window with the source code of the insert procedure. The editor
shown there has features that are expected from a modern IDE, such as syntax highlighting,
automated completion proposals and error markers. Once a program is entered, we can push
one of buttons to start a verification condition generator, which implements the rules of
Hoare logic. The resulting formulas are then passed to a proving back-end, which can be
either Z3 or Coq, depending on the button pressed. If the solver is unable to ascertain the
correctness of the program, error markers are generated to point the user to parts which could
not be proven. A very useful feature of Z3 back-end is the ability to find counterexamples
for incorrect assertions. These are included in error descriptions displayed by the editor.

We should remark here that to illustrate the way the Coq proof assistant can be used
to debug specifications, we introduced in the specifications presented in Figure 2 a small
mistake that is exploited hereafter in our explanations.

Axioms. In some cases the proving back-end is too weak to automatically handle some of
the proof steps. This can be ameliorated by the use of axioms. A typical situation concerns
axiomatisation of multiplication. We can for instance add an axiom
axiom mult i : f o r a l l x : Z , ( x + 1)∗ ( x + 1) = x∗x + 2∗x + 1

which conveys some basic property of interest. Fortunately, our example program does not
need axioms and actually they are not needed in case we want to use Coq as the proving
back-end (although they can help to automatically prove a number of verification conditions).

3 Export to Coq

Motivations. There are several advantages of letting Coq work as the proving back-end in
a tool such as HAHA. First of all, this gives the users one more option to choose, possibly
one with which they can feel more comfortable. Second, SMT solvers such as Z3 always offer
limited strength. This is partly mitigated by the presence of axiom construct in HAHA, but
on the other hand axioms may be wrong and as a result they weaken the guarantees for the
resulting program. Therefore, Coq back-end offers the possibility to prove arbitrarily difficult
conditions in a way that guarantees strong confidence.

However, we would like to focus on another possibility the Coq back-end offers. One of
the frequent problems in development of formal specifications in the small, i.e. in devising
asserts and loop invariants within programmed functions or procedures, is that the formulas
given by developers are not always good enough to carry out the proving process. There
are at least three reasons for this situation. One is that the given invariant formulas are too
weak to close the loop body verification effort. Another one is that a given formula has some
error, which is not visible to the author. At last, the formulas may be strong enough, but
they use a feature the proving back-end has difficulty to deal with (e.g. it has to make a
proof by induction to exploit the information contained in the formula in a useful way).

The mentioned above weaknesses of specifications result from insufficient understanding
of the algorithm details. The reason why the author gives a false specification and cannot
immediately see the problem in it is that the person does not fully understand the situation
in the particular location of the code. This calls for a process in which better understanding
can be gained. Actually, going through an attempt to formally prove a property is a way to
systematically find a gap in the understanding of the situation at hand.

Generation of verification conditions – general idea. The general idea of verification
condition generation in HAHA is simple. Since asserts are given explicitly between all
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instructions, one has to directly apply the Hoare logic rules. However, the proof must be
done in an appropriate context of defined symbols as well as predicates and the proving
back-end must be supplied with this. We sketch below the main ideas behind this. The
semantics of the translation is rather standard, but as the result must serve educational
purposes we have to make it clear and easily accessible to the users. Therefore, we provide it
here in the form close to the actual Coq text, including comments and spaces, to illustrate
that the generated code can easily be related to the initial source and has a comprehensible
form.

Prelude. The prelude of the Coq file contains declarations necessary to introduce the
model of HAHA datatypes. We model base types of HAHA, i.e. integers (Z ), and booleans
(BOOLEAN ) as Z and bool respectively. The combined type of arrays (ARRAY[τ ] ) is
modelled as functions from integers to the type of array elements (Z → τ ′ ). In particular
the type ARRAY[BOOLEAN] is modelled as the Coq type of functions Z → bool.

As a consequence the prelude in the Coq file for our example starts with library imports
that introduce integer numbers to model the type Z and the domains of arrays. We also
import booleans to model conditions in if and while instructions. At last, the file with our
set of tactics and notations is imported.
Requi re Export ZArith ZArith . Int ZArith . Zbool .
Loca l Open Scope Z_scope .
Load " t a c t i c s . v " .

The file tactics.v contains not only the definitions of tactics, which are described further
here in Section 4, but also a basic support for our handling of booleans and arrays, i.e.
a bracket notation and a bunch of lemmas that describe basic properties of the array update
operation and booleans. In particular the update operation is defined there as follows.
De f i n i t i o n update {Y} (A : array [Y] ) ( where_ : Z) ( va l : Y) :=

fun ( i : Z)⇒ i f (Z . eqb i where_ ) then va l e l s e A[ i ] .

However, the notation for update is more comfortable: the expression A[i ←e ] means the
array A updated at the index i with the value e.

Representation of programs. The subsequent part of the file contains the module with
representation of HAHA programs together with their verification conditions. The programs
in HAHA are triples the first argument of which is a sequence of predicates, the second one
is a sequence of axioms and the last one is a sequence of functions. Translation of a program
in this form produces a Coq module called main. The module has the following structure
(∗ ∗ V e r i f i c a t i o n context : Program c o r r e c t n e s s ∗)
Module main .
. . . Definitions of predicates . . .
. . . Definitions of axioms . . .
. . . Declarations of variables that represent functions . . .
. . . Verification conditions . . .
End main .

We would like to stress that we add to the mentioned below declarations comments that
explain their relation to the original source code and verification conditions visible in the
HAHA interface. We show now how the content of a Coq file sections actually looks like.

Predicates. Predicate is actually a triple of the form (id, args, ex) where id is an identifier
of the predicate, args is its list of arguments and ex is the actual formula represented by the
predicate. These elements are turned to a Coq definition as follows
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(∗ ∗ D e f i n i t i o n o f the p r e d i c a t e id ?
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

De f i n i t i o n id′P (args′) : Prop := ex′ .

where id′, args′ and ex′ are Coq translations of the identifier, arguments and formula.
As naming constraints in Coq and HAHA are different, the identifier in HAHA cannot

be transferred to Coq with no change. Therefore, we warn the user about it in the comment.
We maintain this style of comment for other definitions in the generated file. This repeated
routine helps beginners a lot, while experienced users quickly learn to ignore it. In addition,
the translation operation adds the suffix P to each identifier to stress that this identifier
represents a predicate.3

Each HAHA argument of the form id : τ is represented in Coq by an expression of the
form (id′ : τ ′) where id′ is the Coq representation of the identifier id and τ ′ is the Coq
representation of the type τ . The result of translation for a sequence of such arguments is a
sequence of above described Coq arguments separated with spaces.

The result of the translation for the HAHA predicate sorted, which we mentioned in our
overview of the HAHA language in Section 2, page 4, looks as follows.
(∗ ∗ D e f i n i t i o n o f the p r e d i c a t e s o r t ed ?
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

De f i n i t i o n sortedP (A : array [ Z ] ) ( l : Z) (h : Z) : Prop :=
f o r a l l ( i : Z) ( j : Z) , l <= i ∧ i <= j ∧ j < h → A[ i ] <= A[ j ] .

As we can see, the expression that defines the body of the predicate is similar to the expression
in the HAHA text, which makes the whole definition easy to digest by novice users.

Axioms. Axioms differ from predicates in that they are not parametrised so an axiom is
a pair of the form (id, ex) and is turned to a Coq axiom definition as follows.
(∗ ∗ D e f i n i t i o n o f the axiom id
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Axiom id′A : ex′ .

with meaning analogous to the one explained for the predicates. We make here one small
departure by changing suffixing of the name with P to suffixing with A.

This translation applied to an example axiom written in HAHA in page 2 results in
(∗ ∗ D e f i n i t i o n o f the axiom mult i
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Axiom multiA : f o r a l l ( x : Z) , ( x + 1) ∗ ( x + 1) = x ∗ x + 2 ∗ x + 1 .

Functions. The internal structure of functions is more complicated. They are actually
tuples of the form (id, args, τ, com, pres, posts, locs, ht) where id is the name of the function,
args is the list of its arguments, τ is the type of the returned result, com is a sequence of
potential comments concerning the code, pres is the sequence of function preconditions, posts
is the sequence of function postconditions, locs is the sequence of local variable declarations,
and at last ht is the Hoare triple that is the body of the function.

This tuple is turned into a sequence of Coq declarations as follows.
(∗ ∗ Dec la ra t i on o f the f u n c t i o n name id
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Parameter id′F : args′ → τ ′.

3 Similar solution is adopted in Why3 [16], but there the names are prefixed. Our experience shows that
it is easier to remember identifiers with suffixes that are devoted to the function than ones with prefixes
so we adopted here a solution in accordance with the former choice.
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(∗ ∗ V e r i f i c a t i o n context : Cor rec tnes s o f id′ ∗)
Module cor rec tnes s_ id′ .

. . . translation of the body that depends on id, args, τ, pres, posts, locs, ht . . .
End cor rec tnes s_ id′ .

Again id′ is the translation of the HAHA identifier to a Coq one with F as suffix. The
arguments are translated as args′. This time the argument types are simply the Coq type
names or their representations. Similarly, τ ′ is the result type name.

Before we present the details of translation for items located in the module body, let us
see a concrete example for the result of this translation for our insert function insert :
(∗ ∗ Dec la ra t i on o f the f u n c t i o n name i n s e r t
− the Coq name i s s l i g h t l y d i f f e r e n t than in HAHA. ∗)

Parameter i n s e r t F : array [ Z ] → Z → Z → array [ Z ] .

(∗ ∗ V e r i f i c a t i o n context : Cor rec tnes s o f i n s e r t ∗)
Module c o r r e c t n e s s _ i n s e r t .
. . .
End c o r r e c t n e s s _ i n s e r t .

The further translation is divided into two main parts. The first one provides a represent-
ation of the local identifiers (i.e. function arguments, the function result identifier and local
variables) while the second one, a representation of the verification conditions the proof of
which guarantees the correctness of the source program.

The translation of local identifiers translates HAHA declarations of local variables into a
series of Coq parameter constructions. For a list of local variables locs = (id : τ)locs′, where
id is an identifier, τ is a type and locs′ is a list of variable declarations, we obtain:
Parameter id′ : τ ′ .
locs′′

where id′ is a translation of the identifier id, τ ′ is the translation of the type τ and at last
locs′′ is the translation of the remaining identifiers.

The translation of local identifiers in the program from Figure 1 is as follows.
Parameter A : array [ Z ] .
Parameter n : Z .
Parameter e : Z .
(∗ Var iab le with the f u n c t i o n r e s u l t . ∗)
Parameter i n s e r t : array [ Z ] .
Parameter j : Z .
(∗ For boolean types we need both bool and Prop r e p r e s e n t a t i o n . ∗)
Parameter stop : bool .
Parameter stopP : Prop .
(∗ Module that ensure s e q u i v a l e n c e o f stop and stopP . ∗)
Module StopR .

De f i n i t i o n varb := stop .
De f i n i t i o n varP := stopP .
Inc lude BoolRepresents .

End StopR .
Parameter B : array [ Z ] .

One additional complexity is associated with booleans. Since these may occur both in
expressions that represent values and in predicates, we need polymorphic representation for
them. We decided to represent such variables as two Coq variables, in bool (stop) and one in
Prop (stopP), the equivalence of which is handled by the content of the (StopR) module. This
module, in particular, contains an axiom (stop = true) ↔ stopP and some helper lemmas.

As mentioned, the second part of the function translation procedure generates verification
conditions. This procedure first combines the list of preconditions into one formula that is
the conjunction of the list elements. It then combines the list of postconditions into one
formula using the same connective. We can now add the combined precondition formula
as the assumption and the combined postcondition formula as the final condition of the
mentioned above Hoare triple ht.
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Hoare triples. A Hoare triple is a triple (pres, stmt, post) where pres, post are sequences
of possibly named assertions and stmt is a HAHA instruction.

The translation to Coq depends on the kind of the instruction in stmt. We describe
translation for the block, assignment and loop instructions since these show all phenomena
of interest. The translation for the remaining instructions follows the same lines.

Triples for blocks. A block is an alternating sequence of instructions and assertions. It
starts and ends with an instruction. In the translation of blocks we follow the rule

{ψ} I {ϕ}
{ψ}begin I end {ϕ} .

In HAHA the situation is a little bit more complex since the body of a block is not an
instruction but a sequence of instructions. As a result the Hoare triple in HAHA for which
we want to define translation has the form

(asserts1, ((st1, asserts2) · sts, st2), asserts3)

where asserts1, asserts2, asserts3 are assertions, st1, st2 are statements, and sts stands for
the remaining, possibly empty, part of the block (concatenated with the first statement-assert
pair by · operator). As mentioned before, the external assertions asserts1, asserts3 are
deduced from the external context (i.e. these are external assertions, invariants, pre- or
postconditions). Suppose first that sts is not empty. The result of translation starts a new
module and generates conditions as follows.
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s bstart − bend ∗)
Module block_Lbstart_bend .

. . . translation of asserts1, st1, asserts2 . . .

. . . translation of asserts2, (sts, st2), asserts3 . . .
End block_Lbstart_bend .

where bstart is the first line of the block body and bend is the last line of the block, and
asserts2 is the first assert in sts .

In case sts is empty the translation looks slightly differently:
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s bstart − bend ∗)
Module block_Lbstart_bend .

. . . translation of asserts1, st1, asserts2 . . .

. . . translation of asserts2, st2, asserts3 . . .
End block_Lbstart_bend .

To illustrate notation in the prescriptions above, we present here the actual code for module
creation resulting from the block in lines 31–51 of the Figure 1.
(∗ ∗ V e r i f i c a t i o n context : Block at l i n e s 31 − 51 ∗)
Module block_L31_51 .
. . .
End block_L31_51 .

Triples for assignments. An assignment is a pair (lv, e) where lv is an lvalue one can assign
something to and e is an expression. Translation for assignments follows the Hoare’s rule

ψ =⇒ ϕ[e/lv]
{ψ} lv := e {ϕ}

. (1)

Assume now that the Hoare triple for the assignment above has the form (asserts1, (lv, e),
(name, assert2)) where asserts1 is the precondition, name is the name of the postcondition
assert and assert2 is the expression of the assert. The result of translation is as follows.
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Lemma asserts1′′ :
asserts1′

→
assert2′ .

The value asserts1′′ is a name of the lemma which retrieves from asserts1 the line number
n the assertion starts and generates the string of the form Assertion_at_Ln+ 1. In case the
assertion has a label, the name is simply the text of the label. The expression asserts1′ is the
translation of the expressions in asserts1. The situation with assert2′ is more complicated.
We have to construct a verification condition as prescribed in the assumption part of the
rule (1). As a result, we have to construct first assert2[e/lv] and the translation of this
expression to Coq results in assert2′ above.

Consider the instruction in line 12 and the following assert in line 13 in Figure 2:
B := A
{ s o r t e d (B, 0 , n) /\ n >= 0 }

For the assert the following lemma is generated.
Lemma Assertion_at_L13 :

n >= 0 ∧
( sortedP A 0 n)
→

( sortedP A 0 n) ∧ n >= 0 .
Proof .

(∗ Give i n t r o s with meaningful names ∗)
haha_solve .

Admitted .
(∗ ∗ Change above to Qed .

when the lemma i s proved so that
"No more subgoa l s . "
occurs . ∗)

Note that as it is prescribed by the Hoare logic rule, B is replaced in the condition by A.
Additionally, the instruction has no assertion that explicitly precedes it, as this is the first
instruction of the function body block. In that case the preconditions of the function become
the preceding assertion, in this case the conjunction of function preconditions.

One more thing we would like to bring attention to now is that aside from the verification
conditions the tool generates a simple proof script. The proof script is strong enough to
ascertain the validity of the conditions in most of the cases. We end the script with Admitted
keyword and suggest to change it to Qed when the proof is completed. When the Coq script
is finished the lemmas which end with Admitted give rise to error markers while those which
successfully end with Qed lead to clean situation with no alarms in the code.4

Loops. The translation of the verification conditions follows here the while rule

ϕ =⇒ θ {θ ∧ e} I {θ} θ ∧ ¬e =⇒ ψ

{ϕ}while edo I end {ψ} .

A while loop is a triple (ex, inv, b) where ex is the boolean loop guard expression, inv is the
list of loop invariants and b is the Hoare triple that holds the body of the loop. If asserts1
is the list of asserts before the loop and asserts2 is the list of the asserts after the loop the
resulting translation looks as follows

4 In case Qed ends a reasoning which is not successful, the Coq file cannot be compiled and a message is
returned to the user that verification cannot be carried out.
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(∗ ∗ V e r i f i c a t i o n context : Loop statement at l i n e n∗)
Module loop_Ln .
(∗ ∗ V e r i f i c a t i o n context : I n v a r i a n t s b e f o r e the loop ∗)
Module pre .
. . . translation of asserts1 =⇒ inv . . .
End pre .
(∗ ∗ V e r i f i c a t i o n context : Loop p o s t c o n d i t i o n . ∗)
Module post .
. . . translation of inv ∧ ¬ev =⇒ asserts2 . . .
End post .
(∗ ∗ V e r i f i c a t i o n context : I n v a r i a n t s a f t e r a s i n g l e i t e r a t i o n . ∗)
Module i n v a r i a n t s .
. . . translation of the augmented body b′ . . .
End i n v a r i a n t s .
End loop_Ln .

where b′ is b with inv ∧ ex as its initial list of conditions and inv as the final one.

Conditionals. The translation of conditionals does not bring any essentially new elements,
so we omit it here due to lack of space.

Expressions. The translation for equations is obvious and does not require much description.
One thing we can note here is that the array operations take advantage of the function
manipulation operations defined in the prelude of the Coq file, and our notations make
expressions look close to their counterparts in HAHA.

4 Proof Handling in Coq

The Coq system is difficult to interact with. We mitigate the difficulties in three ways (1) by
introduction of extensive comments on the Coq script, (2) by attaching an intuitive how-to
instruction to each generated Coq file so that students can consult it to make proving steps
of interest and (3) by development of automatic proving tactics.

The Coq system provides a wide variety of automatic verification tools, but they are not
tailored to the kind of properties that result from verification condition generators. For this
reason, one can significantly improve performance of proving with Coq by developing tactics
adapted to the most often used patterns. We devised our own tactic instead of e.g. adopting
the work of Chlipala [9] since it is important for such a tactic to be predictable, and it is
difficult to control such a big tactic as the one of Chlipala with this regard.

Array updates

The first of our tactics simplifies lookups in updated arrays A[i ←v] [ j ] , depending on the
relation of indexes i and j. For a single update there are the following cases:

the equation i = j or disequation i <> j is already in the context
one can automatically prove (by omega) the equation i = j or disequation i <> j

none of the above.
In the first two cases the tactic simplifies the update expression (either to v or to A[j]) and
moreover in the second case the proved equation is added to the local context for future use.

In the third case, the proof must be split into two branches, for i = j and for i <> j.
The branching operation (disjunction elimination) puts the needed premises into the proof
context of both branches, so the reduction of update expressions is immediate.

Given a number of update-lookup expressions it is of course more efficient to perform
non-splitting reductions first and splitting ones later and this is the case in our tactic.
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This procedure is repeated until no more lookups in updated tables are present in the
context. The tactic running the above procedure is solve_updates.

Rewriting with local hypotheses

Even though there is an automatic rewriting tactic autorewrite in Coq, this tactic does
not use equations from local context, such as premises of the theorem to be proved. Since
equations between variables and other expressions are often present in verification conditions,
we proposed a tactic to do exactly this.

Our tactic simplify takes every equation (over Z) from the local context, orients them
in a way described below and rewrites the whole context with this equation using the Coq
tactic rewrite !H in ∗.

The orientation of the equations is the following:
equations of the form v = exp are oriented from variable v to the expression, provided
that v does not appear in the expression; if it does, the equation is oriented the other
way around,
if neither of the sides of the equation is a variable, the equation is oriented from the
larger one towards the smaller one,
if two sides are of the same nature (two variables, or two expressions of the same size),
the equation is used from left to right.

In the first case one practically eliminates a variable from the context; even though the
equation itself is not removed to help the user in understanding the proof, it is substituted by
the expression everywhere else and does not add up to the complexity of the proof situation.
In other cases one can hope for the decrease in the size of the proof context.

After the reduction, the ring_simplify tactic is called on all hypotheses and the target in
order to tidy up the expressions.

The repeated rewrites (and ring simplifications) are possible thanks to the common
technique of temporary hiding “used-up” hypotheses behind an identity constant, so that
a given equation does not match the normal (_ = _) equation pattern. After the whole
series of rewritings the identity is unfolded and the equations become ready to be used again.

Arithmetic forward reasoning

Although the omega tactic is very efficient when one wants to prove arithmetical facts, there
is no support to generate new facts from existing ones. The simplest example consists
in automatically generating i=n from the context with i<=n and i>=n. Given that the
inequations may come in a variety of forms (e.g. i<n+1, i−1<n, ~i>n etc.) the tactic is
more than a simple goal matching.

We have developed an experimental tactic to perform this kind of forward reasoning. The
tactic is called deduce_equality and its operation consists in the following steps:
1. transform all inequalities into the form i+a < j+b, where i and j are variables and a, b

are arbitrary expressions (hopefully integer constants),
2. given the name of the analysed variable (say i), transform the above inequalities into the

form i < j + b and j + a < i,
3. search for such a pair of inequalities that the difference b− a is minimal; if it is 2 then

one can conclude that i = j + a+ 1; if it is 3 then we have two cases: i = j + a+ 1 or
i = j + a+ 2 etc.

Currently, the tactic needs the name of the variable to concentrate on. While local variables
can be matched on pretty easily, it is much more difficult to get the names of program
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variables, modelled in Coq as parameters. If this tactic is supposed to be used completely
automatically, one has to either find the way to extract them from the environment or the
Coq verification condition generator must pass their names to the tactic.

Cutting the range

It is often the case that some property, typically a loop invariant Inv, is assumed to be true
for some range of arguments at hand, e.g. for i < n, and one has to prove that it holds for
an extended range, e.g. for i < n+ 1, typically to show that the invariant is preserved after
one pass of the loop. In informal proofs one directly concentrates on the “new” part of the
range, i.e. i = n, taking advantage of the simplifications enabled by the distilled equation.

The formal proof should first split the range into “old” and “new” part, then proof the
“old” part using the assumption and leave the user with the “new” part. Unfortunately, given
that there are other side-conditions to our invariant (hopefully easy to prove, but difficult to
get through by automated tactics), from the Coq perspective it is only possible to know how
to split the range by trying to do the proof. So given the goal i < n+ 1 ` Inv, we apply our
assumption i < n → Inv and we are left with the impossible goal i < n + 1 ` i < n from
which we can recover the information that the range should be split into the following two
cases: i < n and n ≤ i < n+ 1.

Our tactic limit_from_hyp performs this kind of assumption analysis in order to split
the range into “old” and “new” part. First, using existential variables and hidden False
assumption, it sets a trap to recover some information from a following failed proof attempt.
Then the tactic tries to apply a hypothesis to the goal. If this succeeds it means that the
conclusion of the hypothesis has the same form as the goal, as in an invariant preservation
proof. In that case, the premises of the applied hypothesis are combined with the current
hypotheses using the arithmetic forward reasoning described in the previous paragraph, in
order to recover the suitable range splitting point thanks to the prepared existential variables.
At this point the tactic “backtracks” using the hidden False assumption. Then it performs the
right range splitting, proves the “old” part of the range connected with the used assumption
and leaves the user with “new” remaining part(s).

The tactics presented above are incorporated into a general automatic tactic haha_solve
the invocation of which is generated as the initial body of proofs by the Coq code generator.

Even though the number of automatically proved conditions did not increase dramatically
after introducing into haha_solve the aforementioned automatic features, these tactics are
very useful when one has to resort to manual proving. Basically, using these tactics, one
can prove a complex condition in a couple of lines, concentrating on higher-level reasoning
instead of technicalities of the proving process.

4.1 Potential for Development

Although haha_solve can prove large majority of the generated verification conditions, there
are still many cases which are out of reach for our automatic tactic, even though the manual
proof is neither long nor particularly involved.

Naturally, there are some clear areas where a progress in automatic proving of verification
conditions can and needs to be done. This includes:
1. Integer division Integer division, modulo etc. are operations which are not covered by

good automatic tactics of Coq, yet they are quite frequent in programming and therefore
in verification conditions.
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Table 1 The numbers of verification conditions in example algorithms.

File Number
of VCs

Number
of un-

proved
VCs

Description

binary_search.haha 8 4 finds a value in an ordered array using bisecting
approach

cubic_root.haha 9 0 computes an integer cubic root using squaring
exponent.haha 19 5 computes a power of one number to the other
heapify.haha 38 14 adds an element to a heap so that the heap

structure remains intact
insert.haha 39 3 inserts an element into an ordered array (op-

timised version)
partition.haha 43 3 does the partition subprocedure of quicksort
sortmod2.haha 35 6 sorts elements modulo 2
square_root.haha 12 5 computes an integer square root using addition
sum.haha 7 2 finds the sum of n subsequent numbers starting

with 1

2. First order The firstorder Coq tactic is not very well suited to be used as part of
automatic tactics as it often takes a long time to complete (even without success)
and cannot be stopped by timeout. In spite of that, elimination and introduction of
existential quantification is necessary to prove verification conditions. It would also be
desirable to add some support for forward reasoning with generally quantified formulas,
i.e. instantiation of quantified formulas with terms at hand to facilitate the proving
process.

3. Transitivity Sometimes proofs of inequalities require transitivity steps. In automatising
such proofs one should allow for transitivity based on existential variables or guided by
the facts present in the proof context. This, however, has to be allowed with caution as
unlimited transitivity traversal can lead to infinite proof search.

4. Using equations the other way around Our automatic rewriting tactic uses some orient-
ation of equalities in rewriting. However, especially in case of expression to expression
rewriting, a possibility to rewrite in the opposite direction could sometimes help the
proving process. Here also one has to be careful to avoid looping rewriting from l to r
and from r to l back again.

4.2 Efficiency of the Tactics
We have run our translation to Coq procedure on a number of publicly available HAHA
programs that are downloadable from the HAHA web page and that were previously fully
verified with Z3 proving back-end.5 The examples span a variety of different kinds of
algorithms so they can give a reasonable impression on the strength of the tactic. Table 1 shows
the number of total goals and the number of goals that were not discharged automatically.
As we can see the number of the unproved goals is almost always below 10, which means the

5 The example programs and generated Coq files can be downloaded from http://haha.mimuw.edu.pl/
coqexamplex.tgz.
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number of cases to be handled interactively is reasonably small. Moreover, out of the 210
totally generated conditions only 20% (42 goals) were not automatically proved. Of course
there is a big room for improvement, but at least we have reached the satisfactory level of
automatic handling.

5 Specification Debugging Using Coq

To show the support Coq can give in debugging of the specifications, we start working with
the insert algorithm and its specifications presented in Figure 2. As we mentioned, the
specifications in the figure contain mistakes. Let us try to discover it using Coq.

The first step is to generate verification conditions in Coq and see which of them cannot
be proved automatically by our tactic haha_solve. The tactic leaves six assertions to be
solved, namely Assertion_at_L38, in Loop postcondition section, Invariant_at_L22_1, related
to the invariant correctness for the invariant in line 22 in case the first branch of the
conditional is taken, from Invariants after a single iteration section, Invariant_at_L21_2,
Invariant_at_L22_2, Invariant_at_L23_2, related to the invariant correctness for the invariant
in lines 21, 22 and 23 in case the second branch of the conditional is taken, located in Invariants
after a single iteration section, and Assertion_at_L44 after the loop sections.

The correctness of Assertion_at_L38 can be relatively quickly established by simple
logical transformations. Also simple case analysis followed by application of the haha_solve
tactic resolves goals Invariant_at_L21_2, Invariant_at_L22_2, Invariant_at_L23_2, as well
as Assertion_at_L44. A different situation is for Assertion_at_L22_1.
Lemma Invariant_at_L22_1 :

0 <= j + 1 ∧ j + 1 <= n ∧
( sortedP B 0 n) ∧ ( j + 1 < n → ( sortedP B 0 (n + 1 ) ) ) ∧
( j + 1 < n → f o r a l l ( k : Z) , j < k ∧ k <= n → e <= B [ k ] ) ∧
( stopP → f o r a l l ( k : Z) , 0 <= k ∧ k <= j → B [ k ] < e ) ∧
( j + 1 < n → B [ j + 1 ] > e ) ∧
j >= 0 ∧ ~ stopP ∧
B [ j ] <= e
→

True → f o r a l l ( k : Z) , 0 <= k ∧ k <= j → B [ k ] < e .
Proof .

. . .

This form of the verification condition is difficult to digest so we have to decompose it into
smaller pieces. This is done with help of intros and decompose [and] H tactics. The resulting
proof state is as follows
1 subgoal
H0 : True
k : Z
H1 : 0 <= k <= j
H2 : 0 <= j + 1
H4 : j + 1 <= n
H3 : sortedP B 0 n
H5 : j + 1 < n → sortedP B 0 (n + 1)
H6 : j + 1 < n → f o r a l l k : Z , j < k <= n → e <= B [ k ]
H7 : stopP → f o r a l l k : Z , 0 <= k <= j → B [ k ] < e
H8 : j + 1 < n → B [ j + 1 ] > e
H9 : j >= 0
H10 : ~ stopP
H12 : B [ j ] <= e
______________________________________(1/1)
B [ k ] < e

We can now see that the only way to obtain the inequality B [k] < e is by using the hypothesis
H7 or by strengthening of H12, or by some kind of contradiction. We immediately see that
H7 is not usable, as it is guarded by stopP, which does not hold by assumption H10. We can
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now try to see if the assumption B [j ] <= e cannot be made stronger. Indeed, if we forcibly
strengthen the condition using Coq assert tactic:
a s s e r t (B [ j ] < e ) by admit .

then the proof indeed can be completed in two more steps
a s s e r t (B [ k ] <= B [ j ] ) by haha_solve .
haha_solve .

as by sortedness of B the condition B[j ] < e implies the general case. This suggests to take
a closer look at the situation for j. We can see that many assumptions are under the condition
j + 1 < n. As our conclusion must hold also when j+1 = n, we can clear all of them to see
1 subgoal
H0 : True
k : Z
H1 : 0 <= k <= j
H2 : 0 <= j + 1
H4 : j + 1 <= n
H3 : sortedP B 0 n
H9 : j >= 0
H12 : B [ j ] <= e
______________________________________(1/1)
B [ k ] < e

As the assumptions do not bring any information on e, except the one in H12, we can easily
construct a counterexample by letting B[j ] = e. Consequently, the assumptions are not
contradictory.

This makes us conclude that the original invariant in line 22 is not provable. Clearly,
the obstacle in the proof was the situation that the information in assumption H12 used <=
instead of <. Moreover, the information is present in the assumption due to the condition in
the if instruction. Therefore, a reasonable solution would be to weaken the invariant in line
22 to conclude with B [k] <= e, which indeed leads to a proper invariant.

As we can see from the case above, Coq can be used to systematically examine the
situation in a particular point of the code and analyse step-by-step different circumstances
that can occur there. This stepwise examination of situations is very similar to stepwise
examination of the state in a debugger. Moreover, the possibility to temporarily assume new
hypothesis makes it possible to change the internal state of the computation, which is similar
to the state update operation available in debuggers.

6 Compilation Using CompCert

In order to provide an execution path for HAHA programs, a compiler front-end has been
developed. As firm believers in practising what we preach, we decided that the compiler
itself should be formally verified. As such, the front-end is built upon the infrastructure of
the CompCert certified compiler [22], and is itself mostly written and verified in Coq, though
it uses a trusted parser and typechecker written in OCaml. It translates HAHA into the
Cminor intermediate language, which is then compiled to machine code.

6.1 Verified Compilation
By formal verification of a compiler, we understand proving that, given source program S

and output code C, some correctness property Prop(S,C) holds. As Leroy [21] points out,
many possible properties could be described as “correctness”, e.g.
1. “S and C are observationally equivalent”;
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2. “if S has well-defined semantics (does not go wrong), then S and C are observationally
equivalent”;

3. “if S is type- and memory-safe, then so is C”.
4. “C is type- and memory-safe”

The CompCert compiler uses definition 2, and this is also the definition used in the
development of the HAHA front-end.

By the definition above, we consider a compiler Comp to be verified correct if the following
theorem has been formally proved.

∀S,C,Comp(S) = Some(C)→ Prop(S,C)

Or to put it in plain English: if the compiler terminates and produces code in the
target language, then this output program is observationally equivalent with the input
program. A striking consequence of this definition is that a compiler that never produces
any output (Comp(S) = None) is trivially considered correct. Indeed, proofs described here
only provide for freedom from miscompilation issues. Bugs are possible, though they will
be detected at run-time and incorrect code is never produced. Leroy [21] considers this a
quality of implementation issue, to be addressed by proper testing.

In more concrete terms, the correctness theorem for the front-end is stated as follows:

∀S,C,CompHAHA→Cminor(S) = Some(C)→
(∀t, r, terminatesHAHA(S, t, r)→ terminatesCminor(C, t, r))
∧ (∀T, divergesHAHA(S, T )→ divergesCminor(C, T ))

Where S is the source HAHA program, C is the output Cminor program, t and T are
execution traces (terminating and non-terminating, respectively), and r is the program result.
In other words, we prove that the front-end, given a HAHA program, may output only those
Cminor programs that produce exactly the same execution traces and results as the input
program.

6.2 Specification of the HAHA Language
The first step in the process of software verification is providing a formal specification. In the
case of a compiler this means formalising the semantics of the input and target languages. To
this end, CompCert includes Coq definitions of the semantics for all the languages involved –
C99, the target assembly languages and the intermediate languages. The HAHA front-end
also provides similar specifications for its own input and intermediate languages, building
upon the foundations laid by CompCert.

Dynamic semantics. Unlike recent versions of CompCert, the HAHA front-end relies on
big-step (natural) semantics for the specification of languages involved. As noted by Leroy and
Grall [24], big-step semantics are more convenient for the purpose of proving the correctness of
program transformations, but are at a disadvantage when it comes to describing concurrency
and unstructured control flow constructs [23]. The HAHA language does not have such
problematic features, however, and we have decided that big-step semantics are sufficient to
describe the language and specify correctness theorems in our case.

The specification reuses many elements of CompCert’s infrastructure, like execution traces
and global environments. Detailed description of CompCert internals is beyond the scope of
this paper, however. For a detailed exposition, see [22].
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The semantics is built upon the following definitions:

v ::= hhz(n ∈ Z) | bool(b ∈ {true, false})
| array(a ∈ Z→ v)
| int(n ∈ Z,−231 ≤ n < 231) | undef values

t ::= ε | cons(E , t) finite trace
T ::= cons(E , T ) infinite trace (coinductive)

Values range over true integers, 32-bit machine integers, Booleans, and arrays. Values
undef appear only to mark invalid arithmetic operations and should never appear in well-
typed programs. Values of variables are never undefined; a variable always has a default
initial value, depending on its type (either zero, false or an array of default values).

Notice that arrays are specified as immutable mappings from integers to values and there
is no concept of a memory state involved. This seems surprising at first, given that the
assignment and LValue syntax suggests mutable data structures. Nevertheless, this choice
was made to simplify the specification of function argument passing semantics, which are
by-value. Otherwise, every array would have to be copied before being passed as an argument,
which would have been costly at runtime and clunky in implementation. Immutable arrays
eliminate this problem, though at the same time they generate some, more manageable in
our opinion, complexity in semantics of assignment statements.

Traces record details of input/output events, such as system calls or volatile loads and
stores.

The following semantic judgements are defined using inductive predicates in Coq:

G,E ` a⇒ v, t terminating expressions
G ` s, E ⇒ out, E′, t terminating statements
G ` E, a := v ⇒ out, E′, t assignments
G ` fn(~v)⇒ v, t terminating calls

` prog ⇒ v, t terminating programs

Expressions can produce a trace t, i.e. generate side effects in the form of function calls.
A separate rule is used to specify the manner assignments affect the local environment,
a nontrivial matter due to having to emulate destructive updates on otherwise immutable
arrays. The semantics of HAHA statements and expressions do not make explicit use of
CompCert memory states. All the state information is contained in environments E and
values themselves. The global environment G contains information about functions defined
in the translation unit.

At the same time, the usual inductive definitions of natural semantics are not sufficient to
describe non-terminating (diverging) programs. In order to cover such cases, we use the ap-
proach proposed first by Cousot and Cousot [11], and later implemented in CompCert, which
complements the ordinary inductive big-step semantics with co-inductive rules describing
non-terminating evaluations.

G,E ` a
∞=⇒ T diverging expressions

G,E ` s
∞=⇒ T diverging statements

G ` fn(~v) ∞=⇒ T diverging calls

` prog
∞=⇒ T diverging programs

TYPES 2016



8:20 Coq Support in HAHA

G,E ` e1 ⇒ array(a), t1 G,E ` e2 ⇒ hhz(i), t2 a(i) = v

G,E ` e1[e2]⇒ v, t1 · t2

G,E ` ~e⇒ ~v, t1 G(id) = fd G ` fd(~v)⇒ v, t2

G,E ` id(~e)⇒ v, t1 · t2

G,E ` ~e⇒ ~v, t1 G ` E, id := v ⇒ E′, t2

G ` id := e⇒ o,E2, t1 · t2

G ` s1, E0 ⇒ out_normal, E1, t1 G,E1 ` s2
∞=⇒ T

G,E0 ` (s1; s2) ∞=⇒ t1 � T

G,E ` e1 ⇒ array(a), t1 G,E ` e2 ⇒ hhz(i), t2 G ` E, e1 := a[i := v]⇒ E′, t3

G ` E, e1[e2] := v ⇒ E′, t1 · t2 · t3

Figure 4 Examples of HAHA semantic rules.

6.3 The Target Language: Cminor

Cminor is the input language of CompCert back-end. It is a low-level imperative language,
that has been described as stripped-down variant of C [22]. It is the lowest-level architecture
independent language in the CompCert compilation chain and thus is considered to be the
entry point to the back-end of the compiler [22].

Cminor has the usual structure of expressions, statements, functions, and programs.
Programs are composed of function definitions and global variable declarations. For a more
detailed description of the language we refer to [22].

6.4 Implementation

The HAHA front-end for CompCert has a rather conventional design. It consists of a
parser, type checker, and several translation passes. These are connected with the CompCert
back-end by a simple unverified compiler driver.

The proofs of semantic preservation follow the pattern described by Blazy, Dargaye, and
Leroy in [3]. They proceed by induction over big-step HAHA evaluation derivation and case
analysis of the last rule used. They show that the output expressions and statements evaluate
to the same traces, values, and outcomes as input code, effectively simulating it. Such proofs
are conducted for every front-end pass and then composed into a proof of correctness for the
whole translation chain. Below, we give short descriptions of the front-end passes.

6.4.1 Parsing and Semantic Analysis

The compiler uses its own unverified GLR parser for the HAHA language. Although initially
planned, reusing the Xtext-generated parser of the HAHA environment for a Coq development
proved difficult. The additional complexity in defining its semantics and translation into a
more usable format would overshadow the benefits of that approach.

The parser produces a raw, untyped AST from the input file. This is then passed
into the semantic analyser. Aside from doing type checking, the semantic analysis pass
performs several minor, but important, tasks, like string interning and generation of runtime
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initialisation data for arbitrary precision integer literals, which are stored as global variables
in the output program.

6.4.2 Expression Simplification
The first verified pass of the front-end is removal of logic specifications, which do not affect
the dynamics of program runs. As it is routine we do not describe it.

The purpose of the next pass is to replace HAHA expressions with no direct equivalents in
Cminor. Specifically, function calls, true integer arithmetic, and HAHA array manipulation,
all of which in the end are replaced with function calls are pulled out into separate statements.
It can be thought of as a form of limited three-address code generation. Following a convention
established by CompCert developers, the target language of this pass is called Haha]minor.

The main idea of the simplification algorithm is very simple. During recursive traversal
of the expression tree, every HAHA expression e, which directly results in a side effect, is
replaced with a reference to a fresh temporary variable t. A statement reproducing the
expression’s effect and assigning the resulting value to t is then inserted just before the
expression occurs in the code. Additionally, HAHA loops are turned into infinite loop, with
a conditional break statement inside the iteration.

Temporary variables are semantically similar to HAHA local variables, but separate from
them – they reside in their own environment TE . Every function can have an unlimited
number of temporaries. Although not made explicit in the semantics, identifiers of temporaries
should not collide with the identifiers of locals and this is enforced by runtime assertions in
the later stages of compilation.

The pass is analogous to SimplExpr pass of the CompCert C front-end and uses similar
implementation and verification techniques. The semantic preservation is proved with respect
to a non-executable, relational specification, expressed using inductive predicates. The
specification captures the syntactic conditions under which a Haha]minor construct could be
a valid translation of a given HAHA expression or statement, without prescribing a way in
which new variables are generated. It allows a simpler proof semantic preservation, which
does not have to deal with the details of implementation. Translation functions are written
using monadic programming style, with a dependently typed state monad to generate fresh
identifiers. Their outputs are then proved correct with respect to the specification, which is
sufficient to establish correctness.

To give an example, the specification for expression is a predicate of the form:

a ∼ s, a′, ~id

where a is a HAHA expression, s is a Haha]minor statement that reproduces the side effects of
a, a′ is the translated expression and ~id is the set of temporary variables that are referenced
in a′. Example rules are given in Figure 5. Notice that uniqueness and disjointedness of
temporaries in subexpressions is specified in an abstract way.

6.4.3 Further Simplifications
The next pass translates Haha]minor into the Hahaminor intermediate language. On a program
transformation level, this pass performs two basic tasks, which account for differences in
function call semantics between the two languages:
1. Explicit local variable initialisation.
2. Insertion of return statements.
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t ∈ tmps
hhz(n) ∼ tmp(t) := alloc(n), tmp(t), tmps

typeof(e) = hhz e ∼ s′, e′, tmps′ t ∈ tmps t /∈ tmps′ tmps′ ⊆ tmps
op1(e) ∼ (s′; tmp(t) := op1(e′)), tmp(t), tmps

typeof(e1) 6= hhz typeof(e2) 6= hhz e1 ∼ s1, e
′
1, tmps1 e2 ∼ s2, e

′
2, tmps2

tmps1 ∩ tmps2 = ∅ tmps1 ⊆ tmps tmps2 ⊆ tmps
op2(e1, e2) ∼ (s1; s2), op2(e′

1, e
′
2), tmps

Figure 5 Example rules of the expression translation specification.

HAHA and all the intermediate languages up to Haha]minor use Pascal-like special variable
to hold the return value of the function. No special return statement is provided. Once the
execution of the function body finishes, the value of the special variable is returned to the
caller. Additionally, all the local variables are automatically initialised to default values. On
the other hand, in Cminor the return value at the end of the function is undefined unless an
explicit return statement is provided. Local variables are initially considered undefined and
need to have values explicitly assigned.

Initialising variables in the translated program is very simple: it is sufficient to prepend to
the function body the appropriate assignments of default values. Providing explicit returns
is equally simple. The lack of any unstructured control flow features in the HAHA language
means that it is sufficient to simply append a return statement to the function body.

Aside from that, there exists another significant semantic difference between the two lan-
guages, Hahaminor deals away with the second local “temporary” environment of Haha]minor
and has only a single environment for local variables. This is an important simplification
step before the final pass of Cminor generation, which has plenty of difficulties in proving
semantic preservation on its own.

Proof of Correctness

Relating environments. The Haha]minor intermediate language uses two local environ-
ments: one for temporary variables introduced by the expression simplification pass, and one
for “old” locals. Hahaminor, on the other hand, uses only a single environment. Accordingly,
one of the key issues in verification of this pass is to define sensible relation connecting both
Haha]minor environments to the resulting combined Hahaminor environment.

The matching relation MatchEnv(E,TE , E′) between a Haha]minor local and temporary
environments E and TE , and a Hahaminor environment E′ is defined as follows, assuming
that the sets of temporaries and locals are disjoint:

For all local variables x, E(x) = E′(x).
For all Haha]minor temporary variables t, TE(t) = E′(t).

The disjointedness property, despite being easy to provide, is difficult to prove. Instead,
a choice was made to insert runtime assertions that would enforce this property in the
translation procedures. In the spirit of the definition given in Section 6.1, if the compiler
contained a bug that violated this invariant, an error would be produced.
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6.4.4 Cminor Code Generation
The next and final pass of the front-end translates Hahaminor into Cminor code, which
can then be fed into the CompCert back-end. The translation deals with the encoding of
operations of HAHA values into lower-level constructs available in Cminor.

Boolean values are turned into integers and operations on them are rewritten accordingly.
Loops are put inside blocks and break statements are replaced with exit statements that
jump outside the block of the innermost loop:

break⇒ exit(0) s⇒ s′

loop(s)⇒ block(loop(s′))
Array operations and arbitrary precision arithmetic are lowered into runtime library calls.
The pointers to initialisation data for integers are provided by the means of an axiom, that
is instantiated during program extraction to a hash table lookup.

Proof of Correctness

Despite the simplicity of the code transformations in this pass, the proof of semantic
preservation is rather involved. The most problematic aspect is bridging the incompatible
worlds of HAHA and Cminor values.

The runtime functions which implement manipulation on HAHA values are specified to
accept and return opaque pointers. A sensible preservation proof needs a way to associate
those pointers with values they represent.

Following Dargaye [14], we divide memory blocks into following categories:
Stack blocks (SB). At every function call, Cminor allocates a new stack block to contain
the function’s activation record. The block is freed upon exit from the call.
Heap blocks (HB(v)). Pointers to these blocks represent HAHA integer and array objects.
Global blocks (GB). Functions and integer constant initialisation data. A global block is
allocated at the very beginning of program execution and it remains live for the entire
runtime of the program.
Invalid blocks (INVALID).

Let f(M, b) be a mapping assigning one of those categories to memory blocks b, for a given
memory state M . We may define a value matching relation, parametrised by a memory state
M and the mapping f , as follows:

int(n) ≈(M,f) int(n)
true ≈(M,f) int(1)
false ≈(M,f) int(0)
∀v, undef ≈(M,f) v

f(M, blk) = HB(hhz(n))
hhz(n) ≈(M,f) ptr(blk, 0)
f(M, blk) = HB(array(a))

array(a) ≈(M,f) ptr(blk, 0)

Values that are represented by pointers are manipulated using runtime library functions,
whose behaviour is specified using axioms.

Relating environments. The matching relation MatchEnv(M,f,E,E′) that connects a
Hahaminor local environment E, block mapping f , and Cminor memory state M and environ-
ment E′ is defined as follows:

For all Hahaminor variables x, E(x) = v there exists Cminor value v′, such that E′(x) = v′

and v ≈M,f tv.
f ‖M ,

where f ‖M denotes a relation that holds if for all b:
b is not a valid block of M , iff f(b) = INVALID,
b is a valid block of M , iff f(b) 6= INVALID.

TYPES 2016
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6.4.5 Runtime Support for HAHA Programs
Like many high-level languages, HAHA has numerous features that do not map directly to
features of commodity hardware or the Cminor language. Some of those features, like HAHA
Booleans, can be relatively cheaply transformed into inline code. Others require complex
algorithms and make use of features like dynamic memory allocation, which in practice
require external libraries implementing them.

Since developing the language runtime was considered to be of secondary importance, it
was decided to wrap off-the-shelf open-source components to provide most of the functionality.
As such, currently the runtime system forms a trusted computing base. Still, we do not
consider this a fatal blow, as the libraries we used are widely used and considered reliable.

Current implementation of arbitrary precision integer arithmetic is a thin wrapper around
the GNU Multiple Precision Arithmetic Library (GMP).

The unusual semantics of HAHA arrays, namely unbounded size and immutability, can be
efficiently implemented using functional dictionaries. Indeed, they are currently implemented
using balanced binary search trees.

Memory management is currently provided by the Boehm-Demers-Weiser conservative
garbage collector [4]. Given that the compiler is not intended to be used in production
environments, we consider conservative collection to be adequate.

7 Conclusions and Further Work

Current version of HAHA (0.57) can be viewed as a basic verification platform for program-
ming in the small. It allows one to write imperative procedures and their input-output
specifications. Then the specifications can be interactively examined and proved in the Coq
proof assistant. Our Coq scripts are systematically filled with information that makes it easy
to connect the proof script with the code of the original program. A program, once verified,
can be compiled through CompCert compilation chain with its behavioural guarantees. In
this way, one can use a types-based tool to teach students the basics of the contemporary
software verification technology.

The further steps in the development of HAHA include addition of automatic verification
condition computation in the style of weakest precondition generation and introduction of
function call stack. However, we are very cautious in introduction of these elements as they
will inevitably make presentation of various expressions in the proving back-end complicated
and likely to be less readable as it is commonly seen. One possible way to achieve this is to
extend ideas used in the CFML project [8] and hide in a careful way the notational overhead
introduced there to achieve a more general solution.
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Abstract
We define a shallow embedding of logical proof-irrelevant Pure Type Systems (piPTSs) into mini-
mal first-order logic. In logical piPTSs a distinguished sort ∗p of propositions is assumed. Given
a context Γ and a Γ-proposition τ , i.e., a term τ such that Γ ` τ : ∗p, the embedding translates τ
and Γ into a first-order formula FΓ(τ) and a set of first-order axioms ∆Γ. The embedding is not
complete in general, but it is strong enough to correctly translate most of piPTS propositions
(by completeness we mean that if Γ `M : τ is derivable in the piPTS then FΓ(τ) is provable in
minimal first-order logic from the axioms ∆Γ). We show the embedding to be sound, i.e., if FΓ(τ)
is provable in minimal first-order logic from the axioms ∆Γ, then Γ ` M : τ is derivable in the
original system for some term M . The interest in the proposed embedding stems from the fact
that it forms a basis of the translations used in the recently developed CoqHammer automation
tool for dependent type theory.
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1 Introduction

In this paper we define a shallow embedding of any logical proof-irrelevant Pure Type System
into untyped minimal first-order logic. Proof-irrelevant PTSs (piPTSs) extend ordinary PTSs
with proof-irrelevance by incorporating it into the conversion rule. In logical piPTSs a
distinguished sort ∗p of propositions is assumed and some restrictions are put on the rules
and axioms of the system. The class of logical piPTSs is fairly broad. In particular, a
proof-irrelevant version of the Calculus of Constructions with a separate set universe may be
presented as a logical piPTS.

Our embedding is shallow, which means that terms of type ∗p are translated directly to
first-order formulas. The embedding (or an optimised variant of it) is intended to be used to
translate dependent type theory goals to formalisms of automated theorem provers (ATPs)
for first-order logic. Hence, it is important for efficiency (i.e. the success rate of the ATPs on
translated problems) that the embedding be shallow.

The interest in our embedding is justified by the fact that it is used as a basis of the
translations employed in the recently developed CoqHammer tool, which is the first hammer
for a proof assistant based on dependent type theory [15]. The embedding presented in this
paper is only a small “core” version of the translation used in [15]. In particular, here we
do not deal at all with inductive types. The translation in [15] handles most of the Coq
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logic and introduces many optimisations. Consequently, it is quite complex and not easily
amenable to a direct theoretical investigation.

The aim of this present paper is to isolate a “core” of the translation from [15] and prove
its soundness: in a logical piPTS, for any context Γ and a Γ-proposition τ , i.e., a term τ such
that Γ ` τ : ∗p, if ∆Γ `FOL FΓ(τ), i.e., the translation FΓ(τ) of τ is derivable in minimal
first-order logic from the axioms ∆Γ which are the translation of Γ, then there exists a termM

such that Γ `M : τ in the piPTS. The terminology comes from the hammer and automated
reasoning literature [9, 8], where this implication is referred to as soundness and usually
formulated in terms of satisfiability. The implication in the other direction, i.e., if Γ `M : τ
then ∆Γ `FOL FΓ(τ), is called completeness of the embedding. In type-theoretic literature,
e.g. [2, 18], the terminology is flipped. We stick with automated reasoning terminology when
referring to soundness or completeness.

Our embedding is not complete, i.e., there exist a context Γ and a Γ-proposition τ such
that Γ ` M : τ for some M , but ∆Γ 6`FOL FΓ(τ). However, the presented embedding
is “complete enough” to be practically usable, i.e., sufficiently many of the derivable Γ-
propositions are provable after the translation for the practical purpose of using an extended
and optimised version of the embedding in a hammer tool for dependent type theory. Some
empirical evidence for this claim is provided in [15, 14] where over 40% of the translations
of Coq standard library theorems are reproved by first-order ATPs, using a (substantially)
extended and optimised version of the present embedding. In this paper we do not attempt
to rigorously justify or even formulate the “complete enough” claim, but only illustrate the
(in)completeness on several examples.

The soundness proof is the main result of this paper. We present the result in a general
framework of logical proof-irrelevant Pure Type Systems to avoid unnecessary reliance on
any particular variant of dependent type theory. Our soundness proof employs constructive
proof-theoretic methods. Assuming the decidability of type checking in the original piPTS,
our soundness proof implicitly provides an algorithm to transform a natural deduction proof
of the translation of a piPTS proposition into a piPTS term inhabiting the proposition.

1.1 Motivation

In order to give some motivation for our work, we now briefly describe the architecture of a
hammer and the relation of the embedding in this paper to the translation used in [15]. For
more background on hammers see e.g. [15, 9].

The goal of a hammer is, given a context Γ and a Γ-proposition τ , to find a term M such
that Γ `M : τ . In practice, the context Γ consists of all declarations accessible at a given
point from the proof assistant kernel (typically there are thousands or tens of thousands of
them). Hammers work in three phases.
1. Lemma selection which heuristically chooses a subset of the accessible declarations that

are likely useful for the conjecture τ . These declarations, together with the declarations
they depend on, form a context Γ0 ⊆ Γ. Typically, the size of Γ0 is on the order of
hundreds of declarations.

2. Translation of the conjecture τ together with the context Γ0 to the input formats of
first-order automated theorem provers (ATPs) like Vampire [22] or Eprover [25], and
running the ATPs on the translations.

3. Proof reconstruction which uses the information obtained from a successful ATP run to
re-prove the conjecture in the logic of the proof assistant or to directly reconstruct the
proof term.
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The reason for employing first-order ATPs is that they are currently the strongest and
most optimised general-purpose automated theorem provers. They are capable of efficiently
handling problems with hundreds of axioms, which is necessary for a hammer tool. The use of
state-of-the-art first-order ATPs is the reason why shallowness of the embedding is essential,
because the ATPs are heavily optimised for directly handling the primitives of first-order
logic. For instance, a declaration x : τ , where τ = Πy : A.py → qy is a Γ-proposition
but A is not (for an appropriate context Γ), should be translated directly to a formula of
the form ∀y.TA(y) → p(y) → q(y) where p, q are first-order predicates and the first-order
predicate TA(y) states that y has type A. In contrast, it would be much less efficient to use
a deep embedding with Γ-propositions translated to first-order terms and using a binary
“inhabitation” predicate T , where the above declaration x : τ would be translated to an axiom
T (x, CΓ(τ)) and a conjecture τ ′ to ∃y.T (y, CΓ(τ ′)), with CΓ(α) the translation of a type α to
a first-order term. Such a translation would require the ATPs to synthesise first-order terms
corresponding to proof terms which would impact the success rate, even if T (x, CΓ(τ)) was
optimised to e.g. ∀yz.TA(y)→ T (z, py)→ T (xyz, qy).

The translation in [15] is in fact not sound because of some optimisations. Also the ATPs
employed in practice are classical. In the proof reconstruction phase in [15] the conjecture
is actually re-proved in the logic of Coq using the lemmas which were needed in an ATP
proof. This is feasible because there are typically only a few of these lemmas, so a much
weaker method than a state-of-the-art ATP may be used in this final phase. Another issue is
that the piPTS formalism does not exactly correspond to common variants of type theory
because it assumes proof irrelevance. Since proof irrelevance is crucial to our translation, no
soundness proof is possible for ordinary PTSs. However, we believe our soundness proof is
still valuable for three main reasons. First, it contributes to the general understanding of the
extended translation in [15], and in particular to understanding of which aspects of it are
“safe” and which might be not. Second, the proof being constructive implicitly provides an
algorithm to transform a natural deduction proof of the translation of a conjecture τ into
a piPTS term inhabiting τ . A simplified explicit presentation of the algorithm is given in
Algorithm 76. It could form a basis of a partial method for source-level proof reconstruction,
i.e., a method for translating a proof found by an ATP back into a proof term in the logic of
the proof assistant (possibly using the excluded middle axiom). In mature hammer systems
optional source-level proof reconstruction increases success rates. Third, isolating a sound
“core” of the translation from [15] might help in devising practical translations for other type
theories than just the logic of Coq handled in [15].

From the point of view of proof theory, what we here call completeness of the embedding
is perhaps more interesting than soundness. However, all hammer tools essentially give up
on completeness. From the automated reasoning perspective it is soundness, or at least
understanding the reasons for the lack of it, which is more important.

2 First-order logic

We define a proof notation system for minimal first-order intuitionistic logic. This system of
notation is a restriction of the system λP1 from [28, Chapter 8].

I Definition 1. An individual term (t, s) is a variable (x, y, z) or a function application
(f(t1, . . . , tn)). A formula (ϕ,ψ) is an atom (R(t1, . . . , tn)), an implication (ϕ → ψ) or a
universally quantified formula (∀x.ϕ). A proof term (M,N) is a proof variable (X,Y, Z), an
individual abstraction (λx.M), a proof abstraction (λX : ϕ.M), an application of a proof
term (MN) or of an individual term (Mt). An environment (∆) is a finite set of proof
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∆, X : ϕ ` X : ϕ

∆, X : ϕ `M : ψ
∆ ` (λX : ϕ.M) : ϕ→ ψ

∆ `M : ϕ→ ψ ∆ ` N : ϕ
∆ `MN : ψ

∆ `M : ϕ
∆ ` (λx.M) : ∀xϕ

x /∈ FV(∆) ∆ `M : ∀xϕ
∆ `Mt : ϕ[t/x]

Figure 1 Rules of minimal first-order logic.

variable declarations of the form X : ϕ. We usually write ∆, X : ϕ instead of ∆ ∪ {X : ϕ}.
The system of first-order minimal logic is given by the rules in Figure 1. The relation of
β-reduction on proof terms is defined as the contextual closure of the following rules.

(λx.M)t →β M [t/x] (λX : ϕ.M)N →β M [N/X]

We write ∆ `FOL M : ϕ to denote derivability in first-order minimal logic. We drop the
subscript when obvious. We also omit the proof terms when irrelevant, writing e.g. ψ, θ ` ϕ.

I Lemma 2. If ∆ `M : ϕ and ∆ `M : ϕ′ then ϕ = ϕ′.

For the proofs of the following two theorems see e.g. [28, Chapter 8].

I Theorem 3 (Confluence and strong normalisation). If ∆ `M : ϕ then M is confluent and
strongly normalising (wrt. β-reduction).

I Theorem 4 (Subject reduction). If ∆ `M : ϕ and M →∗β M ′ then ∆ `M ′ : ϕ.

Proof terms in η-long normal form or η-lnf are defined inductively (wrt. an implicit
environment).

If N is an η-lnf of type α then λx.N is an η-lnf of type ∀x.α.
If N is an η-lnf of type β then λX : α.N is an η-lnf of type α→ β.
If N1, . . . , Nn are η-lnf or individual terms and XN1 . . . Nn is of an atom type, then
XN1 . . . Nn is an η-lnf.

I Lemma 5. If ∆ `M : ϕ then there exists N in η-lnf such that ∆ ` N : ϕ.

Proof. Take the β-normal form of M and η-expand it as much as possible, respecting the
type and introducing no new β-redexes. The easy details are left to the reader. J

The target of a formula is defined inductively: target(R(t1, . . . , tn)) = R, target(ϕ →
ψ) = target(ψ) and target(∀x.ϕ) = target(ϕ).

I Lemma 6. If ∆ `M : R(t1, . . . , tn) and M is in η-lnf then there is (X : ϕ) ∈ ∆ such that
M = XN1 . . . Nk and target(ϕ) = R and each Ni is an individual term or a proof term in
η-lnf.

3 Proof-irrelevant Pure Type Systems

In this section we define proof-irrelevant Pure Type Systems. These extend Pure Type
Systems with proof-irrelevance, incorporating it into the conversion rule. Our definition of
proof-irrelevant Pure Type Systems is new. It is similar to the definition of a proof-irrelevant
version of ECC from [30]. A related treatment of proof-irrelevance for some extensions of the
Calculus of Constructions is also present in [5]. The study of the meta-theory of ordinary
Pure Type Systems was initiated in [20].
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(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s

Γ, x : A ` x : A if x ∈ V s \ dom(Γ)

(weakening)
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B if x ∈ V s \ dom(Γ)

(product)
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A.B) : s3 if (s1, s2, s3) ∈ R

(application)
Γ `M : (Πx : A.B) Γ ` N : A

Γ `MN : B[N/x] if N ∼ x

(abstraction)
Γ, x : A `M : B Γ ` (Πx : A.B) : s

Γ ` (λx : A.M) : (Πx : A.B)

(conversion)
Γ `M : A Γ ` B : s

Γ `M : B if B =βε A

Figure 2 Rules of proof-irrelevant PTSs.

I Definition 7. The set T of preterms of a proof-irrelevant Pure Type System (piPTS) is
defined by the grammar:

T ::= V s | S | T T | λV s : T .T | ΠV s : T .T | ε

Here S is a set of sorts, and V s is a set of variables of sort s ∈ S. The constant ε represents
an arbitrary proof. Its role is technical – it will never occur in well-typed terms. The
set FV(M) of free variables of a preterm M is defined in the usual way. To save on notation
we sometimes treat FV(M) as a list. We use x, y, z, . . . for variables, N,M,A,B, . . . for
preterms, and s, s′, s1, s2, . . . for sorts. We sometimes write xs to indicate that xs ∈ V s. We
assume there exists a sort ∗p ∈ S of propositions.

Note that we tag variables with the sorts of their types, like in [30, 24]. This already
appears in [20, 18, 2]. We treat preterms up to α-equivalence, but we do not consider bound
variables of different sorts to be α-convertible. For example, if s1 6= s2 then λxs1 : ∗p.xs1 6=α

λxs2 : ∗p.xs2 . Also, whenever we write λx : A.M we assume x /∈ FV(A).

I Definition 8. The ε-reduction is defined as the contextual closure of the rewrite rules:

x∗
p →ε ε εM →ε ε λx : A.ε →ε ε

I Definition 9. A term N is on the same level as a variable x, notation N ∼ x, if one of
the following cases holds:

x ∈ V ∗p and N →∗ε ε, or
x /∈ V ∗p and N 6→∗ε ε.

I Definition 10. We define restricted β-reduction as follows:

(λx : A.M)N →β M [N/x] if N ∼ x

The restriction N ∼ x is necessary to ensure confluence of βε-reduction on preterms. Without
the restriction, for e.g. M = (λx∗p : A.x∗p)∗p we would have M →∗ε ε and M →β ∗p.
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9:6 A Shallow Embedding of Pure Type Systems into First-Order Logic

I Definition 11. The specification of a proof-irrelevant PTS is a triple (S,A,R), where S
is a set of sorts, A is a set of axioms of the form (s1, s2) with s1, s2 ∈ S, and R is a set of
rules of the form (s1, s2, s3) with s1, s2, s3 ∈ S. We often write (s1, s2) for (s1, s2, s2) ∈ R.
A context is a finite list of declarations of the form x : A, or more formally a function from a
finite subset of the set of variables to the set of terms. We denote the empty context by 〈〉. If
Γ = x1 : A1, . . . , xn : An then dom(Γ) = {x1, . . . , xn} and Γ(xi) = Ai. We denote contexts
by Γ,Γ′, etc. We write Γ′ ⊇ Γ if dom(Γ) ⊆ dom(Γ′) and Γ(x) = Γ′(x) for x ∈ dom(Γ). A
judgement has the form Γ ` A : B. We write Γ ` A : B : C if Γ ` A : B and Γ ` B : C. The
proof-irrelevant PTS (piPTS) determined by the specification (S,A,R) is defined by the
rules and axioms in Figure 2. We often identify a piPTS with its specification.

I Definition 12. Let Γ be a context and A a preterm.
1. Γ is legal if Γ `M : N for some M,N ∈ T .
2. A is a Γ-term if Γ ` A : B or Γ ` B : A for some B ∈ T .
3. A is a Γ-subject if Γ ` A : B for some B ∈ T .
4. A is a Γ-type if Γ ` A : s for some s ∈ S.
5. A is a Γ-proposition if Γ ` A : ∗p.
6. A is a Γ-proof if Γ ` A : B : ∗p,
7. A is legal if there exists Γ′ such that A is a Γ′-term.

In comparison to ordinary PTSs, as presented in [2, Section 5.2], we only change the
application and conversion rules. The side condition in the application rule is necessary
because we modify the notion of β-reduction. We need the side condition to prove standard
lemmas about piPTSs, in particular the substitution lemma. However, for a class of logical
piPTSs, defined below, this side condition may be omitted: Γ ` M : A iff Γ `− M : A
where `− is the derivation system with the side condition in the application rule omitted
(see Lemma 34). The conversion rule is changed to incorporate proof-irrelevance into the
system – this is the major difference with ordinary PTSs. In contrast to [30] we do not a
priori require x ∈ V s1 in the product rule.

I Definition 13. Let λS = (S,A,R) be a piPTS.
λS is functional if

1. (s, s1), (s, s2) ∈ A implies s1 = s2,
2. (s, s′, s1), (s, s′, s2) ∈ R implies s1 = s2.

λS is logical if
1. it is functional,
2. (∗p, ∗p, ∗p) ∈ R,
3. all rules in R involving ∗p have the form (s, ∗p, ∗p) or (∗p, s, s),
4. there is no s ∈ S with (s, ∗p) ∈ A,
5. there exists s ∈ S with (∗p, s) ∈ A.

Functional PTSs are called singly-sorted in [2]. The notion of functional PTSs comes
from [20], and also appears in [18]. A notion of logical PTSs similar to ours occurs in [12, 6],
but it differs in some technical details. The restrictions in the definition of a logical piPTS
ensure that the sort of propositions ∗p has the expected properties, which turn out to be
needed in the soundness proof.

I Example 14. A paradigmatic example of a logical piPTS is the calculus of construc-
tions CCs with a separate impredicative set universe ∗s.
S = {∗p, ∗s,�}.
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A = {(∗p,�), (∗s,�)}.
R = {(∗p, ∗p), (∗s, ∗p), (∗p, ∗s), (∗s, ∗s), (�, ∗p), (∗p,�), (�, ∗s), (∗s,�), (�,�)}.

All (piPTS analogons of) systems of the lambda-cube [2, Definition 5.1.10] are also logical
piPTSs if we take ∗p = ∗. But since they do not have a distinct sort ∗s for a set universe,
translating them using our embedding does not make much sense – terms intuitively denoting
set elements would be erased instead of translated to first-order terms.

I Example 15. Let (S,A,R) be any logical piPTS. Let � be such that (∗p,�) ∈ A and let
α ∈ V � and x ∈ V ∗p . We have α : ∗p ` (α→ α) : ∗p and α : ∗p ` ((α→ α)→ α→ α) : ∗p,
because (∗p, ∗p, ∗p) ∈ R. Hence by the abstraction rule α : ∗p ` (λx : α.x) : α → α and
α : ∗p ` (λx : α → α.x) : (α → α) → α → α. Also (λx : α.x) ∼ x, because x ∈ V ∗

p

and λx : α.x →ε λx : α.ε →ε ε. So α : ∗p ` ((λx : α → α.x)(λx : α.x)) : α → α by the
application rule.

The meta-theory of piPTSs is similar to that of ordinary PTSs (see [2, Section 5.2]). The
proofs follow the same pattern, except that there is one difficulty caused by the mismatch
between βε-reduction in the conversion rule and β-reduction for which the subject reduction
theorem holds. Below we only state a few results concerning piPTSs. We delegate the proofs
and other details to Appendix A.

The relation →ε (Definition 8) is confluent and strongly normalising. By nfε(M) we
denote the normal form of M w.r.t. →ε. Note that FV(nfε(M)) ⊆ FV(M).

I Lemma 16. If N ∼ x then nfε(M [N/x]) = nfε(M)[nfε(N)/x].

I Lemma 17 (Confluence of βε-reduction). If M →∗βε M1 and M →∗βε M2 then there
exists M ′ such that M1 →∗βε M ′ and M2 →∗βε M ′.

I Lemma 18. If M =βε N then M →∗ε ε is equivalent to N →∗ε ε.

I Lemma 19. If N does not contain ε and M →∗βε N then M →∗β N .

I Lemma 20 (Free variable lemma). If Γ = x1 : A1, . . . , xn : An and Γ ` B : C then:
1. the x1, . . . , xn are all distinct,
2. FV(B),FV(C) ⊆ {x1, . . . , xn},
3. FV(Ai) ⊆ {x1, . . . , xi−1} for i = 1, . . . , n.

I Lemma 21 (Start lemma). Let Γ be a legal context.
1. If (s1, s2) ∈ A then Γ ` s1 : s2.
2. If (x : A) ∈ Γ then Γ ` x : A and there is s ∈ S with Γ1 ` A : s and x ∈ V s, where

Γ = Γ1, x : A,Γ2.

I Lemma 22 (Substitution lemma). If Γ, x : A,Γ′ ` B : C and Γ ` D : A and D ∼ x then
Γ,Γ′[D/x] ` B[D/x] : C[D/x].

I Lemma 23 (Thinning lemma). If Γ ` A : B and Γ′ ⊇ Γ is a legal context then Γ′ ` A : B.

I Lemma 24 (Generation lemma).
1. If Γ ` s : A then there is s′ ∈ S with A =βε s

′ and (s, s′) ∈ A.
2. If Γ ` x : A then there are s ∈ S and B such that A =βε B and Γ ` B : s and (x : B) ∈ Γ

and x ∈ V s.
3. If Γ ` (Πx : A.B) : C then there is (s1, s2, s3) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2

and C =βε s3.
4. If Γ ` (λx : A.M) : C then there are s ∈ S and B such that Γ ` (Πx : A.B) : s and

Γ, x : A `M : B and C =βε Πx : A.B.

TYPES 2016



9:8 A Shallow Embedding of Pure Type Systems into First-Order Logic

5. If Γ ` MN : C then there are A,B such that Γ ` M : (Πx : A.B) and Γ ` N : A and
C =βε B[N/x] and N ∼ x.

I Corollary 25. In a logical piPTS, if Γ ` (Πx : A.B) : ∗p then Γ, x : A ` B : ∗p.

Proof. By the generation lemma there are s, s′ ∈ S such that (s, s′, ∗p) ∈ R and Γ, x : A `
B : s′. Because the piPTS is logical, we have s′ = ∗p. J

I Lemma 26 (Correctness of types lemma). If Γ `M : A then there is s ∈ S such that A = s

or Γ ` A : s.

I Lemma 27 (Uniqueness of types lemma).
1. In a functional piPTS, if Γ ` A : B and Γ ` A : B′ then B =βε B

′.
2. In a logical piPTS, if Γ `M1 : A1 and Γ `M2 : A2 and M1 =βε M2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.

I Corollary 28. In a functional piPTS, if Πx : A.B is a Γ-term and Γ ` A : s then x ∈ V s.

Proof. By the correctness of types and the generation lemmas Γ, x : A is a legal context. By
the start lemma Γ ` A : s′ and x ∈ V s′ for some s′ ∈ S. But s′ = s by the uniqueness of
types lemma. J

I Theorem 29 (Subject reduction theorem). If Γ ` A : B and A→∗β A′ then Γ ` A′ : B.

Subject reduction obviously does not hold for βε-reduction, because ε is not meant to be
typable. This generates a small difficulty in proving the following theorem. See Appendix A.

I Theorem 30. Assume the piPTS is logical and M is a Γ-term. Then M is a Γ-proof if
and only if M →∗ε ε.

I Lemma 31. In a logical piPTS, if M is a Γ-term and M =βε N and Γ ` N : s then
Γ `M : s.

I Lemma 32. In a logical piPTS, if Γ `M : A and Γ, x : A is a legal context then M ∼ x.

I Definition 33. Given a piPTS specification (S,A,R), we write Γ `− M : N if the
judgement Γ `M : N is derivable in the piPTS determined by the specification (i.e. using
the rules in Figure 2), but with the side condition N ∼ x omitted in the application rule.

I Lemma 34. In a logical piPTS, Γ `− M : N is equivalent to Γ `M : N .

I Remark. We have not investigated the normalisation or decidability properties of piPTSs.
We expect that the (strong) normalisation of an ordinary PTS carries over to its proof-
irrelevant version. The same is expected about the decidability of type checking and type
inference. The normalisation of our proof-irrelevant version of the Calculus of Constructions
(CCs from Example 14) may probably be shown by adapting a proof-irrelevant model of the
ordinary Calculus of Constructions. We do not attempt to answer these questions in the
present paper.
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4 The embedding

In this and the following section we assume a fixed logical piPTS λS = (S,A,R).
By TFOL we denote the set of first-order terms, by FFOL the set of first-order formulas,

by VFOL the set of first-order variables, and by ΣFOL the first-order signature. We assume
that each piPTS variable is also a first-order variable and ε and all piPTS sorts are also first-
order constants. Further, we assume five functions Λ0 : VFOL ×FFOL × TFOL → ΣFOL and
Λ1 : VFOL×TFOL×TFOL → ΣFOL and Φ : FFOL → ΣFOL and G0 : VFOL×FFOL×TFOL×S →
ΣFOL and G1 : VFOL×TFOL×TFOL×S → ΣFOL returning unique fresh first-order constants.
The functions are assumed to yield equal results for terms which differ only in the names of
variables, e.g., if σ is a renaming then Λ1(x, r, t) = Λ1(σ(x), σ(r), σ(t)). The functions are
assumed to give different results for terms which differ not only in the names of variables.

The intention here is that Λ0,Λ1,Φ,G0,G1 return “fresh” first-order symbol names to be
used for translations of “lifted-out” lambda-expressions, propositions or dependent products.
The functions should return equal results for translations of lambda-expressions differing only
in the names of bound variables (the translations then differ only in the names of first-order
variables). Note that such functions always exist – e.g. for Λ1(x, r, t) one may simply choose
a new symbol name for each new triple (x, r, t) with variable names standardised, e.g, by
renaming to xi the i-th distinct variable in the triple, counting from the left.

We assume that the first-order signature contains a unary relation symbol P , two binary
relation symbols T and E, and a binary function symbol @. An atom P (t) is to be intuitively
interpreted as “t is provable”, and T (u, t) is to be interpreted as “u has type t”. The symbol E
represents equality. We prefer to work in minimal first-order logic without equality and add
necessary equality axioms in the translation. Using first-order logic with equality would
complicate the proof notation system λP1 and the definition of η-long normal forms. The
symbol @ represents application. We usually write tu instead of @(t, u), and we assume
application to be left-associative.

We often abbreviate e.g. MN1 . . . Nn by M ~N , and M [N1/x1] . . . [Nn/xn] by M [ ~N/~x],
and Πx1 : A1 . . .Πxn : An.B by Π~x : ~A.B, and λx1 : A1 . . . λxn : An.M by λ~x : ~A.M . We
sometimes treat a list of variables ~x as a set. When we write e.g. ~x = FV(ϕ, t) then ~x is the
list of free variables occurring in ϕ, t in the fixed order from left to right.

The embedding translates a context Γ and a Γ-proposition τ into a set of axioms ∆Γ and
a first-order formula FΓ(τ). The embedding uses two functions:
1. FΓ which translates Γ-propositions to first-order formulas,
2. CΓ which translates Γ-terms to first-order individual terms.

I Definition 35. The functions FΓ and CΓ are defined by mutual induction on the structure
of piPTS terms.

The definition of FΓ is as follows.
if Γ ` A : ∗p then FΓ(Πx : A.B) = FΓ(A)→ FΓ,x:A(B),
if Γ 0 A : ∗p then FΓ(Πx : A.B) = ∀x.T (x, CΓ(A))→ FΓ,x:A(B),
if M is not a product then FΓ(M) = P (CΓ(M)).

The definition of CΓ is as follows. If M is a Γ-proof then CΓ(M) = ε. Otherwise, we are
in one of the following cases.

M = s ∈ S. Then CΓ(s) = s.
M = x is a variable. Then CΓ(x) = x.
M = NQ. Then CΓ(NQ) = CΓ(N)CΓ(Q).
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9:10 A Shallow Embedding of Pure Type Systems into First-Order Logic

M = λx : A.N with Γ ` A : ∗p. Let ϕ = FΓ(A) and t = CΓ,x:A(N) and ~y = FV(ϕ, t)\{x}
and f = Λ0(x, ϕ, t). Then CΓ(λx : A.N) = f~y. The idea here is to “lift-out” the
translation of a complex lambda-expression M by introducing a name f for it. In ∆Γ
there will be an axiom describing the functional behaviour of f .
M = λx : A.N with Γ 0 A : ∗p. Let r = CΓ(A) and t = CΓ,x:A(N) and ~y = FV(r, t) \ {x}
and f = Λ1(x, r, t). Then CΓ(λx : A.N) = f~y.
M = Πx : A.B and Γ ` M : ∗p. Let ϕ = FΓ(Πx : A.B) and ~y = FV(ϕ) and f = Φ(ϕ).
Then CΓ(Πx : A.B) = f~y.
M = Πx : A.B and Γ ` M : s with s 6= ∗p, and Γ ` A : ∗p. Let ϕ = FΓ(A) and
t = CΓ,x:A(B) and ~y = FV(ϕ, t) \ {x} and f = G0(x, ϕ, t, s). Then CΓ(Πx : A.B) = f~y.
M = Πx : A.B and Γ ` M : s with s 6= ∗p, and Γ 0 A : ∗p. Let t1 = CΓ(A) and
t2 = CΓ,x:A(B) and ~y = FV(t1, t2)\{x} and f = G1(x, t1, t2, s). Then CΓ(Πx : A.B) = f~y.

Note that it follows from the uniqueness of types lemma that all cases in the definition
of FΓ (resp. CΓ) are exclusive.

I Example 36. Suppose the piPTS is CCs from Example 14. Let Γ = α : ∗s, p : α → ∗p
and τ = Πx : α.px → px. Then Γ ` τ : ∗p and FΓ(τ) = ∀x.T (x, α) → P (px) → P (px).
In practice, the atom P (px) may often be further optimised to Pp(x) with Pp a first-order
predicate corresponding to p. This optimisation is performed in [15]. For Q = λx.ΛX :
T (x, α).ΛY : P (px).Y in η-lnf we have `FOL Q : FΓ(τ). The first-order proof Q may be
translated back into a piPTS proof term M = λx : α.λy : px.y. In CCs we have Γ `M : τ .

Now let Γ′ = α : ∗s, p : α → ∗p, a : α, q : pa → ∗p and τ ′ = Πx : pa.qx → qx. Then
Γ′ ` τ ′ : ∗p and FΓ′(τ ′) = P (pa)→ P (qε)→ P (qε). For Q = ΛX : P (pa).ΛY : P (qε).Y in
η-lnf we have `FOL Q : FΓ′(τ ′). The proof Q may be translated back to a piPTS proof term
M = λx : pa.λy : qx.y. In CCs we have Γ′ `M : τ ′.

I Definition 37. The translation dΓe of a context Γ is defined inductively:
d〈〉e = ∅,
dΓ, x : Ae = dΓe,FΓ(A) if Γ ` A : ∗p,
dΓ, x : Ae = dΓe, T (x, CΓ(A)) if Γ 0 A : ∗p.

The set ∆Γ will consist of dΓe and a set of axioms ∆Ax. To precisely formulate the
axioms we need a technical definition of a function AΓ such that for a FOL formula ϕ the
formula AΓ(ϕ) is ϕ prepended with the declarations in Γ translated into guards.

I Definition 38. The function A takes a legal context and a FOL formula and returns a
FOL formula. It is defined by induction on the length of the context Γ:

A〈〉(ϕ) = ϕ,
AΓ,x:A(ϕ) = AΓ(∀x.T (x, CΓ(A))→ ϕ) if Γ ` A : s and s 6= ∗p,
AΓ,x:A(ϕ) = AΓ(FΓ(A)→ ϕ) if Γ ` A : ∗p.

The A-length of a legal context Γ, denoted lenA(Γ), is defined inductively:
lenA(〈〉) = 0,
lenA(Γ, x : A) = lenA(Γ) + 2 if Γ ` A : s and s 6= ∗p,
lenA(Γ, x : A) = lenA(Γ) + 1 if Γ ` A : ∗p.

The A-length of Γ indicates how many arguments need to be applied to a first-order proof
of AΓ(ϕ) in order to obtain a proof of ϕ. It follows from the uniqueness of types lemma
that AΓ and lenA(Γ) are well-defined for a legal context Γ.

I Example 39. In CCs let Γ = α : ∗s, a : α, p : α→ ∗p, q : pa and ϕ = P (pa). Then

AΓ(ϕ) = ∀α.T (α, ∗s)→ ∀a.T (a, α)→ ∀p.T (p, fα)→ P (pa)→ P (pa)
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where f = G1(x, α, ∗p,�). The A-length of Γ is 7, i.e., lenA(Γ) = 7.

We need to define a set of axioms ∆Ax for our embedding. These will be axioms concerning
the constants introduced in the translation via the functions Λ0, Λ1, Φ, G0 and G1, and
axioms for equality.

I Definition 40. The set ∆Λ0 contains the following FOL formulas which describe the
behaviour of the constants representing “lifted-out” lambda-expressions with propositional
arguments.

Given a variable x, a FOL formula ϕ and a FOL term t, let f = Λ0(x, ϕ, t). Let Γ and
A,B be such that:

Γ ` A : ∗p, and
λx : A.B is a Γ-term but not a Γ-proof, and
ϕ = FΓ(A) and,
t = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x}. Then ∆Λ0 contains the FOL formula:
AΓ(ϕ→ E(f~yε, t)).

I Definition 41. The set ∆Λ1 contains the following FOL formulas which describe the beha-
viour of the constants representing “lifted-out” lambda-expressions with non-propositional
arguments.

Given a variable x and FOL terms r, t, let f = Λ1(x, r, t). Let Γ and A,B be such that:
Γ 0 A : ∗p, and
λx : A.B is a Γ-term but not a Γ-proof, and
r = CΓ(A), and
t = CΓ,x:A(B).

Let ~y = FV(r, t) \ {x}. Then ∆Λ1 contains the FOL formula:
AΓ(∀x.T (x, r)→ E(f~yx, t)).

I Example 42. In CCs let Γ = α : ∗s and M = λx : α.x. Then Γ ` M : α → α : ∗s. We
have CΓ(α) = α and CΓ,x:α(x) = x. Let f = Λ1(x, α, x). Then ∆Λ1 contains the FOL formula

∀α.T (α, ∗s)→ ∀x.T (x, α)→ E(fαx, x).

Recall that E represents equality.

I Definition 43. The set ∆Φ contains the following FOL formulas which are axioms for the
constants representing “lifted-out” propositions. Given a FOL formula ϕ, let f = Φ(ϕ) and
~y = FV(ϕ). Then ∆Φ contains ∀~y.ϕ→ P (f~y).

I Definition 44. The set ∆G0 contains the following FOL formulas which describe the beha-
viour of the constants representing “lifted-out” dependent product types with propositional
source types.

Given a variable x, a FOL formula ϕ, a FOL term t and a sort s 6= ∗p, let f = G0(x, ϕ, t, s).
Let Γ and A,B be such that:

Γ ` A : ∗p, and
Γ ` Πx : A.B : s, and
ϕ = FΓ(A), and
t = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x} and z /∈ FV(ϕ, t). Then ∆G0 contains:
AΓ(∀z.T (z, f~y)→ ϕ→ T (zε, t)).
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I Definition 45. The set ∆G1 contains the following FOL formulas which describe the
behaviour of the constants representing “lifted-out” dependent product types with non-
propositional source types.

Given a variable x, FOL terms t1, t2, and a sort s 6= ∗p, let f = G1(x, t1, t2, s). Let Γ and
A,B be such that:

Γ 0 A : ∗p, and
Γ ` Πx : A.B : s, and
t1 = CΓ(A), and
t2 = CΓ,x:A(B).

Let ~y = FV(t1, t2) \ {x} and z /∈ FV(t1, t2). Then ∆G1 contains:
AΓ(∀z.T (z, f~y)→ ∀x.T (x, t1)→ T (zx, t2)).

I Example 46. In CCs let Γ = α : ∗s, p : α→ ∗s. We have CΓ(α) = α and CΓ,x:α(px) = px

and Γ ` Πx : α.px : ∗s. Let f = G1(x, α, px, ∗s). Then ∆G1 contains

∀α.T (α, ∗s)→ ∀p.T (p, gα)→ ∀z.T (z, fα)→ ∀x.T (x, α)→ T (zx, px)

where g = G1(x, α, ∗s,�) and ∆G1 also contains

∀α.T (α, ∗s)→ ∀p.T (p, gα)→ ∀z.T (z, gα)→ ∀x.T (x, α)→ T (zx, ∗s).

Also dΓe = T (α, ∗p), T (p, gα). In [15] there is a distinction between a local context which
contains variables bound locally by a λ or a Π, and a global environment which contains
the preselected declarations accessible in the proof assistant kernel (Γ0 from Section 1.1).
The guards are not generated for the declarations in the global environment. Assuming Γ
here corresponds to the global environment (it is the context translated together with the
conjecture), in [15] the last axiom above would be optimised to

∀z.T (z, gα)→ ∀x.T (x, α)→ T (zx, ∗s).

I Definition 47. The set ∆τ0 contains the following FOL formulas which describe the types
of the constants representing “lifted-out” lambda-expressions with propositional arguments.

Given a variable x, a FOL formula ϕ, FOL terms t, u and a sort s 6= ∗p, let f = Λ0(x, ϕ, t)
and g = G0(x, ϕ, u, s). Let Γ and A,B,M be such that:

Γ ` A : ∗p, and
Γ ` (λx : A.M) : Πx : A.B : s, and
ϕ = FΓ(A), and
t = CΓ,x:A(M), and
u = CΓ,x:A(B).

Let ~y = FV(ϕ, t) \ {x} and ~z = FV(ϕ, u) \ {x}. Then ∆τ0 contains the FOL formula:
AΓ(T (f~y, g~z)).

I Definition 48. The set ∆τ1 contains the following FOL formulas which describe the
types of the constants representing “lifted-out” lambda-expressions with non-propositional
arguments.

Given a variable x, FOL terms r, t, u and a sort s 6= ∗p, let f = Λ1(x, r, t) and g =
G1(x, r, u, s). Let Γ and A,B,M be such that:

Γ 0 A : ∗p, and
Γ ` (λx : A.M) : Πx : A.B : s, and
r = CΓ(A), and
t = CΓ,x:A(M), and
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u = CΓ,x:A(B).
Let ~y = FV(r, t) \ {x} and ~z = FV(r, u) \ {x}. Then ∆τ1 contains the FOL formula:

AΓ(T (f~y, g~z)).

I Definition 49. The set ∆E , which axiomatises the equality predicate E, contains the
following FOL formulas:

(reflexivity) ∀x.E(x, x),
(symmetry) ∀xy.E(x, y)→ E(y, x),
(transitivity) ∀xyz.E(x, y)→ E(y, z)→ E(x, z),
(congruence) ∀xyx′y′.E(x, x′)→ E(y, y′)→ E(xy, x′y′),
(substitutivity for P ) ∀xx′.E(x, x′)→ P (x)→ P (x′),
(substitutivity for T ) ∀xyx′y′.E(x, x′)→ E(y, y′)→ T (x, y)→ T (x′, y′).

I Definition 50. We set ∆Ax = ∆Λ0 ∪ ∆Λ1 ∪ ∆Φ ∪ ∆G0 ∪ ∆G1 ∪ ∆τ0 ∪ ∆τ1 ∪ ∆E and
∆Γ = ∆Ax ∪ dΓe.

I Remark. Strictly speaking, the set ∆Ax is infinite, because ∆Λ0 ,∆Λ1 ,∆Φ,∆G0 ,∆G1 ,∆τ0 ,∆τ1

are. However, in practice one needs to add the axioms only for the constants f , contexts Γ
and terms A,B,M that actually occur during the translation of a given conjecture and
its context. There are only finitely many of them. Also, to make proof reconstruction
computable we assume that for any constant f ∈ Λ1(x, r, t) (and analogously for Λ0,G0,G1) it
is possible to compute Γ, A,B satisfying the conditions in Definition 41. In practice, Γ, A,B
may be associated to f during the translation when an axiom for f is first added.

I Example 51. In CCs let Γ = α : ∗s, p : (α→ α)→ ∗p and

τ = p(λx : α.x)→ p((λx : α→ α.x)(λx : α.x)).

We have dΓe = T (α, ∗s), T (p, τ1α) and FΓ(τ) = P (p(fα)) → P (p(gα(fα))) where f =
Λ1(x, α, x) and g = Λ1(x, τ2α, x) and τ2 = G1(x, α, α, ∗s) and τ1 = G1(x, τ2α, ∗s,�). The
set ∆Ax contains, among others, the following axioms:
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, τ2α)→ E(gαx, x),
∀α.T (α, ∗s)→ T (fα, τ2α).

In practice, these may be optimised to:
∀x.T (x, τ2α)→ E(gαx, x),
T (fα, τ2α).

One may derive ∆Ax, dΓe `FOL E(gα(fα), fα). Using the axioms for equality from ∆E one
may thus show ∆Ax, dΓe, P (p(fα)) `FOL P (p(gα(fα))). Hence ∆Ax, dΓe `FOL FΓ(τ). Also
there is M with Γ `M : τ in CCs. The use of equality axioms from ∆E in the derivation
of ∆Ax, dΓe `FOL FΓ(τ) corresponds to the use of the conversion rule in the derivation of
Γ `M : τ .

Now consider τ ′ = p(λx : α.x)→ p(λx : α.(λx : α.x)x). Then

FΓ(τ ′) = P (p(fα))→ P (p(hα))

where h = Λ1(x, α, fαx). In ∆Ax we have the axioms
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, τ2α)→ E(hαx, fαx),
∀α.T (α, ∗s)→ ∀p.T (p, τ1α)→ ∀x.T (x, α)→ E(fαx, x).

We have ∆Ax, dΓe 0 FΓ(τ ′), because ∆Γ 0FOL E(hα, fα) – only ∆Γ, x : α ` E(hαx, fαx).
On the other hand, Γ ` (λD : p(λx : α.x).D) : τ ′ because λx : α.x =β λx : α.(λx : α.x)x.
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9:14 A Shallow Embedding of Pure Type Systems into First-Order Logic

I Example 52. In CCs let Γ = p : ∗p, q : p→ ∗p and τ = Πx : p.Πy : p.qx→ qy. Then dΓe =
T (p, ∗p), T (q, τ1p) and FΓ(τ) = P (p) → P (p) → P (qε) → P (qε) where τ1 = G0(x, p, ∗p,�).
The formula FΓ(τ) is an intuitionistic tautology. Also Γ ` (λx : p.λy : p.λD : qx.D) : τ ,
because qx =ε qy. This example shows that proof irrelevance is necessary for soundness.

I Remark. The incompleteness of the embedding is due to the fact that not enough axioms
are present in ∆Ax. After adding axioms expressing the ξ-rule of β-equality, axioms allowing
to form new types, axioms corresponding to piPTS axioms, etc., one would probably obtain
a complete embedding.
I Remark. Assuming the decidability of type checking, the embedding is computable.

Any renaming σ, i.e. a bijection on the set of variables which respects variable sorts,
extends in a natural way to a function on first-order terms, formulas (renaming both free
and bound variables), piPTS terms, and piPTS contexts.

I Lemma 53. Let σ be a renaming.
1. If Γ `M : A then σ(Γ) ` σ(M) : σ(A).
2. Cσ(Γ)(σ(M)) = σ(CΓ(M)).
3. Fσ(Γ)(σ(M)) = σ(FΓ(M)).
4. Aσ(Γ)(σ(ϕ)) = σ(AΓ(ϕ)).

5 Soundness

For the soundness theorem one would want to prove: if ∆Ax, dΓe ` FΓ(A) and Γ ` A : ∗p
then there is M with Γ `M : A. However, in the soundness proof we need a weaker notion
than the function FΓ. The problem is that FΓ does not have the necessary substitution
properties. For instance if N = Πz : A.B with Γ ` A : ∗p and Γ ` N : ∗p, then CΓ(N) = f

with f = Φ(FΓ(N)), and we have

FΓ,x:∗p(Πy : x.x)[CΓ(N)/x] = (P (x)→ P (x))[CΓ(N)/x]
= P (f)→ P (f)

while

FΓ((Πy : x.x)[N/x]) = FΓ(Πy : N.N)
= FΓ(N)→ FΓ,y:N (N)
= (FΓ(A)→ FΓ,z:A(B))→ (FΓ,y:N (A)→ FΓ,y:N,z:A(B)).

In the proof we would need these two expressions to be equal. An analogous problem occurs
with CΓ. For example if Γ ` A : s and Γ 0 A→ A : ∗p, then

CΓ,x:A→A(λy : A.xy)[CΓ(λz : A.z)/x] = (fx)[CΓ(λz : A.z)/x] = fg

where f = Λ1(y, CΓ,x:A→A(A), xy) and g = Λ1(z, CΓ(A), z), but

CΓ,x:A→A((λy : A.xy)[(λz : A.z)/x]) = CΓ,x:A→A((λy : A.(λz : A.z)y)) = h

where h = Λ1(y, CΓ,x:A→A(A), g′y) and g′ = Λ1(z, CΓ,x:A→A,y:A(A), z).
The problem is essentially that lambda-abstractions and dependent products may contain

free variables. In our setting it does not seem possible to easily solve this problem by
e.g. first translating all lambda-abstractions to supercombinators, i.e., terms of the form
λx1 : A1 . . . λxn : An.t with FV(t) ⊆ {x1, . . . , xn}, and changing the definition of CΓ to
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translate multiple consecutive lambda-abstractions at once, thus eliminating the need for
the free variables ~y in the axioms in ∆Λi

. First of all, this is because for a translation to
supercombinators to preserve typing additional assumptions on the piPTS would be necessary.
Secondly, this would not help with the problem with dependent products exemplified above,
which essentially stems from the fact that with our embedding a piPTS proposition may be
translated using either F or C depending on where it occurs in a term.

We therefore use weaker relations �FΓ and �CΓ instead of the functions FΓ and CΓ.

I Definition 54. First, we define a relation Γ′  Γ which expresses the fact that Γ may be
obtained from Γ′ by repeated substitutions (in the sense of the substitution lemma) and
context extensions. More precisely, we define  as the transitive-reflexive closure of the
relation given by the rule:

Γ1, x : A,Γ2  Γ if Γ ⊇ Γ1,Γ2[N/x] is a legal context and Γ1 ` N : A and N ∼ x.

We write Γ′  ~x, ~N Γ to make the terms and the variables substituted for explicit, e.g.,

Γ1, x : A,Γ2, y : B,Γ3  y,x,N1,N2 Γ1,Γ2[N2/x],Γ3[N1/y][N2/x]

if Γ1, x : A,Γ2 ` N1 : B and Γ1 ` N2 : A and N1 ∼ y and N2 ∼ x. Note that the order of
the terms and the variables in the subscript is significant. If additionally Ni �CΓi

ti (the
relation �CΓ is defined below) for appropriate Γi, then we write Γ′  ~x, ~N,~t Γ. For instance,

Γ1, x : A,Γ2, y : B,Γ3  x,y,N1,N2,t1,t2 Γ1,Γ2[N1/x],Γ3[N1/x][N2/y]

if Γ1 ` N1 : A and Γ1,Γ2[N1/x] ` N2 : B[N1/x] and N1 ∼ x and N2 ∼ y and N1 �CΓ1
t1 and

N2 �CΓ1,Γ2[N1/x] t2.

I Definition 55. The relation �FΓ between Γ-propositions and first-order formulas, and the
relation �CΓ between Γ-subjects and first-order terms, are defined by mutual induction on
the structure of piPTS terms.

The definition of �FΓ is as follows.
if Γ ` A : ∗p and A �FΓ ϕ and B �FΓ,x:A ψ then Πx : A.B �FΓ ϕ→ ψ,
if Γ 0 A : ∗p and A �CΓ t and B �FΓ,x:A ϕ then Πx : A.B �FΓ ∀x.T (x, t)→ ϕ,
if A �CΓ t then A �FΓ P (t).

The last case is not exclusive with the first two.
The definition of �CΓ is as follows. If M is a Γ-proof then M �CΓ ε. Otherwise, we are in

one of the following cases.
M = s ∈ S. Then s �CΓ s.
M = x is a variable. Then x �CΓ x.
M = NQ. If N �CΓ t1 and Q �CΓ t2 then NQ �CΓ t1t2.
M = (λx : A.Q)[ ~N/~x] and there is Γ′ such that Γ′ ` A : ∗p and Γ′  ~x, ~N,~t Γ. Assume
A[ ~N/~x] �FΓ ϕ[~t/~x] and Q[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Let f = Λ0(x, ϕ, t) and ~y = FV(ϕ, t) \
{x}. Then M �CΓ (f~y)[~t/~x].
M = (λx : A.Q)[ ~N/~x] and there is Γ′ such that Γ′ 0 A : ∗p and Γ′  ~x, ~N,~t Γ. Assume
A[ ~N/~x] �CΓ r[~t/~x] and Q[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Let f = Λ1(x, r, t) and ~y = FV(r, t) \
{x}. Then M �CΓ (f~y)[~t/~x].
M = (Πx : A.B)[ ~N/~x] and there is Γ′ such that Γ′ ` (Πx : A.B) : ∗p and Γ′  ~x, ~N,~t Γ.
Assume M �FΓ ϕ[~t/~x]. Let f = Φ(ϕ) and ~y = FV(ϕ). Then M �CΓ (f~y)[~t/~x].
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9:16 A Shallow Embedding of Pure Type Systems into First-Order Logic

M = (Πx : A.B)[ ~N/~x]. and there is Γ′ such that Γ′ ` (Πx : A.B) : s with s 6= ∗p and
Γ′ ` A : ∗p and Γ′  ~x, ~N,~t Γ. Assume A[ ~N/~x] �FΓ ϕ[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x].
Let f = G0(x, ϕ, t, s) and ~y = FV(ϕ, t) \ {x}. Then M �CΓ (f~y)[~t/~x],
M = (Πx : A.B)[ ~N/~x] and there is Γ′ such that Γ′ ` (Πx : A.B) : s with s 6= ∗p and
Γ′ 0 A : ∗p and Γ′  ~x, ~N,~t Γ. Assume A[ ~N/~x] �CΓ u1[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] u2[~t/~x].
Let f = G1(x, u1, u2, s) and ~y = FV(u1, u2) \ {x}. Then M �CΓ (f~y)[~t/~x].

Note that not all cases are mutually exclusive.

I Lemma 56.
1. If A is a Γ-proposition then A �FΓ FΓ(A).
2. If A is a Γ-subject then A �CΓ CΓ(A).

Proof. Induction on the definition of FΓ(A) and CΓ(A), using the generation lemma and
Corollary 25. J

I Definition 57. The relation � between contexts and first-order environments is defined
inductively:
〈〉 � ∅,
if Γ ` A : ∗p and A �FΓ ϕ and Γ � ∆ then Γ, x : A � ∆, ϕ,
if Γ 0 A : ∗p and A �CΓ t and Γ � ∆ then Γ, x : A � ∆, T (x, t).

The relation � is a “relaxed” analogon of the function d−e from Definition 37.

I Definition 58. We define the relation ψ �A
Γ;Γ′ ϕ by induction on Γ′:

ϕ �A
Γ;〈〉 ϕ,

ψ �A
Γ;Γ′,x:A ϕ if Γ,Γ′ ` A : s and s 6= ∗p and A �CΓ,Γ′ t and ∀x.T (x, t)→ ψ �A

Γ;Γ′ ϕ.
ψ �A

Γ;Γ′,x:A ϕ if Γ,Γ′ ` A : ∗p and A �FΓ,Γ′ ψA and ψA → ψ �A
Γ;Γ′ ϕ.

Intuitively, ψ �A
Γ;Γ′ ϕ means that ϕ is ψ with prepended relaxed translations of the de-

clarations in Γ′ into guards, like in AΓ′(ψ) from Definition 38. The context Γ provides
additional declarations for the purpose of typing – they are not translated into guards. By a
“relaxed” translation of M we mean a first-order term t (resp. formula θ) satisfying M �CΓ′′ t

(resp. M �FΓ′′ θ) for appropriate Γ′′.

I Lemma 59. If Γ is a legal context then Γ � dΓe and ϕ �A
〈〉;Γ AΓ(ϕ).

Proof. Induction on Γ, using Lemma 56. J

I Lemma 60. If Γ′  ~x, ~N,~t Γ and Γ′, y : A is a legal context and y is fresh, i.e., it does not
occur in Γ′,Γ or any intermediate context, then Γ′, y : A ~x, ~N,~t Γ, y : A[ ~N/~x].

Proof. Induction on the definition of Γ′  ~x, ~N,~t Γ. J

I Lemma 61. If Γ′ ` A : B and Γ′  ~x, ~N Γ then Γ ` A[ ~N/~x] : B[ ~N/~x].

Proof. Follows by repeatedly applying the substitution and thinning lemmas. J

From now on, whenever we write M �FΓ t we implicitly assume that M is a Γ-proposition.
Similarly, whenever we write M �CΓ t we assume M is a Γ-subject. Note that it follows from
the generation lemma and Lemma 61 that if e.g. Πx : A.B �FΓ ϕ → ψ and Πx : A.B is a
Γ-proposition, then A is a Γ-proposition and B is a (Γ, x : A)-proposition (and analogously
for all other cases of Definition 55). So the assumption that the left-hand sides of �F are
propositions is preserved for A �FΓ ϕ and B �FΓ,x:A ψ. We will often use this observation
implicitly. Because of page limits, proofs of many of the following helper lemmas have been
moved to Appendix B.
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I Lemma 62.
1. If M �FΓ ϕ and Γ′ ⊇ Γ is a legal context then M �FΓ′ ϕ.
2. If M �CΓ t and Γ′ ⊇ Γ is a legal context then M �CΓ′ t.

I Corollary 63. If ψ �A
Γ;Γ0

ϕ and Γ′ ⊇ Γ and Γ′,Γ0 is a legal context then ψ �A
Γ′;Γ0

ϕ.

I Lemma 64. Assume N ∼ x. Then M →∗ε ε iff M [N/x]→∗ε ε.

I Lemma 65. Assume Γ1 ` N : A and N �CΓ1
t and N ∼ y.

1. If M �FΓ1,y:A,Γ2
ϕ then M [N/y] �FΓ1,Γ2[N/y] ϕ[t/y].

2. If M �CΓ1,y:A,Γ2
u then M [N/y] �CΓ1,Γ2[N/y] u[t/y].

I Corollary 66.
1. If M �FΓ′ ϕ and Γ′  ~x, ~N,~t Γ then M [ ~N/~x] �FΓ ϕ[~t/~x].
2. If M �CΓ′ ϕ and Γ′  ~x, ~N,~t Γ then M [ ~N/~x] �CΓ ϕ[~t/~x].

I Lemma 67. Assume y ∈ V ∗p .
1. If M �FΓ ϕ then y /∈ FV(ϕ).
2. If M �CΓ t then y /∈ FV(t).

I Lemma 68.
1. If M �FΓ ϕ then FV(ϕ) = FV(nfε(M)).
2. If M �CΓ t then FV(t) = FV(nfε(M)).

I Lemma 69. Assume Γ =ε Γ′.
1. If M �FΓ ϕ and M ′ �FΓ′ ϕ then M =ε M

′.
2. If M �CΓ t and M ′ �CΓ′ t then M =ε M

′.

I Lemma 70. If ψ ∈ ∆ and Γ � ∆ and ψ has target P , then there are Γ1,Γ2,∆1,∆2 and C
such that Γ = Γ1, x : C,Γ2 and ∆ = ∆1, ψ,∆2 and Γ1 � ∆1 and Γ1 ` C : ∗p and C �FΓ1

ψ.

I Lemma 71. If ψ ∈ ∆ and Γ � ∆ and ψ has target T , then ψ = T (x, t) and there are
Γ1,Γ2 and C such that Γ = Γ1, x : C,Γ2 and C �CΓ1

t.

I Lemma 72. If C �FΓ ϕ then C = Πx1 : A1 . . .Πxn : An.B with B �CΓ,Γ0
t and P (t) �A

Γ;Γ0
ϕ

and Γ0 = x1 : A1, . . . , xn : An.

I Definition 73. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆. A Γ,∆, A, ϕ-reconstruction of Q, or
just a reconstruction of Q, is defined as follows, depending on the form of ϕ.
1. If A �FΓ ϕ and Γ ` A : ∗p then any M such that Γ `M : A is a Γ,∆, A, ϕ-reconstruction

of Q.
2. If ϕ = T (t, t′) and A �CΓ t′ and Γ ` A : s with s 6= ∗p then any M such that M �CΓ t and

Γ `M : A is a Γ,∆, A, ϕ-reconstruction of Q.
3. If ϕ = E(t′, t) and A �CΓ t′ (resp. A �CΓ t) and A is a Γ-subject then any Γ-subject M

such that M �CΓ t (resp. M �CΓ t′) and M =βε A is a Γ,∆, A, ϕ-reconstruction of Q.
Note that if A �FΓ ϕ then ϕ does not have the form T (t, t′) or E(t, t′), so the three above
cases are actually exclusive. We stress that the notion of a reconstruction depends on
the Γ,∆, A, ϕ, but we often omit them when clear.

A first-order proof term Q is reconstructible if for any Γ,∆, A, ϕ, satisfying the appropriate
conditions as above, a Γ,∆, A, ϕ-reconstruction of Q exists.

I Lemma 74. Suppose Γ � ∆ and ∆Ax,∆ ` XQ1 . . . Qm : ψ, where each Qi is either an
individual term or a reconstructible proof term. Let Γ0 = x1 : A1, . . . , xn : An be such that
m = lenA(Γ0) and Γ,Γ0 is a legal context. If (X : γ) ∈ ∆Ax,∆ with ϕ �A

Γ;Γ0
γ, then there

exist N1, . . . , Nn and u1, . . . , un such that ψ = ϕ[~u/~x] and Γ,Γ0  ~x, ~N,~u Γ.
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I Theorem 75 (Soundness of the embedding). Every first-order proof term Q in η-long
normal form is reconstructible.

The proof of the soundness of the embedding is a bit long and tedious because of the many
cases that need to be considered. As mentioned before, the soundness proof implicitly defines
an algorithm to transform a first-order proof term Q in η-lnf into its reconstruction. More
precisely, given a proof term Q in η-lnf and Γ,∆, A, ϕ satisfying the conditions in Definition 73,
the algorithm constructs a Γ,∆, A, ϕ-reconstruction M of Q. We first informally sketch this
algorithm. The proof of Theorem 75 is essentially a proof of its correctness. Because any
proof term may be β-reduced and η-expanded to a proof term in η-lnf (Lemma 5), this
provides a general proof reconstruction method.

I Algorithm 76. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆. We assume that Γ � ∆ is given
constructively, i.e., given (X : ϕ) ∈ ∆ it is possible to retrieve (x : C) ∈ Γ such that C �FΓ ϕ,
or ϕ = T (x, t) and C �CΓ t (c.f. Definition 57 and Lemma 62). We have the following cases.
For the sake of readability we do not treat all cases in full generality.
1. A �FΓ ϕ and Γ ` A : ∗p. We seek M with Γ `M : A. Consider possible forms of ϕ.

ϕ = ϕ1 → ϕ2. Then Q = λX : ϕ1.Q
′ (because Q is in η-lnf) and A = Πx : B.C (by

Definition 55) with B �FΓ ϕ1 and C �FΓ,x:B ϕ2. Recursively construct a Γ′,∆′, C, ϕ2-
reconstruction M ′ of Q′, where Γ′ = Γ, x : B and ∆′ = ∆, ϕ1. Take M = λx : B.M ′.
ϕ = ∀x.T (x, t) → ψ. Then Q = λxλX : T (x, t).Q′ and A = Πx : B.C. Recursively
construct a Γ′,∆′, C, ψ-reconstruction M ′ of Q′, where Γ′ = Γ, x : B and ∆′ =
∆, T (x, t). Take M = λx : B.M ′.
ϕ = P (tA) with A �CΓ tA. Then Q = XD1 . . . Dk where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = P , and each Di is a first-order proof term in η-long normal form or an
individual term. We consider possible forms of ψ.

(X : ψ) ∈ ∆. For example, Q = XtD1D2 where D1, D2 are proof terms in
η-lnf and ψ = ∀x.T (x, tB) → ψ′ → P (fx) and ∆Ax,∆ ` D1 : T (t, tB) and
∆Ax,∆ ` D2 : ψ′[t/x] and f is a variable. There is (z : C) ∈ Γ such that
C �FΓ ψ and C = Πx : B.Πy : B′.fx. Recursively construct a Γ,∆, B, T (x, tB)-
reconstruction M1 of D1 and a Γ,∆, B′, ψ′[t/x]-reconstruction M2 of D2. Take
M = zM1M2.
(X : ψ) ∈ ∆E and ψ = ∀xx′.E(x, x′) → P (x) → P (x′). Then Q = XttAD1D2
and ∆Ax,∆ ` D1 : E(t, tA) and ∆Ax,∆ ` D2 : P (t). Recursively construct a
Γ,∆, A,E(t, tA)-reconstruction B of D1 and then a Γ,∆, B, P (t)-reconstruction M ′
of D2. Take M = M ′.
(X : ψ) ∈ ∆Φ and e.g. ψ = ∀y.ψ′ → P (fy) and FV(ψ′) = {y} and f = Φ(ψ′). Then
tA = ft and Q = XtD with ∆Ax,∆ ` D : ψ′[t/y]. Since A �CΓ ft, by Definition 55
there are Γ′, N with Γ′  y,N,t Γ. So N �CΓ t by Definition 54 and the thinning
lemma. Also A �FΓ ψ′[t/y] (Definition 55). Recursively construct a Γ,∆, A, ψ′[t/y]-
reconstruction M of D. This is also a Γ,∆, A, P (ft)-reconstruction of Q.

2. ϕ = T (t, t′) and A �CΓ t′ and Γ ` A : s with s 6= ∗p. We seek M such that M �CΓ t and
Γ ` M : A. We have Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = T . Consider
possible forms of ψ.

(X : ψ) ∈ ∆. Then ψ = T (x, t′) and t = x and there is (x : C) ∈ Γ such that C �CΓ t′.
Take M = x.
(X : ψ) ∈ ∆G1 and e.g. ψ = ∀z.T (z, f) → ∀x.T (x, r1) → T (zx, r2) where f =
G1(x, r1, r2, s) and FV(r1, r2) ⊆ {x}. Then Q = XuD1wD2 and t = uw and
t′ = r2[w/x] and ∆Ax,∆ ` D1 : T (u, f) and ∆Ax,∆ ` D2 : T (w, r1). We may
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compute Γ0, C with C = Πx : C1.C2 and C1 �CΓ0
r1 and C2 �CΓ0,x:C1

r2 and C �CΓ0
f

(see Remark 4). One shows that Γ = Γ0 may be assumed in the case FV(r1, r2) ⊆ {x}.
Recursively construct a Γ,∆, C, T (u, f)-reconstruction M1 of D1 and a Γ,∆, C1, r1-
reconstruction M2 of D2. Take M = M1M2.
(X : ψ) ∈ ∆τ1 and e.g. ψ = T (f, g) where f = Λ1(x, r, t) and g = G1(x, r, u, s) with
FV(r, t, u) ⊆ {x}. We may compute C,N such that C �CΓ r and N �CΓ,x:C t, so
λx : C.N �CΓ f . Take M = λx : C.N .
(X : ψ) ∈ ∆E . Then ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → T (x, y) → T (x′, y′) and
Q = Xuu′tt′D1D2D3 where ∆Ax,∆ ` D1 : E(u, t) and ∆Ax,∆ ` D2 : E(u′, t′) and
∆Ax,∆ ` D3 : T (u, u′). Recursively construct a Γ,∆, A,E(u′, t′)-reconstruction A′

of D2, then a Γ,∆, A, T (u, u′)-reconstruction M ′ of D3, then a Γ,∆,M ′, E(u, t)-
reconstruction N of D1. Take M = N .

3. ϕ = E(t0, t1) and e.g. A �CΓ t0. We need to find M with M �CΓ t1 and M =βε A.
Since E(t0, t1) is an atom and Q is in η-lnf, Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = E. Consider possible forms of ψ.

(X : ψ) ∈ ∆Λ1 and e.g. ψ = ∀x.T (x, r1) → E(fx, r2) where f = Λ1(x, r1, r2) and
FV(r1, r2) ⊆ {x}. Then Q = XuD and t0 = fu and t1 = r2[u/x] and ∆Ax,∆ `
D : T (u, r1). We may compute C,N such that C1 �CΓ r1 and C2 �CΓ,x:C1

r2 and
λx : C.N �CΓ f . Recursively construct a Γ,∆, C, r1-reconstruction M1 of D. Then
(λx : C.N)M1 �CΓ fu and A �CΓ fu, so A =βε N [M1/x], using Lemma 69. Also
N [M1/x] �CΓ r2[u/x]. Take M = N [M1/x].
(X : ψ) ∈ ∆E and ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → E(xy, x′y′). Then Q =
Xuwu′w′D1D2 and ∆Ax,∆ ` D1 : E(u, u′) and ∆Ax,∆ ` D2 : E(w,w′) and t0 = uw

and t1 = u′w′. Since A �CΓ uw, we have A = A1A2 with A1 �CΓ u and A2 �CΓ w. Recurs-
ively construct a Γ,∆, A1, E(u, u′)-reconstruction B1 of D1 and a Γ,∆, A2, E(w,w′)-
reconstruction B2 of D2. Take M = B1B2.

Cases omitted in the above sketch are trivial or similar to other cases considered.

Together with Lemma 56, Lemma 59 and Lemma 5, Theorem 75 gives us the following.

I Corollary 77. If ∆Ax, dΓe ` FΓ(A) and Γ ` A : ∗p then there exists M such that Γ `M : A.

We now give a rigorous proof of the soundness of the embedding.

Proof of Theorem 75. We show that every first-order proof term Q in η-lnf is reconstructible.
We proceed by induction on the size of Q. First of all, note that because of Lemma 68 for
any M , Γ and x ∈ V ∗p and ϕ, t,∆ with M �FΓ ϕ, M �CΓ t, Γ � ∆, we have x /∈ FV(ϕ, t,∆).
Hence we may assume that if x ∈ V ∗p then x does not occur free in any individual term used
in Q.

We need to consider the three cases in Definition 73.
1. Assume ∆Ax,∆ ` Q : ϕ and Γ � ∆ and Γ ` A : ∗p and A �FΓ ϕ. We need to find M with

Γ `M : A. We consider possible forms of ϕ.
ϕ = ϕ1 → ϕ2. Then A = Πx : B.C and Γ ` B : ∗p and B �FΓ ϕ1 and C �FΓ,x:B ϕ2
and Q = λX : ϕ1.Q

′. Hence ∆Ax,∆, X : ϕ1 ` Q′ : ϕ2. Note that Γ, x : B � ∆, X : ϕ1.
Also Γ, x : B ` C : ∗p by Corollary 25. Thus by the inductive hypothesis there is M ′
with Γ, x : B `M ′ : C. Because Γ ` (Πx : B.C) : ∗p, by the abstraction rule we obtain
Γ ` (λx : B.M ′) : (Πx : B.C). Hence take M = λx : B.M ′.
ϕ = ∀x.T (x, t) → ψ. Then A = Πx : B.C and Γ 0 B : ∗p and B �CΓ t and
C �FΓ,x:B ψ. Hence Q = λxλX : T (x, t).Q′, so ∆Ax,∆, X : T (x, t) ` Q′ : ψ. Note that
Γ, x : B � ∆, X : T (x, t). By Corollary 25 we have Γ, x : B ` C : ∗p. Thus by the
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inductive hypothesis there is M ′ with Γ, x : B ` M ′ : C. Since Γ ` A : ∗p, by the
abstraction rule we obtain Γ ` (λx : B.M ′) : A. Hence take M = λx : B.M ′.
ϕ = P (tA) with A �CΓ tA. Then Q = XD1 . . . Dk where (X : ψ) ∈ ∆Ax,∆ and
target(ψ) = P , and each Di is a first-order proof term in η-long normal form or an
individual term. By the inductive hypothesis all proof terms among D1, . . . , Dk are
reconstructible. We consider possible forms of ψ.

(X : ψ) ∈ ∆. By Lemma 70 there are Γ1,Γ2,∆1,∆2 and C such that Γ1 � ∆1 and
Γ = Γ1, x : C,Γ2 and ∆ = ∆1, ψ,∆2 and Γ1 ` C : ∗p and C �FΓ1

ψ. By Lemma 72
we have C = Πx1 : A1 . . .Πxn : An.B and P (t) �A

Γ1,Γ0
ψ and B �CΓ1,Γ0

t where
Γ0 = x1 : A1, . . . , xn : An. We may assume that x1, . . . , xn /∈ dom(Γ). Hence Γ,Γ0 is
a legal context and Γ ⊇ Γ1, so P (t) �A

Γ;Γ0
ψ by Corollary 63. By Lemma 74 there are

N1, . . . , Nn and u1, . . . , un such that ϕ = P (tA) = P (t)[~u/~x], i.e. tA = t[~u/~x], and
Γ,Γ0  ~x, ~N,~u Γ. By Lemma 62 we have B �CΓ,Γ0

t. Hence B[ ~N/~x] �CΓ t[~u/~x] = tA

by Corollary 66. Since also A �CΓ tA, by Lemma 69 we obtain A =ε B[ ~N/~x].
Because Γ,Γ0  ~x, ~N,~u Γ we must have Γ ` Ni : Ai[N1/x1] . . . [Ni−1/xi−1] and
Ni ∼ xi for i = 1, . . . , n. Recall that Γ ` x : Πx1 : A1 . . .Πxn : An.B. Hence,
using the application rule n times we conclude that Γ ` xN1 . . . Nn : B[ ~N/~x]. Thus
Γ ` xN1 . . . Nn : A by the conversion rule.
(X : ψ) ∈ ∆E and ψ = ∀xx′.E(x, x′) → P (x) → P (x′). Then k = 4, D1 = t1,
D2 = t2 are individual terms, and ∆Ax,∆ ` D3 : E(t1, t2) and ∆Ax,∆ ` D4 : P (t1)
and P (t2) = P (tA). Hence t2 = tA. Because D3 is reconstructible (by induction),
there is a Γ-term B with B �CΓ t1 and B =βε A. By Lemma 31 we have Γ ` B : ∗p.
Since ∆Ax,∆ ` D4 : P (t1) and B �CΓ t1 and Γ ` B : ∗p and Γ � ∆, because D4 is
reconstructible there is M with Γ `M : B. By the conversion rule also Γ `M : A.
(X : ψ) ∈ ∆Φ and ψ = ∀~y.ψ′ → P (f~y) and ~y = FV(ψ′) and f = Φ(ψ′). Then
tA = f~t and ∆Ax,∆ ` X~tDk : P (f~t) and ∆Ax,∆ ` Dk : ψ′[~t/~y] for some individual
terms t1, . . . , tn (without loss of generality we may assume that FV(ti) ∩ FV(ψ′) =
∅). Since A �CΓ f~t, by the definition of �CΓ there exist B,C and N1, . . . , Nm
and u1, . . . , um and Γ′ such that Γ′ ` (Πx : B.C) : ∗p and Γ′  ~x, ~N,~u Γ and
A = (Πx : B.C)[ ~N/~x] �FΓ ψ′[~u/~x] and (Πx : B.C)[ ~N/~x] �CΓ (f~y)[~u/~x] = f~t.
Let u′i = ui[ui+1/xi+1] . . . [um/xm]. Because f~t = (f~y)[u′1/x1, . . . , u

′
m/xm] and ~y =

FV(ψ′) = {y1, . . . , yn}, without loss of generality we may assume u′i = ti and xi = yi
for i ≤ n, and xi /∈ FV(ψ′) for i > n. Then ψ′[~u/~x] = ψ′[u′1/x1, . . . , u

′
m/xm] =

ψ′[u′1/y1, . . . , u
′
n/yn] = ψ′[~t/~y]. By Lemma 61 we have Γ ` (Πx : B.C)[ ~N/~x] : ∗p.

Since also A = (Πx : B.C)[ ~N/~x] �FΓ ψ′[~t/~y] and ∆Ax,∆ ` Dk : ψ′[~t/~y], because Dk

is reconstructible there exists M such that Γ `M : A.
2. Assume ∆Ax,∆ ` Q : T (t, t′) and Γ � ∆ and Γ ` A : s and s 6= ∗p and A �CΓ t′. We

need to find M with M �CΓ t and Γ `M : A. Since T (t, t′) is an atom and Q is in η-lnf,
we have Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = T and ~D is a sequence of
first-order individual terms and reconstructible (by induction) proof terms in η-lnf. We
consider possible forms of ψ.

(X : ψ) ∈ ∆. By Lemma 71 we have ψ = T (x, r) and there are Γ1,Γ2 and C such that
Γ = Γ1, x : C,Γ2 and C �CΓ1

r. Then t = x and t′ = r. By Lemma 62 we have C �CΓ t′.
Since also A �CΓ t′, by Lemma 69 we obtain A =ε C. Because Γ ` x : C and Γ ` A : s,
by the conversion rule Γ ` x : A.
(X : ψ) ∈ ∆G1 and ψ = AΓ′(∀z.T (z, f~y) → ∀x.T (x, r1) → T (zx, r2)) where f =
G1(x, r1, r2, s) and ~y = FV(r1, r2) \ {x} and z /∈ FV(r1, r2) and Γ′ = x1 : A1, . . . , xn :
An. Then Q = X ~RuP1wP2 and there are C1, C2 such that r1 = CΓ′(C1) and r2 =
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CΓ′,x:C1(C2) and Γ′ ` (Πx : C1.C2) : s and s 6= ∗p and Γ′ 0 C1 : ∗p. Note that ψ is
closed, because ~y = FV(r1, r2) \ {x} ⊆ dom(Γ′) by Lemma 68. Hence, by Lemma 53
we may assume dom(Γ) ∩ dom(Γ′) = ∅, possibly renaming the variables in Γ′, ψ, r1, r2
and Πx : C1.C2. Hence Γ,Γ′ is a legal context. Let ψ′ = ∀z.T (z, f~y)→ ∀x.T (x, r1)→
T (zx, r2). By Lemma 59 and Corollary 63 we have ψ′ �A

Γ;Γ′ ψ. By Lemma 74 there are
N1, . . . , Nn and u1, . . . , un such that Γ,Γ′  ~x, ~N,~u Γ and ∆Ax,∆ ` X ~R : ψ′[~u/~x]. Note
that z /∈ ~y. Hence ∆Ax,∆ ` P1 : T (u, (f~y)[~u/~x]). Let C ′i = Ci[ ~N/~x]. By Lemma 56
and Lemma 60 and Corollary 66 we have C ′1 �CΓ r1[~u/~x] and C ′2 �CΓ,x:C1[ ~N/~x] r2[~u/~x].
Also Γ,Γ′ ` (Πx : C1.C2) : s by the thinning lemma, and Γ,Γ′ 0 C1 : ∗p by the
generation, thinning and uniqueness of types lemmas. Hence Πx : C ′1.C ′2 �CΓ (f~y)[~u/~x].
We also have Γ ` (Πx : C ′1.C ′2) : s (and s 6= ∗p) by Lemma 61. Because P1 is
reconstructible, there is M1 with Γ ` M1 : (Πx : C ′1.C ′2) and M1 �CΓ u. Note that
x /∈ FV(r1) by Lemma 68, because C1 �CΓ′ r1 and x /∈ dom(Γ′). Since also z /∈ FV(r1),
we have ∆Ax,∆ ` P2 : T (w, r1[~u/~x]). Since Γ,Γ′ 0 C1 : ∗p and Γ,Γ′ ` (Πx : C1.C2) : s,
by the generation lemma and Lemma 61 we have Γ ` C ′1 : s′ for some s′ ∈ S, s′ 6= ∗p.
Since also C ′1 �CΓ r1[~u/~x], because P2 is reconstructible there is M2 with M2 �CΓ w and
Γ ` M2 : C ′1. By Lemma 32 we have M2 ∼ x. Hence Γ ` M1M2 : C ′2[M2/x] by the
application rule. Because M1 is not a Γ-proof (recall that Γ ` M1 : (Πx : C ′1.C ′2) : s
with s 6= ∗p), neither is M1M2 by Theorem 30. Hence M1M2 �CΓ uw = t. Since
C ′2 �CΓ,x:C′

1
r2[~u/~x], by Lemma 65 we have C ′2[M2/x] �CΓ r2[~u/~x][u/x] = t′. Since also

A �CΓ t′, we have C ′2[M2/x] =ε A by Lemma 69. Thus Γ `M1M2 : A by the conversion
rule. Therefore, we may take M = M1M2.
(X : ψ) ∈ ∆G0 . This case is analogous to the previous one.
(X : ψ) ∈ ∆τ1 and ψ = AΓ′(T (f~y, g~z)) where f = Λ1(x, r, u) and g = G1(x, r, w, s)
and ~y = FV(r, u) \ {x} and ~z = FV(r, w) \ {x} and Γ′ = x1 : A1, . . . , xn : An. Then
Q = X ~R and there are C1, C2, N such that r = CΓ′(C1) and u = CΓ′,x:C1(N) and
w = CΓ′,x:C1(C2) and Γ′ ` (λx : C1.N) : Πx : C1.C2 : s and Γ′ 0 C1 : ∗p. By
Lemma 53 we may assume that dom(Γ)∩dom(Γ′) = ∅, possibly renaming the variables
in Γ′, ψ, r, u, w and Πx : C1.C2 and λx : C1.N . Hence Γ,Γ′ is a legal context. Let
ψ′ = T (f~y, g~z). By Lemma 59 and Corollary 63 we have ψ′ �A

Γ;Γ′ ψ. By Lemma 74
there are N1, . . . , Nn and u1, . . . , un such that Γ,Γ′  ~x, ~N,~u Γ and ∆Ax,∆ ` X ~R :
ψ′[~u/~x]. We thus have t = (f~y)[~u/~x] and t′ = (g~z)[~u/~x]. By the generation lemma, the
thinning lemma and the uniqueness of types lemma Γ,Γ′ 0 C1 : ∗p. By the generation
lemma C1 is a Γ′-subject and N is a Γ′, x : C1-subject. Hence C1[ ~N/~x] �CΓ r[~u/~x] and
N [ ~N/~x] �CΓ,x:C1[ ~N/~x] u[~u/~x] by Lemma 56 and Corollary 66. Hence by Definition 55
we have (λx : C1.N)[ ~N/~x] �CΓ (f~y)[~u/~x]. Also Γ ` (λx : C1.N)[ ~N/~x] : C[ ~N/~x]
by Lemma 60, where C = Πx : C1.C2. We have C2[ ~N/~x] �CΓ,x:C1[ ~N/~x] u[~u/~x] by
Lemma 56 and Corollary 66. Also Γ,Γ′ ` C : s by the thinning lemma. Thus
C[ ~N/~x] �CΓ (g~z)[~u/~x] = t′ by Definition 55. Since also A �CΓ t′, by Lemma 69 we
obtain A =ε C[ ~N/~x]. Thus Γ ` (λx : C1.N)[ ~N/~x] : A by the conversion rule. So we
may take M = (λx : C1.N)[ ~N/~x].
(X : ψ) ∈ ∆τ0 . This case is analogous to the previous one.
(X : ψ) ∈ ∆E . Then ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → T (x, y) → T (x′, y′) and
Q = Xuu′tt′D1D2D3 where ∆Ax,∆ ` D1 : E(u, t) and ∆Ax,∆ ` D2 : E(u′, t′) and
∆Ax,∆ ` D3 : T (u, u′). Since A �CΓ t′, because D2 is reconstructible there exists a
Γ-term A′ such that A′ �CΓ u′ and A′ =βε A. Since Γ ` A : s (s 6= ∗p), by Lemma 31
we have Γ ` A′ : s. Hence, because D3 is reconstructible there exists M ′ such that
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M ′ �CΓ u and Γ `M ′ : A′. Because D1 is reconstructible there is a Γ-subject M with
M �CΓ t and M =βε M

′. By the uniqueness of types lemma and Theorem 30 we have
M ′ 6→∗ε ε, hence also M 6→∗ε ε by Lemma 18. Since M is a Γ-subject, there is B with
Γ ` M : B. Then B =βε A

′ by the second point in the uniqueness of types lemma.
Since Γ ` A : s and B =βε A

′ =βε A, we have Γ ` M : A by the conversion rule.
Therefore, we have found M with M �CΓ t and Γ `M : A, as desired.

3. Assume ∆Ax,∆ ` Q : E(t0, t1) and Γ � ∆ and M �CΓ tq with q ∈ {0, 1}. We need to
find N with N �CΓ t1−q and N =βε M . Since E(t0, t1) is an atom and Q is in η-lnf,
Q = X ~D where (X : ψ) ∈ ∆Ax,∆ and target(ψ) = E and ~D is a sequence of first-order
individual terms and reconstructible (by induction) proof terms in η-lnf. We consider
possible forms of ψ.

(X : ψ) ∈ ∆Λ0 and ψ = AΓ′(ϕ → E(f~yε, r)) where Γ′ = x1 : A1, . . . , xn : An and
dom(Γ) ∩ dom(Γ′) = ∅ (we may assume this by Lemma 53) and f = Λ0(x, ϕ, r) and
~y = FV(ϕ, r) \ {x} and there are B,C1, C2 with ϕ = FΓ′(C1) and r = CΓ′,x:C1(C2)
and Γ′ ` (λx : C1.C2) : B and Γ′ ` C1 : ∗p and Γ′ ` B : s and s 6= ∗p. We have
ψ = AΓ′,x:C1(E(f~yε, r)). We may assume x /∈ dom(Γ), so Γ,Γ′, x : C1 is a legal
context. Thus by Lemma 59 and Corollary 63 we obtain E(f~yε, r) �A

Γ;Γ′,x:C1
ψ.

Hence by Lemma 74 there are N1, . . . , Nn, U and u1, . . . , un, u such that E(t0, t1) =
E(f~yε, r)[~u/~x][u/x] and Γ,Γ′, x : C1  ~x,x, ~N,U,~u,u Γ. Note that then also Γ,Γ′  ~x, ~N,~u Γ
and Γ,Γ′, x : C1  ~x, ~N,~u Γ, x : C1[ ~N/~x]. We have C1 �FΓ,Γ′ ϕ and C2 �CΓ,Γ′,x:C1

r by
Lemma 56 and Lemma 62. Hence C1[ ~N/~x] �FΓ ϕ[~u/~x] and C2[ ~N/~x] �CΓ,x:C1[ ~N/~x] r[~u/~x]
by Corollary 66. Also Γ,Γ′ ` (λx : C1.C2) : B : s and Γ,Γ′ ` C1 : ∗p by the
thinning lemma. Hence Γ ` (λx : C1.C2)[ ~N/~x] : B[ ~N/~x] : s by Lemma 61, i.e.,
(λx : C1.C2)[ ~N/~x] is not a Γ-proof (by the uniqueness of types lemma, recalling that
s 6= ∗p). Thus (λx : C1.C2)[ ~N/~x] �CΓ (f~y)[~u/~x]. Since Ni �CΓ ui and Ni is a Γ-term and
x /∈ dom(Γ), by Lemma 68 and the free variable lemma we obtain x /∈ FV(u1, . . . , un).
Also x /∈ ~y. Hence (f~y)[~u/~x] = (f~y)[~u/~x][u/x]. Because Γ,Γ′, x : C1  ~x,x, ~N,U,~u,u Γ,
we have U ∼ x and Γ ` U : C1[ ~N/~x] : ∗p. Hence U is a Γ-proof, and thus U �CΓ
ε. Because (λx : C1.C2)[ ~N/~x] is not a Γ-proof, neither is ((λx : C1.C2)[ ~N/~x])U ,
by Theorem 30. Therefore ((λx : C1.C2)[ ~N/~x])U �CΓ ((f~y)[~u/~x][u/x])ε = t0. We
also have C2[ ~N/~x][U/x] �CΓ r[~u/~x][u/x] = t1 by Corollary 66. Note that ((λx :
C1.C2)[ ~N/~x])U =β C2[ ~N/~x][U/x]. First assume q = 0, i.e.,M �CΓ t0. Using Lemma 69
we obtain M =βε C2[ ~N/~x][U/x] �CΓ t1. Now assume q = 1, i.e., M �CΓ t1. Using
Lemma 69 we obtain M =βε ((λx : C1.C2)[ ~N/~x])U �CΓ t0. Also ((λx : C1.C2)[ ~N/~x])U
and C2[ ~N/~x][U/x] are Γ-subjects, by the generation lemma, the application rule (recall
that U ∼ x) and the subject reduction theorem.
(X : ψ) ∈ ∆Λ1 . This case is analogous to the case (X : ψ) ∈ ∆Λ0 .
(X : ψ) ∈ ∆E and ψ = ∀x.E(x, x). This case follows from reflexivity of =βε.
(X : ψ) ∈ ∆E and ψ = ∀xy.E(x, y) → E(y, x). This case follows directly from the
inductive hypothesis.
(X : ψ) ∈ ∆E and ψ = ∀xyz.E(x, y)→ E(y, z)→ E(x, z). This case follows from the
inductive hypothesis and the transitivity of =βε.
(X : ψ) ∈ ∆E and ψ = ∀xyx′y′.E(x, x′) → E(y, y′) → E(xy, x′y′). Then Q =
Xuwu′w′D1D2 and ∆Ax,∆ ` D1 : E(u, u′) and ∆Ax,∆ ` D2 : E(w,w′) and t0 = uw

and t1 = u′w′. Assume q = 0, i.e., M �CΓ uw (the case q = 1 is analogous). Then
M = M1M2 with M1 �CΓ u and M2 �CΓ w. Since M is a Γ-subject, by the generation
lemma Γ `M1 : Πz : A.B and Γ `M2 : A and M2 ∼ z for some A,B. Because D1, D2
are reconstructible there are Γ-subjects N1, N2 such that Ni =βε Mi and N1 �CΓ u′
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and N2 �CΓ w′. Because nfε(M) 6= ε, also nfε(M1) 6= ε. Hence by the second point
in the uniqueness of types lemma, the generation lemma and the conversion rule
Γ ` N1 : Πz : A.B. Without loss of generality we may assume nfε(M2) 6= ε, because
otherwise u′ = w′ = ε and we may take N2 = M2. If nfε(M2) 6= ε then analogously
as with M1 we conclude Γ ` N2 : A. Note that also N2 ∼ z, because M2 ∼ z and
M2 =βε N2. Hence N1N2 is a Γ-subject by the application rule. Using Theorem 30 we
may also conclude that N1N2 is not a Γ-proof. Thus M =βε N1N2 �CΓ u′w′ = t1. J

6 Conclusions and related work

Below we make a few remarks on the embedding, the soundness proof and related work.

I Remark. In the literature there are various translations of languages with dependent types
to less expressive logics, but as far as we know none of them are both shallow, include the
Calculus of Constructions as the source formalism, and target first-order logic. The paper [16]
defines a deep embedding of the Calculus of Constructions into a higher-order logic and
shows it complete. In [17] a similar deep embedding of LF into a fragment of higher-order
logic is shown sound and complete. The paper [21] shows how to simulate dependent types
in higher-order logic.

In [27] a translation from first-order logic with dependent types into ordinary first-order
logic is shown sound by model-theoretic methods. The aim of [27] is also to use the translation
with first-order ATPs. The logic is much simpler than dependent type theory – it allows
dependent types, but not function types, i.e., no λ-abstraction or partial application is
possible.

The paper [29] defines a sound and complete deep embedding Tri of Martin-Löf’s type
theory into first-order logic. The embedding is deep in the sense that e.g. b ∈ B is translated
to In(b, B), so b is not erased. For a fragment F2, which essentially disallows dependent
function types as arguments, the translation may be optimized to a shallow one, i.e., In(b, B)
is optimised to Inh(B). This restriction corresponds to disallowing quantifiers on the left side
of implication, which makes it possible to prove soundness and completeness of the embedding.
In contrast to our approach, since there is no separate sort of propositions, all terms inhabiting
types are erased, not only those intuitively representing proofs of propositions.

The general ideas behind the translations in [29, 27] are broadly similar to ours, but our
work is not a direct extension of any of them.

The paper [19] defines a translation Tr from λP to FOL in order to show a conservativity
result. The general idea of Tr, to translate a dependent type Πx : A.B into a quantification
and an implication, is similar to how we translate piPTS propositions. Essentially, the
translation Tr is defined only for terms that “originate from” an embedding of FOL into λP ,
not on arbitrary λP -terms.

In [26] an essentially deep embedding from LF to the higher-order hereditary Harrop
language is shown sound and complete. It is deep because even in its optimised variant the
proof terms are retained as additional arguments. On the other hand, it allows to omit more
type guards than our translation.

The report [1] defines and proves sound a translation from a fragment of the dependently
typed F? language to intuitionistic first-order logic. The soundness proof uses a broadly
similar method to the one in this paper, using induction on first-order proof terms in η-long
normal form. However, the considered language fragment is essentially simpler and the
soundness proof does not have to deal with the problems mentioned at the beginning of

TYPES 2016



9:24 A Shallow Embedding of Pure Type Systems into First-Order Logic

Section 5, or with proof irrelevance. On the other hand, the target fragment of first-order
logic is richer and includes conjunction and falsity.

I Remark. Our soundness proof relies on proof-irrelevance incorporated into the piPTS
conversion rule. Proof-irrelevance is necessary for the soundness of a shallow embedding.
It is an open question if the embedding is sound for the Calculus of Constructions with
proof-irrelevance expressed by axioms.

I Remark. Note the use of the function AΓ in the axioms in ∆Λ0 , ∆Λ1 , ∆G0 and ∆G1 . In
contrast, for the axioms in ∆Φ the use of AΓ is not necessary – we may simply quantify over
the free variables without requiring them a priori to have the right types. This is because
they all occur in the target atom P (f~y) which in the soundness proof is assumed to encode a
well-typed term. This is not necessarily true for the axioms which use AΓ, and our soundness
proof cannot be easily adapted to avoid the use of AΓ.

Nonetheless, we expect that the use of AΓ could be avoided without compromising
soundness. For instance, the axioms in ∆Λ1 could be ∀~yx.T (x, r) → E(f~yx, t) or even
∀~yx.E(f~yx, t). We expect the embedding to remain sound after this modification, because we
would essentially omit the type information only for free variables of subterms that are “lifted
out” of already well-typed terms. The problems that arise in the study of such a modified
embedding are broadly similar to problems that arise in the study of systems of illative
combinatory logic [3, 13] or the “liberal” Pure Type Systems from [10]. Domain-free Pure
Type Systems [7], domain-free variants of the Calculus of Inductive Constructions [4], the
Implicit Calculus of Constructions [23] and generally the work on ignoring computationally
irrelevant information also seem related.

In fact, in the practical translation from [15] we omit type information for free variables
of the terms “lifted-out” by the translation. This may increase the success rate in some
circumstances, as then the formulas are simpler and the ATPs do not need to prove too
many well-typedness conditions. See [15, Section 5.6].

I Remark. In [8, 11] it is shown that in a translation from (polymorphic) many-sorted classical
first-order logic to untyped classical first-order logic much of the type information may be
omitted using monotonicity inference. The methods of the cited papers are model-theoretic,
so they are probably not useful in our setting. Nonetheless, it is an interesting problem to
investigate the possibility of adapting monotonicity inference to embeddings of constructive
dependent type theory into first-order logic.
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A Properties of proof-irrelevant Pure Type Systems

In this appendix we develop the meta-theory of proof-irrelevant Pure Type Systems. The
development follows [2, Section 5.2] and is mostly standard, except for one difficulty caused
by the mismatch between βε-reduction used in the conversion rule and β-reduction for which
the subject reduction theorem holds.

First, we need some lemmas concerning ε-reduction, β-reduction and βε-reduction. Note
that →ε is not closed under substitutions. As a result, neither is →β , because it depends
on →ε through the side condition N ∼ x. For example, M = (λx∗p : A.x∗p)y∗p →β y

∗p . But
M [∗p/y∗p ] 6→β ∗p because ∗p 6∼ x∗p . However, both relations are closed under substitutions
if the condition N ∼ x is required when substituting N for x.

I Lemma 78. If M →ε M
′ and N ∼ x then M [N/x]→∗ε M ′[N/x].

Proof. Induction on M . The assumption N ∼ x is needed when x ∈ V ∗p and M = x →ε

ε. J

I Lemma 79 (Confluence and strong normalisation of ε-reduction). ε-reduction is confluent
and strongly normalising.

Proof. It is obvious that ε-reduction is strongly normalising. One also easily checks that the
reflexive closure of →ε has the diamond property. J

I Corollary 80. If M →∗ε M ′ and M ∼ x then M ′ ∼ x.

I Lemma 16. If N ∼ x then nfε(M [N/x]) = nfε(M)[nfε(N)/x].

Proof. Note that M [N/x]→∗ε nfε(M)[nfε(N)/x] by Lemma 78. It suffices to show that the
latter term is in ε-normal form. Otherwise, nfε(M) must have a subterm of the form xt

or λy.x, and nfε(N) = ε. But then x ∈ V ∗p , which contradicts the fact that nfε(M) is in
ε-normal form. J

I Lemma 81. If M ∼ x and N ∼ y then M [N/y] ∼ x.

Proof. Follows directly from Lemma 16. J

I Lemma 82. If M →β M
′ and N ∼ x then M [N/x]→β M

′[N/x].

Proof. Induction on M , using Lemma 81. J

I Lemma 83. If M →∗βε M ′ and N →∗βε N ′ and N ∼ x then M [N/x]→∗βε M ′[N ′/x].

Proof. Using Lemma 78 and Lemma 82 repeatedly we obtain M [N/x]→∗βε M ′[N/x]. Since
N →∗βε N ′, we have M ′[N/x]→∗βε M ′[N ′/x]. J

I Lemma 84. If M →β M1 and M →ε M2 then there is M ′ with M1 →∗ε M ′ and M2 →βε

M ′.

Proof. Induction on M . The interesting case is when M = (λx : A.B)C →β B[C/x] = M1.
Then C ∼ x. First assume M2 = (λx : A.B)C ′ with C →ε C

′. Then C ′ ∼ x by Corollary 80.
Hence M2 →β B[C ′/x]. We also have B[C/x]→∗ε B[C ′/x], so we may take M ′ = B[C ′/x].
Now assume M2 = (λx : A.B′)C with B →ε B

′. Then B[C/x] →∗ε B′[C/x] by Lemma 78.
Also M2 →β B

′[C/x], so we may take M ′ = B′[C/x]. Finally, assume M2 = εC where B = ε

and λx : A.B →ε ε. Then M1 = B[C/x] = ε. Since M2 = εC →ε ε, we may take M ′ = ε.
The remaining cases are easy. J
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I Corollary 85. If M →∗β M1 and M →∗ε M2 then there is M ′ with M1 →∗ε M ′ and
M2 →∗βε M ′.

I Lemma 86. If M →β N →∗ε ε then M →∗ε ε.

Proof. Induction on the length of the reduction N →∗ε ε.
If M = (λx.M ′)Q and N = M ′[Q/x] and Q ∼ x then nfε(N) = nfε(M ′)[nfε(Q)/x]

by Lemma 16. Hence nfε(M ′)[nfε(Q)/x] = ε. This is possible if either nfε(M ′) = ε, or
nfε(M ′) = x and nfε(Q) = ε. If nfε(M ′) = ε then M →∗ε ε. In the other case x ∈ V ∗p

because Q ∼ x and Q→∗ε ε. Hence also M →∗ε ε.
If M = M ′Q and N = N ′Q then M ′ →β N

′ →∗ε ε. Then M ′ →∗ε ε by the inductive
hypothesis, and thus M →∗ε ε.

Otherwise M = λx.M ′ and N = λx.N ′ and M ′ →β N
′. Then M ′ →β N

′ →∗ε ε, so by
the inductive hypothesis M ′ →∗ε ε. Hence M →∗ε ε. J

I Corollary 87. If M →∗βε M ′ then M ∼ x iff M ′ ∼ x.

I Lemma 88 (Postponement of ε-reduction). If M →∗βε M ′ then there exists N such that
M →∗β N →∗ε M ′.

Proof. One shows: ifM →ε N →β M
′ then there is N ′ withM →β N

′ →∗ε M ′. This follows
easily, using Lemma 78, because ε-reduction cannot create or duplicate β-redexes. J

I Corollary 89 (β-reduction requests ε-reduction). If M →∗β M1 and M →∗ε M2 then there
are M ′2,M ′ with M1 →∗ε M ′ and M2 →∗β M ′2 →∗ε M ′.

I Lemma 90 (Confluence of β-reduction). If M →∗β M1 and M →∗β M2 then there exists M ′
such that M1 →∗β M ′ and M2 →∗β M ′.

Proof. By a straightforward adaptation of the Tait–Martin-Löf method. The parallel
reduction relation →1 is defined as follows:

x→1 x, s→1 s, ε→1 ε,
if M →1 M

′ and N →1 N
′ and N ∼ x then (λx : A.M)N →1 M

′[N ′/x],
if M →1 M

′ and N →1 N
′ then MN →1 M

′N ′,
if A→1 A

′ and M →1 M
′ then λx : A.M →1 λx : A′.M ′,

if A→1 A
′ and M →1 M

′ then Πx : A.M →1 Πx : A′.M ′.
One then shows:
1. if M →1 M

′ and N →1 N
′ and N ∼ x then M [N/x]→1 M

′[N ′/x],
2. if M →1 M1 and M →1 M2 then there exists M ′ with M1 →1 M

′ and M2 →1 M
′.

The first point is shown by induction on M , using Lemma 81 when M = (λy : A.M1)M2 →1
M ′1[M ′2/y] = M ′. The second point is shown by a standard argument, using the first point
and Corollary 87. Confluence of β-reduction then follows from the second point, because
→β ⊆ →1 ⊆ →∗β . J

I Lemma 17 (Confluence of βε-reduction). If M →∗βε M1 and M →∗βε M2 then there
exists M ′ such that M1 →∗βε M ′ and M2 →∗βε M ′.

Proof. This follows from the confluence of β- and ε-reduction and the fact that β-reduction
requests ε-reduction. More precisely, one shows that →∗β · →∗ε has the diamond property.
See Figure 3. J

I Corollary 91. If M =βε M
′ and N ∼ x and N =βε N

′ then M [N/x] =βε M
′[N ′/x].
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Figure 3 Confluence of βε-reduction.

Note that confluence of βε-reduction on arbitrary preterms would fail if we did not restrict
β-reduction as in Definition 10. For example, for M = (λx∗p : A.x∗p)∗p we would have
M →∗ε ε and M →β ∗p.

I Lemma 18. If M =βε N then M →∗ε ε is equivalent to N →∗ε ε.

Proof. Suppose M →∗ε ε. By confluence of βε-reduction N →∗βε ε. So N →∗β N ′ →∗ε ε by
Lemma 88. Now by repeatedly applying Lemma 86 we obtain N →∗ε ε. J

I Lemma 19. If N does not contain ε and M →∗βε N then M →∗β N .

Proof. By postponement of ε-reduction there is M ′ with M →∗β M ′ →∗ε N . Because N does
not contain ε, we must in fact have M ′ = N . J

Proofs of most of the following lemmas for ordinary PTSs may be found e.g. in [2,
Section 5.2]. The proofs for piPTSs are essentially the same or very similar. We only briefly
indicate how to carry out the proofs and note the differences with the standard proofs.

I Lemma 20 (Free variable lemma). If Γ = x1 : A1, . . . , xn : An and Γ ` B : C then:
1. the x1, . . . , xn are all distinct,
2. FV(B),FV(C) ⊆ {x1, . . . , xn},
3. FV(Ai) ⊆ {x1, . . . , xi−1} for i = 1, . . . , n.

Proof. Induction on the derivation Γ ` B : C. J

I Lemma 21 (Start lemma). Let Γ be a legal context.
1. If (s1, s2) ∈ A then Γ ` s1 : s2.
2. If (x : A) ∈ Γ then Γ ` x : A and there is s ∈ S with Γ1 ` A : s and x ∈ V s, where

Γ = Γ1, x : A,Γ2.

Proof. Since Γ is legal, Γ ` B : C for some B,C. The lemma follows by induction on the
length of the derivation of Γ ` B : C. J

I Lemma 22 (Substitution lemma). If Γ, x : A,Γ′ ` B : C and Γ ` D : A and D ∼ x then
Γ,Γ′[D/x] ` B[D/x] : C[D/x].

Proof. Induction on the derivation of Γ, x : A,Γ′ ` B : C. We need the assumption D ∼ x
and Corollary 91 to treat the conversion rule. For the application rule we need Lemma 81. J
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I Lemma 23 (Thinning lemma). If Γ ` A : B and Γ′ ⊇ Γ is a legal context then Γ′ ` A : B.

Proof. Induction on the derivation of Γ ` A : B. J

I Lemma 24 (Generation lemma).
1. If Γ ` s : A then there is s′ ∈ S with A =βε s

′ and (s, s′) ∈ A.
2. If Γ ` x : A then there are s ∈ S and B such that A =βε B and Γ ` B : s and (x : B) ∈ Γ

and x ∈ V s.
3. If Γ ` (Πx : A.B) : C then there is (s1, s2, s3) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2

and C =βε s3.
4. If Γ ` (λx : A.M) : C then there are s ∈ S and B such that Γ ` (Πx : A.B) : s and

Γ, x : A `M : B and C =βε Πx : A.B.
5. If Γ ` MN : C then there are A,B such that Γ ` M : (Πx : A.B) and Γ ` N : A and

C =βε B[N/x] and N ∼ x.

Proof. Completely analogous to the standard proof for ordinary PTSs, using the thinning
lemma. J

I Lemma 26 (Correctness of types lemma). If Γ `M : A then there is s ∈ S such that A = s

or Γ ` A : s.

Proof. Induction on the derivation Γ `M : A. The non-obvious case is when the application
rule is used. Then M = M1M2 and A = C[M2/x] and Γ `M1 : (Πx : B.C) and Γ `M2 : B
and M2 ∼ x. By the inductive hypothesis there is s′ ∈ S such that Γ ` (Πx : B.C) : s′.
By the generation lemma there is s ∈ S such that Γ, x : B ` C : s. Since Γ ` M2 : B and
M2 ∼ x, by the substitution lemma we obtain Γ ` C[M2/x] : s, so Γ ` A : s. Note that the
side condition M2 ∼ x in the application rule was necessary to carry out the proof. J

I Theorem 29 (Subject reduction theorem). If Γ ` A : B and A→∗β A′ then Γ ` A′ : B.

Proof. Completely analogous to the standard proof, using the generation, correctness of
types and substitution lemmas, and Corollary 91. To be able to apply the substitution
lemma and Corollary 91 the side condition in the application rule is necessary. J

Subject reduction obviously does not hold for βε-reduction, because ε is not meant to be
typable. The following lemma is a direct consequence of subject reduction.

I Lemma 92. If Γ `M : A and A =βε s then Γ `M : s.

Proof. By confluence of βε-reduction and Lemma 19 we have A→∗β s. By the correctness
of types lemma Γ ` A : s′ or A = s′. If A = s′ then s = s′ and we are done. So assume
Γ ` A : s′. Then Γ ` s : s′ by the subject reduction theorem. Hence Γ ` M : s by the
conversion rule. J

The mismatch between the β-reduction in the subject reduction theorem and the βε-
conversion in the conversion rule generates some difficulties in the meta-theory of piPTSs.
In ordinary functional PTSs, it is a direct consequence of the subject reduction theorem
and the uniqueness of types lemma (to be stated below) that if Γ ` B : s and B =β B

′ and
Γ ` A′ : B′ then Γ ` B′ : s. This can also be easily established for functional piPTSs, by a
similar proof. But we would want a stronger analogous property with βε-conversion instead
of β-conversion. Then the standard argument breaks down, because subject reduction does
not hold for βε-reduction.
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In particular, we are interested in showing that in a logical piPTS if M is a Γ-proof then
M →∗ε ε. This presents a difficulty already when M = x. Then we have Γ ` x : A : ∗p for
some A. But from this we cannot immediately conclude x ∈ V ∗p because the derivation
of Γ ` x : A may end with the conversion rule. From the generation lemma we may only
conclude that there are s ∈ S and B =βε A such that Γ ` B : s and (x : B) ∈ Γ and x ∈ V s.
It would suffice if from Γ ` B : s and Γ ` A : ∗p and B =βε A we could conclude s = ∗p.
But this does not seem completely straightforward to establish without subject reduction
for βε-reduction. We will ultimately show this property using a slight sharpening of the
uniqueness of types lemma for logical piPTSs.

Our next aim is to show that in a logical piPTS a Γ-type does not ε-reduce to ε. For this
we need the following technical definition.

I Definition 93. We define the relation B  Γ C inductively:
if B =βε C then B  Γ C,
if there exist N and C ′ such that Γ ` N : A and N ∼ x and B[N/x] =βε C

′  Γ C then
Πx : A.B  Γ C.

I Lemma 94. If Γ ` B : s and B =βε B
′  Γ C then B  Γ C.

Proof. If B′ =βε C then this is obvious. Otherwise B′ = Πx : A0.B0 and Γ ` N : A0
and N ∼ x and B0[N/x] =βε C ′  Γ C. By the confluence of βε-reduction we have
B = Πx : A1.B1 with A1 =βε A0 and B1 =βε B0. Since N ∼ x, by Corollary 91 we obtain
B1[N/x] =βε B0[N/x] =βε C

′. Because Γ ` B : s, by the generation lemma Γ ` A1 : s′ for
some s′ ∈ S. Hence Γ ` N : A1 by the conversion rule. Thus B  Γ C. J

I Lemma 95. In a logical piPTS, if Γ ` B : ∗p and B =βε B
′  Γ C, then there exists C ′

such that Γ ` C ′ : ∗p and C ′ =βε C.

Proof. Induction on the definition of B′  Γ C. If B′ =βε C then this is obvious. Otherwise
B′ = Πx : A1.B1 and Γ ` N : A1 and N ∼ x and B1[N/x] =βε C1  Γ C. By the
confluence of βε-reduction B = Πx : A0.B0 with A0 =βε A1 and B0 =βε B1. Because
Γ ` (Πx : A0.B0) : ∗p and the piPTS is logical, by the generation lemma Γ ` A0 : s
for some s ∈ S and Γ, x : A0 ` B0 : ∗p. Since Γ ` N : A1, by the conversion rule
Γ ` N : A0. Hence Γ ` B0[N/x] : ∗p by the substitution lemma. By Corollary 91 we also
have B0[N/x] =βε B1[N/x]. Thus Γ ` B0[N/x] : ∗p and B0[N/x] =βε C1 and C1  Γ C. We
may therefore apply the inductive hypothesis to obtain C ′ with Γ ` C ′ : ∗p and C ′ =βε C. J

I Lemma 96. In a logical piPTS, if Γ `M : s then M 6→∗ε ε.

Proof. By induction on M we show that if (?) below holds for M then M 6→∗ε ε. Then
taking n = 0 in (?) gives us the lemma.
(?) There exist A1, . . . , An and N1, . . . , Nn such that

Γ, x1 : A1, . . . , xn : An `M : B

and Ni ∼ xi and Γ ` Ni : Ai[N1/x1] . . . [Ni−1/xi−1] for i = 1, . . . , n and

B[N1/x1] . . . [Nn/xn] Γ s.

Assume (?) and M →∗ε ε. Let Γ′ = Γ, x1 : A1, . . . , xn : An. There are three possibilities.
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1. M = x ∈ V ∗p . Then by the generation lemma there is B′ with B′ =βε B and Γ′ ` B′ : ∗p.
Using the substitution lemma repeatedly we obtain Γ ` B′[N1/x1] . . . [Nn/xn] : ∗p. Using
Corollary 91 repeatedly we obtain

B′[N1/x1] . . . [Nn/xn] =βε B[N1/x1] . . . [Nn/xn] Γ s.

Hence by Lemma 95 there is C with Γ ` C : ∗p and C =βε s. By Lemma 19 and the
confluence of βε-reduction we have C →∗β s. Hence by the subject reduction theorem we
obtain Γ ` s : ∗p. This contradicts the fact that the piPTS is logical.

2. M = M1M2 with M1 →∗ε ε. By the generation lemma there exist A0 and B0 such that
Γ′ ` M1 : (Πx : A0.B0) and Γ′ ` M2 : A0 and B =βε B0[M2/x] and M2 ∼ x. Let
M ′2 = M2[N1/x1] . . . [Nn/xn]. Using the substitution lemma repeatedly we obtain

Γ `M ′2 : A0[N1/x1] . . . [Nn/xn].

Also M ′2 ∼ x by repeated use of Lemma 81. By the correctness of types and generation
lemmas there is s′ with Γ′, x : A0 ` B0 : s′. Using the substitution lemma repeatedly
with the Ni’s and M ′2 we obtain

Γ ` B0[N1/x1] . . . [Nn/xn][M ′2/x] : s′.

Using Corollary 91 repeatedly we also obtain

B0[M2/x][N1/x1] . . . [Nn/xn] =βε B[N1/x1] . . . [Nn/xn] Γ s.

By α-conversion we may assume x /∈ FV(N1, . . . , Nn). Thus

B0[M2/x][N1/x1] . . . [Nn/xn] = B0[N1/x1] . . . [Nn/xn][M ′2/x].

Hence

(Πx : A0.B0)[N1/x1] . . . [Nn/xn] Γ s.

Now applying the inductive hypothesis yields a contradiction.
3. M = λx : A0.M

′ with M ′ →∗ε ε. By the generation lemma there are s′ ∈ S and B0
such that Γ′ ` (Πx : A0.B0) : s and Γ′, x : A0 ` M ′ : B0 and B =βε Πx : A0.B0.
By the confluence of βε-reduction we have B = Πx : C0.D0 with A0 =βε C0 and
B0 =βε D0. Let A∗p

0 = A0[N1/x1] . . . [Nn/xn] and analogously for B∗p

0 , C∗p

0 and D∗
p

0 .
Since B[N1/x1] . . . [Nn/xn] = Πx : C∗p

0 .D∗
p

0  Γ s, there is N with Γ ` N : C∗p

0 and
N ∼ x and D∗p

0 [N/x] =βε C  Γ s (the case Πx : C∗p

0 .D∗
p

0 =βε s is impossible by the
confluence of βε-reduction). By repeated use of Corollary 91 we have A∗p

0 =βε C
∗p

0
and B∗

p

0 [N/x] =βε D
∗p

0 [N/x]. Since Γ′ ` (Πx : A0.B0) : s′, by the generation lemma
there are s1, s2 ∈ S with Γ′ ` A0 : s1 and Γ′, x : A0 ` B0 : s2. By repeated use of
the substitution lemma Γ ` A∗p

0 : s1. Since also C∗p

0 =βε A
∗p

0 and Γ ` N : C∗p

0 , by
the conversion rule we have Γ ` N : A∗p

0 . Now by repeated use of the substitution
lemma we obtain Γ ` B∗p

0 [N/x] : s2. Since also B∗p

0 [N/x] =βε C  s, by Lemma 94
we obtain B∗

p

0 [N/x]  Γ s. Therefore, because Γ′, x : A0 ` M ′ : B0 and N ∼ x and
Γ ` N : A0[N1/x1] . . . [Nn/xn] and B0[N1/x1] . . . [Nn/xn][N/x] Γ s, we may apply the
inductive hypothesis to conclude M ′ 6→∗ε ε. This gives a contradiction. J

A simpler proof of Lemma 96 would be possible if we changed the definitions in one of
the following two ways.
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(1) In the definition of a logical piPTS, require (s, ∗p, ∗p) ∈ R for any s ∈ S.
(2) In the definition of a piPTS, add the side condition x ∈ V s1 in the product rule, and

restrict ε-reduction of lambda-abstractions to:

λxs : A.ε →ε ε if (s, ∗p, ∗p) ∈ R

Then we could prove (?) below by a relatively straightforward induction, without relying on
Lemma 99. Lemma 96 would then easily follow from (?).
(?) In a logical piPTS, if Γ ` M : C and M →∗ε ε then there is C ′ with C ′ =βε C and

Γ `M : C ′ : ∗p.
However, none of the changes (1) or (2) seem to allow avoiding the use of Lemma 99 in the
proof of Lemma 100.

I Definition 97. An n-ary term context C[�1, . . . ,�n] is a term with n holes into which
some terms N1, . . . , Nn may be substituted possibly capturing their free variables, yielding
C[N1, . . . , Nn]. For example, C[�1,�2] = λxy.�1�2 is a term context, and C[x, xy] =
λxy.x(xy).

We write Γ1 =ε Γ2 if Γ1 = x1 : A1, . . . , xn : An and Γ2 = x1 : A′1, . . . , xn : A′n and
Ai =ε A

′
i. The following simple lemma will be used implicitly.

I Lemma 98. IfM =ε M
′ then there are x1, . . . , xn and an n-ary term context C[�1, . . . ,�n]

such that M = C[N1, . . . , Nn] and M ′ = C[N ′1, . . . , N ′n] and Ni →∗ε ε and N ′i →∗ε ε.

Proof. Follows from confluence of ε-reduction. J

For logical piPTSs we need a somewhat sharpened version of the uniqueness of types
lemma.

I Lemma 27 (Uniqueness of types lemma).
1. In a functional piPTS, if Γ ` A : B and Γ ` A : B′ then B =βε B

′.
2. In a logical piPTS, if Γ `M1 : A1 and Γ `M2 : A2 and M1 =βε M2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.

Proof. We show the second point. The proof of the first point is similar but simpler,
and it is also completely analogous to the standard uniqueness of types proof for ordinary
functional PTSs.

So assume the piPTS is logical. First, we show the following condition (?).
(?) If Γ1 ` M1 : A1 and Γ2 ` M2 : A2 and M1 =ε M2 and Γ1 =ε Γ2 and M1 6→∗ε ε and

M2 6→∗ε ε then A1 =βε A2.
We proceed by induction on M1. We have the following possibilities.

M1 = s = M2. By the generation lemma there are s1, s2 ∈ S such that A1 =βε s1 and
A2 =βε s2 and (s, s1), (s, s2) ∈ A. Hence s1 = s2 because the piPTS is functional. Thus
A1 =βε A2.
M1 = x = M2. By the generation lemma there exist C1, C2 such that A1 =βε C1 and
A2 =βε C2 and (x : C1) ∈ Γ1 and (x : C2) ∈ Γ2. Since Γ1 =ε Γ2, we have C1 =ε C2.
Thus A1 =βε A2.
M1 = Πx : B1.C1 and M2 = Πx : B2.C2 with B1 =ε B2 and C1 =ε C2. By the
generation lemma there exist (s1, s2, s3), (s′1, s′2, s′3) ∈ R such that Γ1 ` B1 : s1 and
Γ1, x : B1 ` C1 : s2 and Γ2 ` B2 : s′1 and Γ2, x : B2 ` C2 : s′2 and A1 =βε s3 and
A2 =βε s

′
3. Note that B1 6→∗ε ε and B2 6→∗ε ε and C1 6→∗ε ε and C2 6→∗ε ε, by Lemma 96.

Hence, by the inductive hypothesis and the confluence of βε-reduction s1 = s′1 and
s2 = s′2. Thus s3 = s′3 because the piPTS is functional. Hence A1 =βε A2.
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M1 = λx : B1.N1 and M2 = λx : B2.N2 and B1 =ε B2 and N1 =ε N2. By the generation
lemma there exist s1, s2 ∈ S and C1, C2 such that Γi ` Bi : si and Γi, x : Bi ` Ni : Ci
and Ai =βε Πx : Bi.Ci. Note that Ni 6→∗ε ε because Mi 6→∗ε ε. Hence, by the inductive
hypothesis C1 =βε C2. Hence A1 =βε A2, because also B1 =ε B2.
M1 = N1N

′
1 and M2 = N2N

′
2 and N1 =ε N2 and N ′1 =ε N

′
2. By the generation lemma

there exist x1, x2, B1, B2, C1, C2 such that Γi ` Ni : (Πxi : Bi.Ci) and Γi ` N ′i : Bi and
N ′i ∼ xi and Ai =βε Ci[N ′i/xi]. Note that Ni 6→∗ε ε because Mi 6→∗ε ε. Hence, by the
inductive hypothesis Πx1 : B1.C1 =βε Πx2 : B2.C2. Thus x1 = x2 and C1 =βε C2 by
confluence of βε-reduction. Hence C1[N ′1/x1] =βε C2[N ′2/x2] by Corollary 91. Therefore
A1 =βε A2.

We have thus shown (?). Now assume Γ ` Mi : Ai and M1 =βε M2 and Mi 6→∗ε ε. By
confluence of βε-reduction and by Lemma 88 there are N1, N2 withMi →∗β Ni and N1 =ε N2.
By the subject reduction theorem Γ ` Ni : Ai. Because Mi →∗β Ni and Mi 6→∗ε ε, Lemma 86
implies that Ni 6→∗ε ε. Hence by (?) we obtain A1 =βε A2. J

I Lemma 99. In a logical piPTS, if Γ ` B : s and B =βε B
′ and Γ ` A′ : B′ then Γ ` B′ : s.

Proof. By the correctness of types lemma there are two cases.
B′ = s′. Then B →∗β s′ by confluence of βε-reduction and Lemma 19. Hence Γ ` s′ : s
by the subject reduction theorem, i.e., Γ ` B′ : s.
Γ ` B′ : s′. Note that B 6→∗ε ε and B′ 6→∗ε ε by Lemma 96. Hence, by the second point
of the uniqueness of types lemma and by confluence of βε-reduction s = s′. Therefore
Γ ` B′ : s. J

I Lemma 100. In a logical piPTS, if Γ `M : C : ∗p then M →∗ε ε.

Proof. Induction on M . We have the following cases.
M = s. By the generation lemma there is s′ ∈ S such that C =βε s

′. By confluence
of βε-reduction and Lemma 19 we have C →∗β s′. By the subject reduction theorem
Γ ` s′ : ∗p. This is a contradiction, because the piPTS is logical.
M = x. By the generation lemma there are s ∈ S and B such that B =βε C and Γ ` B : s
and (x : B) ∈ Γ and x ∈ V s. By Lemma 99 we obtain Γ ` C : s, and thus s = ∗p by the
uniqueness of types lemma. So x ∈ V ∗p . Hence M = x→ε ε.
M = Πx : A.B. By the generation lemma there is s′ ∈ S with C =βε s

′. Like in the case
M = s, using confluence of βε-reduction, Lemma 19 and the subject reduction theorem,
we derive a contradiction.
M = λx : A.N . By the generation lemma there are s ∈ S and B such that Γ ` (Πx :
A.B) : s and Γ, x : A ` N : B and C =βε Πx : A.B. By Lemma 99 we have Γ ` C : s,
and thus s = ∗p by the uniqueness of types lemma. Since Γ ` (Πx : A.B) : ∗p, by the
generation lemma there is (s1, s2, ∗p) ∈ R such that Γ, x : A ` B : s2. Because the piPTS
is logical s2 = ∗p. Hence Γ, x : A ` N : B : ∗p. By the inductive hypothesis N →∗ε ε.
Hence M = λx : A.N →∗ε λx : A.ε→ε ε.
M = M1M2. By the generation lemma there are A,B such that Γ `M1 : (Πx : A.B) and
Γ ` M2 : A and C =βε B[M2/x] and M2 ∼ x. By the correctness of types lemma and
the generation lemma there is (s1, s2, s3) ∈ R such that Γ ` (Πx : A.B) : s3 and Γ, x :
A ` B : s2. Since Γ `M2 : A and M2 ∼ x, by the substitution lemma Γ ` B[M2/x] : s2.
By Lemma 99 we have Γ ` C : s2, and thus s2 = ∗p by the uniqueness of types lemma.
Hence s3 = ∗p because the piPTS is logical. Thus Γ `M1 : (Πx : A.B) : ∗p, and by the
inductive hypothesis we conclude M1 →∗ε ε. Therefore M = M1M2 →∗ εM2 →ε ε. J

I Lemma 101. In a logical piPTS, if Γ `M : C and M →∗ε ε then Γ ` C : ∗p.
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Proof. Induction on M . There are three possibilities.
M = x ∈ V ∗p . By the generation lemma there exists B such that B =βε C and Γ ` B : ∗p.
By Lemma 99 we have Γ ` C : ∗p.
M = λx : A.M ′ with M ′ →∗ε ε. By the generation lemma there exist s ∈ S and B

such that Γ ` (Πx : A.B) : s and Γ, x : A ` M ′ : B and C =βε Πx : A.B. By the
generation lemma there is (s1, s2, s) ∈ R with Γ ` A : s1 and Γ, x : A ` B : s2. Since
Γ, x : A `M ′ : B and M ′ →∗ε ε, by the inductive hypothesis and the uniqueness of types
lemma we obtain s2 = ∗p. Because the piPTS is logical also s = ∗p. Then Γ ` C : ∗p by
Lemma 99.
M = M1M2 with M1 →∗ε ε. By the generation lemma there are A,B such that Γ `
M1 : (Πx : A.B) and Γ ` M2 : A and C =βε B[M2/x] and M2 ∼ x. By the inductive
hypothesis Γ `M1 : (Πx : A.B) : ∗p. By the generation lemma there is (s1, s2, ∗p) ∈ R
such that Γ ` A : s1 and Γ, x : A ` B : s2. Because the piPTS is logical, s2 = ∗p.
By the substitution lemma we thus obtain Γ ` B[M2/x] : ∗p. By Lemma 99 we have
Γ ` C : ∗p. J

I Theorem 30. Assume the piPTS is logical and M is a Γ-term. Then M is a Γ-proof if
and only if M →∗ε ε.

Proof. Follows from the correctness of types lemma, Lemma 96, Lemma 100 and Lemma 101.
J

I Lemma 31. In a logical piPTS, if M is a Γ-term and M =βε N and Γ ` N : s then
Γ `M : s.

Proof. By the correctness of types lemma either Γ `M : s′ or M = s′ for some s′ ∈ S. If
Γ ` M : s′ then M 6→∗ε ε and N 6→∗ε ε by Lemma 96, so s′ = s by the uniqueness of types
lemma and confluence of βε-reduction. If M = s′ then N →∗β M = s′ by confluence of
βε-reduction and Lemma 19. Hence Γ `M : s by the subject reduction theorem. J

I Lemma 102. In a logical piPTS, if M is a Γ-proof and Γ `M : A then Γ ` A : ∗p.

Proof. Since M is a Γ-proof, M →∗ε ε by Theorem 30. Hence Γ ` A : ∗p by Lemma 101. J

I Lemma 32. In a logical piPTS, if Γ `M : A and Γ, x : A is a legal context then M ∼ x.

Proof. Since Γ, x : A is a legal context, by the start lemma there is s ∈ S with x ∈ V s and
Γ ` A : s. First, assume s = ∗p. Since then Γ ` M : A : ∗p, the term M is a Γ-proof, and
thus M →∗ε ε by Theorem 30. So M ∼ x ∈ V ∗p . If s 6= ∗p then M is not a Γ-proof, by
Lemma 102 and the uniqueness of types lemma. Hence, then also M ∼ x ∈ V s. J

I Lemma 34. In a logical piPTS, Γ `− M : N is equivalent to Γ `M : N .

Proof. The implication from right to left follows by induction on the length of the derivation
of Γ `M : N . For the other direction we proceed by induction on the length of the derivation
of Γ `− M : N . Lemma 32 is needed to handle the application rule. J

B Proofs for Section 5

I Lemma 62.
1. If M �FΓ ϕ and Γ′ ⊇ Γ is a legal context then M �FΓ′ ϕ.
2. If M �CΓ t and Γ′ ⊇ Γ is a legal context then M �CΓ′ t.
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Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. We show a few cases. The other
cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` A : ∗p and A �FΓ ϕ1 and B �FΓ,x:A ϕ2. By
Corollary 28 we have x ∈ V ∗p . By the variable convention we may assume x /∈ dom(Γ′).
By the thinning lemma Γ′ ` A : ∗p. Hence Γ′, x : A ⊇ Γ, x : A is a legal context. So
B �FΓ′,x:A ϕ2 by the inductive hypothesis. Also A �FΓ′ ϕ1 by the inductive hypothesis.
Thus Πx : A.B �FΓ′ ϕ1 → ϕ2.
M = Πx : A.B �FΓ ∀x.T (x, t) → ψ = ϕ. Then Γ 0 A : ∗p and A �CΓ t and B �FΓ,x:A ψ.
By Corollary 28 we have x ∈ V s. By the variable convention we may assume x /∈ dom(Γ′).
Since Πx : A.B is a Γ-subject, by the correctness of types and the generation lemmas
Γ ` A : s for some s ∈ S. So Γ′ ` A : s by the thinning lemma. Hence Γ′, x : A ⊇ Γ, x : A
is a legal context. So B �FΓ′,x:A ψ by the inductive hypothesis. Also A �CΓ′ t by the
inductive hypothesis. We also have Γ′ 0 A : ∗p, because otherwise s = ∗p by the
uniqueness of types lemma. Thus Πx : A.B �FΓ′ ∀x.T (x, t)→ ψ.
M �CΓ ε and M is a Γ-proof. Then M is a Γ′-proof by the thinning lemma, so M �CΓ′ ε.
M = M1M2 �CΓ t1t2 = t and M1 �CΓ t1 and M2 �CΓ t2. We have Mi �CΓ′ ti by the
inductive hypothesis. Note that M is not a Γ′-proof, because otherwise M →∗ε ε by
Theorem 30 and thus M would also be a Γ-proof. Hence M1M2 �CΓ′ t1t2.
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] = t and Γ0 ` (λx : A.M ′) : B and Γ0 0 A : ∗p
and f = Λ1(x, r, t) and ~y = FV(r, t) \ {x} and Γ0  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. Then also Γ0  ~x, ~N,~t Γ′ by the definition of  . By the
variable convention we may assume x /∈ dom(Γ′), so Γ′, x : A[ ~N/~x] ⊇ Γ, x : A[ ~N/~x] is a
legal context. Thus A[ ~N/~x] �CΓ′ r[~t/~x] and M ′[ ~N/~x] �CΓ′,x:A[ ~N/~x] t[~t/~x] by the inductive
hypothesis. Additionally, like in the case M = M1M2, using Theorem 30 we conclude
that M is not a Γ′-proof. Hence M = (λx : A.M ′)[ ~N/~x] �CΓ′ (f~y)[~t/~x] = t. J

I Lemma 64. Assume N ∼ x. Then M →∗ε ε iff M [N/x]→∗ε ε.

Proof. By Lemma 16 we have nfε(M [N/x]) = nfε(M)[nfε(N)/x]. Thus if nfε(M) = ε then
also nfε(M [N/x]) = ε. Conversely, if nfε(M [N/x]) = ε and nfε(M) 6= ε then nfε(M) = x

and nfε(N) = ε. Then also x ∈ V ∗
p , because N ∼ x. This is impossible because then

x→ε ε. J

I Lemma 65. Assume Γ1 ` N : A and N �CΓ1
t and N ∼ y.

1. If M �FΓ1,y:A,Γ2
ϕ then M [N/y] �FΓ1,Γ2[N/y] ϕ[t/y].

2. If M �CΓ1,y:A,Γ2
u then M [N/y] �CΓ1,Γ2[N/y] u[t/y].

Proof. By induction on the definition of M �FΓ1,y:A,Γ2
ϕ and M �CΓ1,y:A,Γ2

u. Again, we
show a few cases.

Let Γ = Γ1, y : A,Γ2 and Γ′ = Γ1,Γ2[N/y]. Note that because we implicitly assume M
is a Γ-subject (Γ-proposition), by the substitution lemma M [N/y] is also a Γ′-subject (Γ′-
proposition). Also note that M is a Γ-proof iff M [N/y] is a Γ′-proof. Indeed, this follows
from Lemma 64 and Theorem 30.

M = Πx : C.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` C : ∗p and C �FΓ ϕ1 and B �FΓ,x:C ϕ2. By
the substitution lemma Γ′ ` C[N/y] : ∗p. By the inductive hypothesis C[N/y] �FΓ′ ϕ1[t/y]
and B[N/y] �FΓ′,x:C[N/y] ϕ2[t/y]. Hence (Πx : C.B)[N/y] = Πx : C[N/y].B[N/y] �FΓ′

ϕ1[t/y]→ ϕ2[t/y] = ϕ[t/y].
M is a Γ-proof and M �CΓ ε. Then by the substitution lemma M [N/y] is also a Γ′-proof.
Hence M [N/y] �CΓ′ ε.
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M = y �CΓ y = u. By the substitution lemma y is a Γ′-subject, so Γ′ is a legal context.
We also have N �CΓ1

t and Γ1 ⊆ Γ′. Hence M [N/y] = N �CΓ′ t = u[t/y] by Lemma 62.
M = M1M2 �CΓ u1u2 and M1 �CΓ u1 and M2 �CΓ u2. By the inductive hypothesis
Mi[N/y] �CΓ′ ui[t/y]. Recall that M [N/y] is not a Γ′-proof, by the discussion in the
second paragraph of the proof of this lemma. Therefore M [N/y] = M1[N/y]M2[N/y] �CΓ′

u1[t/y]u2[t/y] = u[t/y].
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] = u and Γ0 ` (λx : A.M ′) : B and Γ0 0 A : ∗p and
f = Λ1(x, r1, r2) and ~y = FV(r1, r2) \ {x} and Γ0  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r1[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] r2[~t/~x]. Then by definition also Γ0  ~x,y, ~N,N,~t,t Γ′. Moreover, we
obtain A[ ~N/~x][N/y] �CΓ′ r1[~t/~x][t/y] and M ′[ ~N/~x][N/y] �CΓ′,x:A[ ~N/~x][N/y] r2[~t/~x][t/y] by
the inductive hypothesis. Hence, recalling that M [N/y] is not a Γ′-proof,

M [N/y] = (λx : A.M ′)[ ~N/~x][N/y] �CΓ′ (f~y)[~t/~x][t/y] = u[t/y]. J

I Lemma 67. Assume y ∈ V ∗p .
1. If M �FΓ ϕ then y /∈ FV(ϕ).
2. If M �CΓ t then y /∈ FV(t).

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. Note that if y is a Γ-subject
then y is a Γ-proof, by the generation and start lemmas. Hence, the case M = y �CΓ y = t is
impossible. J

I Lemma 68.
1. If M �FΓ ϕ then FV(ϕ) = FV(nfε(M)).
2. If M �CΓ t then FV(t) = FV(nfε(M)).

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t, using Lemma 67. We show a few
cases. The other cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B �FΓ ϕ1 → ϕ2 = ϕ. Then Γ ` A : ∗p and A �FΓ ϕ1 and B �FΓ,x:A ϕ2.
By the inductive hypothesis FV(nfε(A)) = FV(ϕ1) and FV(nfε(B)) = FV(ϕ2). Note
that nfε(M) = Πx : nfε(A).nfε(B), so FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}).
Since Γ ` A : ∗p, we have x ∈ V ∗p by Corollary 28. Thus x /∈ FV(ϕ2) by Lemma 67, so
FV(ϕ2) = FV(nfε(B)) \ {x}. Hence FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}) =
FV(ϕ1) ∪ FV(ϕ2) = FV(ϕ).
M = Πx : A.B �FΓ ∀x.T (x, t) → ψ = ϕ. Then Γ ` A : ∗p and A �CΓ t and B �FΓ,x:A ψ.
By the inductive hypothesis FV(nfε(A)) = FV(t) and FV(nfε(B)) = FV(ψ). Note that
nfε(M) = Πx : nfε(A).nfε(B), so FV(nfε(M)) = FV(nfε(A)) ∪ (FV(nfε(B)) \ {x}) =
(FV(nfε(A))∪FV(nfε(B)))\{x} (by the variable convention we may assume x /∈ FV(A)).
Thus FV(ϕ) = (FV(t) ∪ FV(ψ)) \ {x} = FV(nfε(M)).
If M is a Γ-proof and M �CΓ ε = t, then nfε(M) = ε by Theorem 30, so FV(nfε(M)) =
FV(t).
M = x �CΓ x = t. Then M is not a Γ-proof, so nfε(x) = x by Theorem 30. Hence
FV(nfε(M)) = FV(t).
M = M1M2 �CΓ t1t2 = t and M1 �CΓ t1 and M2 �CΓ t2. In this case M is not
a Γ-proof, so M 6→∗ε ε. Hence nfε(M) = nfε(M1)nfε(M2). Thus FV(nfε(M)) =
FV(nfε(M1),nfε(M2)) = FV(t1, t2) = FV(t), using the inductive hypothesis.
M = (λx : A.M ′)[ ~N/~x] �CΓ (f~y)[~t/~x] and Γ′ ` (λx : A.M ′) : B and Γ′ 0 A : ∗p and
f = Λ1(x, r, t) and ~y = FV(r, t) \ {x} and Γ′  ~x, ~N,~t Γ and A[ ~N/~x] �CΓ r[~t/~x] and
M ′[ ~N/~x] �CΓ,x:A[ ~N/~x] t[~t/~x]. By the inductive hypothesis FV(nfε(A[ ~N/~x])) = FV(r[~t/~x])
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and FV(nfε(M ′[ ~N/~x])) = FV(t[~t/~x]). By the variable convention we may assume x /∈
FV(A,N1, . . . , Nn), so

FV(nfε(M)) = FV(nfε(λx : A[ ~N/~x].M ′[ ~N/~x]))
= FV(r[~t/~x], t[~t/~x]) \ {x}.

Let {xi1 , . . . , xik} = FV(r, t) ∩ {x1, . . . , xn} and let t′i = ti[ti+1/xi+1] . . . [tn/xn] for i =
1, . . . , n. We then have r[~t/~x] = r[t′i1/xi1 , . . . , t

′
ik
/xik ] and t[~t/~x] = t[t′i1/xi1 , . . . , t

′
ik
/xik ].

Thus

FV(r[~t/~x], t[~t/~x]) = (FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

).

Hence

FV(nfε(M)) = ((FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

)) \ {x}.

On the other hand, also t = (f~y)[~t/~x] = (f~y)[t′i1/xi1 , . . . , t
′
ik
/xik ] and ~y = FV(r, t) \ {x}.

By the inductive hypothesis FV(ti) = FV(nfε(Ni)), so x /∈ FV(ti). Hence also x /∈ FV(t′i).
Therefore

FV(t) = (FV(r, t) \ {x, xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t
′
ik

)
= ((FV(r, t) \ {xi1 , . . . , xik}) ∪ FV(t′i1 , . . . , t

′
ik

)) \ {x}
= FV(nfε(M)).

J

I Lemma 69. Assume Γ =ε Γ′.
1. If M �FΓ ϕ and M ′ �FΓ′ ϕ then M =ε M

′.
2. If M �CΓ t and M ′ �CΓ′ t then M =ε M

′.

Proof. Induction on the definition of M �FΓ ϕ and M �CΓ t. We show a few cases. The other
cases are similar, trivial, or follow directly from the inductive hypothesis.

M = Πx : A.B and M ′ = Πx : A′.B′ and ϕ = ϕ1 → ϕ2. Then A �FΓ ϕ1 and A′ �FΓ ϕ1
and B �FΓ,x:A ϕ2 and B′ �FΓ′,x:A′ ϕ2. By the inductive hypothesis A =ε A

′. Hence
Γ, x : A =ε Γ′, x : A′, so B =ε B

′ by the inductive hypothesis. Therefore M =ε M
′.

t = ε and M is a Γ-proof and M ′ is a Γ′-proof. By Theorem 30 we have M →∗ε ε and
M ′ →∗ε ε, so M =ε M

′.
t = t1t2 andM = M1M2 andM ′ = M ′1M

′
2 andMi �CΓ ti andM ′i �CΓ′ ti. By the inductive

hypothesis Mi =ε M
′
i . Hence M =ε M

′.
t = (f~y)[~t/~x] = (f ~y′)[~t′/~x′] and f = Λ1(x, r, u) = Λ1(x′, r′, u′) and ~y = FV(r, u)\{x} and
~y′ = FV(r′, u′) \ {x′} and M = (λx : A.B)[ ~N/~x] and M ′ = (λx : A′.B′)[ ~N ′/~x′] and there
is a bijection σ : V → V such that σ(y′i) = yi and σ(x′) = x and σ(r′) = r and σ(u′) =
u. We also have A[ ~N/~x] �CΓ r[~t/~x] and B[ ~N/~x] �CΓ,x:A[ ~N/~x] u[~t/~x] and A′[ ~N ′/~x′] �CΓ′

r′[~t′/~x′] and B′[ ~N ′/~x′] �CΓ′,x:A′[ ~N ′/~x′] u
′[~t′/~x′]. Let pi = ti[ti+1/xi+1] . . . [tn/xn] and

p′i = t′i[t′i+1/x
′
i+1] . . . [t′m/x′m]. We have

(f~y)[p1/x1, . . . , pn/xn] = (f ~y′)[p′1/x′1, . . . , p′m/x′m].

Without loss of generality we may assume that there is k ≤ n such that xi = yi and
x′i = y′i and pi = p′i for i ≤ k (this may be always achieved by taking the “missing” pis
(p′is) to be equal to yis (y′is)), and xi /∈ ~y = FV(r, u) \ {x} for i > k. We may also assume
there is k ≤ k′ ≤ m such that x′i = y′i for k < i ≤ k′ and x′i /∈ ~y′ = FV(r′, u′) \ {x′} for
i > k′. Then p′i = yi for k < i ≤ k′. Hence, in fact we may assume k = k′, by taking the
missing pis equal to yis.
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By the variable convention we may also assume x, x′ /∈ {x1, . . . , xn, x
′
1, . . . , x

′
m}. Hence

for i > k we have xi /∈ FV(r, u) and x′i /∈ FV(r′, u′). Recall that σ−1(yi) = y′i. Since also
pi = p′i and xi = σ(x′i) for i ≤ k:

r[~t/~x] = r[p1/x1, . . . , pk/xk]
= r[p′1/σ(x′1), . . . , p′k/σ(x′k)]
= σ−1(r)[p′1/x′1, . . . , p′k/x′k]
= r′[p′1/x′1, . . . , p′k/x′k]
= r′[~t′/~x′]

and

u[~t/~x] = u[p1/x1, . . . , pk/xk]
= u[p′1/σ(x′1), . . . , p′k/σ(x′k)]
= σ−1(u)[p′1/x′1, . . . , p′k/x′k]
= u′[p′1/x′1, . . . , p′k/x′k]
= u′[~t′/~x′].

So by the inductive hypothesis A[ ~N/~x] =ε A
′[ ~N ′/~x′] and thus also Γ, x : A[ ~N/~x] =ε

Γ′, x : A′[ ~N ′/~x′], so B[ ~N/~x] =ε B
′[ ~N ′/~x′] by applying the inductive hypothesis again.

This implies that M =ε M
′. J

I Lemma 74. Suppose Γ � ∆ and ∆Ax,∆ ` XQ1 . . . Qm : ψ, where each Qi is either an
individual term or a reconstructible proof term. Let Γ0 = x1 : A1, . . . , xn : An be such that
m = lenA(Γ0) and Γ,Γ0 is a legal context. If (X : γ) ∈ ∆Ax,∆ with ϕ �A

Γ;Γ0
γ, then there

exist N1, . . . , Nn and u1, . . . , un such that ψ = ϕ[~u/~x] and Γ,Γ0  ~x, ~N,~u Γ.

Proof. Induction on n. If n = 0 then m = 0 and ψ = ϕ, so we are done. Thus suppose
Γ0 = Γ′0, xn+1 : An+1.

First assume Γ,Γ′0 ` An+1 : s and s 6= ∗p. Then An+1 �CΓ,Γ′
0
t and ∀xn+1.T (xn+1, t)→

ϕ �A
Γ;Γ′

0
γ and lenA(Γ′0) = lenA(Γ0)− 2. Also

∆Ax,∆ ` XQ1 . . . Qm−2 : ∀xn+1.T (xn+1, r)→ ψ′

and Qm−1 = un+1 is an individual term and Qm = D is a reconstructible proof term such that
∆Ax,∆ ` D : T (un+1, r) and ψ = ψ′[un+1/xn+1]. By the inductive hypothesis there exist
N1, . . . , Nn and u1, . . . , un such that r = t[~u/~x] and ψ′ = ϕ[~u/~x] and Γ,Γ′0  ~x, ~N,~u Γ. Then
Γ,Γ0  ~x, ~N,~u Γ, xn+1 : An+1[ ~N/~x] by Lemma 60. Also An+1[ ~N/~x] �CΓ r by Corollary 66.
Since Γ,Γ′0 ` An+1 : s, we have Γ ` An+1[ ~N/~x] : s by Lemma 61. Because we also have
∆Ax,∆ ` D : T (un+1, r) and D is reconstructible, by 2 in Definition 73 there is Nn+1
with Nn+1 �CΓ un+1 and Γ ` Nn+1 : An+1[ ~N/~x]. Also Nn+1 ∼ xn+1 by Lemma 32.
Thus Γ,Γ0  ~x,xn+1, ~N,Nn+1,~u,un+1

Γ by definition of  . Moreover, ψ = ψ′[un+1/xn+1] =
ϕ[u1/x1] . . . [un+1/xn+1].

Now assume Γ,Γ′0 ` An+1 : ∗p. Then An+1 �FΓ,Γ′
0
ϕ′ and ϕ′ → ϕ �A

Γ;Γ′
0
γ and lenA(Γ′0) =

lenA(Γ0)− 1. Also

∆Ax,∆ ` XQ1 . . . Qm−1 : α→ ψ

and Qm = D is a reconstructible proof term such that ∆Ax,∆ ` D : α. By the inductive
hypothesis there are N1, . . . , Nn and u1, . . . , un such that α = ϕ′[~u/~x], ψ = ϕ[~u/~x] and
Γ,Γ′0  ~x, ~N,~u Γ. Then Γ,Γ0  ~x, ~N,~u Γ, xn+1 : An+1[ ~N/~x] by Lemma 60. Also An+1[ ~N/~x] �FΓ
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ϕ′[~u/~x] = α by Corollary 66. Since Γ,Γ′0 ` An+1 : ∗p, we have Γ ` An+1[ ~N/~x] : ∗p
by Lemma 61. Because we also have ∆Ax,∆ ` D : α and D is reconstructible, by 1 in
Definition 73 there is Nn+1 with Γ ` Nn+1 : An+1[ ~N/~x]. Because Nn+1 is a Γ-proof, we
have Nn+1 �CΓ ε. Also Nn+1 ∼ xn+1 by Lemma 32. Thus Γ,Γ0  ~x,xn+1, ~N,Nn+1,~u,ε

Γ
by definition of  . Moreover, because xn+1 ∈ V ∗

p we have xn+1 /∈ FV(ψ), and thus
ψ = ϕ[u1/x1] . . . [un/xn][ε/xn+1]. J
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Abstract
This paper gives a comprehensive and coherent view on permutability in the intuitionistic sequent
calculus with cuts. Specifically we show that, once permutability is packaged into appropriate
global reduction procedures, it organizes the internal structure of the system and determines
fragments with computational interest, both for the computation-as-proof-normalization and the
computation-as-proof-search paradigms. The vehicle of the study is a λ-calculus of multiary
proof terms with generalized application, previously developed by the authors (the paper argues
this system represents the simplest fragment of ordinary sequent calculus that does not fall into
mere natural deduction). We start by adapting to our setting the concept of normal proof,
developed by Mints, Dyckhoff, and Pinto, and by defining natural proofs, so that a proof is
normal iff it is natural and cut-free. Natural proofs form a subsystem with a transparent Curry-
Howard interpretation (a kind of formal vector notation for λ-terms with vectors consisting of
lists of lists of arguments), while searching for normal proofs corresponds to a slight relaxation
of focusing (in the sense of LJT). Next, we define a process of permutative conversion to natural
form, and show that its combination with cut elimination gives a concept of normalization for
the sequent calculus. We derive a systematic picture of the full system comprehending a rich
set of reduction procedures (cut elimination, flattening, permutative conversion, normalization,
focalization), organizing the relevant subsystems and the important subclasses of cut-free, normal,
and focused proofs.
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1 Introduction

Traditionally, the sequent calculus is associated with the computation-as-proof-search
paradigm [16], but progress in the understanding of the Curry-Howard correspondence
showed that sequent calculus has a lot to offer to the computation-as-proof-normalization
paradigm as well, from alternative λ-term representations which are useful for machine hand-
ling [12, 2] to logical foundations for evaluation strategies [3, 24]. Nevertheless, the mentioned
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LJT cut−free

perm.convs.
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nat.ded.

focused
cut−free normal

∼=oo normal
(nat.ded.)

∼=oo

Figure 1 The cut-free setting.

progress has been slow: even if we are not anymore in the situation where textbooks had
almost nothing to report about Curry-Howard for sequent calculus [11, 22, 18], it seems basic
discoveries are still being made after decades of investigation [1, 5].

One source of difficulties in completing the Curry-Howard interpretation of sequent
calculus and cut-elimination is the phenomenon of permutability of inferences [14], which
sometimes is dubbed “bureaucracy”. Permutability can be faced with several attitudes:
either by decreeing Curry-Howard for sequent calculus an outright impossibility [11]; or by
regarding the sequent calculus as meta-notation for alternative, supposedly permutation-free
formalisms, like natural deduction [19] or proof nets [10]; or by restricting one’s attention to
permutability-free fragments of sequent calculus - cf. the flourishing area of focusing [15, 21].

In this paper we face permutability squarely, in the context of intuitionistic propositional
logic, for a simple and standard sequent calculus including cut, the latter system presented
as a typed λ-calculus, and we show that the (perhaps dull) complexity engendered by
permutability can be tamed and organized appropriately and meaningfully, in a way that
enlightens the internal structure and the computational interpretation of the entire sequent
calculus.

Our starting point is the familiar situation in the cut-free setting, depicted in Fig. 1:
there is a set of permutation-free proofs, named normal by Mints [17], which are in 1-1
correspondence with normal natural deductions; in addition [4]: (i) normal derivations are
normal (i.e. irreducible) w.r.t. a rewriting system of permutative conversions; (ii) normal
derivations are in 1-1 correspondence with cut-free LJT -proofs (that is, cut-free λ-terms
[12]). So permutation-freeness has a privileged relationship with natural deduction (as we
already knew since Zucker [25]); and, in this setting, permutation-freeness is indistinguishable
from focusedness (in the sense of LJT ).

What is the high-level lesson of this situation? Permutability can be organized into a
reduction procedure determining a class of normal forms which are meaningful both for
functional computation and for proof-search. Shorter: if permutability of inferences is
packaged into a global reduction procedure, it becomes an organizing tool at the macro level
that brings out meaning.

In this paper, guided by this heuristic, we move to the cut-full setting. Needless to say,
the situation becomes rather more complex, as cut-elimination is present and potentially
interacts with permutability, we have to deal with (sub)systems of the full rewriting system
rather than classes of normal forms, and desirably the familiar cut-free situation falls out as
a corollary of the cut-full picture.

In a nutshell, these are our results: we adapt to our setting the notion of normal proof
[17, 4] and pin down the bottom-up proof-search procedure it determines, which is a slight
relaxation of focusing; we introduce a permutation-free notion of natural proof so that a proof
is normal iff it is natural and cut-free; we prove natural proofs are closed for cut-elimination,
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constituting a subsystem with a transparent Curry-Howard interpretation; we prove natural
proofs are the normal forms w.r.t. a certain permutative conversion γ; we give a systematic
description of the internal structure of the sequent calculus we consider in terms of the two
“bureaucratic” conversions: the conversion γ, and another conversion named µ, which, among
other things, is the bridge between natural proofs and focused proofs; we investigate the
commutation between the (macro level) reduction procedures and this allows us to identify a
normalization procedure on the set of all sequent calculus proofs, for which the normal proofs
are the irreducible forms, and which is a combination of cut-elimination and permutative
conversion.

Technical overview. In order to isolate the syntactic difficulties caused by permutability, we
reduce the logical apparatus to a minimum: intuitionistic implication is the single connective
studied, and the sequent calculus analyzed is designed to be the simplest one that goes
beyond natural deduction with general elimination rules [23] (i.e. beyond the λ-calculus with
generalized application ΛJ [13]). Quite conveniently, the resulting system is precisely the
λJm-calculus introduced by two of the authors [8, 9] and further studied in [6] - a system
which may be seen as the “multiary” [20] version of ΛJ . Multiarity just means that the
generalized application constructor handles a non-empty list of arguments, thus ΛJ may be
recast as the unary fragment λJ, where the list of arguments is singular [9]; but multiarity
engenders the mentioned conversion µ, firstly introduced in [20] as a technical tool in a
termination argument, which turns out to play a crucial role in the description of the internal
structure of λJm and its subtle connection with natural deduction [8, 6].

In extending the situation in Fig. 1 to the cut-full setting, we have to avoid an immediate
pitfall: to consider an excessively narrow class of derivations possibly containing cuts.
Ordinary cut-free derivations may be seen as fully-normal natural deductions with general
application [23]. So, if we merely “close under substitution” such derivations, we end up with
natural deduction, or the ΛJ-calculus [13]. Similarly, if we merely add appropriate cut-rules
to LJT , we end up with some variant of the λ-calculus [12]. We do something different:
we recast in λJm (a system designed to not fall in mere natural deduction) the situation
in Fig. 1, and the result is illustrated in Fig. 2. In λJm, natural deduction and LJT are
captured internally1, and the normal derivations of [17, 4] are just the unary case of a more
general concept of normal derivation, which is studied here for the first time, as it escaped
the catalogue of normal forms in [6].

In fact, we will rather develop Fig. 3, concerning the cut-full setting, and extract Fig. 2 as
a corollary, given that cut-elimination links each system in Fig. 3 to a corresponding class in
Fig. 2. Specifically: Section 3 defines and studies natural derivations and how they define a
subsystem λnm with clear computational interpretation. This includes studying the cut-free
natural (=normal) derivations, in particular in their relation to focused proofs. Section 4
goes beyond the permutation-free fragment λnm, and studies permutative conversion γ, for
which the natural proofs are the irreducible forms. This includes studying the interaction

1 This is in contrast with [4], where natural deduction, LJT and sequent calculus are three different
systems - this is why in Fig. 1 we see the curved borders, while in Fig. 2 these borders disappear, their
location being memorized with dotted lines. Beware that there are several inclusion that hold in Fig. 2,
since all classes live in the same system: the class of unary cut-free (resp. unary normal) derivations
is included in the class of cut-free (resp. normal) derivations; and normal natural deductions are a
subclass of unary cut-free derivations (∼= fully normal natural deductions with general eliminations).
Such inclusions are not depicted to avoid clutter and because they are not witnessed by reduction rules
of λJm. The map denoted with a dashed line is not a mere inclusion, but is not studied in this paper.
Similar remarks apply as well to Fig. 3.
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Figure 2 The cut-free setting in the multiary calculus λJm (classes and maps).
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Figure 3 The cut-full setting in the multiary calculus λJm (calculi and morphisms).

of γ with cut-elimination, which leads to the definition of normalization in λJm. Section 2
recapitulates λJm, while Section 5 concludes.

2 The sequent calculus λJm

In the first subsection we recall λJm, while in the second we argue why λJm is a simple
and standard presentation of the intuitionistic sequent calculus.

2.1 A recapitulation of λJm
Proof expressions and typing. Expressions E are generated by the following grammar:

(proof terms) t, u, v ::= x | λx.t | ta
(gm-arguments) a ::= (u, l, c)

(lists) l ::= u :: l | []
(continuations) c ::= (x)v

We will just say “term” instead of “proof term”. A value V is a term of the form x or λx.t.
The word “continuation” is chosen for its intuitive appeal, with no connection with technical
meanings of the word intended.2

2 In the previous publications on λJm, the system was presented with two syntactic classes only: terms
and lists. In fact, since continuations are generated by a single constructor and used only once in the
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x :A,Γ`x :A Axiom
x :A,Γ` t :B

Γ`λx.t :A ⊃ B Right

Γ` t :A ⊃ B Γ;A ⊃ B`a :C
Γ` ta :C Cut

Γ`u :A Γ;B` l :C Γ|C`c :D
Γ;A ⊃ B`(u, l, c) :D

Leftm

Γ;C` [] :C Ax
Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C Lft

x : C,Γ`v :D
Γ|C`(x)v :D Select

Figure 4 Typing rules for λJm.

We identify simple types with formulas of intuitionistic, propositional, implicational logic.
They are ranged over by A, B, C, D. If B = B1 ⊃ · · · ⊃ Bn (n ≥ 1) then we say C is a suffix
of B if C = Bj ⊃ · · · ⊃ Bn, for some 1 ≤ j ≤ n. Contexts Γ are sets of variable declarations
x : A, with at most one declaration per variable. The typing rules are in Fig. 4. They handle
four kinds of sequents, one per syntactic class:

(i) Γ` t :A (ii) Γ;A ⊃ B`a :D (iii) Γ;B` l :C (iv) Γ|C`c :D . (1)

In the sequents of kinds (ii) and (iii), the distinguished formula on the left hand side (the
formula separated by ;) is main in the last inference, whereas in the sequents of kind (iv)
the distinguished formula C is merely selected from the context. In addition, in a derivable
sequent of kind (iii), C is a suffix of B.

Inference rule Lft is a special left-introduction rule, because its right premiss is a sequent
of kind (iii): this implies that B = B1 ⊃ · · · ⊃ Bm ⊃ C, for some m ≥ 0, and the referred
premiss is the conclusion of a chain of m other Lft inferences. There is another primitive left
introduction rule, Leftm, the single rule for typing gm-arguments. Since its middle premiss
is a sequent of kind (iii), the main formula of Leftm has the form A ⊃ B1 ⊃ · · · ⊃ Bm ⊃ C,
for some m ≥ 0, and is obtained after a sequence of m+ 1 left introductions. We call Leftm
a multiary left-introduciton rule, while its particular case where the middle premiss is the
conclusion of Ax, m = 0, l = [], and B = C may be called a unary left introduction.

In Γ;A ⊃ B ` a : D, with a = (u, l, c), and Γ;A ⊃ B ` l′ : C, the formula A ⊃ B is
introduced linearly, i.e without contraction, in the last inference; the difference between the
two sequents is that C is a suffix of B, whereas the same is not true of D, unless c = (x)x.
The trivial cut xa gives name x to the formula A ⊃ B: we have the admissible rules

Γ;A ⊃ B`a :D
Γ`xa :D Unselect

Γ`u :A Γ;B` l :C Γ|C`c :D
Γ`x(u, l, c) :D

where (x : A ⊃ B) ∈ Γ. So xa represents simultaneously an inference that “unselects” an
antecedent formula, and a form of left introduction without linearity constraint.

If x /∈ a and t = xa we say x is main and linear in the application t (abbreviation
mla(x, t)). In that case, c = (x)xa represents an argument a coerced to a continuation. The

grammar (in the formation of gm-arguments), they could easily be dispensed with; and the very same
holds of gm-arguments. However, the separation into finer classes gives more flexibility. This flexibility
is a convenience, as quite often we can avoid writing the entire expression t(u, l, (x)v) - see e.g. the
simpler definition of reduction rules π and µ; but such flexibility is also a necessity - see the particular
form of continuations (called pseudo-lists) extensively studied in the next section.
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10:6 Permutability in Proof Terms for Intuitionistic Sequent Calculus with Cuts

admissible typing rule is

Γ;A ⊃ B`a :D
Γ|A ⊃ B`(x)xa :D due to

Γ;A ⊃ B`a :D
x : A ⊃ B,Γ;A ⊃ B`a :D Weak

x : A ⊃ B,Γ`xa :C Unselect

Γ|A ⊃ B`(x)xa :D Select (2)

where (x : A ⊃ B) /∈ Γ. In the first figure we see that the distinguished position in the
l.h.s. is changed, losing the information about linearity. In general, there is no coercion of a
continuation to an argument or list. As hinted above, a non-empty list u :: l can be coerced
to an argument (u, l, (x)x) (and then to a continuation). A direct “coercion” of a list to a
continuation is given by []\ = (x)x and (u :: l)\ = (x)x(u, [], l\), with x /∈ u, l. The admissible
typing rule is

Γ;B` l :C
Γ|B` l\ :C (3)

Derived syntax. In order to formulate the reduction rules, we have to introduce some
derived syntactic operations. A familiar one is ordinary substitution of variables by terms,
denoted s(t, x, E). It is becoming increasingly clear [12, 5] (and this paper just confirms this)
that mechanisms of vectorization of arguments for functional applications are at the heart
of the computational interpretation of sequent calculus. Here is a careful definition of the
append operations in λJm:

I Definition 1 (Append operations).
1. The term t@a is defined by V@a = V a if V is a value; and by (ta′)@a = t(a′@a).
2. The argument a′@a is defined by (u, l, c)@a = (u, l, c@a).
3. The continuation c@a is defined by ((x)v)@a = (x)(v@xa).
4. The term v@xa is defined by (xa′)@xa = x(a′@a) if x /∈ a′; and by v@xa = va, otherwise.
5. The continuation c@c′ is defined by: ((x)x)@c′ = c′; ((x)x(u, l, c))@c′ = (x)x(u, l, c@c′),

if x /∈ u, l, c; and ((x)v)@c′ = (x)(v@c′), otherwise.
6. The term t@c is defined by t@(x)v = s(t, x, v).
7. The list l@l′ is defined by []@l′ = l′ and (u :: l)@l′ = u :: (l@l′).

Some immediate comments about these append operators: t@a will be used in the
definition of a special substitution operator (Def. 39 in Section 4); v@xa is used in the
definition of c@a, and the idea goes back to [8]; a@a′ allows a very short definition of the
reduction rule π; c@a is used in the definition of a@a′; c@c′ will allow the definition of L@L′
in Section 3; l@l′ is necessary for the definition of reduction rule µ.

Recall that an argument a can be “coerced” to a continuation (z)za, if z /∈ a. The next
lemma shows c@a could have been defined via c@c′.

I Lemma 2 (Coherence of append).
1. c@a = c@(z)za, if z /∈ a.
2. (x)(v@xa) = ((x)v)@(z)za, if x, z /∈ a.

Proof. By simultaneous induction on c and v. It is interesting to see how the various
definitions in Def. 1 cooperate to produce the result. J

I Lemma 3 (Admissible typing rules). The typing rules in Fig. 5 are admissible.
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Γ` t :A ⊃ B Γ;A ⊃ B`a :C
Γ` t@a :C (i)

Γ;A ⊃ B`a′ :C1 ⊃ C2 Γ;C1 ⊃ C2`a :D
Γ;A ⊃ B`a′@a :D

(ii)

Γ|A`c :B1 ⊃ B2 Γ;B1 ⊃ B2`a :C
Γ|A`c@a :C

(iii) x : D,Γ`v :A ⊃ B Γ;A ⊃ B`a :C
x : D,Γ`v@xa :C (iv)

Γ|C`c :D Γ|D`c′ :E
Γ|C`c@c′ :E

(v) Γ` t :A Γ|A`c :B
Γ` t@c :B (vi)

Γ` t :A Γ, x : A`v :B
Γ`s(t, x, v) :B

(vii)

Γ;A` l :B Γ;B` l′ :C
Γ;A` l@l′ :C

(viii)

Figure 5 Typing rules for derived syntactic operators.

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, u′ :: l, c) → (s(u, x, t))(u′, l, c)
(π) (ta)a′ → t(a@a′)
(µ) (u, l, (x)x(u′, l′, c′)) → (u, l@(u′ :: l′), c′), if x 6∈ u′, l′, c′

Figure 6 Reduction rules of λJm.

Proof. Rule (i) follows immediately from rule (ii). Rules (ii), (iii) and (iv) are proved by
simultaneous induction on a′, c and v. Rule (vi) follows immediately from rule (vii). Rule
(vii) is proved together with similar statements for a, l and c by simultaneous induction. Rule
(v) follows by induction on c with the help of rule (vi). Rule (viii) is proved by induction
on l′. J

So, every derived syntactic operator is typed with a corresponding variant of the cut rule,
and each such operator is the term representation of the operation on derivations produced
by the elimination of the corresponding cut. Such operations on derivations may be extracted
from the proof of the previous lemma. All of them, except for the cuts (v), (vi) and (vii),
consist in permuting the cut to the left, as long as this is made possible by the repetition
of the cut formula; for cuts (vi) and (vii) the corresponding operation performs a similar
permutation to the right; for cut (v) the operation is an hybrid of permutation to the left
and to the right.

Reduction rules. The reduction rules of λJm are given in Fig. 6. All rules but µ are
relations on terms, while µ is a relation on arguments. We let β := β1 ∪ β2. Rule µ is the
“abbreviation” conversion due to [20]. Rule π of this paper is not the “lazy” variant of [8, 9],
where argument a′ is appended to argument a in a stepwise fashion, but rather corresponds
to the rule π′ of the cited papers. This is due to the definition of v@xa, which is not merely
va, but instead triggers a new appending process in some cases.3 See some remarks about
the computational interpretation of these rules after Lemma 4.

The compatible closure→R of a reduction rule R is obtained by closing R under the rules
in Fig.74. We use the notations →=

R, →
+
R, and →∗R to denote the reflexive, the transitive,

3 In ΛJ [13] rule π is also of the “lazy” kind.
4 This detailed naming of the closure rules will be intensively used in Section 3, where we will consider

alternative notions of compatible closure.

TYPES 2016
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t→ t′

λx.t→ λx.t′
(I) t→ t′

ta→ t′a
(II) a→ a′

ta→ ta′
(III)

u→ u′

(u, l, c)→ (u′, l, c)
(IV ) l→ l′

(u, l, c)→ (u, l′, c)
(V ) c→ c′

(u, l, c)→ (u, l, c′)
(V I)

u→ u′

u :: l→ u′ :: l
(V II) l→ l′

u :: l→ u :: l′
(V III) v → v′

(x)v → (x)v′
(IX)

Figure 7 Compatible closure.

and the reflexive-transitive closure of →R, respectively. If R = R1 ∪R2, →R can be denoted
→R1R2 (e.g. →βπ). A R-normal form (or R-nf, for short) is an expression E such that
E →R E′ for no E′. When existing, we write ↓R (E) to denote the unique R-nf of an
expression E.

The following result will be important later, and closes the discussion of derived syntax.

I Lemma 4 (Associativity of append).
1. (t@a)@a′ →=

π t@(a@a′) and (t@xa)@xa
′ →=

π t@x(a@a′).
2. (a@a′)@a′′ →=

π a@(a′@a′′).
3. (c@a)@a′ →=

π c@(a@a′).

Proof. By simultaneous induction in t, a and c. Everything follows from definitions and IHs,
except in the single case where π-steps are generated, which is this: suppose t is neither x
nor xa with x /∈ a. Then (t@xa)@xa

′ = (ta)a′ →π t(a@a′) = t@x(a@a′). J

Cut-elimination and computational interpretation. Rules β and π define a cut-elimination
procedure in λJm, whose purpose is not to eliminate all cuts ta, but rather to reduce them
to the form xa: as seen above, xa represents a left introduction, not a cut to be eliminated.
Still, we refer to βπ-nfs as cut-free. A cut ta is necessarily principal on the right premiss, so
its elimination starts by analyzing the left premiss t. If t is not a variable, then either it is
another cut (in which case the original cut ta is permutable to the left, and a π-redex), or it
is a λ-abstraction (in which case the cut is principal in both premisses, and a β-redex). Rule
π performs left permutation, while rule β performs the key step of cut-elimination, breaking
the cut into two cuts with simpler cut-formulas. If any of these two cuts is permutable to the
right, it is not formed, but rather eliminated immediately, and represented by a substitution.

In a µ-redex we find a continuation c = (x)xa′ with x /∈ a′, which represents a derivation
of the form found in the right figure of (2), where a formula is selected immediately after
being “unselected”. The redex itself is a sequence of two Leftm inferences, with the first,
represented by a′, being coerced to a continuation c, before being used in the second Leftm
inference (u, l, c). In addition, xa′ represents a left introduction with the principal formula
being introduced linearly, due to the proviso x /∈ a′. The construction u′ :: l′ found in the
contractum of rule µ represents a linear left introduction by alternative and more primitive
means, dispensing with the temporary name x, and eliminating the described sequence of
inferences.

We also refer to ta as a generalised, multiary application (or gm-application for short), and
think of λJm as a λ-calculus with themultiarity and generality features. In ta, t is the function
expression, a is its gm-argument. A gm-argument consists of a first ordinary argument u,
a list l of further ordinary arguments l (the multiarity feature), and a “continuation” c,
indicating where to substitute the result of passing the last argument (the generality feature).
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This interpretation follows from the reduction rules β1 and β2. A π-redex is an iterated
gm-application. Contrary to ordinary arguments in, say, the λ-calculus, gm-arguments can
be appended and the function expression simplified - this is the effect of the π-reduction.
In a µ-redex, the generality feature is being used just to “link” two lists of arguments. The
effect of the µ-reduction is to append these two lists. In the sequel, these interpretation of
π and µ will be specialized to a fragment of λJm; there, it will become appropriate to call
µ-nfs flat expressions, and to call µ-normalization flattening. We adopt such terminology for
the entire λJm. For instance, µ-nfs constitute a subsystem of λJm [8]; we call it the flat
subsystem.

Properties. The meta-theory of λJm is well developed, we just recall the results we need
below. Some proofs have to be adapted to cover the variant of π we employ here.

I Theorem 5 (Confluence and SN). In λJm, βπ- and βπµ-reductions are confluent, and
βπµ-reduction is SN on typable expressions.

Proof. The existing proofs are easily adapted. J

In isolation, µ-reduction is easily seen to be confluent and terminating [8, 9]. The µ-nf of
an expression E, µ(E), is defined by recursion on E, with all clauses given homomorphicaly,
except in the following case: if µv = x(u′, l′, (y)v′) and x /∈ u′, l′, v′, then µ(t(u, l, (x)v)) =
µt(µu, µl@(u′ :: l′), (y)v′).

I Lemma 6 (Preservation of cut-freeness by µ-reduction). In λJm, if t is a βπ-nf and t→µ t
′,

then t′ is a βπ-nf.

Proof. Easy induction on t→µ t
′. J

This lemma says µ-reduction preserves cut-freeness. Conversely, neither β-reduction nor
π-reduction preserve µ-normality. Given a reduction rule R, by R′-reduction we will mean
R-reduction followed by reduction to µ-nf.

I Theorem 7 (Preservation of reduction by µ). In λJm:
1. If t→β t

′ then there exists t′′ s.t. µ(t)→β t
′′ →∗µ µ(t′).

2. If t→π t
′ then there exists t′′ s.t. µ(t)→π t

′′ →∗µ µ(t′).

Proof. Statement 1 of the previous theorem is already used in [8] (Lemma 5), while statement
2 is also present in [8] (Lemma 7), but only for the terms in the λJ-subsystem. J

Subsystems. A λm-expression is a λJm-expression where all gm-applications have the
form t(u, l, (x)x), a form which we abbreviate as t(u, l) and call multiary application. Based
on such expressions one defines a subsystem λm of λJm: the expressions are µ-nfs; they are
closed for β; they are not closed for π, but we return to the subsystem by post-composition
with µ-normalization. The reduction rules of λm are given in Fig. 8. The λm-calculus is a
variant of the λ-calculus, called the multiary λ-calculus, or λm-calculus, where functions are
applied to non-empty lists of arguments. The rules βi pass to the function the first argument,
adjusting the remainder of the list, while rule π′ appends lists of arguments. The λm is also
a variant of the λ-calculus [12]. The normal forms of λm are either x, λx.t or x(u, l), which
are a variant of the cut-free λ-terms, and represent the cut-free LJT derivations. For this
reason λm is also the focused subsystem of λJm.

A λJ-expression is a λJm-expression where all gm-applications have the form t(u, [], (x)v)
(hence, just one argument u), a form which we abbreviate as t(u, (x)v) and call generalized
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(β1) (λx.t)(u, []) → s(u, x, t)
(β2) (λx.t)(u, u′ :: l) → s(u, x, t)(u′, l)
(π′) t(u, l)(u′, l′) → t(u, l@(u′ :: l′))

Figure 8 The reduction rules of the multiary λ-calculus λm.

application. Such expressions define the unary subsystem λJ of λJm, as they are closed
for β1 and π. This is a copy, inside λJm [9], of natural deduction with general elimination
rules [23], or rather its presentation as the typed λ-calculus ΛJ [13]. Conversely, λJm is a
generalization of λJ obtained by allowing the left-introduction rule Lft, or constructor u :: l.
This is a small difference with numerous consequences: reduction rules β and π of ΛJ have
to be taken in a multiary form, and two new reduction rules, β2 and µ, appear; lists are not
restricted to [], so the syntactic class of lists, as well as the third form of sequents Γ;B` l :C,
are not degenerate. So λJm is a system that goes slightly but decisively beyond natural
deduction.

2.2 Why λJm?
We choose to base on λJm our study of permutability in the sequent calculus. Before we
proceed, we would like to justify our choice. The justification has two parts. First, we give a
fresh explanation of the place of λJm among possible formulations of the sequent calculus,
trying to dissipate some misunderstandings. Second, we explain our methodology in the
study of permutability, and why λJm is an adequate tool for that methodology.

Understanding λJm. Given that λJm captures several known systems as subsystems, one
might have the impression that λJm is some ad hoc gluing. Of course we think otherwise,
and would like to argue that λJm is rather a standard and important fragment of sequent
calculus. Actually, this has been argued technically elsewhere [7], but the sceptical reader
may object against the formulations of the sequent calculus with which λJm is compared in
op. cit. So, here we formulate ordinary sequent calculus as a λ-calculus named λLJ, and
show what fragment of this calculus λJm corresponds to.

The proof expressions of λLJ are given by the following grammar:

(LJ-proof terms) t, u, v ::= x | λx.t | x̂ (u; c) | tc
(LJ-continuations) c ::= (x)v

The various term forms represent, respectively, the inference rules axiom, right introduction,
left introduction, and cut; the continuation (x)v represents a selection. Separating the class of
continuations is convenient, as they are used twice in the grammar of terms. The formulation
of the system as a typing system is quite obvious, here are most of the rules:

Γ`u :A Γ|B`c :C
Γ` x̂ (u; c) :C

((x : A ⊃ B) ∈ Γ) Γ` t :A Γ|A`c :B
Γ` tc :B

x : B,Γ`v :C
Γ|B`(x)v :C

We will specify a subset of the set of LJ-terms, whose elements are called Jm-terms,
by imposing two restrictions. The first restriction is that no Jm-term has the third form,
corresponding to a left introduction. One reason for this is that we want a term to be
either a value (variable or abstraction) or a single other form: having to sacrifice either left
introduction or cut, there is no doubt the first form is the chosen to be sacrificed, since cuts
represent computation, and can mimic left introductions.



J. Espírito Santo, M. J. Frade, and L. Pinto 10:11

This first restriction on terms determines three subsets of the set of LJ-continuations: (i)
Jm-continuations (x)v, where v is a Jm-term; (ii) LJ-continuations of the form (x)x̂ (u; c′),
to be called Jm-arguments, where x /∈ u, c′, and u is a Jm-term, and c′ is to be specified
soon; (iii) the union of these two subsets, to be ranged over by k, whose elements are to be
called Jm-contexts. Notice a Jm-argument (x)x̂ (u; c′) is not a Jm-continuation, because
x̂ (u; c′) is not a Jm-term.

We have to specify which class c′ in Jm-arguments belongs to; and the same is true of
Jm-cuts, terms of the form tc′′ with t a Jm-term and c′′ to be specified now. We impose
(and this is the second restriction on terms) c′′ to be a Jm-argument: this implies that
a Jm-cut is right-principal and a generalized form of function application, and that the
cut-formula is an implication; this also justifies the terminology “Jm-argument”. As to c′:
(i) imposing it to be a Jm-argument is not an option, otherwise the inductive definition of
Jm-arguments would not have a base case; (ii) imposing it to be a Jm-continuation is not
an option either, as otherwise Jm-terms would be isomorphic to ΛJ-terms, and the fragment
would be equivalent to natural deduction; (iii) so we have to choose c′ to be a Jm-context.
Therefore, a Jm-argument is a LJ-continuation of the form (x)x̂ (u; k), where x /∈ u, k, and
u is a Jm-term and k is a Jm-context. A Jm-argument (x)x̂ (u; k) is abbreviated (u, k).

Summing up: the sets of Jm-terms, arguments, contexts, and continuations are given by

t, u, v ::= x | λx.t | ta a ::= (u, k) k ::= a | c c ::= (x)v (4)

We now see this syntax is a formulation of λJm, let us call it the first formulation.
In fact, the syntax of λJm has many equivalent formulations. From (4) we can dispense

with the class of arguments: cuts become t(u, k) and contexts are given by k ::= (u, k) | c.
This second formulation was used in [7]. Alternatively, from (4) we can dispense with
the class of contexts: in this third formulation, which has never been used, arguments are
given by a ::= (u, a) | (u, c). In this paper we are using a fourth formulation: in (4), it is
equivalent to take contexts as given by k ::= (u, k) | c; then arguments have the general form
(u1, (u2, (· · · (um, c) · · · ))) for some m ≥ 1; finally, we bring c to the surface of arguments,
rearranging them as: (u1, (u2 :: · · · :: (um :: []) · · · ), c). To have c at the surface of arguments
will be important precisely for the formulation of the process of permutative conversion5.

So, λJm has several formulations, we are using one that suits better the purpose of this
paper; but, independently of the several formulations, λJm has a special status, as it is a
syntax that follows necessarily from λLJ by imposing proof terms to be either values or cuts,
and cuts to be restricted to a form of function application.

Methodology. Our methodology in the study of permutability in the sequent calculus is
modular: we want to isolate and highlight the syntactic intricacies of permutability, avoiding
to mix them with other issues that a wrong choice of system could bring. So, we need in
the background a system as simple and as close to the ordinary λ-calculus as possible - but
without falling into mere natural deduction or ΛJ (which would be undesirable in a study
about the sequent calculus).

The system λJm has a number of characteristics appropriate to this aim (some of which
were stressed by the reconstruction of λJm inside λLJ given above). First, the logic we
consider is the simplest one (intuitionistic implication as sole connective). Second, the
cut=redex paradigm [12, 3] is not followed, so that variables in proof terms can be treated

5 See equation (7) below.
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as ordinary term variables, and substitution can be treated as ordinary term substitution
[5]. Third, the primitive cut of the system is right-principal, hence a cut-formula is always
an implication, hence the cut can be interpreted as some sort of function application;
concomitantly, substitution is treated as a meta-operation (no explicit substitution), with
the corresponding cut-rule treated as an admissible typing rule. Fourth, the immediate call
of substitution(s) in the β-rules induces the call-by-name character of cut-elimination [3],
which is the approach closest to the ordinary λ-calculus.

3 Permutation-freeness in the sequent calculus λJm

In this section we study natural proofs, which are a generalization of normal proofs to the
cut-full setting. They are introduced in the second subsection, after a technical subsection
which develops the concept of pseudo-list. After natural proofs are proved to be closed for
typing and reduction, they are given a computational interpretation in the third subsection,
through the calculus λnm, which we prove to be isomorphic to the natural subsystem. In the
final subsection we investigate the relationship between natural and focused proofs, paying
particular attention to the search for normal proofs.

3.1 Pseudo-lists
The notion of x-normality goes back to [4] and was used in the context of λJm in [6]. Here
we rename the notion as x-naturality, since we are not restricted to the cut-free setting. The
concept of pseudo-list arises from the particular syntactic organization of λJm we employ in
this paper, which includes the syntactic class of continuations c. In the remainder of the
paper, pseudo-lists will be crucial in the study of naturality. In this subsection we see some
of their basic properties, and their use in the analysis of continuations and gm-applications.

I Definition 8 (Pseudo-lists). x-natural terms and arguments and pseudo-lists are defined
simultaneously as follows:

v is x-natural if v = x or v = xa and a is x-natural.
a is x-natural if a = (u, l, c) and x /∈ u, l, c and c is a pseudo-list.
c is a pseudo-list if c = (x)v with v x-natural.

Pseudo-lists are ranged over by L. We introduce the following abbreviations for pseudo-lists:

L ::= nil | (u+l +L) (5)

nil abbreviates (x)x
(u+l +L) abbreviates (x)x(u, l, c) if L abbreviates c and x /∈ u, l, c.

I Lemma 9 (Typing of pseudo-lists).
1. In λJm a typing derivation of Γ|C`L :D ends with an application of the Select inference

rule which has one of two forms:
either the inference selects the left-principal formula of an Axiom inference (with the
whole derivation consisting of the two mentioned inferences);
or the inference ends a derivation of the form of the right figure in (2) - which entails
that the Select inference selects a formula which had just been unselected, and the
latter, being the distinguished formula in the l.h.s. of a sequent of kind (ii), is the
principal formula of a Leftm inference.

2. The typing rules for pseudo-lists in Fig. 9 are admissible typing rules of λJm.
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Γ|A`nil :A Axm
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ|A ⊃ B`(u+l +L) :D
multi− Lft

Figure 9 Typing rules for pseudo-lists.

u→ u′

(u+l +L)→ (u′+l +L)
(a) l→ l′

(u+l +L)→ (u+l′ +L)
(b)

L→ L′

(u+l +L)→ (u+l +L′)
(c)

Figure 10 Closure rules for pseudo-lists.

Proof. 1. is by case analysis on L. The case Axm of 2. uses 1. and the case multi− Lft of
2. uses admissibility of weakening for pseudo-lists. J

I Lemma 10 (Derived substitution rules). s(u, x, L) is a pseudo-list and satisfies s(u, x,nil) =
nil and s(u, x, (v+l +L)) = (s(u, x, v)+s(u, x, l) +s(u, x, L)).

Proof. First one proves s(u, x, v) z-natural, for v z-natural, z 6= x and z /∈ u. Then, the
statement of the lemma is proved by case analysis of L. J

I Lemma 11 (Derived append rules).
1. L@a is a continuation and satisfies: nil@a = (z)za, if z /∈ a; and (u+ l +L)@a =

(z)z(u, l, L@a), if z /∈ u, l, L, a.
2. L@c is a continuation and satisfies: nil@c = c; and (u+l +L)@c = (z)z(u, l, L@c), if

z /∈ u, l, L, c.
3. L@L′ is a pseudo-list and satisfies: nil@L′ = L′ and (u+l +L)@L′ = (u+l +(L@L′)).

Proof. 1. (resp. 2.) Immediate by definition of c@a (resp. c@c) 3. Particular case of 2. J

Notice that L@c is the continuation obtained by replacing nil by c in L.

I Lemma 12 (Derived closure rules). The closure rules for pseudo-lists in Fig. 10 are derived
closure rules of →R, for any R.

Proof. The derivations are easy. J

Pseudo-lists allow a useful representation of continuations:

I Lemma 13 (Unique decomposition). Every continuation c can be written in a unique way
as L@(x)v with ¬mla(x, v).

Proof. Existence of decomposition: we prove that, for all t ∈ λJm, there are L and v

such that ¬mla(x, v) and (x)t = L@(x)v. The proof is by induction on t. Uniqueness of
decomposition: we prove that, for all t ∈ λJm, if (z)t = L@(x)v = L′@(y)v′, with ¬mla(x, v)
and ¬mla(y, v′), then L = L′ and (x)v = (y)v′. The proof is by induction on t. J

I Definition 14. When we write 〈u, l, L, (x)v〉 we mean (u, l, L@(x)v) with ¬mla(x, v).

In the argument 〈u, l, L, (x)v〉 the continuation is analyzed into its unique decomposition
as given by Lemma 13. Of course we can write a gm-application as t〈u, l, L, (x)v〉.

I Corollary 15 (Pseudo-lists). A continuation c is a pseudo-list iff c = L@(x)x.
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Proof. L@(x)x = L is a pseudo-list. Conversely, suppose c is a pseudo-list and c = L@(x)v
with ¬mla(x, v). The only case of v where the replacement of nil by (x)v in L yields a
pseudo-list is v = x. J

I Lemma 16 (Associativity of append).
1. (L@c)@c′ = L@(c@c′).
2. (L@c)@a = L@(c@a).
3. (L@a)@a′ = L@(a@a′). (Compare with the third statement in Lemma 4.)

Proof. Each by easy induction on L. Alternatively, the second (resp. third) statement
follows from Lemma 2 and the first (resp. second) statement. J

Pseudo-lists can be used to give an handy alternative presentation of reduction rule π:
t〈u, l, L, (x)v〉a→ t(u, l, L@(x)va).

Pseudo-lists also allow an alternative characterisation of the mapping µ for generalised
multiary applications. For that, we need a flattening operation on pseudo-lists, denoted by
L[, and defined by: (i) nil[ := []; (ii) (u+l +L)[ := (u :: l)@L[. We also need µ extended to
pseudo-lists homomorphically, that is: (i) µ(nil) := nil; (ii) µ((u+l+L)) := (µ(u)+µ(l)+µ(L)).

I Lemma 17. µ(t〈u, l, L, (x)v〉) = µt(µu, µl@(µL)[, (x)µv).

Proof. By induction on L. The base case requires the fact that if ¬mla(x, v), then also
¬mla(x, µ(v)). The inductive case follows from the IH and uses associativity of the append
operation on lists. J

3.2 Naturality
In this subsection we will introduce the concept of natural expression, and observe that this
class of expressions is closed both for the reduction and the typing relations of λJm, thus
constituting the natural subsystem of λJm.

I Definition 18 (Natural and normal expressions). An expression of λJm is natural if all
continuations occurring in it are pseudo-lists. An expression of λJm is normal if it is both
natural and cut-free.6

A normal expression corresponds to a typing derivation where the inference rule Select is
constrained to be of the two forms described in item 1 of Lemma 9.

Natural expressions are generated by the following grammar:

(natural proof terms) t, u, v ::= x | λx.t | ta
(natural gm-arguments) a ::= (u, l, L)

(natural lists) l ::= u :: l | []
(natural continuations) L ::= (x)v, with v x-natural

(6)

Notice that a natural continuation is a pseudo-list, but not conversely: in a natural continu-
ation (x)v, v is not only x-natural, but also natural. A natural continuation is a natural
pseudo-list.

When one coerces a natural argument a = (u, l, L) to the natural continuation (z)za,
with z /∈ a, one obtains the natural pseudo-list (u+l +L).

6 Natural proofs were called “normal proofs” in [6].
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L→ L′

L@c→ L′@c
(d)

v → v′ ¬mla(x, v)
L@(x)v → L@(x)v′

(e)

Figure 11 Some rules for the restricted closure.

In view of Corollary 15, a natural application ta has the form t〈u, l, L, (x)x〉; the last
component is nil and so this representation does not give more information than t(u, l, L).

The natural expressions of λJm are closed for typing in the following sense: in a typing
derivation of a natural expression, every expression occurring in the derivation is natural itself.
This is easily seen: the axioms of the typing system of λJm type natural expressions; in
every other typing rule, the expressions in the premisses are subexpressions of the expression
in the conclusion; and every subexpression of a natural expression is natural.

We now see the natural expressions of λJm are also closed for reduction. This is harder.
The following lemma establishes that natural expressions are closed for the operations of
substitution and append of gm-arguments.

I Lemma 19.
1. If u,E are natural expressions, then s(u, x,E) is a natural expression.
2. If a, a′ are natural gm-arguments, then a@a′ is also a natural gm-argument.
3. If l, l′ are natural lists, then l@l′ is also a natural list.
4. If L,L′ are natural continuations, then L@L′ is also a natural continuation.

Proof. Part 1 is proved by simultaneous induction on E = v, a, l, c. Part 2 follows from the
fact that, given a natural continuation L and a natural gm-argument a′, L@a′ is a natural
continuation - and this is easily proved by induction on L. Parts 3 and 4 are proved by
straightforward induction on l and L respectively. J

I Definition 20. A relation ρ on expressions of λJm preserves naturality if EρE′ and E
natural implies E′ natural.

We will see that →R preserves naturality. For the reduction rules R this is done directly.

I Lemma 21. For each R ∈ {β1, β2, π, µ}, R preserves naturality.

Proof. The cases R = β1 and R = β2 (resp. R = π, R = µ) follow from Part 1 (resp. Part 2,
Part 3) of Lemma 19. J

For the compatible closure →R, preservation of naturality is proved in an easier way with
the help of a restricted notion of closure.

I Definition 22 (Restricted closure). The restricted closure of a relation on expressions of
λJm is defined by replacing closure rule (IX) in Fig. 7 by the rules (a), (b) and (c) in Fig. 10,
and the rules (d) and (e) in Fig. 11. If R is a reduction rule, the closure of R under the
restricted closure is denoted  R.

I Lemma 23. If R preserves naturality, so does  R.

Proof. Suppose R preserves naturality. We prove by simultaneous induction four statements.
The first three are: if E  R E

′ and E natural then E′ natural, for terms, arguments and
lists. The last is: if L R L

′ and L@c natural then L′@c natural. J
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We now must relate →R and  R. We will see that the two closures coincide for
R ∈ {β1, β2, π}, but there are small differences for R = µ, which, nonetheless, allow to
conclude preservation of naturality by →µ from preservation of naturality by  µ.

I Lemma 24 (Admissible closure rules of →R). Let R ∈ {β1, β2, π, µ}. Closure rules (d) and
(e) in Fig. 11 are admissible closure rules of →R.

Proof. Case closure rule (d). One proves:
(i) if t→R t

′, with t and t′ x-natural, then ((x)t)@c→R ((x)t′)@c.
(ii) if a→R a

′, with a and a′ x-natural, then ((x)xa)@c→R ((x)xa′)@c.
(iii) if c1 →R c

′
1, with c1 and c′1 pseudo-lists, then c1@c2 →R c

′
1@c2.

Case closure rule (e). In fact, one proves that the following are admissible closure rules of
→R:

c→ c′

t@c→ t@c′
(i)

c2 → c′2
c1@c2 → c1@c′2

(ii) v → v′

L@(x)v → L@(x)v′
(iii)

J

Putting together the previous lemma and Lemma 10, we conclude  R⊆→R for the
reduction rules of λJm. For the converse inclusion, to address the case R = µ we will need
the followig new µ-rule on pseudo-lists:

(µ2) (u+l +(u′+l′ +L))→ (u+(l@(u′ :: l′)) +L) .

I Lemma 25 (Admissible closure rules of  R).
1. For any reduction rule R, the following are admissible closure rules of  R:

L1  L′1
L1@L2  L′1@L2

(i)
L2  L′2

L1@L2  L1@L′2
(ii) c c′

L@c L@c′
(iii)

2. Let R ∈ {β1, β2, π}. Closure rule (IX) of Fig. 7 is an admissible closure rule of  R.
3. Let R = µ ∪ µ2. Closure rule (IX) of Fig. 7 is an admissible closure rule of  R.

Proof. The closure rule (iii) of part 1 is used in the proof of part 2. The new rule (µ2) is
needed to fix the base case of the inductive proof of part 3. J

I Corollary 26. For each R ∈ {β1, β2, π, µ}, →R and  R′ are the same relation, where
R′ = R if R 6= µ, and R′ = µ ∪ µ2 otherwise.

Proof. We had seen that R⊆→R. For R 6= µ, part 2 of Lemma 25 completes the proof that
→R and  R are the same relation. In the case of µ, part 3 of Lemma 25 gives →µ⊆ R′ ,
with R′ = µ ∪ µ2. One still has to argue for  R′⊆→µ. Observe that µ2 is a subset of the
closure of  µ under (IX). Hence  R′ is a subset of the same closure. But such closure is a
subset of →µ, since  µ⊆→µ and →µ is closed under (IX). J

With this characterization of →R in terms of the restricted closure, we can now show
that the natural expressions of λJm are closed for reduction.

I Theorem 27 (Preservation of naturality).
→R preserves naturality, for each R ∈ {β1, β2, π, µ}.

Proof. By the previous corollary →R= R′ , where R′ = R if R 6= µ, and R′ = µ ∪ µ2
otherwise. By Lemma 21, each R preserves naturality. It is clear that also µ2 preserves
naturality. So, in each case, the reduction rule R′ preserves naturality; by Lemma 23, so
does  R′ . J
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Given that the natural expressions are closed for typing and reduction, we define:

I Definition 28 (Natural subsystem). The natural subsystem of λJm is obtained by restriction
to the natural expressions of the typing and reduction relations of λJm. That is:

given a natural term t, Γ` t :A in the natural subsystem if Γ` t :A in λJm; and similarly
for gm-arguments, lists, and continuations.
given natural terms t, t′, t→R t

′ in the natural subsystem if t→R t
′ in λJm; and similarly

for gm-arguments, lists, and continuations.

I Corollary 29 (Confluence, SN, and uniqueness of normal form). In the natural subsystem,
βπ- and βπµ-reductions are confluent, and βπµ-reduction is SN on typable expressions. In
particular, every typable natural expression has a unique βπ-nf, which is a normal expression.

Proof. By the same properties of λJm (Theorem 5). J

3.3 Computational interpretation
The natural subsystem was defined by restricting the typing and reduction relations of λJm.
We now give a direct, self-contained, equivalent definition of the natural subsystem. The
advantage is that the alternative definition has a transparent computational interpretation.

The key idea is to handle the abbreviations for pseudo-lists as if they were first-class
expressions. In the resulting system, named λnm, pseudo-lists L behave properly as lists
of non-empty lists of ordinary arguments; and arguments (u, l, L) may be seen as (and
coerced to) non-empty pseudo-lists (u+ l +L). If we call lists of lists multi-lists, λnm is
then a multi-multiary λ-calculus, in the sense of a λ-calculus where functions are applied to
multi-lists of arguments. The reduction rules of λnm will confirm this interpretation.

Definition of λnm. The expressions of λnm are the natural expressions, given by grammar
(6). It is easy to prove that the same expressions are generated if, in the grammar, the class L
is generated by L ::= nil | (u+l+L). These are the abbreviations (in the meta-language) we
adopted to denote pseudo-lists - recall (5). Now we define typing and reduction rules for the
natural expressions, alternative to those of Def. 28. The idea is to treat these abbreviations
as if they were object syntax, and handle them with the derived rules contained in Lemmas
9, 10, 11, and 12, together with reduction rules that can be proved to be derived rules as
well. Since the new system λnm is built with derived rules of the natural subsystem given
by Def. 28, the former will be immediately “contained” in the latter. We will check that the
two systems are actually isomorphic.

I Definition 30 (Typing system of λnm). The typing rules of λnm are all the typing
rules in Fig. 4 except Select, plus the typing rules in Fig. 9 (of course, in both cases with
meta-variables t, a, u, l, c ranging over expressions of λnm).

Recall the four kinds of sequent of λJm, displayed in (1). Observing the typing rules in
Fig. 9 we conclude that, in λnm, sequents Γ|C`c :D of kind (iv) are such that D is a suffix
of C; and sequents Γ;A ⊃ B`a :D of kind (ii) are such that D is a suffix of B.

The reduction rules of λnm are given in Fig. 12. We let β1 := β11 ∪ β12 and µ := µ1 ∪µ2.
Observe that reduction rule β12 can be derived as µ1 followed by β2. However, if we would
omit β12, the wanted 1-1 correspondence of reduction steps with the natural subsystem would
be lost. The meta-operations used in the reduction rules of λnm are as follows:

s(u, x,E) denotes ordinary substitution on λnm expression E, with E = t, a, l, L. In the
case E = L, the operation is defined by the equations in Lemma 10.
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(β11) (λx.t)(u, [],nil) → s(u, x, t)
(β12) (λx.t)(u, [], (u′+l +L)) → s(u, x, t)(u′, l, L)
(β2) (λx.t)(u, u′ :: l, L) → s(u, x, t)(u′, l, L)
(π) t(u, l, L)(u′, l′, L′) → t(u, l, L@(u′+l′ +L′))

(µ1) (u, l, (u′+l′ +L)) → (u, l@(u′ :: l′), L)
(µ2) (u+l +(u′+l′ +L)) → (u+l@(u′ :: l′) +L)

Figure 12 The reduction rules of the multi-multiary λ-calculus λnm.

L@L′ denotes the append of two pseudo-lists of λnm and is defined by the same equations
as those in Lemma 11.
l@l′ denotes the append of two lists of λnm and is defined by the same equations as
those in Definition 1.

I Definition 31 (Compatible closure for λnm-expressions). A compatible relation on λnm-
expressions is one closed for the closure rules in Fig. 7 except (IX), plus the closure rules in
Fig. 10 (with meta-variables ranging over expressions of λnm). The compatible closure of a
rule R of λnm, denoted →R, is the smallest compatible relation containing R.

Having completed the definition of the system λnm, we pause to observe its computa-
tional interpretation: λnm is a lambda-calculus where functions are applied to non-empty
multi-lists, where a multi-list is a list of non-empty lists of arguments. The reduction rules
have a transparent meaning in terms of these multi-lists: β-rules pass to the applied function
the first element of the first list of arguments in the multi-list, while π and µ append and
flatten multi-lists of arguments, respectively.

I Proposition 32 (Natural subsystem ∼= λnm).
1. Γ` t :A in the natural subsystem iff Γ` t :A in λnm. Similarly for gm-arguments, lists

and continuations.
2. Let R ∈ {β1, β2, π, µ}. t →R t′ in the natural subsystem iff t →R t′ in λnm. Similarly

for gm-arguments, lists and continuations.

Proof. 1. There are four “if” statements (one for each E = t, a, l, L) proved by simultaneous
induction. The only interesting point is that the typing rules in Fig. 9 are derived typing
rules of the natural subsystem. Similarly, there are four “only if” statements, proved by
simultaneous induction.

2. The “if” statement for E = t is proved together with similar statements for E = a, l, L,
by simultaneous induction on E →R E

′ in λnm. The “only if” statement for E = t is proved
together with similar statements for E = a, l, L, by simultaneous induction on E →R E

′ in
the natural subsystem. J

The natural subsystem of λJm benefits largely from this isomorphism. The presentation
of its typing and reduction rules as in Def. 30 and Fig. 12 is much more perspicuous than
through Def. 28: think of the sequent invariants noted after Def. 30, or the computational
interpretation of λnm, that the natural subsystem inherits. The isomorphism lets us see
that the natural subsystem corresponds to a multi-multiary λ-calculus, where the generality
feature is reduced to a mechanism to form lists of lists of arguments for functional application.
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3.4 Naturality and focusedness
Natural proofs are a generalization of focused proofs (in the sense of LJT ). We will show
this both for the computation-as-cut-elimination and computation-as-proof-search paradigms.
In the former case, we show the relationship between the calculi λnm and λm; in the latter,
we explain how normal(=natural and cut-free) proofs can be searched by a procedure that is
a relaxed form of focusing.

Recall that the map µ calculates the unique µ-nf of a λJm expression. Its restriction to
λnm has a recursive description in which the single interesting clause is given by µ(t(u, l, L)) =
µt(µu, µl@(µL)[), thanks to Lemma 17. So we see µ maps natural proofs to focused proofs;
the case t = x also gives that µ maps normal proofs to cut-free, focused proofs7. The latter
is also a consequence of the fact that µ-reduction in λnm preserves cut-freeness, a particular
case of Lemma 6.

I Theorem 33 (Preservation of reduction on natural proofs by µ).
1. If t→β t

′ in λnm then µ(t)→β µ(t′) in λm.
2. If t→π t

′ in λnm then µ(t)→π′ µ(t′) in λm..

Proof. By Theorem 7 and the following two facts: (i) λm is closed for β-reduction; (ii) →π′

in λm is the same as →π followed by µ-reduction to µ-nf in λnm. J

This theorem says µ is a morphism between the natural and the focused subsystems of λJm.
In Fig. 13 we recapitulate the typing system for normal expressions8. The rule Leftm has

been renamed to outer −multi− Lft to reflect its resemblance with multi− Lft, which in
turn has been renamed to inner−multi−Lft. Cut inferences are restricted to the Unselect
form, which behaves as a focusing inference.

We will now see in detail how the good properties enjoyed by focused proof systems
(invertibility, completeness w.r.t. provability, disciplined proof search) apply to the proof
system for normal proofs.

One observation used several times below is that weakening is an admissible rule for
the various forms of sequents in the proof system for normal proofs. Let us look first into
invertibility of rules multi− Lft, which is not immediate because of the foreign formula C.

I Proposition 34 (Invertibility of multi-Lft rules). If Γ;A ⊃ B`a :D or Γ|A ⊃ B`L :D and
D is an atomic formula, then there exists u0 s.t. Γ`u0 :A, and for all C suffix of B, there
exist l0, L0 s.t. Γ;B` l0 :C, and Γ|C`L0 :D.

Proof. Case Γ;A ⊃ B`a :D with a = (u0, l0, L0), we must have Γ`u0 :A, and, for some C0,
Γ;B` l0 :C0, and Γ|C0`L0 :D. The result follows then with the help of the following suffix
lemma: for D the atomic suffix of B, if, for some C0, l0, L0, Γ;B ` l0 :C0 and Γ|C0 `L0 :D,
then, for all C suffix of B there exist l, L s.t. Γ;B` l :C and Γ|C`L :D. (This lemma follows
by induction on B.) Case Γ|A ⊃ B`L :D, as D is atomic, the derivation cannot be solely an
axiom Axm. So, we must have L = (u0+l0 +L0), and proceed as in the previous case. J

Invertibility of the multi-Lft rules is guaranteed only if the r.h.s. formula of the conclusion
is atomic, but this is in line with LJT , where typically proof search imposes atomic r.h.s. in

7 Note that mapping µ restricted to the class of unary normal expressions is a 1-1 correspondence with
cut-free, focused proofs (which are the cut-free LJT proofs, or the cut-free λ-terms, as already shown in
[4] - but there the name used for the mapping is ϕ).

8 The division into groups of rules will be useful later.
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I x :D,Γ`x :D Axiom
x :A,Γ` t :B

Γ`λx.t :A ⊃ B Right

II
Γ;A ⊃ B`a :D

Γ`xa :D Unselect ((x :A⊃B) ∈ Γ)

III
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ;A ⊃ B`(u, l, L) :D
Outer-multi-Lft

Γ|D`nil :D Axm
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ|A ⊃ B`(u+l +L) :D
Inner-multi-Lft

IV Γ;C` [] :C Ax
Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C Lft

Figure 13 Proof system for normal proofs (in the atomized system, rules Axiom and Unselect
are restricted to atomic D).

the conclusion of Lft inferences (see e.g. [2] for a system corresponding to LJT with this
atomic restriction). Next, we consider a restriction of the proof system for normal proofs, for
which invertibility of the multi-Lft rules holds and a focused proof search discipline can be
followed.

I Definition 35 (Atomized normal system). The atomized system for normal proofs is the
system obtained from the proof system for normal proofs in Fig. 13 by imposing that at the
rules Axiom and Unselect the r.h.s. formula is atomic. We denote these restricted versions
of the rules by Axiomatom and Unselectatom. We write `atom, instead of `, to mean that a
sequent has a derivation in the atomized system.

Before we describe proof search in the atomized system, we will show that nothing is lost
in the atomized system regarding provability of sequents Γ` t :A.

I Definition 36 (η-expansion). The η-expansion rules for normal expressions are

y → λx.y(x, [],nil) y(u, l, L)→ λx.y(u, l, ηexpxL)

where x 6= y and x /∈ u, l, L, and ηexpxL is defined by: ηexpxnil = (x+[] +nil) and
ηexpx(u+l +L) = (u+l +ηexpxL). The compatible closure of these rules is denoted →ηexp.

I Lemma 37 (Admissibility of Axiom and Unselect). For any A:
1. There exists t s.t. x→∗ηexp t and x : A,Γ`atom t :A.
2. If Γ;B ⊃ C`atom a :A and x : B ⊃ C ∈ Γ, there exists t s.t. xa→∗ηexp t and Γ`atom t :A.
3. If Γ|C`atomL :A ⊃ B, there exists L′ s.t. ηexpyL→∗ηexp L′ and y : A,Γ|C`atomL′ :B.

Proof. Proved simultaneously by induction on A. J

I Theorem 38 (Completeness of the atomized system). If Γ` t :A, then there exists t′ s.t.
t→∗ηexp t′ and Γ`atom t′ :A. Similarly for gm-arguments, lists, and continuations.
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Proof. The proof of the four statements is done by simultaneous induction. All cases follow
routinely, except for the cases t = x and t = xa. The case t = x follows by 1. of the lemma
before, whereas the case t = xa is by IH and 2. of the lemma before. J

Proof search in the atomized system. Proof search in the atomized system will find a
derivation of Γ` t :A, if one exists, following a disciplined alternation between asynchronous
and synchronous phases which we now explain. In this explanation, bottom-up application of
inference rules is meant; we also refer to the groups of rules in Fig. 13.

The asynchronous phase searches for proofs of sequents Γ` t :A by applying rules of group
I. Rule Right decomposes implications until an atomic formula is reached. If this atom is in
the l.h.s. of the sequent, rule Axiomatom ends the search with success. Otherwise, the only
rule in group II picks a formula from the context, and a synchronous phase starts.

The synchronous phase searches for proofs of sequents Γ;A ⊃ B ` a :D or Γ|C `L :D,
by applying rules of group III. This phase consists of a chain of multi − Lft inferences,
starting with an Outer−multi−Lft inference, continuing with n ≥ 0 Inner−multi−Lft
inferences, and ending with an application of Axm when successful.

Each application of a multi− Lft inference (either an outer or an inner one) transforms
the distinguished formula A ⊃ B in the l.h.s. of the sequent to be proved into a formula C,
which is not necessarily the immediate positive subformula B, but rather some suffix of B
which has to be chosen (provability is not affected by this choice - recall Proposition 34),
triggering a subprocess of proof search for Γ`u :A, and a subsidiary search for Γ;B` l :C.
The search for Γ;B` l :C is done by focusing on B, through application of rules in group IV.

So focusing is a subsidiary process of the synchronous phase. In fact, we may say the
chain of n+ 1 multi− Lft inferences that constitutes the synchronous phase that started
with sequent Γ;A ⊃ B`a :D breaks into a succession of n+ 1 focusing proofs (that can be
conducted independently and in parallel) what in a focused system like LJT or λm would
rather be a single focusing proof leading from A ⊃ B to D.9

4 Permutability in the sequent calculus λJm

In this section we study permutative conversions in λJm such that the proofs irreducible by
such conversions are the natural proofs studied in the previous section. This justifies our
description of natural proofs as “permutation-free”. Our approach to permutative conversions
is the simplest one: we introduce a map γ that translates any λJm proof into a natural
one (and leaves natural proofs invariant); in addition, it maps cut-free proofs to normal
ones, as required [4]. Map γ, studied in the second subsection, is defined in terms of a
special substitution operator over natural proofs, which is introduced in the first subsection.
Such an operator is an essential ingredient of the computational process involved in γ. In
the third subsection, we prove that permutative conversion to natural form commutes with
cut-elimination. Hence, the two immediate senses for the concept of normalization, either
permutative conversion of cut-free proofs to normal form, or cut-elimination in the natural
subsystem, are coherent and have a common generalization to λJm. In the final fourth
subsection we systematize the internal structure of λJm with the help of γ.

9 This has nothing to do with multifocusing, where the focus contains simultaneously several formulas.
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4.1 Special substitution
The special substitution operation on λnm that we will introduce now is the key element in
the permutative conversion of λJm expressions to natural form.

I Definition 39 (Special substitution of λnm). Given t ∈ λnm, we define S(t, x, u), S(t, x, a),
S(t, x, l) and S(t, x, L) (for u, a, l, L ∈ λnm) by simultaneous recursion:

S(t, x, x) = t S(t, x, (u, l, L)) = (S(t, x, u), S(t, x, l), S(t, x, L))
S(t, x, y) = y if x 6= y S(t, x, []) = []
S(t, x, λy.v) = λy.S(t, x, v) S(t, x, (u :: l)) = S(t, x, u) ::S(t, x, l)
S(t, x, xa) = t@S(t, x, a) S(t, x,nil) = nil
S(t, x, t′a) = S(t, x, t′)S(t, x, a) if t′ 6= x S(t, x, (u+l +L)) = (S(t, x, u)+S(t, x, l) +S(t, x, L))

The difference to ordinary substitution is seen in the fourth clause, with t@S(t, x, a) instead
of tS(t, x, a). The precise relation between ordinary and special substitution is:

I Lemma 40 (Subst. vs special subst.). s(u, x,E)→∗π S(u, x,E), for all E ∈ λnm.

Proof. By simultaneous induction on E = v, a, l, L. J

I Lemma 41 (Typing of special substitution). The following rules are admissible in λnm.

Γ` t :A x : A,Γ`u :B
Γ`S(t, x, u) :B

Γ` t :A x : A,Γ;B ⊃ C`a :D
Γ;B ⊃ C`S(t, x, a) :D

Γ` t :A x : A,Γ;B ⊃ C` l :D
Γ;B ⊃ C`S(t, x, l) :D

Γ` t :A x : A,Γ|B ⊃ C`L :D
Γ|B ⊃ C`S(t, x, L) :D

Proof. By simultaneous induction on u, a, l, L. The case u = xa uses first the IH to type
S(t, x, a), and then uses admissibility of the first rule of Fig. 5 to type t@S(t, x, a). J

From this proof we extract the operation on typing/logical derivation of λnm whose term
representation is S(t, x, u), performing the elimination of the cut which types this substitution.
In general, such operation performs the permutation to the right as long as the repetition
of the cut formula permits, supplemented in the exceptional case u = xa by the operation
associated with the operation t@a′ (recall discussion after Lemma 3).

I Lemma 42 (Substitution Lemma). Let t, u ∈ λnm, x 6= y, and y /∈ u. For all E ∈ λnm:
1. s(u, x,S(t, y, E))→∗π S(s(u, x, t), y, s(u, x,E));
2. S(u, x,S(t, y, E)) = S(S(u, x, t), y, S(u, x,E));
3. s(S(u, x, t), y,S(u, x,E))→∗π S(u, x, s(t, y, E)).

Proof. By simultaneous induction on E = v, a, l, L. J

4.2 Permutative conversion to natural form
Now we introduce the map that realises conversion to natural form, and, in particular, show
that it preserves typing, leaves invariant natural expressions, and preserves reduction.

I Definition 43 (Conversion to natural form map). For t, a, c, l ∈ λJm and t′ ∈ λnm, we
define γ(t), γ(t′, a), γ(t′, c), and γ(l), by simultaneous recursion on t, a, c, and l:

γ(x) = x γ(t′, (u, l, c)) = γ(t′(γu, γl,nil), c)
γ(λx.t) = λx.γ(t) γ(t′, (x)v) = S(t′, x, γv)
γ(ta) = γ(γt, a) γ([]) = []

γ(u :: l) = γ(u) ::γ(l)
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This is summarized in the following equation:

γ(t(u, l, (x)v)) = S(γt(γu, γl,nil), x, γv) (7)

I Proposition 44 (Preservation of typing by γ). The following typing rules are admissible
(where ` and `′ denote derivability in λJm and λnm resp., and so t, a, l, c ∈ λJm and
t′ ∈ λnm).

Γ` t :A
Γ`′ γt :A

Γ`′ t′ :A ⊃ B Γ;A ⊃ B`a :C
Γ`′ γ(t′, a) :C

Γ;A` l :B
Γ;A`′ γl :B

Γ`′ t′ :A Γ|A`c :B
Γ`′ γ(t′, c) :B

Proof. By simultaneous induction on t, a, l, c. The case a = (u′, l′, c′) needs to first show
γ(t′)(γ(u′), γ(l′),nil) is typable, using the IH relative to u′ and l′, and then use the IH
relative to c′. The case c = (x)v needs the typing rule of the special substitution on terms
(Lemma 41). The other cases are routine. J

From this proof we extract the operation on typing/logical derivation of λJm associated
with γ: it is an innermost-outermost application of the operation associated with transform-
ation (7), and the latter, in turn, is the operation on derivations of λnm associated with
special substitution (see discussion after Lemma 41), applied after the transformation of the
given sub-derivations (represented by t, u, l, v).

γ is extended to pseudo-lists:

γ(nil) := nil γ((u+l +L)) := (γ(u)+γ(l) +γ(L)) . (8)

I Proposition 45 (Invariance of natural expressions under γ). For E = t, l, L ∈ λnm, γE = E.

Proof. By simultaneous induction on t, l, L. The interesting case is where t = t′(u′, l′, L′),
which follows by IH and the fact γ(t0(u, l0, L0@(x)v)) = S(γt0(γu, γl0, γL0), x, γv), for any
t0, u, l0, L0, v ∈ λJm, which, in turn, uses the following auxiliary result: given t′, u′, l′, L′ ∈
λnm, γ(t′(u′, l′, L′), L@(x)v) = S(t′(u′, l′, L′@γL), x, γv) (proved by induction on L). J

This means that, if we want to see γ as defining the naive, long-step reduction rule E → γ(E),
we have to require the redex E not to be normal, and so the normal expressions are the
irreducible expressions for this rule.

The following result says γ sends cut-free proofs to normal proofs.

I Lemma 46 (γ preserves cut-freeness). If t is a βπ-nf of λJm, γ(t) is a βπ-nf of λnm.

Proof. Proved together with analogue statements for gm-arguments, lists and pseudo-lists.
The case t = xa requires an auxiliary result about preservation of βπ-nfs by substitutions of
the form S(x(u, l, L), y, t). J

I Theorem 47 (Preservation of reduction by conversion to natural form).
1. If t→β t

′ in λJm then γ(t) =βπ γ(t′) in λnm.
2. If t→R t

′ in λJm then γ(t)→∗R γ(t′) in λnm, for R ∈ {π, µ}.

Proof. We use the inductive characterisation of reduction in λJm given by Corollary 26.
Notice =βπ in statement 1. J
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4.3 Normalisation
We have so far two processes of obtaining a normal(=natural and cut-free) proof: either by
cut-elimination on a natural proof (as natural proofs are closed for cut-elimination, recall
Theorem 27), or by permutative conversion of a cut-free proof (as γ preserves cut-freeness,
recall Lemma 46). We may call such processes normalization processes. The question is
whether there is a normalization procedure defined on arbitrary λJm proofs which generalizes
both these two processes. The answer is positive, due to the following result.

I Theorem 48 (Commutation between cut-elim. and conversion to natural form). For all
typable t ∈ λJm, γ(↓βπ (t)) = ↓βπ (γ(t)).

Proof. Firstly observe that all the required nfs exist since the starting terms are typable and
the map γ preserves typing. By Theorem 47, γ(t) =βπ γ(↓βπ (t)). By Lemma 46, γ(↓βπ (t))
is a βπ-nf. Hence, by confluence of →βπ in λnm, γ(t)→∗βπ γ(↓βπ (t)). J

I Definition 49 (Normalisation map). ρ(E) := γ(↓βπ (E)), for all typed λJm expression E.

If E is cut-free, then ρ(E) = γ(E), which is the permutative conversion of E; if E is natural,
then ρ(E) =↓βπ (γ(E)) =↓βπ (E), which is the result of cut elimination from E in λnm.

4.4 The taming of “bureaucracy”
The permutative conversion γ and the reduction process µ are the “bureaucratic” processes of
λJm, as opposed to βπ-reduction, which represents cut-elimination. We are now in position
to converge to a systematic picture of the internal organization of λJm, fulfilling the promise
made in the introduction of linking Figs. 3 and 2. The final result we want to achieve is in
Fig. 14, where:

Cut-free classes are below the line (a).
Unary fragments (isomorphic to fragments of natural deduction with generalized elimina-
tion rule) are to the right of line (b).
The class of unary proof (resp. unary natural; unary cut-free; unary normal) terms is
contained in the class of proof (resp. natural; cut-free; normal) terms.
βπ corresponds to cut-elimination; ρ corresponds to normalization; and γ, µ are the
“bureaucracy” conversions.
The faces in the right cube are named: N, S, E, W, F(=Front), B(=Back).
The faces in the left cube are named: NL(=North face of the Left cube), SL, FE (=Front
East), FW(=Front West), BE(=Back East), BW(=Back West).

Recall µ preserves “γ-normality”, as the range of γ is λnm, which is closed for µ.

I Theorem 50 (Commutation between µ and γ). γ(t)→∗µ γ(µt)→∗µ µ(γt).

Proof. First observe that part 3 of Theorem 47 gives: if t→∗µ t′ in λJm, then γ(t)→∗µ γ(t′)
in λnm. From this, together with t→∗µ µt, we get γ(t)→∗µ γ(µt). From this, together with
γt→∗µ µ(γt), we conclude that µ(γt) is the µ-nf of γ(µt). J

In general, γ(µt) = µ(γt) does not hold, as γ does not preserve µ-normality. By the theorem,
we only have µ(γ(µt)) = µ(γt). Therefore, we define the combination of γ and µ to be µ ◦ γ,
denoted γ′. This defines a map from λJm to λm, sending an arbitrary proof to a focused
one. In this sense, this map may be called a focalization process.

I Theorem 51 (Commutation). Every face of the two cubes in Fig. 14 commutes.
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Figure 14 The internal structure of the sequent calculus λJm.

Proof. The equality µ(γ(µt)) = µ(γt) is the commutativity of face NL in Fig. 14. We now
argue the commutativity of every other face, with faces named according to the explanation
given below the figure. Face SL: particular case of face NL, as γ and µ preserve cut-freeness.
Face BW: Theorem 48. Face BE: µ(↓βπ (t)) and ↓β′π′ (µt) are βπµ-nfs of t, hence are the
same term by confluence of βπµ-reduction. Face B: by the isomorphism between λJ and the
flat subsystem [8], which links β, π with β′, π′, respectively. Face F: by the isomorphism
between λn and λm [6]. Face N: the unary particular case of face NL. This may be seen as
extending to γ, γ′ the isomorphism between λJ and the flat subsystem. Face S: the unary
particular case of face SL, or particular case of face N, as γ′ and µ preserve cut-freeness.
Face E: the unary particular case of face BW. Face FE: by the isomorphism between λJ and
the flat subsystem, which means that face E is isomorphic to face FE. That the “diagonal”
map of face FE is ρ′ (i.e. µ ◦ ρ) follows from the commutativity of faces SL and BE. J

To conclude, Fig. 14 says that λJm consists of two levels linked by cut-elimination, each
level organized by the “bureaucratic” conversions γ and µ - and we see that the organization
is quite tidy. Above the line (a) the maps are “morphisms” of λ-calculi: in addition to the
isomorphisms that cross the line (b), recall the properties of µ and γ, namely Theorems
7, 33, and 47. The permutation-free fragment λnm and its sub-fragment λm have clear
computational meaning: (multi-)multiary λ-calculi whose normal forms can be found by a
(relaxed) focusing proof-search strategy.
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5 Final remarks

This paper is a study of the computational interpretation of the sequent calculus that
deals with the permutability phenomenon, hence distinguished either from the approaches
that avoid permutability altogether by staying in some permutation-free fragment, or from
approaches that simplify the problem by staying in the cut-free fragment or in some fragment
that is indistinguishable from natural deduction. Our contribution is two-staged: first we
studied the permutation-free fragment, then we mediated the full and the permutation-free
systems by means of permutative conversions. In the permutation-free level, the novelty
is in the computational interpretation: the “multi-multiary” λ-calculus is the transparent
Curry-Howard interpretation of natural proofs, and normal proofs can be searched by a new,
relaxed form of focusing. Beyond the permutation-free level, the novelty is in the permutative
conversion γ and how, with its help, a complete picture of the internal structure of the
sequent calculus λJm is achieved, as seen in Fig. 14: two halves mediated by cut-elimination
and organized by the “bureaucracy” conversions γ and µ. To measure the progress achieved,
this picture should be compared with the wisdom established long ago [4] for the cut-free
setting and depicted in Fig. 1.

On the way to such a complete picture, numerous side contributions were made, including:
the technicalities involving append operators and pseudo-lists that permitted a smooth
handling of natural proofs; the always surprising richness of “abbreviation” conversion µ,
this time promoted to a morphism between the natural and the focused fragments; the
concept of special substitution on natural proofs, which is the computational process behind
permutative conversion γ; and the indirect contributions to ΛJ qua unary fragment λJ.

Among the previous papers on λJm [8, 6, 9], the present is closer to [6] in its attempt
to refine the naive view that λJm is obtained from the λ-calculus by the addition of the
multiarity and generality dimensions. But the purpose of [6] was to catalogue classes of
normal forms (and rewriting systems giving rise to them). Curiously, the class of normal
proofs studied here escaped that catalogue; and even if we find there the statement that
natural proofs form a subsystem, no computational interpretation was developed. In addition,
a conversion γ was proposed in [6], but it employed ordinary substitution, which does not
preserve cut-freeness, hence does not preserve normality. In the present paper, we backtrack,
employ special substitution in the definition of γ, and start afresh.

It is important to notice that the purpose of this paper is just to identify computational
meaning: to assess whether that meaning is useful in practice is out of scope. For instance, we
are happy to pin down the relaxation of focusing that constitutes the proof-search procedure
for normal proofs. Such variation on focusing seems to be new, and seems useful in practice,
allowing some parallelism in the synchronous phase - but we do not say more. Also the
Curry-Howard interpretation of the natural subsystem (a λ-calculus where functions are
applied to a vector of vectors of arguments) is perhaps not exciting, but is transparent and
illuminating: it means that, in the natural fragment, the generality feature is reduced to a
second-level vectorization mechanism.

Only space limitation prevented us from developing the study of other reduction procedures
inside λJm like focalization (captured by the combination of γ and µ) and its combination
with cut-elimination or normalization. On the other hand, further work is needed if one is
interested in rewriting systems of permutative conversions, like those in [4, 20]. The present
concept of special substitution gives a hint of what global operation the local rewrite steps
should be calculating; but a generalization of that operation from natural proofs to arbitrary
proofs is required, and this is on-going work.
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11:2 Covering Spaces in Homotopy Type Theory

1 Introduction

Homotopy type theory [33] is a new area arising from surprising connections between type
theory, homotopy theory and category theory. Using a variant of Martin-Löf type theory [29,
33, 36] extended with Vladimir Voevodsky’s univalence axiom [19] and higher inductive
types [27,33], homotopy-theoretic concepts can be expressed in type theory in a direct and
intuitive way, as we will see in the case of covering spaces.

The connection between this variant of Martin-Löf type theory and homotopy theory
is through the identification-as-path1 interpretation [3, 12, 19, 28, 33–35, 38]. According to
this interpretation, types may be treated as spaces,2 elements of a type as points in a space,
functions as continuous mappings, families of types as fibrations, and of course identifications
as paths;3 the higher-dimensional structures induced by iterated identification make every
type an ∞-groupoid.4 With this connection, we can use type-theoretic approaches to state,
prove and even mechanize theorems from classical homotopy theory, making the type theory
a framework of synthetic homotopy theory; proofs are dependently typed functional programs,
except that they do not run due to incomplete support of computation of the univalence
axiom and higher inductive types in current mature proof assistants and the type theory we
use in this paper.

A wide range of homotopy-theoretic results have been developed and mechanized in proof
assistants such as Agda [6,30], Coq [1,4] and Lean [9,11], for example homotopy groups of
spheres [5, 23, 26, 33], the Seifert–van Kampen theorem [17], the Blakers–Massey connectivity
theorem [16], the Eilenberg–Mac Lane spaces [25], the Mayer–Vietoris sequences [10], the
Cayley–Dickson construction [8], the double groupoids [37] and many more [24,32,33]. Proofs
done in homotopy type theory have the advantage that they admit many models other
than the homotopy theory of topological spaces; some even stimulated new research in
mathematics [2, 31]. As a side note, many theorems were actually first mechanized in proof
assistants and then “unmechanized” to engage wider audience, which is only possible through
a powerful, high-level framework such as homotopy type theory.

Covering spaces are one of the important constructs in homotopy theory, and given the
connection between type theory and homotopy theory, a natural question to ask is whether
such a notion can be stated in type theory as well. It turns out that we can express covering
spaces concisely as follows.

I Definition 1. A covering space of a type (space) A is a family of sets indexed by A.

That is, the type of covering spaces of A is simply A→ Set where Set is the type of all sets,
the universe of all types that have at most one identification between any two points. Several
examples are shown in Figure 1.

How do we know this definition really defines covering spaces? A characteristic feature of
covering spaces of a connected space A in the classical theory is that they are represented
by sets with a group action of the fundamental group of A (the set of loops at some point

1 Identification types are also called identity types in the literature.
2 More precisely, simplicial sets, and the interpretation was given in [19]. Spaces in this paper really mean

simplicial sets unless we are explicitly discussing point-set topology. For clarity, spaces in point-set
topology will be denoted as topological spaces.

3 All topological terms in this paper should be understood “up-to-homotopy” in some appropriate sense,
because every construct in the type theory will respect homotopy equivalence under the intended
interpretation to simplicial sets.

4 To avoid confusion, this result was a meta-theoretical result given in [34], and we believe it has not
been internalized in type theory yet.
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v
u

v
u 0

1

{
base 7→ 2

loop 7→ ua(not)

{
base 7→ 2

loop 7→ ua(id)

{
base 7→ Z
loop 7→ ua(+1)

set: {u, v}
action: u 7→ v

v 7→ u

set: {u, v}
action: u 7→ u

v 7→ v

set: Z
action: i 7→ (i+ 1)

Figure 1 Correspondence between covering spaces and sets equipped with a group action.
The top row is the visualization of the covering spaces. The middle row shows their type-theoretic
formulations (as a function from the circle to the universe) specified by a fiber for the base generator
and an identification from the fiber to itself for the loop generator of the circle. The last row is the
corresponding sets and their actions, represented by their acts on the (only) loop generator.

in A). Therefore, we may justify our definitions by proving this theorem, as we will in
Section 4. See Figure 1 which also lists such sets corresponding to the covering spaces in
the figure. Moreover, considering the category5 of pointed covering spaces where morphisms
are fiberwise functions, we also know there should be an initial covering space (named
the universal covering space) and it should be represented by the fundamental group itself
through the representation theorem stated above.6 We also managed to show these results
as demonstrated in Section 5. Before transitioning to these main theorems, in Section 3 we
will also discuss briefly about the discrepancies between our formulation and the classical
definition. More discussions and future research directions can be found in Section 6.

All the results mentioned in this paper have been mechanized in the proof assistant
Agda [6]. The representation theorem was briefly mentioned in the book without proofs [33]
and an extended abstract without peer review was posted before [15], but a full paper was
never published.

2 Type-Theoretic Notation and Background

We assume readers are already familiar with basic concepts in homotopy type theory,
including higher inductive types; interested readers are recommended to read the book [33]
for introduction, especially its Chapter 2 describing how type-theoretic concepts may be
understood homotopy-theoretically. This section is mainly a brief overview of the notation
used in this paper with remarks on some subtle differences from the book [33] or the proof
assistant Agda. Overall we are loosely following the style of the book [33] while keeping an
Agda translation obvious.

5 The category here is the same as the category introduced in [33, §9.1]. The type of morphisms (fiberwise
functions) between two covering spaces is a set because each fiber of a covering space is a set, and the
notion of isomorphism in this category collides with identification.

6 See Section 5 for a more precise statement.
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11:4 Covering Spaces in Homotopy Type Theory

Throughout this paper, ≡ is judgmental equality and :≡ indicates a definition. The equal
sign = is reserved for identification as mentioned below.

2.1 Sums and Products
Let B be a family of types indexed by a type A. Dependent sum types are written

∑
x:A B(x)

with pairs 〈a; b〉 as elements and dependent function types
∏

x:A B(x) with λ-functions. The
type

∑
x:A B(x) is also called the total space of B. If B(x) ≡ B′ actually does not depend

on the index x : A, we have the binary product type A × B′ meaning the non-dependent
sum type

∑
:A B

′ and the arrow type A → B′ the non-dependent function type
∏

:A B
′.

Function compositions are written f ◦ g.
Multi-argument application is written f(x1, x2, · · · , xn) and nested sum types will be

presented as records types with labels (like “label”). As a notational abuse, a label is also
the projection function which projects out the corresponding component from a record.

2.2 Identification
Let a and b be two points in some type A. The identification type or the path type between a
and b is written a =A b, and A may be omitted if clear from the context. The reflexivity
identification at a is written refla, the concatenation (in the diagram order) written p • q,
and the inverse identification written p−1.

The induction principle of identification types intuitively states that, given a statement
about identifications, one can just consider the refl case. The argument is that one may
continuously grow a refl to arbitrary identifications, and because every function in the
type theory is continuous, the conclusion remains valid. However, to make this “continuous-
growing” argument work, the precise formulation of this principle is quite delicate and is
discussed in more details in [33, §1.12]. For example, the statement about identifications
must make sense for identifications between two possibly different points in order to allow
the refl case to “grow”.

As mentioned in the introduction, identification types may be iterated as p =a=Ab q,
P =p=a=Abq Q and so on. Throughout the paper the word dimension refers to the level
of identification iteration; that is, the n-dimensional structures in type A refer to the nth
iteration of identification starting from the type A.

2.3 Universes, Equivalence and Univalence
Both the type theory and the proof assistant Agda have a ramified hierarchy of cumulative
universes to avoid Girard’s paradox [13,18], but in this paper we will suppress the universe
level, pretending there is only one universe written U . Universe levels are explicit and universe
lifting is manual in the current Agda system, but they did not constitute an obstacle to
mechanizing covering spaces.

The equivalence type A ' B intuitively collects all the equivalences between types A and
B. It is actually tricky to obtain a good definition for equivalences in homotopy type theory;
interested readers are recommended to consult [33, Chap. 4] for a precise definition. For this
paper it suffices to know that the following data are sufficient to build a good equivalence: a
function from A to B, a function from B to A, and two proofs showing the two compositions
are homotopic to the identity functions.

With a good definition of equivalences, we have the univalence axiom stating that the
equivalence type between types A and B is itself equivalent to the identification type A =U B.
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The univalence axiom not only recognizes new identifications between types, but also has
profound impact on the type theory; in particular, functional extensionality becomes provable,
and is used throughout the paper for our covering spaces are defined as functions from the
base type to the universe.

Two families of types indexed by the same type are equivalent if they are fiberwise
equivalent, and a fiberwise function between two families is a family of functions between
corresponding fibers. By the univalence axiom (and functional extensionality), fiberwise
equivalence also implies the identification of two families of types.

For a family of types B indexed by a type A, an identification p in A from point a to
point b will force an equivalence between corresponding fibers B(a) and B(b). The intuition
is that a family of types indexed by B is a function from B to the universe U ; it will preserve
identifications, and by the univalence axiom identifications in the universe are equivalences.
The equivalence (as a function) is called transport and is written transportx.B(x)(p; a′),
meaning the transport of a′ : B(a) along p : a =A b across the family B to the fiber B(b). It
is also functorial in p in the sense that it sends reflexivity to identity equivalence and path
concatenation to equivalence composition.

2.4 Truncation and Connectivity
Truncation levels denote the dimension (iteration level of identification) above which a type is
trivial: a type is at level −2 if it is contractible, which means it is equivalent to the unit type
and is trivial at all dimensions, and a type is at level (n+ 1) if its identification types lie at
level n. It may seem odd that the level starts with −2, not 0, but it matches well with other
theories such as groupoid theory; for example, there is a tight connection between types at
level 1 and 1-groupoids.

A type at level −1 is called a mere proposition, where any two points are identified,
and a type at level 0 is called a set, where any two parallel identifications are identified.
Equivalences between sets are called isomorphisms.7 It can be shown that the truncation
levels form a cumulative hierarchy, in addition to the existing one based on their universe
levels (which are suppressed in this paper).

An n-type [33, §7.1] is a type at truncation level n. The type Set, as mentioned above,
is the type of all 0-types. The n-truncation of a type A is, intuitively, the best n-type
approximation of the type A, written ‖A‖n, where the projection of a : A into the truncation
is written |a|n. More precisely, ‖A‖n is the n-type with the universal property that there
is a unique extension of any function of type A→ B to ‖A‖n for any n-type B, as shown
below. The n-truncation of an n-type is equivalent to the n-type itself.

A //

|−|n
��

B

‖A‖n

==

for any n-type B.

Connectivity [33, §7.5] is the “dual” of truncation level in the sense that an n-connected
type is trivial below or at the dimension n. See Figure 2 for a visualization of 0-connected
and 1-connected spaces. In this work we critically rely on the fact that, for any two points
in an n-connected type, there is an element in the (n− 1)-truncation of the identification
type between those two points. Technically, an n-connected type is defined to be a type
whose n-truncation is contractible, meaning that it can only have non-trivial structures above
dimension n.

7 This follows the convention in [33, §2.4].

TYPES 2016



11:6 Covering Spaces in Homotopy Type Theory

A 0-connected space. A 1-connected space.

Figure 2 Examples of connected spaces without structures above dimension 1.
Vertices represent the elements and edges represent the identification generators. The space on the
left is not 1-connected because paths between points are not unique. Conversely, a 1-connected
space is always 0-connected.

Because we will be working closely with many elements in the n-truncation of identification
types, we may call such elements n-truncated identifications for short, or even truncated
identifications if the truncation level is clear from the context.

Throughout this paper, some mere propositions are called properties, hinting they are
mathematical properties whose witnesses are irrelevant (except ther existence), in contrast
with mathematical structures which might carry non-trivial information.

2.5 Set Quotients
Let A be a type and R : A→ A→ U a family of types doubly indexed by A. We write A/R
as the set quotient of A by R, [a] as the equivalence class of a : A, and quot(r) for r : R(a, b)
as a witness of [a] =A/R [b]. The family R need not be an equivalence relation itself, but the
set quotient in type theory effectively takes the reflexive, symmetric and transitive closure of
R. Note that we did not require R to be a family of mere propositions as in the book [33]
because in theory it made little difference and in practice it is convenient not to be concerned
about truncation levels. Similarly, A is not required to be a set, even though the set quotient
A/R always is.

2.6 Fundamental Groups and Truncated Identification
As mentioned earlier, iterated identification forms the structure of ∞-groupoids. The 0-
truncation of identification thus behaves like ordinary groupoids, which reduce to groups if we
only focus on some particular point [33]. More precisely, given a type A with a distinguished
point a, the fundamental group of the type A at a, written π1(A, a), is the set ‖a = a‖0
along with concatenation as composition and (truncated) reflexivity as the unit. When the
distinguished point a is clear from the context, we may omit the point and write π1(A) for
short.

We will reuse the path concatenation and path inverse (p • q and p−1) on 0-truncated
identifications for a cleaner presentation; however, the distinction is still important and so we
will mark every other use of truncation. In particular, the transport function on 0-truncated
identifications is written with an additional subscript “0” as

transportx.B(x)
0 (p; a′) : B(b)

where B is a family of 0-type indexed by A, p is a 0-truncated identification in ‖a = b‖0, and
a′ is a point in the fiber B(a). It is important that the truncation level of p (which is 0 here)
matches the truncation level of B so that we may apply the universal property of truncation.
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2.7 Implicit Coercion

To further reduce notational clutter, we adopt implicit coercion when no confusion would
occur. For example, a group may be implicitly coerced into its underlying set; an n-type,
which in reality carries a proof of its truncation level, may drop the proof silently; and a
pointed type may be coerced into its carrier. Agda has limited support of coercion through
instance arguments, but we did not use them in our mechanization except for numeric literals.

3 Comparison with Classical Definition

Our type-theoretic formulation appears quite different from the classical definition of covering
spaces, and thus readers with the background in classical algebraic topology might wonder
how this definition links to the classical one.

The situation is somewhat complicated because our construction lies in the type theory
while the most common classical definition is expressed in point-set topology. We have
an interpretation of the type theory into simplicial sets, and then geometric realization of
simplicial sets into topological spaces, but not a direct interpretation into topological spaces
yet to the best of our knowledge. A rigorous mathematical proof will involve interpreting
our construction (Definition 1) into simplicial sets and then topological spaces, and is
unfortunately beyond the scope of this paper. Instead, we will only give some intuition about
the linkage in this section, and provide more internal evidence throughout the paper.

Here is a definition of covering spaces in terms of point-set topology [14, p. 29]:

I Definition 2 (classical definition of covering space). A covering space of a topological space
A is a topological space C with a continuous surjective map π : C → A such that for each
point a ∈ A there is an open neighborhood U of a in A such that p−1(U) is a union of
disjoint open sets, each mapped homeomorphically onto U by p.

The connection between the two kinds of covering spaces lies in several critical observations:
Definition 1 defines a covering space as an A-indexed family of type F while Definition 2
focuses on a map p from C to A. To fit a covering space of the first kind, F , into the
latter definition, one may choose the total space

∑
a:A F (a) as C and the first projection

as the map from C to A; the notion preimage p−1(a) is then replaced by the fiber F (a).
In general, type families and fibrations (for example p here) are equivalent and this
connection is discussed in details in [33, §2.3]. We chose families over fibrations because
it is easier to work with families of types inside the type theory.
Next, the use of neighborhoods can be largely avoided because every space constructed by
the standard geometric realization of a simplicial set is a CW complex and thus satisfies
all local connectedness properties (for example local path-connectedness or semi-local
simple connectedness). Moreover, every construct in type theory is continuous under this
interpretation. Therefore, there is no need to mention local connectivity or continuity,
because we cannot define any “bad” space in the type theory.
Homeomorphism is weakened to homotopic equivalence because, again, it is impossible
to distinguish homeomorphic but not homotopic objects inside the type theory.8

8 This does not take into account of the possibility of, for example, internalizing the entire set theory
in the type theory and redoing the point-set topology. We assume a more direct interpretation into
simplicial sets and then topological spaces.
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11:8 Covering Spaces in Homotopy Type Theory

The real discrepancy is that the classical definition requires that the total space C (or∑
a:A F (a) from the first definition) to be non-empty and that p (or the first projection

from
∑

a:A F (a) to A) is surjective. This condition is needed for the universal covering
to be universal, as we will discuss in Section 5; otherwise the empty space would be the
universal covering space for any base type. However, without the non-emptiness or surjectivity
requirement, the representation theorem (Theorem 4) does not have to rule out empty sets
with actions; moreover, in a constructive setting there are many possible formulations of these
conditions that are all classically equivalent but with different constructive content. Indeed,
in Section 5 where we discuss universal covering spaces, we derive a pointedness condition
that is constructively much stronger than (but classically equivalent to) mere non-emptiness.
It is important to isolate the usage of non-emptiness or surjectivity to study their impact in
constructive mathematics.

As a further justification, one can immediately prove the following lemma in the type
theory when the base type A is the circle S1:

I Lemma 3. There is an equivalence between S1 → Set and sets with an automorphism.

Proof. (Omitted, but fully mechanized in the proof assistant Agda as a separate lemma.) J

This lemma is a special case of the main theorem we will present in the next section.

4 Representation Theorem

The first main result of this paper is that covering spaces of a 0-connected, pointed space A
are represented by sets equipped with a group action of the fundamental group of A, which
is to say there is an equivalence between covering spaces and such sets. The intuition is
that everything in homotopy type theory must respect identification, and the fact that the
base type A is 0-connected indicates that there is a (−1)-truncated identification between
any two points and thus a (−1)-truncated isomorphism between any two fibers. Therefore,
it is represented by one copy of these isomorphic sets and a description of how they are
isomorphic, encoded as an action of the fundamental group. See Figure 1 for examples of
how a covering space is represented by a set with an action.

Formally, a set with a group action of G is called a G-set, a functor from the group G
(treated as a category with one object and elements in G as morphisms) to the category of
sets up to isomorphism; a group set is a G-set without the group G being specified. In type
theory, a G-set is a record with the following components:

El: a set.
α: a (right) group action of type El→ G→ El.
α-unit: a proof of the property that α preserves the group identity:∏

x:El

α(x, unit(G)) =El x.

α-comp: a proof of the property that α preserves the group composition:∏
x:El

∏
g1,g2:G

α(x, comp(G)(g1, g2)) =El α(α(x, g1), g2).

The representation theorem is then about covering spaces being represented by π1(A, a)-
sets, which can be formally stated as follows:

I Theorem 4 (representation by group sets). For any 0-connected type A with a point a, we
have (A→ Set) ' π1(A, a)-Set.
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Proof. The standard methodology to show equivalence in homotopy type theory is to
establish two functions inverse to each other. That is, we want to establish two functions
from covering spaces A→ Set to group sets π1(A)-Set and vice versa, and show that the
round-trips are the identity function.

The direction from covering spaces A → Set to group sets π1(A)-Set is relatively
straightforward: the group set should capture a representative fiber with isomorphisms
between fibers. Because the base type A is 0-connected, every fiber is equally qualified, and
so we choose the one over the distinguished point a. Moreover, recall that the isomorphism
forced by an identification in the base type, as discussed in Section 2, is the transport function.
Putting these together, we can define a π1(A)-set from a covering space F : A → Set by
taking

El :≡ F (a)

α :≡ λx.λg.transportx.F (x)
0 (g;x)

with properties α-unit and α-comp derived from functoriality of transport0. The reason
that we only have to record the automorphisms of F (a) forced by loops at a (instead of all
isomorphisms between all fibers) is because A is 0-connected; that is, every point in A is
merely connected to a by a (−1)-truncated identification, and thus the automorphisms at a
determine the isomorphisms between all fibers.

The other direction, from group sets X : π1(A)-Set to covering spaces, is more technically
involved. A good guide is to focus on a group set generated from some covering space
F ′ : A→ Set through the above process; if the theorem is true, we should be able to recreate
a covering space F : A→ Set equivalent to F ′. A key observation is that every point in any
fiber of F ′ is a result of transporting some point in the fiber F ′(a) to that fiber, noting that
X was defined to be F ′(a). Thus, one idea is to populate the new family F with formal
transports from X quotiented by the supposed functoriality of transports and the agreement
with α, in the hope to mimic the real transport0 in F ′. The formal definition is shown as
follows; in the definition, the quotient relation ∼b can be seen as a succinct summary of the
functoriality of transports and the agreement with α.

I Definition 5 (reconstructed covering space). Let A be a type with a point a and X be a
π1(A, a)-set with an action α. The reconstructed covering space, F : A→ Set, is defined as

F :≡ λb.(X × ‖a =A b‖0)/∼b

where the relation ∼b is defined as the least relation containing

〈α(x, `); p〉 ∼b 〈x; ` • p〉 for any x : X, ` : ‖a = a‖0 and p : ‖a = b‖0.

This completes the construction of the new covering space F .

The next step is to show that these two functions are indeed inverse to each other.
However, in this paper we will only highlight the interesting part in proving the reconstructed
covering space F is indeed equivalent to the original F ′. Following the standard recipe
of equivalence, two functions back and forth are needed for the equivalence between two
covering spaces. The direction from F to F ′ is simply realizing the formal transports; that is,
for any point b : A and any representive 〈x; p〉 in the fiber F (b) (defined as a set quotient),
we have

transportx.F ′(x)
0 (p;x) : F ′(b)

TYPES 2016



11:10 Covering Spaces in Homotopy Type Theory

because x : X, p : ‖a = b‖0 and X :≡ F ′(a). One can then show this expression respects
the quotient relation ∼b imposed on F (b) in Definition 5. The other direction is somewhat
unclear – given a point y in the fiber F ′(b), how shall we locate a point x in F (a) and
compute a truncated identification p such that y will be the result of transporting x along p?

Recall that the connectivity of A implies that there is a (−1)-truncated identification
between any two points. That is, for any point b : A we have a truncated identification
p : ‖a =A b‖−1. One attempt is then to transport y along the inverse of p to some point x in
F (a), for transporting x back along p should cancel the opposite transportation and recover y;
the pair 〈x; p〉 in F (b) then corresponds to y. The problem is that all the transportation and
pairing demand 0-truncated identifications but p is a (−1)-truncated identification. In other
words, there is a gap between the truncation level of the identifications from connectivity
(−1) and that of the fibers of covering spaces (0), which prevents the application of the
universal property of truncation.

Fortunately, such a truncation level gap can be filled by a constancy condition. We can
show that different choices of identifications between a and b result in pairs related by the
quotient relation imposed on F (b), and then, by the following lemma, we can extend the
above construction to (−1)-truncated identifications. The intuition is that if a function does
not depend on the value of the input but only its existence, a (−1)-truncated input should
suffice.

I Lemma 6 (extension by weak constancy9). Let A be a type and B a set. For any function
f : A→ B such that

∏
x,y:A f(x) =B f(y) there exists a function g : ‖A‖−1 → B such that

f ≡ g ◦ |−|−1.

We will now carefully construct the function from F ′ to F sketched above, using this
lemma. For any point b : A, we have a function fb : F ′(b)→ (a =A b)→ F (b) as

fb :≡ λy.λp.
[〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉]
,

which transports y to some point in F (a). We want to show Lemma 6 applies to fb(y,−)
for any y : F ′(b) so that a (−1)-truncated identification suffices. To satisfy the constancy
condition in Lemma 6, it is sufficient to demonstrate that for any two identifications p, q of
type a =A b〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉
∼b

〈
transportx.F ′(x)

0

(
|q|0
−1; y

)
; |q|0

〉
where ∼b is the quotient relation of F (b) and thus fb(y, p) =F (b) fb(y, q). This can be proved
by the groupoid laws of identification and the definition of ∼b; we have〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉
=
〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0 • |q|0

−1
• |q|0

〉
∼b

〈
α
(

transportx.F ′(x)
0

(
|p|0
−1; y

)
, |p|0 • |q|0

−1
)

; |q|0
〉

≡
〈

transportx.F ′(x)
0

(
|p|0 • |q|0

−1; transportx.F ′(x)
0

(
|p|0
−1; y

))
; |q|0

〉
(by definition)

=
〈

transportx.F ′(x)
0

(
|p|0
−1

• |p|0 • |q|0
−1; y

)
; |q|0

〉
=
〈

transportx.F ′(x)
0

(
|q|0
−1; y

)
; |q|0

〉
.

9 The word weak here indicates that we do not know the value in the codomain, which is weaker than
other possible definitions of constancy. In particular, all functions from or to the empty type are weakly
constant.
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This means fb(y,−) is (pairwise) constant, and thus by Lemma 6 there exists an extension
gb,y : ‖a =A b‖−1 → F ′(b) to the constant function fb(y,−). Putting these together, we have
the following function of type F ′(b)→ F (b):

λy.gb,y(p(a, b))

where p(x, y) is the (−1)-truncated identification between x and y derived from the con-
nectivity of A. This concludes the two functions between F ′(b) and F (b); the remaining
parts of the equivalence proof are a routine calculation. J

The proof of Theorem 4 critically relies on Lemma 6, which provides a sufficient condition
for establishing a function from types at lower truncation level to ones at higher level, which
is usually impossible because of missing coherence conditions in codomains. The lemma
asserts that constancy can fill in the gap so that there is a way to extend a function to
truncated types. Nicolai Kraus et al. have significantly generalized the result and considered
the cases from mere propositions to types at arbitrary levels; see [20–22]. The following is a
proof of the special case (Lemma 6):

Proof of Lemma 6. Given a function f from A to B satisfying the constancy condition,
construct the set quotient A/∼ where

a ∼ b :≡ f(a) =B f(b).

One can then show that the function f factors through A/∼. Because A/∼ is provably a mere
proposition, the function f can be extended to the (−1)-truncation of A. The judgmental
equality is derived from the computation rules of truncations and set quotients on points. J

There is also an alternative argument (provided by Steve Awodey) for Theorem 4 that
proceeds as follows: In the context of A→ Set, because the codomain Set is itself a 1-type
(as the type of all n-types is an (n+ 1)-type [33, Theorem 7.1.11]), structures at dimension
higher than 1 in the domain A are irrelevant, which means that (A→ Set) ' (‖A‖1 → Set).
(This can also be argued from the universal property of the 1-truncation of A.) Moreover,
the 1-truncation of a pointed, 0-connected type A can be represented by its fundamental
group π1(A, a) where a is the point,10 and so the type ‖A‖1 → Set is really the collection
of functors from π1(A, a) (as a category) to Set, or simply π1(A, a)-sets. However, this
argument relies on several components that are still not available in the Agda development;
in comparison our proof is more elementary.

5 Universal Covering Spaces

In addition to the representation theorem, we also mechanize several well-known properties
about a special covering space, the universal covering space, which is intuitively the most
general or the most “unfolded” covering space over a space. It has two equivalent definitions,
one based on connectivity and one based on initiality (and hence the name universal). In
addition to the two definitions, when the base type is 0-connected it is also represented by

10The equivalence between ‖A‖1 and the Eilenberg-Mac Lane space K(π1(A, a), 1) was mechanized by
Floris van Doorn in the library of Lean [9, 11]. However, the authors are not aware of a published
paper discussing this result in details.
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−1

?

Z

Figure 3 The lack of a canonical equivalence.

the fundamental group – which is itself a π1(A, a)-set – through the representation theorem
in Section 4; this argument was implicitly used in the calculation about the fundamental
group of the circle in [26] and here we show a general result.

In this section the base type is fixed to be a type A with a distinguished point a.

I Definition 7 (pointed covering space). A pointed covering space is a covering space whose
fiber over a is pointed.

I Definition 8 (universal covering space). A universal covering space is a pointed covering
space whose total space is 1-connected.

The reason we stipulated a point in the specific fiber over the specific point is to make
available a canonical choice among fiberwise equivalents. Considering the helix in Figure 3,
the universal covering space over the circle whose fundamental group is integers, there
are multiple different equivalences between integers and any fiber of the helix, and there
is no canonical choice – until we pin down a particular point in the helix and demand it
be mapped to zero. To fit the definition of fiberwise equivalences, distinguished points of
different covering spaces should be in the matching fibers, and thus we further demand the
distinguished point lie in the fiber over the point a.

As hinted above, the following definition should be equivalent.

I Definition 9 (alternative definition of universal covering space). A universal covering space
is a covering space which is initial in the category of pointed covering spaces with point-
preserving fiberwise functions as morphisms.

The main observation to unify all these properties and simplify the proof is that the
covering space consisting of 0-truncated identifications from the distinguished point

P :≡ λb.‖a =A b‖0

with its own distinguished point |refla|0 in P (a) is the universal covering space. This means
that it suffices to show the covering space P is the one and only pointed covering space
satisfying the two definitions of universal covering spaces, and that it is represented by the
fundamental group. In fact, its correspondence to the fundamental group is trivial because
its fiber over the distinguished point a is exactly (the underlying set of) the fundamental
group, and it is not difficult to prove the group action is the concatenation. The rest of the
section is dedicated to showing the equivalence of two definitions.

First, we will show P is the one and only 1-connected covering space.

I Lemma 10. The total space of P is 1-connected.

Proof. To show that the total space is 1-connected, by definition it suffices to show that the
1-truncation of

∑
b:A P (b) is contractible, which means the 1-truncation is pointed and there

is an identification to any point in that truncation. The truncated pair |〈a; |refla|0〉|1 is
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clearly a point, and the identification between |〈a; |refla|0〉|1 and some other truncated pair
|〈b; p〉|1 can be established by applying truncation induction and identification induction on
p, which states that it suffices to consider the case p ≡ |refla|0 (and that b ≡ a). J

I Lemma 11. Any pointed covering space whose total space is 1-connected is equivalent
to P .

Proof. Let F be a pointed covering space whose total space is 1-connected. Once again we
will follow the recipe of equivalence by establishing two functions inverse to each other. The
direction from P to F can be done fiberwise by transports; that is, for any b : A, we can
define a function from P (b) to F (b) as evaluating the transport of the distinguished point in
F (a) along the input in P (b) (which is a truncated identification from a to b) to the fiber
F (b). Formally, it is

λp.transportx.F (x)
0 (p; a∗F )

where a∗F is the distinguished point of F over a. The other direction is to exploit the
1-connectivity: for any point y in the total space of F , there is a 0-truncated identification
from the distinguished point 〈a; a∗F 〉 to y in the total space, which can then be “projected
down” to the base type as a 0-truncated identification from the point a to the point over
which y is. It can then be shown that these two functions are inverse to each other. J

Lemmas 10 and 11 tell us P is the only 1-connected universal covering space. Thus the
remaining step is to prove that P is the initial object in the category up to homotopy. Note
that we did not explicitly define the category but directly talked about its morphisms.

I Lemma 12. For any pointed covering space F , there exists one and only one point-
preserving fiberwise function from P to F .

Proof. The existence is again by transporting the distinguished point of F along the points in
P , which are themselves 0-truncated identifications. The uniqueness is by applying truncation
induction and identification induction on points in the total space P , which suggests we only
have to consider the case |refla|0, the distinguished point of P . However, a point-preserving
function must send |refla|0 to the distinguished point of F , and thus all such functions must
agree. J

Now we are ready to conclude this section with the following theorem:

I Theorem 13. For any type A with a point a, the covering space P :≡ λb.‖a =A b‖0 of type
A with |refla|0 as its distinguished point is the universal covering. It is also represented by
π1(A, a) if A is 0-connected.

Proof. The first statement directly follows Lemmas 10, 11 and 13. The second statement
comes from the definition of P whose fiber over a is exactly the underlying set of π1(A, a). J

6 Discussion

In this paper we show that covering spaces, an important concept in homotopy theory, can be
elegantly expressed in the new framework homotopy type theory, whose synthetic nature also
makes possible Agda mechanization of length comparable to proofs on paper. The code is
available at [6], and a snapshot that matches this paper is available at [7]. The development
is broken into four files:
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theorems/homotopy/CircleCover.agda: Lemma 3.
theorems/homotopy/GroupSetsRepresentCovers.agda: Theorem 4.
theorems/homotopy/AnyUniversalCoverIsPathSet.agda: Lemmas 10 and 11.
theorems/homotopy/PathSetIsInitalCover.agda: Lemma 12.

This paper is only the starting point of the study of covering spaces in homotopy type
theory. There are still many properties unproven: for example, the representation theorem in
classical theory is actually a correspondence between two categories, not just the objects. Also,
the connectivity condition may be dropped if we replace fundamental groups by fundamental
groupoids. Moreover, there are other possible generalizations such as n-covering spaces over
a space as families of n-types indexed by that space (as a type), which to our knowledge do
not immediately correspond to well-known structures in classical homotopy theory.
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1 Introduction

Communicating Sequential Processes (CSP) [20, 28] is a formal specification language which
was developed in order to model concurrent systems through their communications. It was
developed by Hoare in 1978 [20]. It is a member of the family of process algebras. Process
algebras are one of the most important concepts for describing concurrent behaviours of
programs.

The starting point of this work was the modelling of processes of the European Railway
Train Management System (ERTMS) in CSP by the first author. Having expertise in
modelling railway interlocking systems in Agda (PhD project by Kanso [24, 25]), we thought
that an interesting step forward would be to model CSP in Agda. A first step towards this
project was the development of the library CSP-Agda [22, 21]. CSP-Agda represents CSP
processes coinductively and in monadic form. The purpose of this article is to introduce CSP
trace semantics in Agda, and carry out examples of proofs in CSP-Agda.

In CSP-Agda we developed a monadic extension of CSP, which is based on Moggi’s
IO monad [27]. This IO monad (IO A) is currently the main construct for representing
interactive programs in pure functional programming. An element of (IO A) is an interactive
program, which may or may not terminate, and, if it terminates, returns an element of type
A. The monad provides the bind construct for combining elements of (IO A): It composes a
p : IO A with a function f : A→ IO B to form an element of (IO B). The program is executed
by first running p. If p terminates with result a, one continues running (f a). This allows to
write sequences of operations in a way which looks similar to sequences of assignments in
imperative style programming languages.

Hancock and the second author [18, 17, 19] have developed a version of the IO monad in
dependent type theory, which we call the HS-monad. The HS-monad reduces the IO monad
to coinductively defined types. An element of (IO A) is either a terminated program, or it is
node of a non-well-founded tree having as label a command to be executed, and as branching
degree the set of responses the real world gives in response to this command. The HS-Monad
has been extensively used for writing interactive programs in the paper [4] on object-based
programming in Agda.

In [22], we modelled processes in a similar way as a monad and developed the library
CSP-Agda. In the IO monad a program can terminate or it can issue a command and
depending on the response continue. Similarly, a CSP-Agda process can either terminate,
returning a result. Or it can be a tree branching over external and internal choices, where
for each such choice a continuing process is given. So instead of forming processes by using
high level operators, as it is usually done in process algebras, our processes are given by
these atomic one step operations. The high level operators are defined operations on these
processes. CSP-Agda introduces a new concept to process algebra, namely that of a monadic
processes. A monadic process may run or terminate. If it terminates, it returns a value. This
facilitates the combination of processes in a modular way. Processes are defined coinductively,
and therefore we can introduce processes directly corecursively without having to use the
recursion combinator.

One can regard process with return type A as well as possibly non-well-founded trees,
with each node branching over external and internal choice, and having leaves labelled by
elements of the return type A (which are terminated processes).3

Abel, Pientka, Thibodeau and the second author have [5, 31] developed the notion of
coinductive types as being defined by their elimination rules or observations. This notion

3 This way of viewing processes was suggested by one of the anonymous referees.
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has now been implemented in Agda. It turns out that classes and objects in object oriented
programming are of similar nature: Classes are defined by their methods, and therefore
given by their observations. The second author [30] has used this approach in order to
develop the notion of objects in dependent type theory. This has recently been substantially
extended together with Abel and Adelsberger [4] to a library [3] for objects in Agda including
correctness proofs, state dependent objects, server side programs, and a methodology for
developing graphical user interfaces in Agda.

In CSP-Agda [22, 21] we made extensively use of the aforementioned representation of
coinductive types by their elimination rules. Using a record type, we accessed directly for
non-terminating processes the choice sets and corresponding subprocesses, without having to
extract them first using auxiliary definitions. This gives rise to compact definitions, see for
instance the definition of +�= in Subsection 4.2.1 below.

The goal of this paper is to extend CSP-Agda by adding (finite) trace semantics of CSP.
Because of the monadic settings, possible return values need to be added to the traces. It
turns out that in the algebraic laws of CSP, the return values of the left and right hand side
of the laws are usually different. Therefore one needs to add an extra function fmap in these
laws to adjust these return values. We show how to prove selected (adjusted) algebraic laws of
CSP in Agda using this semantics: the laws of refinement, commutativity of interleaving and
parallel, and the monad laws for the monadic extension of CSP. Further proofs of algebraic
laws will be available in the repository of CSP-Agda [21].

Use of literal Agda. All displayed proofs in this article have been written using literal
Agda [7] (which allows to combine LATEX-code and Agda) and have been type checked in
Agda. However, as usual when presenting formal code, only the most important parts of
the definitions and proofs are presented. Full versions can be found in the repository of
CSP-Agda [21].

The structure of this paper is as follows: In Section 2, we review the process algebra
CSP. In Section 3, we give a brief introduction into the type theoretic language of Agda. In
Section 4, we review CSP-Agda, and introduce the CSP operators used in the examples of
this paper (monadic bind, interleaving, and parallel). In Section 5 we extend CSP-Agda by
adding (finite) trace semantics of CSP. In Section 6 we prove selected algebraic laws of CSP
processes. In Section 7, we will look at related work, give a short conclusion, and indicate
directions for future research.

2 CSP

Process algebras were initiated in 1982 by Bergstra and Klop [9] in order to provide a
formal semantics to concurrent systems. A “process” is a representation of the behaviour
of a concurrent system. “Algebra” means that the system is dealt with in an algebraic
and axiomatic way [8]. In this article we represent a process algebra in the interactive
theorem prover Agda in order to prove properties of processes. The process algebra chosen is
Communicating Sequential Processes (CSP). CSP [20, 28, 29] was developed by Hoare in
1978 [20].

Processes in CSP form a labelled transition system, where the one step transition is
written as

P µ→ Q where P,Q are processes and µ is an action,

which means that process P can evolve to process Q by event µ. The event µ can be a label,
the silent transition τ , or the termination event X. In case of the label X, Q will always be
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the specific process STOP. Using standard CSP syntax, the process (a → P) is the process
which has an only transition (a → P)

a→ P.4 As an example, we give here the execution of
the process (a → b → STOP):

( a → b → STOP)
a→ (b → STOP)

b→ STOP

The operational semantics of CSP defines processes as states, and defines the transition
rules between the states using firing rule. In CSP-Agda [22, 21] we introduced the firing rules
for CSP operators (taken from [29]), and modelled them in Agda. We followed the version of
CSP used in [29, 28]. All rules (as well those in this paper) are taken from [29]. In the rules
we follow the convention of [29] that a ranges over Label ∪ {X} and µ over Label ∪ {X, τ}.
AX denotes A ∪ {X}.

In the following table, we list the constructs for forming CSP processes. Here Q represent
CSP processes (Page numbers refer to [29] where the constructs are introduced):

Q ::= STOP STOP p.6
| SKIP SKIP p.11
| prefix a → Q p.6
| external choice Q 2 Q p.18
| internal choice Q u Q p.22
| hiding Q \ a p.53
| renaming Q[R] p.60
| parallel Q X‖Y Q p.29
| interleaving Q ||| Q p.43
| interrupt Q 4 Q p.70
| composition Q o

9 Q p.67

There are as well indexed versions of 2, u, ‖, |||. They are indexed over finite sets, and
therefore can be reduced to the binary case.

3 Agda

In this chapter we introduce the main concepts of Agda [6, 10], a more extensive introduction
can be found in [22].

Agda is based on dependent type theory. There are several levels of types in Agda, the
lowest is for historic reasons called Set. Types in Agda are given as dependent function types,
and inductive types. In addition, there exist record types (which are in the newer approach
used as well for defining coinductive types) and a generalisation of inductive-recursive and
inductive-inductive definitions. Inductive data type are dependent versions of algebraic data
types as they occur in functional programming. Inductive data types are given as sets A
together with constructors which are strictly positive in A. For instance, the set of vectors
(i.e. lists of fixed length) of elements of A and of length n is given as

data Vec (A : Set) : N → Set where
[] : {n : N} → Vec A zero

:: : {n : N} (a : A) (l : Vec A n) → Vec A (suc n)

4 In Agda we use an arrow which looks similar to the one used for the function type, but is a different
Unicode character. The reason for this choice is to be as much as possible in accordance with standard
CSP syntax.
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Here {n : N} is an implicit argument. Implicit arguments are omitted, provided they can
be uniquely determined by the type checker. We can make a hidden argument explicit by
writing for instance ([] {n}) for the application of [] to the hidden argument n. The symbol

:: is Agda’s notation for mixfix symbols. The arguments of a mixfix operator are denoted
by underscore ( ). The expression a :: l stands for ( :: a l).

The above definition introduces a new type Vec : (A : Set)→ N→ Set, where (Vec A n)

is a type of vectors of type A of length n. A is a parameter, so the constructors always refer
to the same parameter A. The variable n is an index, and constructors refer to different
indices. The vectors have constructors [] and :: . The elements of (Vec A n) are those
constructed from applying these constructors. Therefore we can define functions by case
distinction on these constructors using pattern matching. The following defines the sum of
elements of a vector of type N:

sum : ∀ {n} → Vec N n → N
sum [] = 0
sum (n :: l) = n + sum l

Here we used the notation ∀ {n}→ · · · , which stands for {n : A}→ · · · , where A (here
N) can be inferred by Agda. Nested patterns are allowed. The coverage checker checks
completeness and the termination checker checks that the recursive calls follow a schema of
extended primitive recursion.

In this paper we use the approach of defining coinductive types in Agda by their elimination
rules as introduced in [5, 31]. The standard example is the set of streams:

record Stream (i : Size) : Set where
coinductive
field
head : N
tail : {j : Size< i} → Stream j

If we first ignore the arguments Size, Size<, which will be discussed below, we see that the
type Stream is given as a record type in Agda. It is defined coinductively by its observations
head, tail. So we have if a : Stream i then head a : N and tail a : {j : Size< i} → Stream j.
Elements of Stream are defined by copattern matching, i.e. by determining the result of
applying head, tail to them. A simple (non-recursive) operation is the function cons for
adding a new element in front of a stream (the symbol ↑ will be explained when discussing
Size below):

cons : {i : Size} → N → Stream i → Stream (↑ i)
head (cons n s) = n
tail (cons n s) = s

Functions introduced by the principle of guarded recursion [11] or primitive corecursion can
only make corecursive calls to the same functions applied to arbitrary arguments. Especially,
no functions can be applied to the corecursive calls. However, there are no restrictions on
the arguments, the corecursive function calls can be applied to. As an example we give the
pointwise addition of two streams:
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+s : ∀ {i} → Stream i → Stream i → Stream i
head (s +s s’) = head s + head s’
tail (s +s s’) = tail s +s tail s’

+s makes a corecursive call to (tail s +s tail s′). Note that s, s′ are arguments of +s ,
so we can apply tail to them freely.

Without the guarded recursion restriction, one could define non productive definitions,
e.g. define tail (f x) = tail (f x). However, the guardedness restriction makes it difficult to
define streams in a modular way, since we cannot in a corecursive call refer to other functions
for forming streams at all, although many operations will not cause problems. Therefore
Abel has introduced sized types [1, 2] in the context of coinductive types, which allow to
apply size preserving and size increasing functions to corecursive calls.

Sizes are essentially ordinals (without infinite branching one can think of them as natural
numbers), however there is an additional infinite size ∞. We have as operations for forming
sizes the infinite size ∞, the successor operation on sizes ↑, and have the type of sizes less
than i denoted by (Size< i).

For ordinal sizes i 6=∞, a stream s : Stream i allows up to i applications of tail. The true
streams is the set Stream ∞ and s : Stream ∞ allows arbitrary many applications of tail.
When defining an element f : (i : Size) → A i → Stream i by corecursion, (tail (f i a) {j})
must be an element of size ≥ j which can refer to a corecursive call (f j a′), and we can
apply functions to it as long as the resulting size is ≥ j. Elimination on the corecursive
call is prevented, since we do not have access to any size < j. However, we can apply size
preserving and size increasing functions to the corecursive call. This guarantees that streams
are productive. We have ∞ : Size<∞, so a corecursive definition of elements of (Stream∞)

can refer to itself.
Agda offers let and where expressions in order to declare a local definition. In comparison,

where expressions allow a pattern matching or recursive function, whereas pattern matching
and recursive functions are not allowed in let expressions. In Agda the let expressions can be
represented as follows:

let
a1 : A1

a1 = s1
a2 : A2

a2 = s2
...

an : An
an = sn
in t

In the above definition, we use let expressions in order to introduce new local constants:

a1 : A1 s.t. a1 = s1,
a2 : A2 s.t. a2 = s2,

...

an : An s.t. an = sn

The syntax for where is similar, except that the auxiliary definitions introduced by where
occur after the main definition they are used in, whereas for let they occur before it.
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4 The Library CSP-Agda

In this section we repeat the main definition of processes in CSP-Agda from [22]. The reader
might consult that paper for a more detailed motivation of the definitions in CSP-Agda.

4.1 Representing CSP Processes in Agda
As outlined before, we represent processes in Agda in a monadic way. Therefore, a process
P : Process A is either a terminating process (terminate a), which has return value a : A,
or it is process (node Q) which progresses. Here Q : Process+ A, where (Process+ A) is the
type of progressing processes. A progressing process can proceed at any time with labelled
transitions (external choices), silent transitions (internal choices), or X-events (termination).
After a X-event, the process becomes deadlocked, so there is no need to determine the process
after that event. We will however add a return value a : A to X-events. Note that there is
a subtle difference between terminated processes and processes with termination events (see
[23] for full details.5)

Elements of (Process+ A) are therefore determined by
(1) an index set E of external choices, and for each external choice e the Label (Lab e) and

the next process (PE e);
(2) an index set of internal choices I, and for each internal choice i the next process (PI i);

and
(3) an index set of termination choices T corresponding to X-events, and for each termination

choice t the return value PT t : A.

In addition we add in CSP-Agda a type (Process∞ A). This makes it easy to define
processes by guarded recursion, when the right hand side is defined directly and without
having to define all 8 components6 of (Process+ A). Furthermore, in order to display processes,
we add eliminators Str+ and Str∞ to (Process+ A) and (Process∞ A), respectively. They
return a string representing the process. In case of (Process∞ A), this cannot be reduced
to the string component of (Process+ A): in order to do this one would need a smaller size,
which we do not have in general for arbitrary sizes.

We model the sets of external, internal, and termination choices as elements of an
inductive-recursively defined universe Choice. Elements c of Choice are codes for finite
sets, and (ChoiceSet c) is the set it denotes. In addition we define a string (choice2Str c)

representing c, and a function choice2Enum which computes from c a list of all choices. This
can be used to print a list of choices, for instance for testing or simulating CSP processes.

We require as well that the set of return values are elements of Choice. This allows us to
print the result returned when a process terminates. However, for the return types it is not
needed that they are finite sets. So one could use a different universe for the return values of
processes, which would allow for instance the set of natural numbers as a return type.

The resulting code for processes in Agda is as follows7:

5 For instance, let P0 have a τ -transition to (terminate a), and an l′-transition to STOP. Let P1 having
a X-event with return value a and the same l′-transition to STOP. Process (P0 ||| R) can have a τ
transition to ((terminate a) ||| R), a state in which it can refuse l′. Process (P1 ||| R) cannot execute
the X-transition, since it needs to synchronise with a X-transition for R. It is stable, and cannot refuse
l′.

6 The 8th component Str+ is introduced in the next sentence.
7 Both occurrences of coinductive are needed by the current version of Agda; one could argue that in case

of Process+ Agda should allow to omit it, allowing η-equality for Process+.
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mutual
record Process∞ (i : Size) (c : Choice) : Set where
coinductive
field
forcep : {j : Size< i} → Process j c
Str∞ : String

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

record Process+ (i : Size) (c : Choice) : Set where
constructor process+
coinductive
field
E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

So an element of Process+ is defined by copattern matching, e.g. by determining its
components E, Lab, PE, etc. Note that the Agda notation E : Choice means that if we
apply E to an element of (Process+ i c) we obtain an element of Choice, so the full type is
Process+ i c → Choice. Therefore, an element of Q : Process+ is determined by determining
E Q : Choice, Lab Q l : Label , etc. An example of a process is as follows:

P = node Q : Process String where
E Q = code for {1, 2} I Q = code for {3, 4}
T Q = code for {5}
Lab Q 1 = a Lab Q 2 = b PE Q 1 = P1

PE Q 2 = P2 PI Q 3 = P3 PI Q 4 = P4

PT Q 5 = "STOP"
P1

a
b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

The universe of choices is given by a set Choice of codes for choice sets, and a function
ChoiceSet, which maps a code to the choice set it denotes. Universes were introduced by
Martin-Löf (e.g. [26]) in order to formulate the notion of a type consisting of types. Universes
are defined in Agda by an inductive-recursive definition [13, 12, 14, 15]: we define inductively
the set of codes in the universe while recursively defining the decoding function.
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We give here the code expressing that Choice is closed under fin, ]’, ×’, subset’, Σ’,
and namedElements, which correspond to the set operations Fin, ], ×, subset, Σ, and
NamedElements. Here (fin n) denotes the set (Fin n), which is the finite set having n
elements. The element (Σ’ a b) denotes the set (Σ[ x ∈ ChoiceSet a ] (ChoiceSet (b x))),
where (Σ’[ x ∈ A ] B) is the set of pairs (x , y) where x : A and y : B, and B might
depend on x .8 The element (namedElements l) denotes the type (NamedElements l), which is
essentially (Fin (length l)).9 The function choice2Str will for elements of this set print the nth
element of l, giving them more meaningful names.10 We do not equate (NamedElements l)
with (Fin (length l)). This facilitates type inference.11

The set (subset A f ) is the set of a : A such that (f a) is true. The definition of ChoiceSet
is as follows:

data Choice : Set where
fin : N → Choice
]’ : Choice → Choice → Choice
×’ : Choice → Choice → Choice

namedElements : List String → Choice
subset’ : (E : Choice) → (ChoiceSet E → Bool)

→ Choice
Σ’ : (E : Choice) → (ChoiceSet E → Choice)

→ Choice

ChoiceSet : Choice → Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s ]’ t) = ChoiceSet s ] ChoiceSet t
ChoiceSet (E ×’ F) = ChoiceSet E × ChoiceSet F
ChoiceSet (namedElements s) = NamedElements s
ChoiceSet (subset’ E f ) = subset (ChoiceSet E) f
ChoiceSet (Σ’ A B) = Σ[ x ∈ ChoiceSet A ] ChoiceSet (B x)

choice2Str : {c : Choice} → ChoiceSet c → String
choice2Str {fin n} m = showN (toN m)
. . .

choice2Enum : (c : Choice) → List (ChoiceSet c)
choice2Enum (fin n) = fin2Option0 n
. . .

8 The type (A ×’ B) has essentially the same elements as (Σ[ x ∈ A ] B) for some fresh x. However, if we
know a type C is of the form (A ×’ B), we can pattern match and obtain A and B from it, whereas
from the form (Σ[ x ∈ A ] B) we can only infer A because B is a function type. This requires to make
frequently hidden arguments A and B explicit.

9 It was suggested to us to let NamedElements depend on an n and an element of (Vec String n). But
those two elements are just a long form for writing an element of (List String). The only advantage of
Vec is that the standard library has a lookup function for it, which should be added as well for List.

10As pointed out by one of the anonymous referees, (fin n) is redundant and could be replace by
(namedElements l) for some suitable l. We keep it because when developing proofs, (fin n) behaves
better because one does not have length expressions of the form (length l) for some long expression l.

11Assume c is a hidden argument of type Choice, and l : ChoiceSet c. If we equated (NamedElements l)
with (Fin (length l)), then from the type of l we could not infer c, since in case l : Fin n we could have
c = fin n and c = namedElements l for some l. Therefore, one would need to make the hidden argument
explicit.
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4.2 Definition of the Monadic Bind, Interleaving, and the Parallel
Operators

We introduce the three operators, for which we will prove algebraic properties in this paper:
monadic bind, interleaving and the parallel operator. Monadic bind and interleaving have
already been defined in [22], and are repeated here to make it easier to follow the proofs of
the algebraic laws.

As in [22], when defining operators on processes, we introduce in most cases simultaneously
operators on the three categories of processes Process∞, Process, and Process+. We use
qualifiers ∞, p, + attached to the operators for refer to the 3 categories of processes,
respectively. For infix operators they will occur before the infix symbol if they refer to the
first argument, otherwise after the infix symbol. Note that we deviate from [22], where all
qualifiers were put after the symbol. We often omit p. We have as well a string forming
operation indicated by Str. For some binary operators we need versions where the arguments
are from different categories of processes, in which case we add two qualifiers to the operators,
one before and one after the operator, and sometimes we need even 3 or more qualifiers.
We will only present the main cases of the operators. Especially, we will usually omit the
functions involving Process∞, which follow usually the same pattern (an example can be
found in Subsection 4.2.1 below when defining ∞�= ). The full code can be found at [21].

4.2.1 The Monadic Bind Operator

In our article [22] we introduced the monadic bind operation. In Section 6.2 we will prove
the monadic laws and therefore will briefly repeat the definition of the monadic bind. A more
extensive motivation can be found in [22]. The monadic bind (P�= Q) allows to compose
two processes P and Q while allowing the second process depend on the return type c0 of P.
So Q has an an extra argument of the return type (ChoiceSet c0).

Let us consider first the version +�= where the first process is an element of set of
progressing processes Process+. The transitions of (P +�= Q) are as follows: First they
follow external and internal choices of P. If P is the terminated process with return type
a, the process continues as process (Q a). A special case is a termination event in P with
return value a. Following the operational semantics of CSP, (P +�= Q) has in this case an
internal choice (i.e. a τ -transition) to process (Q a). In total, (P +�= Q) has two possible
internal choice events, namely internal choices of P and termination events of P. It has no
termination events.

In case of the monadic bind �= on Process, we have a special case, when P = terminate x.
In this case P �= Q is equal to (Q x) (one needs to apply forcep in order to obtain an
element of Process). This is different from termination events for P, where a silent transition
is required before obtaining (Q x). In case of progressing processes P �= Q makes a direct
call to +�= . The function ∞�= makes as well a direct call to �= .

The full definition of monadic bind is as follows (the symbol “()” in the definition of PT
below denotes the empty case distinction on the empty type (ChoiceSet ∅’))12:

12Note that ++s is concatenation of string.
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�=Str : {c0 : Choice} → String
→ (ChoiceSet c0 → String) → String

s �=Str f = s ++s ";" ++s choice2Str2Str f

mutual
∞�= : {i : Size} → {c0 c1 : Choice}

→ Process∞ i c0
→ (ChoiceSet c0 → Process∞ i c1)
→ Process∞ i c1

forcep (P ∞�= Q) = forcep P �= Q
Str∞ (P ∞�= Q) = Str∞ P �=Str (Str∞ ◦ Q)

�= : {i : Size} → {c0 c1 : Choice}
→ Process i c0
→ (ChoiceSet c0 → Process∞ (↑ i) c1)
→ Process i c1

node P �= Q = node (P +�= Q)
terminate x �= Q = forcep (Q x)

+�= : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0
→ (ChoiceSet c0 → Process∞ i c1)
→ Process+ i c1

E (P +�= Q) = E P
Lab (P +�= Q) = Lab P
PE (P +�= Q) c = PE P c ∞�= Q
I (P +�= Q) = I P ]’ T P
PI (P +�= Q) (inj1 c) = PI P c ∞�= Q
PI (P +�= Q) (inj2 c) = Q (PT P c)
T (P +�= Q) = ∅’
PT (P +�= Q) ()
Str+ (P +�= Q) = Str+ P �=Str (Str∞ ◦ Q)

4.2.2 The Interleaving Operator

The interleaving operator executes the external and internal choices of its arguments P
and Q completely independently of each other. The CSP rules are as follows (having two
conclusions of a rule is an abbreviation for two rules having the same premises: one deriving
the first and one deriving the second conclusion):

P X→ P̄ Q X→ Q̄

P ||| Q X→ P̄ ||| Q̄

P µ→ P̄ µ 6= X
P ||| Q µ→ P̄ ||| Q

Q ||| P µ→ Q ||| P̄

The definition of the two main cases in CSP-Agda is as follows:
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||| : {i : Size} → {c0 c1 : Choice} → Process i c0
→ Process i c1 → Process i (c0 ×’ c1)

node P ||| node Q = node (P +|||+ Q)
terminate a ||| Q = fmap (ń b → (a „ b)) Q
P ||| terminate b = fmap (ń a → (a „ b)) P

+|||+ : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0 → Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P +|||+ Q) = E P ]’ E Q
Lab (P +|||+ Q) (inj1 c) = Lab P c
Lab (P +|||+ Q) (inj2 c) = Lab Q c
PE (P +|||+ Q) (inj1 c) = PE P c ∞|||+ Q
PE (P +|||+ Q) (inj2 c) = P +|||∞ PE Q c
I (P +|||+ Q) = I P ]’ I Q
PI (P +|||+ Q) (inj1 c) = PI P c ∞|||+ Q
PI (P +|||+ Q) (inj2 c) = P +|||∞ PI Q c
T (P +|||+ Q) = T P ×’ T Q
PT (P +|||+ Q) (c „ c1) = (PT P c „ PT Q c1)
Str+ (P +|||+ Q) = Str+ P |||Str Str+ Q

When processes P and Q have not terminated, then (P ||| Q) will not terminate. The
external choices are the external choices of P and Q. The labels are the labels from the
processes P and Q, and we continue recursively with the interleaving combination. The
internal choices are defined similarly. A termination event can happen only if both processes
have a termination event.

If one process terminates but the other not, the rules of CSP express that one continues
as the other process, until it has terminated. We can therefore equate, if P has terminated,
(P |||Q) with Q. However, we record the result obtained by P, and therefore apply fmap to
Q in order to add the result of P to the result of Q when it terminates. Here (fmap f P) is
the process obtained from P by applying f to any termination results.

If both processes terminate with results a and b, then, the interleaving combination
terminates with result (a „ b), since (fmap (λ b → (a „ b)) (terminate b)) evaluates to this
expression.

4.2.3 The Parallel Operator
The parallel operator gives the possibility to enforce two processes to work together and
interact through synchronous events. For each of the two processes sets of labels A,B are
given. For labels which are not in the intersection, both processes can execute independently,
as long as their processes are in A or B, respectively. For labels in the intersection, both
processes need to synchronise on that event. The transition rules for the parallel operator
are as follows:

P a→ P̄ Q a→ Q̄
[ a ∈ AX ∩ BX]

P A‖B Q a→ P̄ A‖B Q̄

P µ→ P̄ [ µ ∈ ((A ∪ τ)\B)]
P A‖B Q µ→ P̄ A‖B Q

Q B‖A P µ→ Q B‖A P̄
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In CSP-Agda we define the parallel operator as follows: Assume A B : Label→ Bool,
which determine the label sets A and B as above. The external choices of (P [ A ]+||+[ B ] Q)

are:
The external choices of c : E P, for which the label in P is in (A \ B), i.e. such that
((A \ B) (Lab P c)) = true. Here (A \ B) : Label→ Bool is defined by (A \ B) b = true if
and only if A b = true and B b = false. For such c the label for this external choice is the
label of P for choice c, and the process obtained following this transition is the parallel
construct applied to (PE P c) and Q.
The external choices of c : E Q, for which the label in Q is in (B \ A), with similar
definitions of the label and next process obtained.
The combined external choices for P and Q, i.e. pairs (e1 , e2) s.t. e1 : E P and e2 : E Q,
and s.t. their labels are equal, and the labels are in A and in B, i.e. such that

((Lab P e1 ==l Lab Q e2) ∧ A (Lab P e1) ∧ B (Lab Q e2)) = true

Here ==l is Boolean valued equality on Labels, and ∧ is Boolean valued conjunction.
The label for this external choice is the label of P (which is w.r.t. ==l equal to the
corresponding label of Q). The process obtained when following this external choice is
the parallel construct applied to the result of following the external choices in both P
and Q.

Furthermore
The internal choices are the internal choices of P and Q, and the process obtained when
following those transitions is obtained by following the corresponding transition in process
P or Q, respectively.
A termination event can happen only if both processes have a termination event. If
they terminate with results a and b, then the parallel combination terminates with result
(a „ b). Therefore the result type of the parallel construct is the product of the result
type of the first and second process.

In order to define the above we use the subset’ constructor of Choice which has equality
rule

ChoiceSet (subset’ E f ) = subset (ChoiceSet E ) f

Here, (subset a f ) is the set of pairs (sub a b) such that a : A and b : T (f a), i.e. it is
essentially the set {a : A | f a = true}. We have T : Bool → Set, such that (T true) is
provable and (T false) is empty, i.e. not provable.

The definition of the parallel operator in CSP-Agda for Process+ is as follows:

[ ]+||+[ ] : {i : Size} → {c0 c1 : Choice}
→ Process+ i c0
→ (A B : Label → Bool)
→ Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P [ A ]+||+[ B ] Q) = subset’ (E P) ((A \ B) ◦ (Lab P)) ]’
subset’ (E Q) ((B \ A) ◦ (Lab Q)) ]’
subset’ (E P ×’ E Q)

(ń {(e1 „ e2)
→ Lab P e1 ==l Lab Q e2 ∧ A (Lab P e1) ∧ B (Lab Q e2)})

TYPES 2016



12:14 Defining Trace Semantics for CSP-Agda

Lab (P [ A ]+||+[ B ] Q) (inj1 (inj1 (sub c p))) = Lab P c
Lab (P [ A ]+||+[ B ] Q) (inj1 (inj2 (sub c p))) = Lab Q c
Lab (P [ A ]+||+[ B ] Q) (inj2 (sub (c0 „ c1) p)) = Lab P c0
PE (P [ A ]+||+[ B ] Q) (inj1 (inj1 (sub c p))) = PE P c [ A ]∞||+[ B ] Q
PE (P [ A ]+||+[ B ] Q) (inj1 (inj2 (sub c p))) = P [ A ]+||∞[ B ] PE Q c
PE (P [ A ]+||+[ B ] Q) (inj2 (sub (c0 „ c1) p)) = PE P c0 [ A ]∞||∞[ B ] PE Q c1
I (P [ A ]+||+[ B ] Q) = I P ]’ I Q
PI (P [ A ]+||+[ B ] Q) (inj1 c) = PI P c [ A ]∞||+[ B ] Q
PI (P [ A ]+||+[ B ] Q) (inj2 c) = P [ A ]+||∞[ B ] PI Q c
T (P [ A ]+||+[ B ] Q) = T P ×’ T Q
PT (P [ A ]+||+[ B ] Q) (c0 „ c1) = (PT P c0 „ PT Q c1)
Str+ (P [ A ]+||+[ B ] Q) = Str+ P [ A ]||Str[ B ] Str+ Q

When defining the parallel construct for elements of Process, we need to deal with the
case one of the processes is the terminated process. As for ||| , one continues in this case as
the other process, until it has terminated. However, in case of P having terminated, only
labels in the set (B \ A) are allowed for Q. We can therefore equate, if P has terminated,
(P [ A ]+||+[ B ] Q) with (Q � (B \ A)). Here for a process P ′ and a set of labels A′ the
process P � A′ is the process obtained by restricting the external transitions to those with
label in A′. Note that this is different from hiding, external transitions with labels not in A′

are not turned into τ -transitions. As for ||| , we need to record the result obtained by P,
and therefore apply fmap to Q in order to add the result of P to the result of the restriction
of Q, when it terminates.

The definition of the parallel operator for Process is therefore as follows:

[ ]||[ ] : {i : Size} → {c0 c1 : Choice}
→ Process i c0
→ (A B : Label → Bool)
→ Process i c1
→ Process i (c0 ×’ c1)

node P [ A ]||[ B ] node Q = node (P [ A ]+||+[ B ] Q)
terminate a [ A ]||[ B ] Q = fmap (ń b → (a „ b)) (Q � (B \ A))
P [ A ]||[ B ] terminate b = fmap (ń a → (a „ b)) (P � (A \ B))

5 Defining Trace Semantics for CSP-Agda

In CSP, traces of a process are the sequences of actions or labels of external choices a process
can perform. Since the processes in CSP, are non-deterministic, a process can follow different
traces during its execution. The trace semantics of a process is the set of its traces.

Since in CSP-Agda processes are monadic, we need to record, in case after following a
trace we obtain a terminated process, the result returned by the process following this trace.
So we add a possible element of the result set to the trace. We can use for the set of possible
elements the set (Maybe (ChoiceSet c)). Here the type (Maybe A) has elements (just a) for
a : A, denoting defined elements, and an undefined element nothing. So (just a) denotes that
the process has terminated with result a, whereas nothing means that it has not terminated
(or more precisely not been determined to have terminated13).

13A process having trace l with result (just a) has as well trace l with result nothing, see below.
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Taking this together, we obtain that traces are given by a list of labels and an element of
(Maybe (ChoiceSet c)). We define the set of traces (Tr l m P) as a predicate which determines
for a process the lists of labels l and elements m : Maybe (ChoiceSet c), which form a
trace. We define as well traces (Tr+ l m P) and (Tr∞ l m P) for processes in Process+ and
Process∞, respectively.

In the trace semantics of CSP, a process having a termination event has two traces, the
empty list, and the list consisting of a X-event. In order to be consistent with CSP, we will
add therefore in case of a termination event or terminated process two traces: the empty list
together with possible return value nothing, and with possible return value (just a) for the
return value a.

For an element of (Process+∞ c) we obtain the following traces:
The empty trace without termination is a trace of any process, and we denote the proof
by empty.
If a process P has external choice x , then from every trace for the result of following this
choice, consisting of a list of labels l and a possible result res, we obtain a trace of P
consisting of the result of adding in front of l the label of that external choice, and of the
same possible result res. The resulting proof will be denoted by (extc l res x tr).
Internal choices are ignored in traces. Therefore if a process P has an internal choice
x, every trace of the result of following this choice is as well a trace of P. The proof is
denoted by (intc l res x tr)

If a process has a termination event x with return value t, then the empty trace with
termination choice (just t) is a trace of process, having proof (terc x).

The corresponding definition for Process+ is as follows:

data Tr+ {c : Choice} : (l : List Label) → Maybe (ChoiceSet c) → (P : Process+ ∞ c)
→ Set where

empty : {P : Process+ ∞ c} → Tr+ [] nothing P
extc : {P : Process+ ∞ c} → (l : List Label) → (res : Maybe (ChoiceSet c))

→ (x : ChoiceSet (E P)) → Tr∞ l res (PE P x) → Tr+ (Lab P x :: l) res P
intc : {P : Process+ ∞ c} → (l : List Label) → (res : Maybe (ChoiceSet c))

→ (x : ChoiceSet (I P)) → Tr∞ l res (PI P x) → Tr+ l res P
terc : {P : Process+ ∞ c} → (x : ChoiceSet (T P)) → Tr+ [] (just (PT P x)) P

In case of Process we need to consider the termination events:
The terminated process has two traces, namely the empty list of labels [] with termination
event nothing, and the same list but with termination event (just x), where x is the return
value.
The traces of a non-terminated process are the traces of the corresponding element of
Process+.

We obtain the following definition of the traces of Process:

data Tr {c : Choice} : (l : List Label) → Maybe (ChoiceSet c) → (P : Process ∞ c)
→ Set where

ter : (x : ChoiceSet c) → Tr [] (just x) (terminate x)
empty : (x : ChoiceSet c) → Tr [] nothing (terminate x)
tnode : {l : List Label} → {x : Maybe (ChoiceSet c)} → {P : Process+ ∞ c}

→ Tr+ {c} l x P → Tr l x (node P)
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Finally the traces for Process∞ are just the traces of the underlying Process:

record Tr∞ {c : Choice} (l : List Label) (res : Maybe (ChoiceSet c))
(P : Process∞ ∞ c) : Set where

coinductive
field
forcet : Tr l res (forcep P)

In CSP, a process P refines a process Q, written (P v Q) if and only if any observable
behaviour of Q is an observable behaviour of P, i.e. if traces(Q) ⊆ traces(P):

v : {c : Choice} (P : Process ∞ c) (Q : Process ∞ c) → Set
v {c} P Q = (l : List Label) → (m : Maybe (ChoiceSet c)) → Tr l m Q → Tr l m P

Two processes P, Q are equal w.r.t. trace semantics, written P ≡ Q, if they refine each
other, i.e. if traces(P) = traces(Q):

≡ : {c0 : Choice} → (P Q : Process ∞ c0) → Set
P ≡ Q = P v Q × Q v P

6 Proof of the Algebraic Laws

Trace equivalence gives rise to algebraic laws for individual operators, and also concerning
the relationships between different operators. Laws for individual operators are concerned
with general algebraic properties such as commutativity and associativity of operators, the
identification of zeros and units for specific operators, and idempotence of operators; these
properties allow a process to be composed in any order, and allow process descriptions to be
simplified. An example of the relationship between different operators is the expansion of
the interleaving of processes, each of which is introduced by an event prefix, into a prefix
choice process. We will present examples of how to prove algebraic laws of CSP in Agda
using this semantics. The examples covered in this article are commutativity of interleaving
and parallel, and the monad laws for the monadic extension of CSP. Further examples will
be available in the repository of CSP-Agda.

6.1 Proof of the Laws of Refinement
The refinement relation is reflexive, anti-symmetric and transitive, i.e. fulfils the following
laws:

P v P
P0 v P1 ∧ P1 v P0 ⇒ P0 = P1

P0 v P1 ∧ P1 v P2 ⇒ P0 v P2

These laws are a direct consequence of the fact that P v Q means essentially traces(Q) ⊆
traces(P) and P ≡ Q means traces(P) = traces(Q):
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reflv : {c : Choice} (P : Process ∞ c) → P v P
reflv {c} P l m x = x

antiSymv : {c0 : Choice} → (P Q : Process ∞ c0) → P v Q → Q v P → P ≡ Q
antiSymv P Q PQ QP = PQ , QP

transv : {c : Choice}(P : Process ∞ c)(Q : Process ∞ c)(R : Process ∞ c)
→ P v Q → Q v R → P v R

transv {c} P Q R PQ QR l m tr = PQ l m (QR l m tr)

6.2 Proof of the Monadic Laws
We defined processes in a monadic way, and will in this section prove the monad laws for
processes.

In functional programming, a monad is given by a functor M together with morphisms
�= : M A→ (A→ M B)→ M B and return : A→ M A such that the following laws hold:

return a�= f = f a
p�= return = p
(p�= f )�= g = p�= (λ x → f x �= g)

For each monadic law we have to prove 2 directions, (“v” and “w”). Furthermore the laws
need to be shown for Process+, Process and Process∞. We will present only one direction
and one version of the processes for each law. Since proofs of ≡ just follow from the left
to right and right to left refinement, we will present this proof only for the first monadic law.

The proof of the first monadic law is trivial since (terminate a �= P) is definitionally
equal to P:
monadLaw1 : {c0 c1 : Choice} (a : ChoiceSet c0)(P : ChoiceSet c0 → Process ∞ c1)

→ (terminate a �= P) v P a
monadLaw1 a P l m q = q

≡monadLaw1 : {c0 c1 : Choice} (a : ChoiceSet c0)(P : ChoiceSet c0 → Process ∞ c1)
→ (P a) ≡ (terminate a �= P)
≡monadLaw1 {c0} {c1} a P = (monadLaw1 a P) , (monadLaw1r a P)

In case of the second monadic law the proof is by induction over the proofs of traces for
(P�=+ terminate), which immediately turn into traces of P:

monadLaw2+ : {c0 : Choice} (P : Process+ ∞ c0)→ (P �=+ terminate) v+ P
monadLaw2+ P .[] .nothing empty = empty
monadLaw2+ P .(Lab P x :: l) m (extc l .m x x1) = extc l m x (monadLaw2∞ (PE P x) l m x1)
monadLaw2+ P l m (intc .l .m x x1) = intc l m (inj1 x) (monadLaw2∞ (PI P x) l m x1)
monadLaw2+ P .[] .(just (PT P x))(terc x) = intc [] (just (PT P x)) (inj2 x) (lemTrTerBind P x)

In third monadic law the proof is by induction over the proofs of traces for
(P �=+ (Q �=+ R)). In most cases the proof of traces carry over after applying the
induction hypothesis. One special case if the first process P has a termination event, which
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results in an internal choice to (Q x �= R) on both sides. In this case the traces are
essentially the same, but only after applying forcet. We use here an operation

monadPT+ P Q R y l m tr

which is modulo an application of forcet equal to tr . There are no immediate termination
events, and therefore no proofs of traces of the form (terc x). We use efq (ex falsum quodlibet),
which constructs from an element of the empty set an element of any set, for dealing with
this case. The resulting proof is as follows:

monadLaw3+ : {c0 c1 c2 : Choice} (P : Process+ ∞ c0)
(Q : ChoiceSet c0 → Process ∞ c1)
(R : ChoiceSet c1 → Process ∞ c2)

→ ((P �=+ Q) �=+ R) v+ (P �=+ (ń x → Q x �= R))
monadLaw3+ P Q R .[] .nothing empty = empty
monadLaw3+ P Q R .(Lab P x :: l) m (extc l .m x x1) =

extc l m x (monadLaw∞ P Q R l x m x1)
monadLaw3+ P Q R l m (intc .l .m (inj1 x) x1) =

intc l m (inj1 (inj1 x))(monadLaw3∞ (PI P x) Q R l m x1)
monadLaw3+ P Q R l m (intc .l .m (inj2 y) x1) =

intc l m (inj1 (inj2 y))(monadPT+ P Q R y l m x1)
monadLaw3+ P Q R .[] .(just (PT (P �=+ (ń x → Q x �= R)) x)) (terc x) = efq x

6.3 Proof of Commutativity of the Interleaving Operator
The interleaving combination (P ||| Q) executes each component completely independent of
the other, until termination. Traces of the interleaving combination (P ||| Q) will, therefore,
appear as interleaving of traces of the two component, and therefore it is easy to see that
(P ||| Q) and (Q ||| P) are trace equivalent.

However, because of the monadic setting, for most algebraic laws the return types of
the left and right hand side of an equation are different. Assume the return types of P and
Q are c0 and c1, respectively. Then for instance the return type of (P ||| Q) is (c0 ×’ c1)

whereas the return type of (Q ||| P) is (c1 ×’ c0). Therefore the algebraic laws hold only
modulo applying an adjustment of the return types using the operation fmap, which applies
a function to the return types.

Once we have taken this into account, a proof of commutativity of ||| is obtained by
exchanging the external/internal/termination choices, which means swapping inj1 and inj2.
Here inj1 refers to choices in the first and inj2 to choices in the second process. We give here
the main case referring to Process+ (swap× swaps the two sides of a product):

S+|||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (Q : Process+ ∞ c1)
→ (P +|||+ Q) v+ (fmap+ swap× (Q +|||+ P))

S+|||+ P Q .[] .nothing empty = empty
S+|||+ P Q .(Lab Q x :: l) m (extc l .m (inj1 x) q) = extc l m (inj2 x) (S+|||∞ P (PE Q x) l m q)
S+|||+ P Q .(Lab P x :: l) m (extc l .m (inj2 x) q) = extc l m (inj1 x) (S∞|||+ (PE P x) Q l m q)
S+|||+ P Q l m (intc .l .m (inj1 x) q) = intc l m (inj2 x) (S+|||∞ P (PI Q x) l m q)
S+|||+ P Q l m (intc .l .m (inj2 x) q) = intc l m (inj1 x) (S∞|||+ (PI P x) Q l m q)
S+|||+ P Q .[] .(just (PT P x „ PT Q y)) (terc (y „ x)) = terc (x „ y)
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≡S+|||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (Q : Process+ ∞ c1)
→ (P +|||+ Q) ≡+ (fmap+ swap× (Q +|||+ P))
≡S+|||+ P Q = (S+|||+ P Q) , (S+|||+R P Q)

6.4 Proof of Commutativity of the Parallel Operator
Most cases in the proof of the commutativity of [ ]||+[ ] are similar to the proof of
commutativity ||| – one swaps inj1 and inj2 and uses induction. The only more difficult case
is when we have two processes synchronising, resulting in both processes following choices
having the same labels. This case uses a proof that the two choices for the two processes
result have the same label and that both labels are in the synchronised sets. We obtain in
this case from a proof that we have a trace a proof of the Boolean conjunction:

Lab Q x ==l Lab P x1 ∧ B (Lab X x) ∧ A (Lab P x1)

which we need to transform into a proof of the Boolean conjunction

Lab P x1 ==l Lab Q x ∧ A (Lab X x1) ∧ B (Lab P x)

We will make use of functions which introduce and eliminate proofs of Boolean conjunc-
tions, i.e.

∧BoolIntro : (a b : Bool)→ T a→ T b→ T (a ∧ b)
∧BoolEliml : (a b : Bool)→ T (a ∧ b)→ T a
∧BoolElimr : (a b : Bool)→ T (a ∧ b)→ T b

Furthermore, we make use of a proof sym of symmetry of the Boolean equality ==l on
labels, and the transfer lemma

transf : (Q : Label→ Set)→ (l l ′ : Label )→ T (l ==l l ′ )→ Q l→ Q l ′

We now take the proof of the conjunction apart into its three components, apply the proof of
symmetry to the equality proof and recombine them. Finally we need to carry out a transfer
to replace the first label (Lab P x1) in the trace by (Lab Q x), which are known to be equal.
The resulting proof is as follows:

S+||+ : {c0 c1 : Choice} (P : Process+ ∞ c0) (A B : Label → Bool) (Q : Process+ ∞ c1)
→ (P [ A ]+||+[ B ] Q) v+ fmap+ swap× (Q [ B ]+||+[ A ] P)

S+||+ P A B Q .[] .nothing empty = empty
S+||+ P A B Q .(Lab Q a :: l) m (extc l .m (inj1 (inj1 (sub a x))) x1) =

extc l m (inj1 (inj2 (sub a x))) (S+||∞ P A B (PE Q a) l m x1)
S+||+ P A B Q .(Lab P a :: l) m (extc l .m (inj1 (inj2 (sub a x))) x1) =

extc l m (inj1 (inj1 (sub a x))) (S∞||+ (PE P a) A B Q l m x1)
S+||+ P A B Q .(Lab Q x :: l) m (extc l .m (inj2 (sub (x „ x1) x2)) x3) =
let

lxlx1 : T (Lab Q x ==l Lab P x1)
lxlx1 = ∧BoolEliml (Lab Q x ==l Lab P x1)

(B (Lab Q x) ∧ A (Lab P x1)) x2

TYPES 2016



12:20 Defining Trace Semantics for CSP-Agda

BQx : T (B (Lab Q x))
BQx = ∧BoolEliml (B (Lab Q x)) (A (Lab P x1))

(∧BoolElimr (Lab Q x ==l Lab P x1)
(B (Lab Q x) ∧ A (Lab P x1)) x2)

APx1 : T (A (Lab P x1))
APx1 = ∧BoolElimr (B (Lab Q x)) (A (Lab P x1))

(∧BoolElimr (Lab Q x ==l Lab P x1)
(B (Lab Q x) ∧ A (Lab P x1)) x2)

lx1lx : T (Lab P x1 ==l Lab Q x)
lx1lx = sym (Lab Q x) (Lab P x1) lxlx1

x2’ : T ((Lab P x1 ==l Lab Q x) ∧ A (Lab P x1) ∧ B (Lab Q x))
x2’ = ∧BoolIntro (Lab P x1 ==l Lab Q x)

(A (Lab P x1) ∧ B (Lab Q x))
lx1lx
(∧BoolIntro (A (Lab P x1)) (B (Lab Q x)) APx1 BQx)

auxpr : Tr+ (Lab P x1 :: l) m (P [ A ]+||+[ B ] Q)
auxpr = extc l m (inj2 (sub (x1 „ x) x2’))

(S∞||∞ (PE P x1) A B (PE Q x) l m x3)

in transf (ń l’ → Tr+ (l’ :: l) m (P [ A ]+||+[ B ] Q))
(Lab P x1) (Lab Q x) lx1lx auxpr

S+||+ P A B Q l m (intc .l .m (inj1 x) x1) = intc l m (inj2 x) (S+||∞ P A B (PI Q x) l m x1)
S+||+ P A B Q l m (intc .l .m (inj2 y) x1) = intc l m (inj1 y) (S∞||+ (PI P y) A B Q l m x1)
S+||+ P A B Q .[] .(just (PT P x1 „ PT Q x)) (terc (x „ x1)) = terc (x1 „ x)

≡+||+ : {c0 c1 : Choice} (P : Process+ ∞ c0)(A B : Label → Bool)(Q : Process+ ∞ c1)
→ (P [ A ]+||+[ B ] Q) ≡+ (fmap+ swap× ((Q [ B ]+||+[ A ] P)))

≡+||+ P A B Q = (S+||+ P A B Q) , (S+||+r P A B Q)

7 Related Work and Conclusion

Related Work. A detailed report on related work, which we do not want to repeat here,
can be found in our previous paper [22].

Conclusion. The aims of this research is to give the type theoretic interactive theorem
prover Agda the ability to model and verify concurrent programs by representing the process
algebra CSP in monadic form. We implement trace semantics of CSP in Agda, together
with the corresponding refinement and equality relation, formally in CSP-Agda. In order to
demonstrate the proof capabilities of CSP-Agda, we prove in CSP-Agda selected algebraic
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laws of CSP based on the trace semantics. In our approach we define processes coinductively
and the trace semantic inductively.

Future Work. We are currently working on defining the failures/divergences model and
stable failures model of CSP in Agda. Since those semantics are rather complicated, proofs
of algebraic properties are much more involved. The first author has developed elements
of the European Rail Traffic Management System ERTMS [16] in CSP, and one goal is to
implement those processes in CSP-Agda and prove safety properties. For larger case studies
automated theorem proving techniques will be used. Here we can build on Kanso’s PhD
thesis [24] (see as well [25]), in which he verified real world railway interlocking systems in
Agda. Verifying larger examples might require to upgrade the integration of SAT solvers
into Agda2, which has been developed by Kanso [24], to the current version of Agda.

One goal is to integrate the CSP model checker FDR2 into Agda. One ambitious goal is
to write prototypes of programs, e.g. of some elements of the ERTMS, in Agda and make
them directly executable in Agda. This uses the unique feature of Agda of being both a
theorem prover and a dependently typed programming language. So in Agda there is no
distinction between proofs and programs, between data types and propositions, and therefore
the prototype can be implemented and verified in the same language, without the need to
translate between two different languages.
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Abstract
How should one introduce subtyping into type theories with canonical objects such as Martin-
Löf’s type theory? It is known that the usual subsumptive subtyping is inadequate and it is
understood, at least theoretically, that coercive subtyping should instead be employed. However,
it has not been studied what the proper coercive subtyping mechanism is and how it should
be used to capture intuitive notions of subtyping. In this paper, we introduce a type system
with signatures where coercive subtyping relations can be specified, and argue that this provides
a suitable subtyping mechanism for type theories with canonical objects. In particular, we
show that the subtyping extension is well-behaved by relating it to the previous formulation of
coercive subtyping. The paper then proceeds to study the connection with intuitive notions of
subtyping. It first shows how a subsumptive subtyping system can be embedded faithfully. Then,
it studies how Russell-style universe inclusions can be understood as coercions in our system. And
finally, we study constructor subtyping as an example to illustrate that, sometimes, injectivity
of coercions need be assumed in order to capture properly some notions of subtyping.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases subtyping, type theory, conservative extension, canonical objects

Digital Object Identifier 10.4230/LIPIcs.TYPES.2016.13

Acknowledgements Thanks go to Sergei Soloviev for extremely helpful remarks on this work
during his visit to Royal Holloway and the anonymous referees for their helpful comments.

1 Introduction

Type theories with canonical objects such as Martin-Löf’s type theory [26] have been used as
the basis for both theoretical projects such as Homotopy Type Theory [32] and practical
applications in proof assistants such as Coq [10] and Agda [1]. In this paper, we investigate
how to extend such type theories with subtyping relations, an issue that is important both
theoretically and practically, but has not been settled.

Subsumptive Subtyping. The usual way to introduce subtyping is via the following sub-
sumption rule:

a : A A ≤ B
a : B
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This is directly related to the notion of subset in mathematics and naturally linked to type
assignment systems in programming languages like ML or Haskell. However, subsumptive
subtyping is not adequate for type theories with canonical objects since it would destroy key
properties of such type theories including canonicity (every object of an inductive type is
equal to a canonical object) and subject reduction (computation preserves typing) [21, 16].

For instance, the Russell-style type universes Ui : Ui+1 (i ∈ ω) [23] constitute a special
case of subsumptive subtyping with Ui ≤ Ui+1 [18]. If we adopt the standard notation of
terms with full type information, the resulting type theory with Russell-style universes would
fail to have canonicity or subject reduction.2 An alternative is to use proof terms with less
typing information like using (a, b) instead of pair(A,B, a, b) to represent pairs, as in HoTT
(see Appendix 2 of [32]). The problem with this approach is that not only the property of
type uniqueness fails, but a proof term may have incompatible types. For example, for a : A
and A : U , where U is a type universe, the pair (A, a) has both types U ×A and ΣX:U.X,
which are incompatible in the sense that none of them is a subtype of the other. This would
lead to undecidability of type checking,3 which is unacceptable for type theories with logics
based on the propositions-as-types principle.

In §3 we will show how we can embed a subtyping system with the above subsumption
rule into the coercive subtyping system we introduce in this paper.

Coercive Subtyping. An alternative way to introduce subtyping is coercive subtyping,
where a subtyping relationship between two types is modelled by means of a unique coercion
between them. The early developments of coercion semantics of subtyping for programming
languages include [25, 29, 28, 6], among others. At the theoretical level, previous work on
coercive subtyping for dependent type theories such as [15, 21] show that coercive subtyping
can be adequately employed for dependent type theories with canonical objects to preserve
the meta-theoretic properties such as canonicity and normalisation of the original type
theories. Based on this, coercive subtyping has been successfully used in various applications
based on the implementations of coercions in Coq and several other proof assistants [30, 3, 7].

However, the theoretical research on coercive subtyping such as [21] considers a rather
abstract way of extension with coercive subtyping. For any type theory T , it extends it
with a (coherent, but possibly infinite) set C of subtyping judgements to form a new type
theory T [C]. Although this is well-suited in a theoretical study, it does not tell one how the
extension should be formulated concretely in practice. In fact, a proposal of adding coercive
subtyping assumptions in contexts [22] has met with potential difficulties in meta-theoretic
studies that cast doubts on the seemingly attractive proposal. The complication was caused
by the fact that coercion relations specified in a context can be moved to the right of the
turnstile sign ` to introduce terms with the so-called local coercions that are only effective in
a localised scope. It is still unknown whether such mechanisms can be employed successfully.
This has partly led to the current research that studies a more restrictive calculus that only
allows coercive subtyping relations to be specified in signatures whose entries cannot be
localised in terms.

2 See §4.1 of the current paper for an example of the former and §4.3 of [16] for an example of the latter.
3 To see the problem of type checking, it may be worth pointing out that, for a dependent type theory,

type checking depends on type inference; put in another way, in a type-checking algorithm one has to
infer the type of a term in many situations.
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Main Contributions. In this paper, we study a type theory with signatures where coercive
subtyping relations can be specified and argue that this provides a suitable subtyping
mechanism for type theories with canonical objects.4 This claim is backed up by first showing
that the subtyping extension is conservative over the original type theory and that all its
valid derivations correspond to valid derivations in the original calculus, and then studying
its connection with subsumptive subtyping and its use in modelling some of the intuitive
notions of subtyping including that induced by Russell-style universes in type theory.

The notion of signature in type theory was first studied in the Edinburgh Logical
Framework [12] with judgements of the form Γ `Σ J , where the signatures Σ are used to
describe constants of a logical system, in contrast with the contexts Γ that introduce variables
which can be abstracted to the right of the turnstile sign by means of quantification or
λ-abstraction. We will introduce the notion of signature by extending (the typed version
of) Martin-Löf’s logical framework LF (Chapter 9 of [14]) to obtain the system LFS , which
can be used similarly as LF in specifying type theories such as Martin-Löf’s type theory [26].
Formulating the coercive subtyping relation in a type theory based on a logical framework
makes it possible to extend the formulation to other type constructors too. We then introduce
ΠS , a system with Π-types specified in LFS , and ΠS,≤ that extends ΠS to allow specification
in signatures of subtyping entries A ≤c B that specifies that A is a subtype of B via
coercion c, a function from A to B. We will justify that the coercive subtyping mechanism is
abbreviational by showing that ΠS,≤ is equivalent to a similar system as previously studied
[21] and hence has desirable properties [31, 13, 33].

Although it is incompatible with the notion of canonical objects, subsumptive subtyping
is widely used and, intuitively, it is the concept in mind in the first place when considering
subtyping. It is therefore worth studying its relationship with the coercive subtyping calculus.
Aspinall and Compagnoni [2] approached the topic of subsumptive subtyping in dependent
type theory by developing a type system, with contextual subsumptive subtyping entries
of the form α ≤ A to declare that the type variable α is a subtype of A, and its checking
algorithm in the Edinburgh Logical Framework. In this paper we shall define a subsumptive
subtyping system in LFS , one similar to that in [2], and prove that it can be faithfully
embedded in ΠS,≤.

It is worth noting that subtyping becomes particularly complicated in the case of dependent
types. In a type system with contextual subtyping entries such as α ≤ A as in Aspinall and
Compagnoni’s system, one has to decide whether to allow abstraction (for example, by λ or
Π) over the subtyping entries. If one did, it would lead to types with bounded quantification
of the form Πα ≤ A.B, which would result in complications and, most likely, undecidability
of type checking (cf., Pierce’s work that shows undecidability of type checking in F≤, an
extension of the second-order λ-calculus with subtyping and bounded quantification [27]). In
order to avoid bounded quantification, Aspinall and Compagnoni [2] present the subtyping
entries in contexts, but do not enable their moving to the right of `. In consequence,
abstraction by λ or Π of those entries that occur to the left of a subtyping entry is obstructed.
We chose to represent subtyping entries in the signatures in order to allow abstraction to
happen freely for contextual entries.

We shall then consider two case studies, showing how coercive subtyping may be used
to capture an intuitive notion of subtyping. Type universes [23] are our first example here.
The Russell-style universes constitute a typical example of subsumptive subtyping. The

4 A type theory with signatures was also proposed by the second author in [19] in the context of applying
type theories to natural language semantics.
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second author [18] observed that, although subsumptive subtyping causes problems with
the notion of canonicity, one can obtain the essence of Russell-style universes by means of
Tarski-style universes together with coercive subtyping by taking the explicit lifting operators
between Tarski-style universes as coercions. Our embedding theorem (Theorem 34) that
relates subsumptive and coercive subtyping can be extended for type systems with universes,
therefore justifying this claim.

Subsumptive subtyping, esp. in its extreme forms, intuitively embodies a notion of
injectivity that is in general not the case for coercive subtyping. One of such extreme forms
of subtyping is constructor subtyping [4]. As the second case study, we shall relate it to our
coercive subtyping system and show that, once equipped with injectivity of coercions, coercive
subtyping can faithfully model the notion of injectivity intuitively assumed in subsumptive
subtyping.

Related Work. Subtyping has been studied extensively both for type systems of program-
ming languages and type theories implemented in proof assistants. Early studies of subtyping
for programming languages have considered both subsumptive and coercive subtyping, mainly
for simpler and non-dependent type systems (see, for example, [25, 29, 28, 6]). For example,
Reynolds [28] considered extrinsic and intrinsic models of coercions and their applications to
programming.

Subtyping in dependent type theories has been studied by Aspinall and Compagnoni [2]
for Edinburgh LF, Betarte and Tasistro [5] about subkinding between kinds (called types) for
Martin-Löf’s logical framework, and Barthe and Frade [4] on constructor subtyping, among
others. A theoretical framework of coercive subtyping for type theories with canonical objects
has been developed and studied by the second author and colleagues in a series of papers
and PhD theses [15, 21, 31, 13, 33]. In this setting, any dependent type theory T can be
extended with coercive subtyping by giving a (possibly infinite) set C of basic subtyping
judgements, resulting in the extended calculus T [C]. The meta-theory of such a calculus
T [C] was first studied in [31] where, among other things, the basic approach to proving that
coercive subtyping is an abbreviational extension was developed, which was further studied
and improved in, for example, [13, 33]. Coercions have been implemented in several proof
assistants such as Coq [10, 30], Lego [20, 3], Matita [24] and Plastic [7] and used effectively
for large proof development and, more recently, in formal development of natural language
semantics based on type theory [17, 8, 9].

The above framework of coercive subtyping [21] has served as a theoretical tool to show
in principle that coercive subtyping is adequate for type theories with canonical objects.
However, as pointed out above, such a theoretical framework does not serve as a concrete
system in practice. In this paper, we shall use subtyping entries in signatures to specify basic
subtyping relations and study the resulting calculus, both in meta-theory and in practical
modelling.

In §2, we present ΠS,≤ and study its meta-theoretic properties. §3 presents a subsumptive
subtyping system based on [2] and shows that it can be embedded faithfully in ΠS,≤. The
two case studies on type universes and injectivity are studied in §4, with the relationship
between Russell-style and Tarski-style universes studied in §4.1 and constructor subtyping
and injectivity in §4.2. The Conclusion discusses possible further research directions.
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2 Coercive Subtyping in Signatures

We aim to introduce a calculus that can model intuitive notions of subtyping such as
subsumption and, at the same time, preserves the desirable properties of the original type
theory. In this section, we present ΠS,≤, a type system with signatures where we can
specify coercive subtyping relations, and then study its properties by relating it to the earlier
formulation of coercive subtyping.

In what follows we use ≡ for syntactic identity and assume that the signatures are
coherent.

2.1 ΠS,≤, a Type Theory with Subtyping in Signatures
2.1.1 Logical Framework with Signatures
Type theories can be specified in a logical framework such as Martin-Löf’s logical framework
[26] or its typed version LF [14]. We shall extend LF with signatures to obtain LFS .

Informally, a signature is a sequence of entries of several forms, one of which is the form
of membership entries c : K, which is the traditional form of entries as occurred in contexts
(we shall add another form of entries in the next section). If a signature has only membership
entries, it is of the form c1 : K1, ..., cn : Kn.
I Remark (Constants and Variables). Intuitively, we shall call c declared in a signature entry
c : K as a constant, while x in a contextual entry x : K as a variable. The formal difference
is that, as declared in a signature entry, c cannot be substituted or abstracted (to the right
of `), while x declared in a contextual entry can either be substituted or abstracted by λ or
Π (see later for the formal details.)

LFS is a dependent type theory whose types are called kinds to distinguish them from
types in the object type theory. It has the kind Type of all types of the object type theory
and dependent Π-kinds of the form (x:K)K ′, which can be written as (K)K ′ if x 6∈ FV (K ′),
whose objects are λ−abstractions of the form [x:K]b. For each type A : Type, we have a
kind El(A) which is often written just as A. In LFS , there are six forms of judgements:

Σ valid, asserting that Σ is a valid signature.
`Σ Γ, asserting that Γ is a valid context under Σ.
Γ `Σ K kind, asserting that K is a kind in Γ under Σ.
Γ `Σ k : K, asserting that k is an object of kind K in Γ under Σ.
Γ `Σ K1 = K2, asserting that K1 and K2 are equal kinds in Γ under Σ.
Γ `Σ k1 = k2 : K, asserting that k1 and k2 are equal objects of kind K in Γ under Σ.

The inference rules of the logical framework LFS are given in Figure 1; they are the same as
those of LF [14], except that we have judgements for signature validity, all other forms of
judgements are adjusted accordingly with signatures attached, and we include some structural
rules such as those for weakening and signature and context replacement (or signature and
contextual equality), as done in the previous formulations in, for example, [21, 31, 33].

2.1.2 Type Theory with Π-types
Let ΠS be the type system with Π-types specified in LFS . These Π-types are specified in the
logical framework by introducing the constants, together with the definition rule, in Figure 2.
Note that, with the constants in Figure 2, the rules in Figure 3 become derivable.
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Validity of Signature/Contexts, Assumptions

〈〉 valid
`Σ K kind c 6∈ dom(Σ)

Σ, c:K valid

`Σ,c:K,Σ′ Γ
Γ `Σ,c:K,Σ′ c:K

Σ valid

`Σ 〈〉
Γ `Σ K kind x 6∈ dom(Σ) ∪ dom(Γ)

`Σ Γ, x:K
`Σ Γ, x:K,Γ′

Γ, x:K,Γ′ `Σ x:K
Weakening

Γ `Σ, Σ′ J `Σ K kind c 6∈ dom(Σ,Σ′)
Γ `Σ, c:K, Σ′ J

Γ,Γ′ `Σ J Γ `Σ K kind x 6∈ dom(Γ,Γ′)
Γ, x:K,Γ′ `Σ J

Equality Rules

Γ `Σ K kind

Γ `Σ K = K

Γ `Σ K = K′

Γ `Σ K′ = K

Γ `Σ K = K′ Γ `Σ K′ = K′′

Γ `Σ K = K′′

Γ `Σ k:K
Γ `Σ k = k:K

Γ `Σ k = k′:K
Γ `Σ k′ = k:K

Γ `Σ k = k′:K Γ `Σ k′ = k′′:K
Γ `Σ k = k′′:K

Γ `Σ k:K Γ `Σ K = K′

Γ `Σ k:K′
Γ `Σ k = k′:K Γ `Σ K = K′

Γ `Σ k = k′:K′
Signature Replacement

Γ `Σ0,c:L,Σ1 J `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 J

Context Replacement

Γ0, x:K,Γ1 `Σ J Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ J

Substitution Rules

`Σ Γ0, x:K,Γ1 Γ0 `Σ k:K
`Σ Γ0, [k/x]Γ1

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ kind

Γ0, x:K,Γ1 `Σ L = L′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]L = [k/x]L′

Γ0, x:K,Γ1 `Σ k′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]k′:[k/x]K′

Γ0, x:K,Γ1 `Σ l = l′:K′ Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k/x]l′:[k/x]K′

Γ0, x:K,Γ1 `Σ K′ kind Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]K′ = [k′/x]K′

Γ0, x:K,Γ1 `Σ l:K′ Γ0 `Σ k = k′:K
Γ0, [k/x]Γ1 `Σ [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Γ `Σ K kind Γ, x:K `Σ K′ kind

Γ `Σ (x:K)K′ kind
Γ `Σ K1 = K2 Γ, x:K1 `Σ K′1 = K′2

Γ `Σ (x:K1)K′1 = (x:K2)K′2

Γ, x:K `Σ y:K′

Γ `Σ [x:K]y:(x:K)K′
Γ `Σ K1 = K2 Γ, x:K1 `Σ k1 = k2:K

Γ `Σ [x:K1]k1 = [x:K2]k2:(x:K1)K
Γ `Σ f :(x:K)K′ Γ `Σ k:K

Γ `Σ f(k):[k/x]K′
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k1 = k2:K

Γ `Σ f(k1) = f ′(k2):[k1/x]K′

Γ, x:K `Σ k′:K′ Γ `Σ k:K
Γ `Σ ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Γ `Σ f :(x:K)K′ x 6∈ FV (f)
Γ `Σ [x:K]f(x) = f :(x:K)K′ The kind Type

`Σ Γ
Γ `Σ Type kind

Γ `Σ A:Type
Γ `Σ El(A) kind

Γ `Σ A = B:Type
Γ `Σ El(A) = El(B)

Figure 1 Inference Rules for LFS .
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Constant declarations:

Π : (A:Type)(B:(A)Type)Type
λ : (A:Type)(B:(A)Type)((x:A)B(x))Π(A,B)

app : (A:Type)(B:(A)Type)(Π(A,B))(x:A)B(x)

Definitional equality rule

app(A,B, λ(A,B, f), a) = f(a) : B(a).

Figure 2 Constants for Π-types in logical framework.

Γ `Σ A : Type Γ, x:A `Σ B(x) : Type
Γ `Σ Π(A,B) : Type

Γ `Σ A : Type Γ `Σ B : (A)Type Γ `Σ f : (x:A)B(x)
Γ `Σ λ(A,B, f) : Π(A,B)

Γ `Σ g : Π(A,B) Γ `Σ a : A
Γ `Σ app(A,B, g, a) : B(a)

Γ `Σ A : Type Γ `Σ B : (A)Type
Γ `Σ f : (x:A)B(x) Γ `Σ a : A

Γ `Σ app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 3 Inference Rules for ΠS .

2.1.3 Subtyping Entries in Signatures
We present the whole system ΠS,≤. First, subtyping is represented by means of two forms of
judgements:

subtyping judgements Γ `Σ A ≤c B : Type, and
subkinding judgements Γ `Σ K ≤c K ′.

Subtyping relations between types (not kinds) can be specified in a signature by means
of entries A ≤c B : Type (or simply written as A ≤c B), where A and B are types and
c : (A)B.5

The specifications of subtyping relations are also required to be coherent. Coherence
is crucial as it ensures a coercive application abbreviates a unique functional application.
To define this notion of coherence, we need to introduce a subsystem of ΠS,≤, called Π0K

S,≤,
defined by the rules of ΠS together with those in Figures 4 and 5, where in the rule for
dependent products in Figures 4, the notation c2[x] was explained in, for example, [16]: it
means that x may occur free in c2, although only inessentially6. The composition of functions
is defined as follows: For f :(K1)K2 and g:(K2)K3, g ◦ f = [x:K1]g(f(x)):(K1)K3.

Here is the definition of coherence of a signature, which intuitively says that, under a
coherent signature, there cannot be two different coercions between the same types.

5 Using some types not contained in ΠS,≤, more interesting subtyping relations can be specified. For
example, for A ≤c B, we could have A ≡ V ect(N,n), B ≡ List(N) and c maps vector < m1, ...,mn >
to list [m1, ...,mn]. We shall not formally deal with such extended type systems in the current paper,
but the ideas and results are expected to extend to the type systems with such data types (eg, all those
in Martin-Löf’s type theory).

6 For instance, one might have (by using the congruence rule) x:A `Σ B ≤([y:A]e)(x) B
′, where B ≤e B′

and x 6∈ FV (e).
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Signature Rules for Subtyping

`Σ A : Type `Σ B : Type `Σ c : (A)B
Σ, A ≤c B valid

`Σ0,A≤cB:Type,Σ1 Γ
Γ `Σ0,A≤cB:Type,Σ1 A ≤c B : Type

Congruence

Γ `Σ A ≤c B : Type Γ `Σ A = A′ : Type Γ `Σ B = B′ : Type Γ `Σ c = c′ : (A)B
Γ `Σ A′ ≤c′ B′ : Type

Transitivity

Γ `Σ A ≤c A′ : Type Γ `Σ A′ ≤c′ A′′ : Type
Γ `Σ A ≤c′◦c A′′ : Type

Weakening

Γ `Σ, Σ′ A ≤d B : Type `Σ K kind

Γ `Σ, c:K, Σ′ A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ A ≤d B : Type Γ `Σ K kind

Γ, x:K,Γ′ `Σ A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Signature Replacement

Γ `Σ0,c:L,Σ1 A ≤d B : Type `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 A ≤d B : Type

Context Replacement

Γ0, x:K,Γ1 `Σ A ≤d B : Type Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ A ≤d B : Type

Substitution

Γ0, x:K,Γ1 `Σ A ≤c B:Type Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Γ `Σ A : Type
Γ `Σ A ≤[x:A]x A : Type

Dependent Product

Γ `Σ A′ ≤c1 A : Type Γ `Σ B,B′ : (A)Type Γ, x:A `Σ B(x) ≤c2[x] B
′(x) : Type

Γ `Σ Π(A,B) ≤d Π(A′, B′ ◦ c1) : Type

where d ≡ [F : Π(A,B)]λ(A′, B′ ◦ c1, [x:A′]c2[x](app(A,B, F, c1(x)))).

Figure 4 Inference Rules for Π0K
S,≤ (1).

I Definition 1. A signature Σ is coherent if, in Π0K
S,≤, Γ `Σ A ≤c B and Γ `Σ A ≤c′ B

imply Γ `Σ c = c′ : (A)B.

Note that, in comparison with earlier formulations such as [21], we have switched from
strict subtyping relation < to ≤ and the coherence condition is changed accordingly as well;
in particular, under a coherent signature, any coercion from a type to itself must be equal to
the identity function. (This is a special case of the above condition when B ≡ A: because
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Basic Subkinding Rule and Identity Coercion

Γ `Σ A ≤c B:Type
Γ `Σ El(A) ≤c El(B)

Γ `Σ K kind

Γ `Σ K ≤[x:K]x K

Structural Subkinding Rules

Γ `Σ K1 ≤c K2 Γ `Σ K1 = K′1 Γ `Σ K2 = K′2 Γ `Σ c = c′:(K1)K2

Γ `Σ K′1 ≤c′ K′2

Γ `Σ K ≤c K′ Γ `Σ K′ ≤c′ K′′

Γ `Σ K ≤c′◦c K′′

Γ `Σ, Σ′ K ≤d K′ `Σ K0 kind

Γ `Σ, c:K0, Σ′ K ≤d K′
(c 6∈ dom(Σ,Σ′))

Γ,Γ′ `Σ K ≤d K′ Γ `Σ K0 kind

Γ, x:K0,Γ′ `Σ K ≤d K′
(x 6∈ dom(Γ,Γ′))

Γ `Σ0,c:L,Σ1 K ≤d K′ `Σ0 L = L′

Γ `Σ0,c:L′,Σ1 K ≤d K′
Γ0, x:K,Γ1 `Σ L ≤d L′ Γ0 `Σ K = K′

Γ0, x:K′,Γ1 `Σ L ≤d L′

Γ0, x:K,Γ1 `Σ K1 ≤c K2 Γ0 `Σ k:K
Γ0, [k/x]Γ1 `Σ [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Γ `Σ K′1 ≤c1 K1 Γ, x:K1 `Σ K2 kind Γ, x′:K′1 `Σ K′2 kind Γ, x:K1 `Σ [c1(x′)/x]K2 ≤c2 K
′
2

Γ `Σ (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 5 Inference Rules for Π0K
S,≤ (2).

we always have A ≤[x:A]x A, if A ≤c A, then c = [x:A]x : (A)A.) Note also that, it is easy to
prove by induction that, if Γ `Σ A ≤c B : Type, then Γ `Σ A,B : Type and Γ `Σ c : (A)B.

It is also important to note the difference between a judgement with signature in the
current calculus and that in the calculus employed in [21] where there are no signatures. For
example, the signatures Σ1 that contains A ≤c B and Σ2 that contains A ≤d B can both
be coherent signatures even when c 6= d, while such a situation can only be considered in
the earlier setting by having two different type systems T [C1] and T [C2], which is rather
cumbersome to say the least.7

We can, at this point, complete the specification of the system ΠS,≤ as the extension of
Π0K
S,≤ by adding the rules in Figure 6.
I Remark. We can now explain why we have to present the system Π0K

S,≤ first. The reason is
that the coercive definition rule (CD) will force any two coercions to be equal. Therefore,
we cannot define the notion of coherence for the system including the (CD) rule as, if we did
so, every signature would be coherent by definition.

7 This has some unexpected consequences concerning parameterised coercions as well. But it is a topic
beyond the current paper and will be discussed somewhere else.
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Coercive Application

(CA1)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0):[c(k0)/x]K′

(CA2)
Γ `Σ f = f ′:(x:K)K′ Γ `Σ k0 = k′0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Γ `Σ f :(x:K)K′ Γ `Σ k0:K0 Γ `Σ K0 ≤c K

Γ `Σ f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 6 The coercive application and definition rules in ΠS,≤.

2.2 Coherence for Kinds and Conservativity
In this subsection, we prove two basic properties of ΠS,≤: (1) coherence, as defined for types,
extends to kinds; (2) it is a conservative extension of the system ΠS .

2.2.1 Coherence for Kinds
Note that the coherence definition refers to types. In what follows we prove that coherence
for types implies coherence for kinds. We categorise kinds and show that they can be related
via definitional equality or subtyping only if they are of the same category. For this we
also define the degree of a kind which intuitively denotes how many dependent product
occurrences are in a kind.

I Lemma 2. If Γ `Σ A ≤c B is derivable in Π0K
S,≤ then Γ `Σ c:(A)B is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivations J

I Lemma 3. If Γ ` K ≤c L is derivable in Π0K
S,≤ then Γ ` c:(K)L is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivations. We consider K ≡ (x:K1)K2 and
L ≡ (x:L1)L2. If a derivation tree for Γ ` K ≤c L ends with the rule for dependent product
kind with premises Γ `Σ L1 ≤c1 K1, Γ, x:K1 `Σ K2 kind, Γ, y:L1 `Σ L2 kind and Γ, y:L1 `Σ
[c1(y)/x]K2 ≤c2 L2. By IH we have Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2. By
weakening Γ, f :(x:K1)K2, y:L1 `Σ c2:([c1(y)/x]K2)L2 and Γ, f :(x:K1)K2, y:L1 `Σ c1:(L1)K1.
We have Γ, f :(x:K1)K2, y:L1 `Σ y:L1 so by application Γ, f :(x:K1)K2, y:L1 `Σ c1(y):K1. We
have Γ, f :(x:K1)K2, y:L1 `Σ f :(x:K1)K2 so by application we have Γ, f :(x:K1)K2, y:L1 `Σ
f(c1(y)):[c1(y)/x]K2. By application again we have Γ, f :(x:K1)K2, y:L1 `Σ c2(f(c1(y))):L2
and by abstraction Γ `Σ [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2 J

I Lemma 4. Let Γ `Σ K ≤c L be derivable in Π0K
S,≤. Then K and L are of the same form,

i.e., both are El-terms or both are dependent product kinds. Furthermore,
if K ≡ El(A) and L ≡ El(B), then Γ `Σ A ≤c B : Type is derivable in Π0K

S,≤ and
if K ≡ (x:K1)K2 and L ≡ (x:L1)L2, then Γ `Σ K1 kind, Γ, x:K1 `Σ K2 kind, Γ `Σ
L1 kind, and Γ, x:L1 `Σ L2 kind are derivable in Π0K

S,≤.

The following lemma states that, if there is a subtyping relation between two dependent
kinds, then the coercion can be obtained by the subtyping for dependent product kind rule
from Figure 5. Note that for this to hold it is essential that we only have subtyping entries
in signatures and not subkinding.
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I Lemma 5. If Γ `Σ (x:K1)K2 ≤d (y:L1)L2 is derivable in Π0K
S,≤ then there exist derivable

judgements in Π0K
S,≤, Γ `Σ c1:(L1)K1 and Γ, y:L1 `Σ c2:([c1(y)/x]K2)L2 s.t.

Γ `Σ L1 ≤c1 K1
Γ, y:K ′1 `Σ [c1(y)/x]K2 ≤c2 L2 and
Γ `Σ d = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable in Π0K
S,≤.

Proof. By induction on the structure of derivation of Γ `Σ (x:K1)K2 ≤d (y:L1)L2. The only
non trivial case is when it comes from transitivity.

Γ `Σ (x:K1)K2 ≤d1 C Γ `Σ C ≤d2 (y:L1)L2

Γ `Σ (x:K1)K2 ≤d2◦d1 (y:L1)L2

By the previous lemma Γ `Σ C ≡ (z:M1)M2. By IH we have that
Γ `Σ M1 ≤c′1 K1
Γ, z:M1 `Σ [c′1(z)/x]K2 ≤c′2 M2
Γ `Σ d1 = [f :(x:K1)K2][z:M1]c′2(f(c′1(z))):((x:K1)K2)(z:M1)M2

and
Γ `Σ L1 ≤c′′1 M1
Γ, y:L1 `Σ [c′′1(y)/z]M2 ≤c′′2 L2
Γ `Σ d2 = [f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))):((z:M1)M2)(y:L1)L2

are derivable. We apply transitivity to obtain Γ `Σ L1 ≤c′1◦c′′1 K1 and by weakening and sub-
stitution in addition, Γ, y:L1 `Σ [c′1(c′′1(y))/x]K2 ≤c′′2 ◦[c′′1 (y)/z]c′2 L2 and what is left to prove is
that Γ `Σ d2 ◦ d1 = [f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))):((x:K1)K2)(y:L1)L2.
Let Γ `Σ F :(x:K1)K2

d2 ◦ d1(F ) = d2(d1(F ))
= d2([f :(x:K1)K2][z:M1]c′2(f(c′1(z)))(F ))
= d2([F/f ][z:M1]c′2(f(c′1(z))))
= d2([z:M1]c′2(F (c′1(z))))
= ([f :(z:M1)M2][y:L1]c′′2(f(c′′1(y))))([z:M1]c′2(F (c′1(z))))
= [z:M1]c′2(F (c′1(z)))/f ]([y:L1]c′′2(f(c′′1(y))))
= [y:L1]c′′2([z:M1]c′2(F (c′1(z)))(c′′1(y)))
= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))
= [y:L1]c′′2([c′′1(y)/z]c′2(F (c′1(c′′1(y)))))
= [y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(F ((c′1 ◦ c′′1)(y)))
= ([f :(x:K1)K2][y:L1](c′′2 ◦ [c′′1(y)/z]c′2)(f((c′1 ◦ c′′1)(y))))(F ) J

The following de
nition gives us a measure for the structure of kinds. We will use this measure when

proving coherence for kinds. It is particularly important and we will use the fact that this
measure is not increased by substitution.

I Definition 6. For Γ `Σ K we define the degree of K where Γ `Σ K kind as deg(K) ∈ N
as follows:
1. deg(Type) = 1
2. deg(El(A)) = 1
3. deg((x:K)L) = deg(K) + deg(L)
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I Lemma 7. The following hold:
if Γ `Σ K = L is derivable in Π0K

S,≤ then deg(K) = deg(L)
if Γ `Σ K ≤c L is derivable in Π0K

S,≤ then deg(K) = deg(L)

Proof. We do induction on the structure of derivations of Γ `Σ K = L respectively Γ `Σ
K ≤ L. For example if it comes from the rule

Γ `Σ K1 = K2 Γ, x:K1 `Σ K ′1 = K ′2
Γ `Σ (x:K1)K ′1 = (x:K2)K ′2

by IH, deg(K1) = deg(K2) and deg(K ′1) = deg(K ′2), hence deg((x:K1)K ′1) = deg((x:K2)K ′2)
J

I Lemma 8 (Coherence for Kinds). If Γ `Σ K ≤c L and Γ `Σ K ≤c′ L are derivable in Π0K
S,≤,

then Γ `Σ c = c′ : (K)L is derivable in Π0K
S,≤.

Proof. By induction on n = deg(K).
1. For n = 1:

If Γ `Σ K = El(A) and Γ `Σ L = El(B) then by Lemma 4 we have Γ `Σ A ≤c B and
Γ `Σ A ≤c′ B and from coherence for types Γ `Σ c = c′:(A)B, hence Γ `Σ c = c′:(K)L
If Γ `Σ K = Type and Γ `Σ L = Type then we can only have Γ `Σ c = Id:(K)L.

2. For n > 1, Γ `Σ K ≡ (x:K1)K2 and Γ `Σ L ≡ (x:L1)L2, by Lemma 5
Γ `Σ L1 ≤c1 K1,
Γ, x:K1 `Σ [c1(y)/x]K2 ≤c2 L2 and
Γ `Σ c = [f :(x:K1)K2][y:L1]c2(f(c1(y))):((x:K1)K2)(y:L1)L2

are derivable for some Γ `Σ c1:(L1)K1 and Γ, x:K1 `Σ c2:([c1(x)/x]K2)L2 and deg(L1),
deg(K1), deg([c1(y)/x]K2), deg(L2) are all smaller than n. If

Γ `Σ L1 ≤c′1 K1,
Γ, x:K1 `Σ [c′1(y)/x]K2 ≤c′2 L2 and
Γ `Σ c′ = [f :(x:K1)K2][y:L1]c′2(f(c′1(y))):((x:K1)K2)(y:L1)L2

are derivable for some other coercions Γ `Σ c′1:(L1)K1 and Γ, x:K1 `Σ c′2:([c′1(y)/x]K2)L2
then by IH we have Γ `Σ c1 = c′1:(L1)K1 and Γ, x:K1 `Σ c2 = c′2:([c′1(y)/x]K2)L2 and
we are done. J

2.2.2 Conservativity
Here we prove that, if the signatures are coherent, our calculus ΠS,≤ is conservative over ΠS

in the traditional sense. It follows directly from the fact that ΠS,≤ keeps track of subtyping
entries in the signatures and it carries them along in derivations. More precisely we prove
that if a judgement is derivable in ΠS,≤ and not in ΠS then it cannot be written in ΠS .

The following two lemmas state that any subtyping or subkinding judgement can only be
derived with a signature containing subtyping entries, and hence the signature cannot be
written in ΠS .

I Lemma 9. If Γ `Σ A ≤c B:Type is derivable in ΠS,≤, then Σ contains at least a subtyping
entry or Γ `Σ A = B:Type and Γ `Σ c = Id:(A)A are derivable in ΠS,≤.

Proof. By induction on the structure of derivation. For example if it comes from transitivity
from premises Γ `Σ A ≤c A′ : Type and Γ `Σ A′ ≤c′ B : Type then the statement simply is
true by IH. J
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I Lemma 10. If Γ `Σ K ≤c L is derivable in ΠS,≤, then Σ contains at least a subtyping
entry or Γ `Σ K = L and Γ `Σ c = Id:(K)L are derivable in ΠS,≤.

Proof. By induction on the structure of derivation. For example if it comes from transitivity
from premises Γ `Σ K ≤c M and Γ `Σ M ≤c′ L then the statement simply is true by IH.

If it comes from the rule

Γ `Σ A ≤c B:Type
Γ `Σ El(A) ≤c El(B)

then it follows from Γ `Σ A ≤c B:Type by the previous lemma J

The following lemma extends the statement to express the fact that it is enough for a
judgement to contain a non trivial subtyping or subkinding entry (not the identity coercion)
in its derivation tree to have a signature that cannot be written in ΠS .

I Lemma 11. If D is a valid derivation tree for Γ `Σ J in ΠS,≤ and Γ1 `Σ1 K1 ≤c0 K2
is present in D then, either Σ contains at least a subtyping entry or Γ1 `Σ1 K1 = K2 and
Γ1 `Σ1 c0 = IdK1 :(K1)K1 are derivable in ΠS,≤.

Proof. If Γ `Σ J is a subtyping or subkinding judgement it follows directly from the previous
lemmas 9, 5. Likewise, if the judgement comes from a coercive application or coercive
definition rule with one of the premises Γ `Σ K ≤ L, then, by the previous lemma the
statement holds. Otherwise we do induction on the structure of derivations of Γ `Σ J . For
example if the derivation tree containing the subkinding judgement ends with the rule

Γ `Σ K kind Γ, x:K `Σ K ′ kind

Γ `Σ (x:K)K ′ kind

then the subkinding judgements must be in at least one of the subderivations concluding Γ `Σ
K kind and Γ, x:K `Σ K ′ kind. The statement then holds by induction hypothesis. J

The following lemma states that, if a judgements is derived in ΠS,≤ using only trivial
coercions, then it can be derived in ΠS .

I Lemma 12. If in a derivation tree of a judgement derivable in ΠS,≤ which is not subtyping
or subkinding judgement all of the subtyping and subkinding judgements are of the form
Γ1 `Σ1 A ≤IdA

A:Type respectively Γ1 `Σ1 K ≤[x:K]x K then the judgement is derivable in
ΠS.

Proof. By induction on the structure of derivations. If the derivation tree D that only
contains trivial coercions ends with one of the rules of ΠS ,

D1
J1
...Dn

Jn

J
(R)

then J1,..., Jn also have derivation trees D1,...,Dn which only contain at most trivial coercions,
hence, by IH, they are derivable in ΠS . We can apply to them, with D1,...,Dn replaced by
their derivation in ΠS the same rule R to obtain the judgement J and the derivation is in
ΠS .

Otherwise, if for example the derivation containing only trivial coercions ends with
coercive application

Γ `Σ f :(x:K)K ′ Γ `Σ k0:K Γ `Σ K ≤[x:K]x K

Γ `Σ f(k0):[[x:K]x(k0)/x]K ′
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Γ `Σ [[x:K]x(k0)/x]K ′ = [k0/x]K ′ and Γ `Σ f :(x:K)K ′ and Γ `Σ k0:K are derivable
in ΠS by IH, and from them it follows directly by functional application, in ΠS , Γ `Σ
f(k0):[k0/x]K ′ J

I Theorem 13 (Conservativity). If a judgement is derivable in ΠS,≤ but not in ΠS, its
signature will contain subtyping entries, and hence it cannot be written in ΠS.

Proof. From the previous lemma, a judgement can only be derivable in ΠS,≤ but not in ΠS

when it contains in all of its derivation trees non trivial subtyping or subkinding judgements.
If the judgements is itself a subtyping or subkinding judgement then it vacuously cannot
be written in ΠS . Otherwise, by lemma 11 it follows that either all of the subtyping and
subkinding judgements are of the form Γ1 `Σ1 A ≤IdA

A:Type respectively Γ1 `Σ1 K ≤[x:K]x
K in which case the judgement is derivable in ΠS or its signature contains subtyping entries,
in which case it cannot be written in ΠS . J

2.3 Justification of ΠS,≤ as a Well Behaved Extension
We shall show in this subsection that extending the type theory ΠS by coercive subtyping in
signatures results in a well-behaved system. In order to do so, we relate the extension with
the previous formulation: more precisely, for every signature Σ, we consider a corresponding
system Π[CΣ];, which is similar to the system T [CΣ] in [21, 33], and we prove the equivalence
between judgements in ΠS,≤ and judgements in such corresponding systems from the point
of view of derivability. (see Theorems 22 and 29 below for a more precise description).

This way we argue that there exists a stronger relation between the extension with
coercive subtyping entries and the base system based on the fact that was shown in [21, 33]
that every derivation tree in T [C] the extension can be translated to a derivation tree in T
such that their conclusion are equal.

2.3.1 The relation between Π0K
S,≤ and ΠS

Here we show that, if a judgement J is derivable in Π0K
S,≤, we obtain a set of judgements, one

of which is of same as J up to erasing the subtyping entries from a signature. The idea here
is that, for any the valid signature in Π0K

S,≤ and all the judgements using it, we can remove
the subtyping entries from it to obtain a valid signature in ΠS and corresponding judgements
using this signature.

I Definition 14. We define erase(·), a map which simply removes subtyping entries from
signature as follows:

erase(<>) =<>
erase(Σ, c:K) = erase(Σ), c:K
erase(Σ, A ≤c B) = erase(Σ)

The following lemma is a completion of weakening and signature replacement for the
cases when a signature is weakened with subtyping entries or a subtyping entry is replaced
in the signature.

I Lemma 15.
If Γ `Σ,Σ′ J and `Σ,A≤cB:Type,Σ′ Γ are derivable in Π0K

S,≤ then Γ `Σ,A≤cB:Type,Σ′ J is
derivable in Π0K

S,≤.
If Γ `Σ,A≤cBΣ′ J , `Σ A = A′:Type, `Σ B = B′:Type, `Σ c = c′:(A)B `Σ,A′≤c′B

′:Type,Σ′

Γ are derivable in Π0K
S,≤ then Γ `Σ,A′≤c′B

′:Type,Σ′ J is derivable inΠ0K
S,≤.

Proof. By induction on the structure of derivation. J
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I Lemma 16. For Σ ≡ Σ0, A0 ≤c0 B0,Σ1, ..., An−1 ≤cn−1 Bn−1,Σn a valid signature as
above we will consider the following judgements judgements (?) `erase(Σ0,...,Σi) ci:(Ai)Bi,
where i ∈ 0, ..., n. Then the following statements hold:
1. `Σ Γ is derivable in Π0K

S,≤ if and only if `erase(Σ) Γ and (?) are derivable in ΠS.
2. Γ `Σ J is not a subtyping judgement and is derivable in Π0K

S,≤ if and only if Γ `erase(Σ) J

and (?) are derivable in ΠS.
3. If Γ `Σ A ≤c B is derivable in Π0K

S,≤ then Γ `erase(Σ) c:(A)B and (?) are derivable in ΠS.
4. If Γ `Σ K ≤c L is derivable in Π0K

S,≤ then Γ `erase(Σ) c:(K)L and (?) are derivable in ΠS.

Proof. The only if implication for the first three cases is straightforward by induction on
the structure of derivations as subtyping judgements do not contribute to deriving any other
type of judgement in Π0K

S,≤. For the if implication, Lemma 15 is used. The last two points
also follow by induction. J

2.3.2 Π[C];

Here we consider a system Π[C]; similar to the system T [C] as presented in [21, 33] with T
being the type theory with Π-types.

Here we consider a system similar to the system T [C] from [21, 33] with dependent product.
The difference is that here we fix some prefixes of the context, not allowing substitution and
abstraction for these prefixes. In more details, the judgements of T [C]; will be of the form
Σ; Γ ` J instead of Γ ` J , where Σ and Γ are just contexts and substitution and abstraction
can be applied to entries in Γ but not Σ. We call this system Π[C];. To delimitate these
prefixes we use the symbol “;” and the judgements forms will be as follows:
` Σ; Γ signifies a judgement of valid context
Σ; Γ ` K kind

Σ; Γ ` k:K
Σ; Γ ` K = K ′

Σ; Γ ` k = k′:K
The rules of the system Π[C]; are the ones in Figures 8,9,10, 11 and 12 in the appendix. The
difference between these rules and those described in [21, 33] is that, in addition to regular
contexts, they also refer to the prefixes apart from substitution and abstraction which is only
available for regular contexts. More detailed, we duplicate contexts, assumptions, weakening,
context replacement. For all other rules we adjust them to the new forms of judgements
by replacing Γ ` J with Σ; Γ ` J . Notice that we do not duplicate substitution as only the
context at the righthand side of the ; supports substitution. We will consider the system
Π[C];0K to be the one without coercive application and definition rules, namely the ones in
figures 8,9,10 and 11. C is formed of subtyping judgements and we have the following rule in
Π[C];0K

Γ ` A ≤c B ∈ C
Γ ` A ≤c B

For the system T [C] coercive application is added as an abbreviation to ordinary functional
application and this is ensured by coercive definition together coherence of C. Indeed, it was
proved in [21, 33] that, when C is coherent, Π[C] is a well behaved extension of Π[C]0K in
that every valid derivation tree D in Π[C] can be translated into a valid derivation tree D′ in
Π[C]0K and the conclusion of D is definitionally equal to the conclusion of D′ in Π[C]. We
want to avoid doing the complex proof in [21, 33] again and assume that the properties of
Π[C] carry over to Π[C];. So next we give the definition of coherence for the set C.
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I Definition 17. The set C of subtyping judgements is coherent if the following two conditions
hold in Π[C];0K :

If Σ; Γ ` A ≤c B is derivable, then Σ; Γ ` c:(A)B is derivable.
If Σ; Γ ` A ≤c B and Σ; Γ ` A ≤c′ B are derivable, then Σ; Γ ` c = c′:(A)B is derivable.

Notice that in the original formulation Σ; Γ ` A ≤[x:A]x A was not allowed. However the
condition that Σ; Γ 0 A ≤c A was used to prove that a judgement cannot come from both
coercive application and functional application. However with the current condition one can
prove that, if this is the case, the coercion has to be equal to the identity.

2.3.3 The relation between Π[C]; and ΠS,≤

Although there is a difference between the new ΠS,≤ and Π[C]; which lies mainly in the
fact that, by introducing coercive subtyping via signature, we introduce them locally to the
specific signature, this allowing us to have more coercions between two types under the same
kinding assumptions(of the form c:K, x:K) and still have coherence satisfied, whereas by
enriching a system with a set of coercive subtyping, our coercions are introduced globally and
only one coercion(up to definitional equality) can exist between two types under the same
kinding assumptions. However, because signatures are technically just prefix of contexts for
which abstraction and substitution are not available [12], we naturally expect that there is a
relation between ΠS,≤ and Π[C];. And indeed here we shall show that for any valid signature
Σ in ΠS,≤, we can represent a class of judgements of ΠS,≤ depending on Σ as judgements in
a Π[CΣ];.

First we consider just Π0K
S,≤ and Π[C];0K which are the systems without coercive application

and coercive definition and we define a way to transfer coercive subtyping entries of a signature
Σ in Π0K

S,≤ to a set of coercive subtyping judgements of Π[CΣ];0K .

I Definition 18. Let Σ be a signature (not necessarily valid) in Π0K
S,≤ we define ΓΣ as follows:

Γ<> =<>
ΓΣ0,k:K = ΓΣ0 , k:K
ΓΣ0,A≤cB:Type = ΓΣ0

If Σ is valid in Π0K
S,≤ we define CΣ as follows:

C<> = ∅
CΣ0,k:K = CΣ0

CΣ0,A≤cB:Type = CΣ0 ∪ {ΓΣ0 ;<>` A ≤c B:Type}

I Lemma 19. If Σ ≡ Σ0, A ≤c B:Type,Σ1 valid is derivable in Π0K
S,≤, then ΓΣ ≡ ΓΣ0,Σ1

and CΣ = CΣ0,Σ1 ∪ {ΓΣ0 ;<>` A ≤c B:Type}

Proof. By induction on the length of Σ. J

I Lemma 20. Let Σ1,Σ3 and Σ1,Σ2,Σ3 be valid signatures in Π0K
S,≤. If J is derivable in

Π[CΣ1,Σ3 ];0K then J is derivable in Π[CΣ1,Σ2,Σ3 ];0K

Proof. By induction on the structure of derivation of J . J

First we mention the following notation which we will use throughout the section and
which is really just a generalization of definitional equality:

<>=<>, Σ, c:K = Σ′, c:K ′ iff Σ = Σ′ and `Σ K = K ′

`Σ Γ, x:K =`Σ′ Γ, x:K ′ iff `Σ Γ =`Σ′ Γ and Γ `Σ K = K ′

Γ `Σ K = Γ′ `Σ′ K
′ iff `Σ Γ =`Σ′ Γ′ and Γ `Σ K = K ′

Γ `Σ k:K = Γ′ `Σ′ k
′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K
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Γ `Σ k = l:K = Γ′ `Σ′ k
′ = l′:K ′ iff Γ `Σ K kind = Γ′ `Σ′ K

′ kind and Γ `Σ k = k′:K
and Γ `Σ l = l′:K
Γ `Σ A ≤c B = Γ′ `Σ′ A

′ ≤c′ B′ iff Γ `Σ A:Type = Γ′ `Σ′ A
′:Type and Γ `Σ B:Type =

Γ′ `Σ′ B
′:Type and Γ `Σ c:(A)B = Γ′ `Σ′ c

′:(A′)B′
We consider the analogous notation for judgements of the form ` Γ0;<>, ` Γ0; Γ and
Γ0; Γ ` J . We will say that the judgements are definitionally equal in a certain system if all
the corresponding definitional equality judgements are derivable in that system.

According to [21, 33], if we add coercive subtyping and coercive definition rules from
Figure 12 in the appendix to a system enriched with a coherent set of subtyping judgements
CΣ, any derivation tree in Π[CΣ]; can be translated to a derivation tree in Π[CΣ];0K (that is a
derivation tree that does not use coercive application and definition rules - CA1, CA2 and
CD) and their conclusions are definitionally equal. We aim to use that result to prove that
for any judgement using a coherent signature in ΠS,≤, there exists a judgement definitionally
equal to it in Π0K

S,≤. For this we shall first prove that CΣ is coherent in the sense of the
definition 17 if Σ is coherent in the sense of the definition 1. To prove this we need to describe
the possible contexts at the lefthand side of ; in Π[CΣ];0K used to infer coercive subtyping
judgements.

We first prove a theorem used throughout the section which allows us to argue about
judgements in Π0K

S,≤ and judgements in Π[CΣ];0K interchangeably. We start by presenting
a lemma representing the base case and then the theorem appears as an extension easily
proven by induction. The lemma is not required to prove the theorem but it gives a better
intuition. The theorem essentially states that for contexts at the lefthand side of ; obtained
by interleaving membership entries in a the image through Γ· of a valid signature Σ or its
prefixes give judgements in Π[CΣ];0K corresponding to judgements in Π0K

S,≤. We will see later
that all the contexts at the lefthand side of ; in Π[CΣ];0K are in fact obtained by interleaving
membership entries in prefixes of Σ.

I Lemma 21. Let Σ ≡ Σ1,Σ2,Σ3 be a valid signature in Π0K
S,≤ then, for any c,K and Σ′1,Σ′2

s.t. Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2 the following hold:
` ΓΣ′1 , c:K,ΓΣ′2 ;<> is derivable in Π[CΣ];0K iff Σ′1, c:K,Σ′2 valid is derivable in Π0K

S,≤
` ΓΣ′1 , c:K,ΓΣ′2 ; Γ is derivable in Π[CΣ];0K iff `Σ′1,c:K,Σ′2 Γ is derivable in Π0K

S,≤
ΓΣ′1 , c:K,ΓΣ′2 ; Γ ` J is derivable in Π[CΣ];0K iff Γ `Σ′1,c:K,Σ′2 J is derivable in Π0K

S,≤.

Proof. By induction on the structure of derivation. J

Mainly by repeatedly applying the previous lemma (except for the case when we weaken
with the empty sequence, which is straight forward by induction on the structure of derivations)
we can prove:

I Theorem 22 (Equivalence for Π0K
S,≤). Let Σ ≡ Σ1, ...,Σn bea valid signature in Π0K

S,≤ then,
for any 1 ≤ k ≤ n, for any {Γi}i∈{0..k} sequences free of subtyping entries and and Σ′1, ...,Σ′k
s.t. Σ1, ...,Σk = Σ′1, ...,Σ′k for any i ∈ {1..k} the following hold:
` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′

k
,Γk;<> is derivable in Π[CΣ];0K if and only if

Γ0,Σ′1,Γ1,Σ′2,Γ2, ...,Γk−1,Σ′k,Γk valid is derivable in Π0K
S,≤

` Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ is derivable in Π[CΣ];0K if and only if

`Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

Γ is derivable in Π0K
S,≤

Γ0,ΓΣ′1 ,Γ1,ΓΣ′2 ,Γ2, ...,Γk−1ΓΣ′
k
,Γk; Γ ` J is derivable in Π[CΣ];0K if and only if

Γ `Γ0,Σ′1,Γ1,Σ′2,Γ2,...,Γk−1Σ′
k
,Γk

J is derivable in Π0K
S,≤.

Now we aim to prove that we do not introduce any new subtyping entries in Π0K
S,≤ by

weakening (up to definitional equality). Note that, for this, it is essential that the weakening
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rules do not add subtyping entries. More precisely, in the following Lemma we prove a form
of strengthening, which roughly says that by strengthening the assumptions of a subtyping
judgement, we can still derive it(up to definitional equality).

I Lemma 23. Let Σ ≡ Σ1,Σ2 a valid signature in Π0K
S,≤, for any c,K, Σ′1 = Σ1 and

Σ′1,Σ′2 = Σ1,Σ2, if Γ `Σ′1,k:K,Σ′2 A ≤c B is derivable in Π0K
S,≤ then there exists A′, c′, B′ such

that `Σ A′ ≤c′ B′, Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type and
Γ `Σ′1,k:K,Σ′2 c = c′:(A)B derivable in Π0K

S,≤.

Proof. By induction on the structure of derivation of Γ `Σ′1,k:K,Σ′2 A ≤c B. If it comes
from transitivity with the premises Γ `Σ′1,k:K,Σ′2 A ≤c1 C and Γ `Σ′1,k:K,Σ′2 C ≤c2 B

then by IH, there exist A′, C ′, c′1, C ′′, B′, c′2 s.t. `Σ A′ ≤c′1 C ′ and `Σ C ′′ ≤c′2 B′ and
Γ `Σ′1,k:K,Σ′2 A = A′:Type, Γ `Σ′1,k:K,Σ′2 B = B′:Type, Γ `Σ′1,k:K,Σ′2 C = C ′:Type,
Γ `Σ′1,k:K,Σ′2 C = C ′′:Type, Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A)C and Γ `Σ′1,k:K,Σ′2 c2 = c′2:(C)B.
By transitivity of equality we have Γ `Σ′1,k:K,Σ′2 C

′ = C ′′:Type. By lemma 16 we have that
Γ `erase(Σ′1,k:K,Σ′2) C

′ = C ′′:Type is derivable in ΠS . Similarly, because `Σ C ′:Type and
`Σ C ′′:Type we have that `erase(Σ′1,k:K,Σ′2) C ′:Type and `erase(Σ′1,k:K,Σ′2) C ′′:Type are
derivable in ΠS . From Strengthening Lemma([11]) which holds for ΠS we have that
`erase(Σ) C

′ = C ′′:Type. Again, by 16 we obtain `Σ C ′ = C ′′:Type. At last, we can
apply congruence and transitivity `Σ A′ ≤c′2◦c′1 B

′.
Let us now consider the dependent product rule

Γ `Σ′1,k:K,Σ′2
A′′ ≤c1 A′ Γ `Σ′1,k:K,Σ′2

B′, B′′ : (A′)Type Γ, x:A′ `Σ′1,k:K,Σ′2
B′(x) ≤c2[x] B

′′(x)
Γ `Σ′1,k:K,Σ′2

Π(A′, B′) ≤c Π(A′′, B′′ ◦ c1)

with A ≡ Π(A′, B′), B ≡ Π(A′′, B′′ ◦ c1) and

c ≡ [F : Π(A′, B′)]λ(A′′, B′′ ◦ c1, [x:A′′]c2[x](app(A′, B′, F, c1(x)))).

By IH, there exist A′′0 , A′0, c′1, B′0, B′′0 , c′2 s.t. `Σ A′′0 ≤c′1 A
′
0, `Σ B′ ≤c′2 B

′′ and

Γ `Σ′1,k:K,Σ′2 A
′′ = A′′0 :Type, Γ `Σ′1,k:K,Σ′2 A

′ = A′0:Type,
Γ, x:A′ `Σ′1,k:K,Σ′2 B

′′(x) = B′′0 :Type, Γ, x:A′ `Σ′1,k:K,Σ′2 B
′(x) = B′0:Type,

Γ `Σ′1,k:K,Σ′2 c1 = c′1:(A′′)A′ and Γ, x:A′ `Σ′1,k:K,Σ′2 c2(x) = c′2:(B′(x))B′′(x):Type.

We apply dependent product rule for the case when types are constants and obtain

` A′0 −→ B′0 ≤′c A′′0 −→ B′′0 with c′ ≡ [F : A′0 −→ B′0][x:A′′0 ](c′′2(F (c′1(x)))).

By normal equality rules for dependent product and its terms we have that

Γ `Σ′1,k:K,Σ′2 A
′
0 −→ B′0 = Π(A′, B′), Γ `Σ′1,k:K,Σ′2 A

′′
0 −→ B′′0 = Π(A′′, B′′) and

Γ `Σ′1,k:K,Σ′2 c = c′:(Π(A′, B′))Π(A′′, B′′) J

By repeatedly applying the previous lemma we obtain

I Corollary 24. For Σ valid derivable in Π0K
S,≤, Σ ≡ Σ1, ...,Σn, for any {Γi}i∈{0..n} sequences

free of subtyping entries and {Σ′i}i∈{1..n} s.t. Σ1, ...,Σi = Σ′1, ....,Σ′i for any i ∈ {1..n}, if
Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn A ≤c B is derivable in Π0K

S,≤ then there exists A′, c′, B′ s.t.
`Σ A′ ≤c′ B′, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn

A = A′:Type, Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
B =

B′:Type and Γ `Γ0,Σ1,Γ1,Σ2,Γ2,...,Γn−1Σn,Γn
c = c′:(A)B derivable in Π0K

S,≤.
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Next we prove that weakening does not break coherence:

I Lemma 25. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1,Σ2,Σ3 is coherent, for any Σ′1,Σ′2 s.t.

Σ1 = Σ′1 and Σ1,Σ2 = Σ′1,Σ′2, for any c,K s.t. Σ′1, c:K, ,Σ′2 is valid, Σ′1, c:K, ,Σ′2 coherent.

Proof. Let us consider the derivable judgements Γ `Σ′1,c:K,,Σ′2 A ≤c B and Γ `Σ′1,c:K,,Σ′2
A ≤d B. Then we know from Lemma 24 that there exist A′, B′, A′′, B′′, c′, d′ s.t. `Σ1,Σ2

A′ ≤c′ B′, `Σ1,Σ2 A′′ ≤d′ B′′, Γ `Σ′1,c:K,,Σ′2 A′ = A:Type, Γ `Σ′1,c:K,,Σ′2 B′′ = B:Type,
Γ `Σ′1,c:K,,Σ′2s B

′′ = B:Type Γ `Σ′1,c:K,,Σ′2 c = c′:(A)B and Γ `Σ′1,c:K,,Σ′2 d = d′:(A)B. As
in the proof of the previous lemma, using Lemma 16 and Strengthening Lemma from [11]
we have that `Σ1,Σ2 A

′ = A′′:Type, `Σ1,Σ2 B
′ = B′′:Type. By congruence we have that

`Σ1,Σ2 A
′ ≤d′ B′ is derivable in Π0K

S,≤. If Σ is coherent then any prefix of it Σ1, ...,Σk is
coherent so `Σ1,Σ2 c

′ = d′:(A′)B′. Further, by weakening and Lemma 15, we have the desired
result. J

By repeatedly applying the previous lemma we obtain:

I Lemma 26. For Σ valid in Π0K
S,≤, if Σ ≡ Σ1, ...,Σn is coherent, for any 1 ≤ k ≤ n, for any

{Γi}i∈{0..k} sequences free of subtyping entries, for any {Σ′i}i∈{0..k} s.t. Σ1, ...,Σi = Σ′1, ...,Σ′i
for any i ∈ {1..k} s.t. Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is valid,
Γ0,Σ1,Γ1,Σ2,Γ2, ...,Γk−1,Σk,Γk is coherent.

Finally, the following lemma describes the relation between parts of the context at the
lefthand side of the ; of judgements in Π[CΣ];0K and Σ. This is a very important result for
proving the coherence of CΣ based on the coherence of Σ. It states that any such context is
in fact obtained from weakening of a prefix of Σ. In addition from this Lemma, because all
the derivable judgements in Π[CΣ];0K that are not in Π; are subtyping judgements, we have
as a consequence that all the judgements of Π[CΣ];0K are equivalent to judgements in Π0K

S,≤.

I Lemma 27. For Σ a valid signature in Π0K
S,≤, for any derivable judgement Γ′; Γ ` J in

Π[CΣ];0K there exists a partition of Σ ≡ Σ1, ...,Σn, 1 ≤ k ≤ n, Γ0, ...,Γk free of subtyping
entries and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t. Γ′ ≡ ΓΓ0,Σ1,Γ1,...,Σk,Γk

Proof. By induction on the structure of derivation of the judgement in Π[CΣ];0K . We only
prove a case for third point when the judgement is Γ′; Γ ` A ≤c B. The only nontrivial case
is when the judgements follows from weakening. Let us assume it comes from a derivation
tree ending with

Γ′1,Γ′2; Γ ` A ≤c B Γ′1;<>` K kind

Γ′1, c:K,Γ′2; Γ ` A ≤c B

with Γ′ ≡ Γ1, c:K,Γ2. By IH we know that there exists a partition of Σ ≡ Σ1, ...,Σn and
1 ≤ k ≤ n and Γ0, ...,Γk and Σ′1, ...,Σ′k with Σ′1, ...,Σ′i = Σ′1, ...,Σ′i for any 1 ≤ i ≤ k s.t.
Γ′1,Γ′2 ≡ ΓΓ0,Σ′1,Γ1,...,Σ′k,Γk

with Γ `Γ0,Σ′1,Γ1...,Σ′k,Γk
A ≤c B. Let us consider the case when

Γ′1 ≡ ΓΓ0,Σ′1,Γ1,...,Γi−1,Σ1′
i
and Γ′2 ≡ ΓΣ2′

i
,Γi,...,Σ′k,Γk

. With Σ′i ≡ Σ1′
i ,Σ2′

i for some 1 ≤ i ≤ k.
We consider the partition of Σ ≡ Σ1, ...,Σ1

i ,Σ2
i , ...,Σn s.t. Σ′1, ...,Σ1′

i ,Σ2′
i , ...,Σ′n Σ1, ...,Σl =

Σ′1, ...,Σ′l for any l ∈ 1..i− 1, Σ1, ...,Σ1
i = Σ′1, ...,Σ1′

i , Σ1, ...,Σ1
i ,Σ2

i = Σ′1, ...,Σ1′
i ,Σ2′

i

and Σ1, ...,Σl = Σ′1, ...,Σ′l for any l ∈ i+ 1..n and Γ0, ...,Γi−1, c:K,Γi, ...,Γk s.t. Γ′ =
ΓΓ0,Σ1,...,Γi−1,Σ1

i
,c:K,Σ2

i
,Γi,...,Σk,Γk

. J

The next lemma refers to the ability to argue about coherence of a set of coercive
subtyping judgements corresponding to a signature.
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I Theorem 28 (Equivalence of Coherence). Let Σ be a valid signature in Π0K
S,≤. Then Σ is

coherent in the sense of the Definition 1 iff CΣ is coherent for Π[CΣ];0K in the sense of the
Definition 17.

Proof. Only if: Let Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B be derivable in Π[CΣ];0K . From
Lemma 27, it follows that there exists a partition of Σ ≡ Σ1, ...,Σn and 1 ≤ k ≤ n and
Γ0, ...,Γk s.t. Γ′ = ΓΓ0,Σ1,...,Σk,Γk

. If Σ is coherent, then Γ0,Σ1, ...,Σk,Γk is coherent (from
Lemma 26). From Theorem 22, Γ′; Γ ` A ≤c B and Γ′; Γ ` A ≤d B are derivable in
Π[CΣ];0K iff Γ `Γ0,Σ1,...,Σk,Γk

A ≤c B and Γ ` Γ0,Σ1, ...,Σk,ΓkA ≤d B are derivable in Π0K
S,≤.

From coherence here we have Γ `Γ0,Σ1,...,Σk,Γk
c = d:(A)B which is derivable in Π0K

S,≤ iff
Γ′; Γ ` c = d:(A)B is derivable in Π[CΣ];0K (again by Theorem Theorem 22).

If: By Theorem 22, Γ `Σ A ≤c B:Type and Γ `Σ A ≤d B:Type are derivable in Π0K
S,≤

iff ΓΣ; Γ ` A ≤c B and ΓΣ; Γ ` A ≤d B are derivable in Π[CΣ];0K . Because CΣ is coherent,
ΓΣ; Γ ` c = d:(A)B is derivable in Π[CΣ];0K which happens iff Γ `Σ c = d:(A)B is derivable
in Π0K

S,≤ J

To prove that the system ΠS,≤ is well behaved we first prove that it is well behaved when
all the signatures considered are valid in the restricted system Π0K

S,≤. First we prove another
equivalence lemma for this situation.

I Theorem 29 (Equivalence for ΠS,≤). For Σ valid in Π0K
S,≤, the following hold:

` ΓΣ; Γ is derivable in Π[CΣ]; iff `Σ Γ is derivable in ΠS,≤
ΓΣ; Γ ` J is derivable in Π[CΣ]; iff Γ `Σ J is derivable in ΠS,≤.

Proof. By induction on the structure of derivation. J

The following theorem shows that the system we defined here is well behaved and that
every coercive subtyping application is really just an abbreviation.

I Lemma 30. If a valid signature Σ in Π0K
S,≤ is coherent the following hold:

1. If `Σ Γ is derivable in ΠS,≤ then there exists Γ′ s.t. `Σ Γ′ is derivable in Π0K
S,≤ and

`Σ Γ = Γ′ is derivable in ΠS,≤.
2. If Γ `Σ J is derivable in ΠS,≤ then there exists Γ′, J ′ s.t. Γ′ `Σ J ′ is derivable in Π0K

S,≤
and `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.

Proof. By Theorem 28, since Σ is coherent in, CΣ is coherent. If we look at the last case, by
Theorem 29, Γ `Σ J is derivable in ΠS,≤ iff ΓΣ; Γ ` J is derivable in Π[CΣ];. From [21, 33]
we know that, when CΣ is coherent, any derivation tree of ΓΣ; Γ ` J can be translated into
a derivation tree in Π[CΣ];0K which concludes with the judgement definitionally equal to
ΓΣ; Γ ` J . So let us consider one such derivation tree, its translation and the definitionally
equal conclusion ΓΣ; ∆ ` J ′ (` ΓΣ;<> is already derivable in Π[CΣ];0K so by inspecting
the definition of the translation in [21, 33] we observe that ΓΣ will not be changed by the
translation). We have ` ΓΣ; Γ = ΓΣ; ∆ and ΓΣ; Γ ` J = J ′ are derivable in Π[CΣ];. From
Lemma 29 we know that in this case `Σ Γ = ∆ and Γ `Σ J = J ′ are derivable in ΠS,≤ so
the desired derivable judgement is simply ∆ `Σ J ′. J

Note that the previous theorem covers the well-behavedness of judgements derived under
a signature that is valid in Π0K

S,≤. We now prove further that any signature valid in ΠS,≤ is
definitionally equal to a signature valid in Π0K

S,≤, then because of signature replacement we
have that any judgement derivable in in ΠS,≤ is definitionally equal to a judgement derivable
in Π0K

S,≤.
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I Lemma 31. For any signature Σ valid in ΠS,≤ there exists Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′

in ΠS,≤

Proof. By induction on the length of Σ. We assume Σ = Σ0, c:K. By IH we have that
there exists Σ′0 valid in Π0K

S,≤ s.t. Σ0 = Σ′0. By repeatedly applying signature replacement to
`Σ0 K kind we have `Σ′0 K kind is derivable in ΠS,≤. By Theorem 30, we have that there
exists K ′ s.t. `Σ′0 K

′ kind is derivable in Π0K
S,≤ with `Σ′0 K = K ′. That means we can derive,

in Π0K
S,≤, Σ′0, c:K ′ valid. Going back with context replacement we also have `Σ0 K = K ′

derivable, so Σ′0, c:K ′ is the signature we are looking for. J

We finish this section with the following theorem:

I Theorem 32. If a valid signature Σ in ΠS,≤ is coherent the following hold:
1. If `Σ Γ is derivable in ΠS,≤ then there exists Σ′,Γ′ s.t. `Σ′ Γ′ is derivable in Π0K

S,≤ and
Σ = Σ′ and `Σ Γ = Γ′ are derivable in ΠS,≤.

2. If Γ `Σ J is derivable in ΠS,≤ then there exists Σ′,Γ′, J ′ s.t. Γ′ `Σ′ J
′ is derivable in

Π0K
S,≤ and Σ = Σ′, `Σ Γ = Γ′ and Γ `Σ J = J ′ are derivable in ΠS,≤.

Proof. According to the Lemma 31 there exist Σ′ valid in Π0K
S,≤ s.t. Σ = Σ′. If we consider

the last point, by signature replacement Γ `Σ′ J is derivable ΠS,≤. Because Σ′ valid in
Π0K
S,≤, we can apply the Lemma 30 to obtain Γ′ `Σ′ J

′ s.t. `Σ′ Γ = Γ′ and Γ `Σ′ J = J ′ are
derivable in ΠS,≤. Again by signature replacement `Σ Γ = Γ′ and Γ `Σ J = J ′. J

Further, according to the lemma 16, the derivability of any nonsubtyping judgement in
Π0K
S,≤ is equivalent to the derivability of a judgement in ΠS and any subtyping judgement in

Π0K
S,≤ implies a judgement in ΠS .

3 Embedding Subsumptive Subtyping

In this section, we consider how to embed subsumptive subtyping into coercive subtyping.
To this end, we consider a subtyping system which is a reformulation of the one studied by
[2] and show how it can be faithfully embedded into our system of coercive subtyping.

We consider a system analogous to ΠS with the difference that we leave out the signatures.
The types of judgements in this system are Γ valid, Γ  K kind, Γ  k:K, Γ  K = K ′ and
Γ  k = k′:K syntactically analogous to `<> Γ, Γ `<> K kind, Γ `<> k:K, Γ `<> K = K ′

respectively Γ `<> k = k′:K, baring rules analogous to the ones in the appendix and Figure 2.
Note that there will be no Signature Validity and Assumption rules as there are no signatures.
On top of these judgements we add Γ  A ≤ B type and Γ  K ≤ K ′ obtained with the rules
from Figure 7. Besides the ordinary variables in Π, we allow Γ to have subtyping variables
like α ≤ A. We name this extension Π≤.

Π≤ is the subsumptive subtyping system specified in LF that corresponds to the system
λP≤ in [2]. There are some subtle differences between Edinburgh LF (λP ) [12] and the
logical framework LF we use (eg, the η-rule holds for the latter but not the former), but they
are irrelevant to the point we are trying to show: the subsumptive subtyping system can be
faithfully embedded in the coercive subtyping system.

Once we introduced this system we will proceed by giving an interpretation of it in the
coercive subtyping system that we introduced in section 2, namely we will show that this
calculus can be faithfully embedded in the coercive subtyping one.

We mentioned that, in this system, an important thing to note is how placing subtyping
entries in contexts interferes with abstraction and hence dependent types, specifically, the
abstraction is not allowed at the lefthand side of subtyping entries. We will give a mapping
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General Subtyping Rules

Γ  K = K′

Γ  K ≤ K′
Γ  K ≤ K′ Γ  K′ ≤ K′′

Γ  K ≤ K′′
Γ  A = B:Type
Γ  A ≤ B:Type

Γ  A ≤ B:Type Γ  B ≤ C:Type
Γ  A ≤ C:Type

Subtyping in Contexts

Γ  A:Type α 6∈ FV (Γ)
Γ, α ≤ A valid

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′  α:Type

Γ, α ≤ A,Γ′ valid
Γ, α ≤ A,Γ′  α ≤ A:Type

Type Lifting and Subtyping

Γ  A ≤ B:Type
Γ  El(A) ≤ El(B)

Γ  k:K Γ  K ≤ K′

Γ  k:K′
Γ  k = k′:K Γ  K ≤ K′

Γ  k = k′:K′

Dependent Product

Γ  Π(A,B):Type Γ  Π(A′, B′):Type
Γ  A′ ≤ A:Type Γ, x:A′  B ≤ B′:Type

Γ  Π(A,B) ≤ Π(A′, B′):Type

Figure 7 Inference Rules for Π≤.

that sends the contexts with subtyping entries in the subsumptive system to signatures in
the coercive system, prove that these signatures are coherent, and, finally, that we can embed
the subsumptive subtyping system into the coercive subtyping system via this mapping.
We are motivated, on the one hand by giving a coercive subtyping system in which we
can represent this subsumptive system and at the same time allowing abstraction happen
freely and on the other hand by the fact that we could not employ coercive subtyping in
context as we could make coherent contexts incoherent with substitution. For example
if α1 ≤c1 A,α2 ≤c2 A,Γ is a coherent context (i.e. under this context any two coercions
between the same types are equal), by substitution we can obtain the incoherent context
α ≤c1 A,α ≤c2 A, [α1/α][α2/α]Γ.

We will assume that ∆ is an arbitrary context in Π≤. We can also assume without loss of
generality that ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤ An,∆n+1, where {αi ≤ Ai}i=1,n are all of the
subtyping entries of ∆. If ∆n+1 is free of subtyping entries we can abstract over its entries
freely but the abstraction is obstructed by αn ≤ An for the entire prefix. We move this
prefix, together with the obstructing entry to the signature using constant coercions Σ∆ =
∆1, α1:Type, c1:(α1)A1, α1 ≤c1 A1:Type, ...,∆n, αn:Type, cn:(αn)An, αn ≤cn

An:Type. We
map the left ∆n+1 to a context. This way we translate ∆ ≡ ∆1, α1 ≤ A1, ...,∆n, αn ≤
An,∆n+1 ` J in Π≤ to ∆n+1 `Σ∆ J in ΠS,≤, with Σ∆ as above. In the rest of the section
we shall prove that mapping subsumptive subtyping entries in context to constant coercions
in signature is indeed adequate. For this, we first prove that such a signature is coherent.

I Lemma 33. For any valid context ∆ in Π≤, Σ∆ is coherent w.r.t. ΠS,≤.

Proof. We need to show that, in ΠS,≤, if we have Γ `Σ∆ T1 ≤c T2 and Γ `Σ∆ T1 ≤c′ T2,
then c = c′:(T1)T2. There are two cases:
1. T1 ≡ α is a constant. By the validity of ∆, we have that, if αi ≤ Ai and αj ≤ Ai are two

different subtyping entries in ∆, then αi 6= αj , therefore, if αi ≤ci
Ai and αj ≤cj

Ai are
two different coercions in Σ∆, then necessarily, αi 6= αj .
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2. T1 ≡ Π(A,B) and T2 ≡ Π(A′′, B′′). In this case the non trivial situation is:

Γ `Σ Π(A,B) ≤c1 C Γ `Σ C ≤c2 Π(A′′, B′′)
Γ `Σ Π(A,B) ≤c2◦c1 Π(A′′, B′′)

and C is equal to dependent product too. What we need to show is that applying
dependent product rule followed by transitivity leads to the same coercion as applying
transitivity first and then the dependent product rule. Namely that, for some A′, B′ s.t.

Γ `Σ∆ A′′ ≤c2 A′ ≤c1 A Γ `Σ∆ B ≤d1 B
′ ≤d2 B

′′

Γ `Σ∆ Π(A,B) ≤e1 Π(A′, B′) ≤e2 Π(A′′, B′′)

where, for F :A −→ B and G:Π(A′, B′), e1(F ) = λ[x′:A′]d1(app(F, c1(x′))) and e2(G) =
λ[x′′:A′′]d2(app(G, c2(x′′))) applying transitivity rule, first to A, A′, A′′ and to B, B′,
B′′ and then to Π(A,B), Π(A′, B′), Π(A′′, B′′) results in the same coercion, that is:

e2 ◦ e1 = e2(e1(F ))
= λ[x′′:A′′]d2(app(e1(F ), c2(x′′)))
=β λ[x′′:A′′]d2(d1(app(F, c1(c2(x′′)))))
= d2 ◦ d1(app(F, c1(c2(x′′)))) J

Notation. If Γ `Σ k:K and Γ `Σ K ≤c K ′ are derivable in ΠS,≤, we write Γ `Σ k :: K ′.
In what follows we essentially prove that we can represent the previously introduced

subsumptive subtyping system in our system with coercive subtyping in signatures, meaning
that we can argue about the former system with the sematic richness of the latter.

I Theorem 34 (Embedding Subsumptive Subtyping). Let ∆ and Γ be valid contexts in Π≤,
such that Γ does not contain any subtyping entries. Then we have:
1. If ∆,Γ is valid in Π≤ then `Σ∆ Γ valid in ΠS,≤.
2. If ∆,Γ  K kind, then Γ `Σ∆ K kind in ΠS,≤.
3. If ∆,Γ  K = K ′, then Γ `Σ∆ K = K ′ in ΠS,≤.
4. If ∆,Γ  k:K, then Γ `Σ∆ k::K in ΠS,≤.
5. If ∆,Γ  k = k′:K, then Γ `Σ∆ k = k′::K in ΠS,≤.
6. If ∆,Γ  A ≤ B:Type then Γ `Σ∆ A ≤c B:Type for some coercion c:(A)B in ΠS,≤.
7. If ∆,Γ  K ≤ K ′, then Γ `Σ∆ K ≤c K ′ for some c:(K)K ′ in ΠS,≤.

Proof. The proof proceeds by induction on derivations for all the points of the theorem and
we only exhibit it for the sixth point here and in particular when the last rule in the derivation
tree is the one for the dependent product. We have by IH that, for Γ `Σ∆ Π(A,B)::Type
and Γ `Σ∆ Π(A′, B′)::Type we have Γ `Σ∆ A′ ≤c A:Type and Γ, x:A′ `Σ∆ B ≤c′ B′:Type.
Note that, if K ≤c Type, then K ≡ Type, so Γ `Σ∆ Π(A,B)::Type is equivalent to Γ `Σ∆

Π(A,B):Type, and Γ `Σ∆ Π(A′, B′)::Type with Γ `Σ∆ Π(A′, B′):Type, hence we can directly
apply the rule for dependent product in ΠS,≤ to obtain Γ `Σ∆ Π(A,B) ≤d Π(A′, B′):Type
where, for F :Π(A,B), d(F ) = λ[x:A′]c′(app(F, c(x))). J

4 Intuitive Notions of Subtyping as Coercion

In this section, we consider two case studies of how intuitive notions of subtyping may be
considered in the framework of coercive subtyping. The first is about type universes in
type theory and the second is about how injectivity of coercions may play a crucial role in
modelling intuitive notions of subtyping.
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4.1 Subtyping between Type Universes
A universe is a type of types. One may consider a sequence of universes indexed by natural
numbers U0 : U1 : U2 : ... and U0 ≤ U1 ≤ U2 ≤ ...

Martin Löf [23] introduced two styles of universes in type theory: the Tarski-style and
the Russell-style. The Tarski-style universes are semantically more fundamental but the
Russell-style universes are easier to use in practice. In fact, the Russell-style universes are
a special case of subsumptive subtyping, which is incompatible with the idea of canonical
objects. As observed by the second author in [18], the two styles of universes are not
equivalent and the Russell-style universes can be emulated by Tarski-style universes with
coercive subtyping and this allows one to reason about Russell universes with the semantic
richness of Tarski universes, but without the overhead of their syntax.

Problem with Russell-style Universes. We extend the subsumptive subtyping system Π≤
with Russell-style universes by adding the following rules (i ∈ ω):

Γ valid

Γ  Ui : Type
Γ  A : Ui

Γ  A : Type
Γ valid

Γ  Ui : Ui+1

Γ valid

Γ  Ui ≤ Ui+1

and the rules for the Π-types:

Γ  A : Ui Γ  B : (A)Ui
Γ  Π(A,B) : Ui

Unfortunately, as mentioned in the introduction, this straightforward formulation of universes
does not satisfy the properties of canonicity or subject reduction if one adopts the standard
notation of terms with full type information. For instance, the term λX:U1.Nat, where
Nat : U0, would be represented as λ(U1, [_:U1]U0, [_:U1]Nat), but this term, which is of
type U0 → U0 (by subsumption, since U1 → U0 ≤ U0 → U0 by contravariance), is not
definitionally equal to any canonical term which is of the form λ(U0, ...). As explained in the
introduction, if one used terms with less type information (eg, pairs (a, b), as in HoTT [32],
rather than pair(A,B, a, b), there would be incompatible types of the same term and that
would cause problems in type-checking.

Tarski-style Universes with Coercive Subtyping. The Tarski-style universes are introduced
into ΠS,≤ by adding the following rules (i ∈ ω):

`Σ Γ
Γ `Σ Ui : Type

Γ `Σ a : Ui
Γ `Σ Ti(a) : Type

`Σ Γ
Γ `Σ ti+1 : (Ui)Ui+1

where ti+1 are the lifting operators,

`Σ Γ
Γ `Σ ui : Ui+1

`Σ Γ
Γ `Σ Ti+1(ui) = Ui : Type

where ui is the name of Ui in Ui+1, together with the following rule for the names of Π-types:

Γ `Σ a : Ui Γ, x : Ti(a) `Σ b(x) : Ui
Γ `Σ πi(a, b) : Ui

The following equations also need to be satisfied:
Ti+1(ti+1(a)) = Ti(a):Type
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Γ `Σ Ti(πi(a, b)) = Π(Ti(a), [x:Ti(a)]Ti(b(x))) : Type
Γ `Σ ti+1(πi(a, b)) = πi+1(ti+1(a), [x:Ti(a)]ti+1(b(x))) : Ui+1
Furthermore, crucially, the lifting operators ti+1 are now declared as coercions by asking that
all the signatures start with the prefix Σi ≡ U0 ≤t0 U1, ..., Ui−1 ≤ti Ui where i is bigger
than the largest universe index that is used in an application.

Use of Coercion-based Tarski-style Universes. If universes are specified in the Tarski-style
as above with the lifting operators declared as coercions, together with several notational
conventions (eg, Ti is omitted, ui is identified with Ui, etc.), they can now be used easily
in Russell-style. The lifting operators are not seen (implicit) by the users. In particular,
in this setting, all the Russell-style universe rules become derivable. Theorem 34 can now
be extended in such a way that the Russell-style universes are faithfully emulated by the
Tarski-style universes with coercive subtyping.

4.2 Injectivity and Constructor Subtyping
In subsumptive subtyping, A ≤ B means that A is directly embedded in B. Intuitively, this
may imply that, for a and a′ in A, if the images of them are not equal in B, then they are
not equal in A, either. If we consider coercive subtyping A ≤c B, this would imply that c is
injective in the sense that c(a) = c(a′) implies that a = a′. In this section, we shall formally
discuss this issue in the context of representing intuitive subtyping notions by means of
coercions.

We shall consider constructor subtyping, studied by [4], in which an (inductive) type is
considered to be a subtype of another if the latter has more constructors than the former.
More precisely we shall discuss the example they start from, namely Even Numbers(Even)
being a subtype of Natural Numbers (Nat) with the argument that the constructors of
Even are 0 and successor of Odd, where Odd is given by the constructor successor of Even.
Then, in Nat the successor constructor is overloaded to a lifting of these constructors as well.
Formally they write:

datatype Odd = S of Even and Even = 0
|S of Odd

datatype Nat = 0
|S of Nat
|S of Odd
|S of Even

The phenomenon we want to discuss here is injectivity, in particular the one related
to Leibnitz equality. Leibnitz equality is defined as follows: x = y if for any predicate P ,
P (x)⇐⇒ P (y). We denote by x =A y for some type A the Leibnitz equality between x and
y related to a certain domain. Then, we have injectivity of subtyping if, given x =Nat y, with
x, y:Even it is the case that x =Even y. Namely, whether for any predicate Q:Even −→ Prop,
it is the case that Q(x) ⇐⇒ Q(y). For this it is enough to show that any predicate
Q:Even −→ Prop admits a lifting Q′:Nat −→ Prop s.t. for any x:Even,Q′(x) =⇒ Q(x).
We can easily define such a Q′ as follows:

Q’(x) = Q(0) if x = 0
Q(S(n)) if x = S of n:Odd
true if x = S of n:Even
true if x = S of n:Nat
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Injectivity of the embedding holds here but it is not granted in coercive subtyping. For
functions f :(x:A)B we denote injective(f) = ∀x, y:A.f(x) =B f(y) −→ x =A y. A function
f is then injective if ∃p:injective(f).

I Definition 35. We say a coercion `Σ0,A≤cB,Σ1 A ≤c B is injective with respect to =B

if there exist p s.t. `Σ p:injective(c) is derivable.

For a constant coercions (namely of the form `Σ0,c:(A)B,Σ1,A≤cB,Σ2,Σ3 A ≤c B) we can add
the assumption that they are injective `Σ0,c:(A)B,Σ1,A≤cB,Σ2,p:injective(c),Σ3 A ≤c B. If we
embed a subsumptive subtyping that propagates an equality from a type throughout its
subtypes, we represent it as a constant coercion, thus, all we need to do is add the assumption
that a coercion is injective. It is obvious that the transitivity and congruence preserve the
injectivity property.

An example of noninjective coercions is if we think of Nat and Even as follows

Inductive Nat : Type :=
| O : Nat
| S : Nat -> Nat.

Inductive even : Nat -> Prop :=
| O1 : even O
| O2 : even O
| S1 : forall n1 , even n1 -> even (S (S n1 )).

Inductive Even := pair{n:Nat; e:even n}. Definition proj1(ev:Even) :=
match

ev with pair n e => n
end.

Coercion proj1 : Even >-> Nat.

Note that the definition of Even changed and we refer to it as a feature of the natural
numbers rather than as a subset. In order for a natural number to be even we require a
proof of that.

The reason this coercion is not injective is that we can have two different proofs that 4
is even p1, p2:even4, and hence, two different pairs (4, p1), (4, p2):Even, both of them being
mapped to the same 4:Nat. Enforcing injectivity here is similar to enforcing proof irrelevance.

5 Conclusion and Future Work

In this paper, we have developed a new calculus of coercive subtyping and shown that
subsumptive subtyping can be faithfully embedded or represented in the calculus. The idea
of representing coercive subtyping relations in signatures has achieved a balance between
obtaining a powerful (and practical) calculus to capture intuitive notions of subtyping and
keeping the resulting calculus simple enough for meta-theoretic studies.

We intend to extend the calculus to a richer type theory like Martin-Löf’s type theory or
UTT where you have rich inductive types. We do not see any difficulty in doing so, but of
course, studies are needed to confirm this.

Specifying subtyping relations in signatures has changed the nature of ’basic subtyping
relations’ as studied in the earlier setting of coercive subtyping. The earlier setting allows
parameterised coercions such as n:Nat ` V ect(Nat, n) ≤c(n) List(Nat), which instantiates,
in particular, to ` V ect(Nat, 3) ≤c(3) List(Nat). Note that here we don’t use parameterised
in the sense of Coq Proof Assistant. This new system does not cover this kind of coercions
at this point. It would be interesting to study a new mechanism to introduce parameterised
coercions by means of entries in signatures.
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A Rules of Π[C];

The rules of Π[C]; consists of those in Figures 8, Figure 9, Figure 10, Figure 11 and Figure 12.

Validity of Signature/Contexts, Assumptions

` 〈〉
Σ;<>` K kind c 6∈ dom(Σ)

` Σ, c:K
` Σ, c:K,Σ′; Γ

Σ, c:K,Σ′; Γ ` c:K

` Σ
` Σ; 〈〉

Σ; Γ ` K kind x 6∈ dom(Σ) ∪ dom(Γ)
` Σ; Γ, x:K

` Σ; Γ, x:K,Γ′

Σ; Γ, x:K,Γ′ ` x:K
Weakening

Σ,Σ′; Γ ` J Σ;<>` K kind c 6∈ dom(Σ,Σ′)
Σ, c:K, Σ′; Γ ` J

Σ; Γ,Γ′ ` J Σ; Γ ` K kind x 6∈ dom(Γ,Γ′)
Σ; Γ, x:K,Γ′ ` J

Equality Rules

Σ; Γ ` K kind

Σ; Γ ` K = K

Σ; Γ ` K = K′

Σ; Γ ` K′ = K

Σ; Γ ` K = K′ Σ; Γ ` K′ = K′′

Σ; Γ ` K = K′′

Σ; Γ ` k:K
Σ; Γ ` k = k:K

Σ; Γ ` k = k′:K
Σ; Γ ` k′ = k:K

Σ; Γ ` k = k′:K Σ; Γ ` k′ = k′′:K
Σ; Γ ` k = k′′:K

Σ; Γ ` k:K Σ; Γ ` K = K′

Σ; Γ ` k:K′
Σ; Γ ` k = k′:K Σ; Γ ` K = K′

Σ; Γ ` k = k′:K′

Context Replacement

Σ0, c:L,Σ1; Γ ` J Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` J
Σ; Γ0, x:K,Γ1 ` J Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` J

Substitution Rules

` Σ; Γ0, x:K,Γ1 Σ; Γ0 ` k:K
` Σ; Γ0, [k/x]Γ1

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ kind

Σ; Γ0, x:K,Γ1 ` L = L′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]L = [k/x]L′

Σ; Γ0, x:K,Γ1 ` k′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]k′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` l = l′:K′ Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k/x]l′:[k/x]K′

Σ; Γ0, x:K,Γ1 ` K′ kind Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K′ = [k′/x]K′

Σ; Γ0, x:K,Γ1 ` l:K′ Σ; Γ0 ` k = k′:K
Σ; Γ0, [k/x]Γ1 ` [k/x]l = [k′/x]l:[k/x]K′

Dependent Product Kinds

Σ; Γ ` K kind Σ; Γ, x:K ` K′ kind
Σ; Γ ` (x:K)K′ kind

Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` K′1 = K′2
Σ; Γ ` (x:K1)K′1 = (x:K2)K′2

Σ; Γ, x:K ` y:K′

Σ; Γ ` [x:K]y:(x:K)K′
Σ; Γ ` K1 = K2 Σ; Γ, x:K1 ` k1 = k2:K

Σ; Γ ` [x:K1]k1 = [x:K2]k2:(x:K1)K
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k:K

Σ; Γ ` f(k):[k/x]K′
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k1 = k2:K

Σ; Γ ` f(k1) = f ′(k2):[k1/x]K′

Σ; Γ, x:K ` k′:K′ Σ; Γ ` k:K
Σ; Γ ` ([x:K]k′)(k) = [k/x]k′:[k/x]K′

Σ; Γ ` f :(x:K)K′ x 6∈ FV (f)
Σ; Γ ` [x:K]f(x) = f :(x:K)K′

The kind Type

` Σ; Γ
Σ; Γ ` Type kind

Σ; Γ ` A:Type
Σ; Γ ` El(A) kind

Σ; Γ ` A = B:Type
Σ; Γ ` El(A) = El(B)

Figure 8 Inference Rules for LF ;.
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Σ; Γ ` A : Type Σ; Γ, x:A ` B(x) : Type
Σ; Γ ` Π(A,B) : Type

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type Σ; Γ ` f : (x:A)B(x)
Σ; Γ ` λ(A,B, f) : Π(A,B)

Σ; Γ ` g : Π(A,B) Σ; Γ ` a : A
Σ; Γ ` app(A,B, g, a) : B(a)

Σ; Γ ` A : Type Σ; Γ ` B : (A)Type
Σ; Γ ` f : (x:A)B(x) Σ; Γ ` a : A

Σ; Γ ` app(A,B, λ(A,B, f), a) = f(a) : B(a)

Figure 9 Inference Rules for Π;.

Subtyping Rules

Σ; Γ ` A ≤c B ∈ C
Σ; Γ ` A ≤c B

Congruence

Σ; Γ ` A ≤c B : Type Σ; Γ ` A = A′ : Type Σ; Γ ` B = B′ : Type Σ; Γ ` c = c′ : (A)B
Σ; Γ ` A′ ≤c′ B′ : Type

Transitivity

Σ; Γ ` A ≤c A′ : Type Σ; Γ ` A′ ≤c′ A′′ : Type
Σ; Γ ` A ≤c′◦c A′′ : Type

Weakening

Σ,Σ′; Γ ` A ≤d B : Type Σ ` K kind

Σ, c:K, Σ′; Γ ` A ≤d B : Type
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` A ≤d B : Type Σ; Γ ` K kind

Σ; Γ, x:K,Γ′ ` A ≤d B : Type
(x 6∈ dom(Γ,Γ′))

Context Replacement

Σ0, c:L,Σ1; Γ ` A ≤c B Σ0 ` L = L′

Σ0, c:L′,Σ1; Γ ` A ≤c B
Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` A ≤c B

Substitution

Σ; Γ0, x:K,Γ1 ` A ≤c B Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]A ≤[k/x]c [k/x]B

Identity Coercion

Σ; Γ ` A:Type
Σ; Γ ` A ≤[x:A]x A:Type

Dependent Product

Σ; Γ ` A′ ≤c1 A : Type Σ; Γ ` B,B′ : (A)Type Σ; Γ, x:A ` B(x) ≤c2[x] B
′(x) : Type

Σ; Γ ` Π(A,B) ≤[F :Π(A,B)]λ(A′,B′◦c1,[x:A′]c2[x](app(A,B,F,c1(x)))) Π(A′, B′ ◦ c1) : Type

Figure 10 Inference Rules for Π[C];0K (1).
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Basic Subkinding Rule and Identity

Σ; Γ ` A ≤c B:Type
Σ; Γ ` El(A) ≤c El(B)

Σ; Γ ` K kind

Σ; Γ ` K ≤[x:K]x K

Structural Subkinding Rules

Σ; Γ ` K1 ≤c K2 Σ; Γ ` K1 = K′1 Σ; Γ ` K2 = K′2 Σ; Γ ` c = c′:(K1)K2

Σ; Γ ` K′1 ≤c′ K′2

Σ; Γ ` K ≤c K′ Σ; Γ ` K′ ≤c′ K′′

Σ; Γ ` K ≤c′◦c K′′

Σ,Σ′; Γ ` K ≤d K′ Σ;<>` K0 kind

Σ, c:K0,Σ′; Γ ` K ≤d K′
(c 6∈ dom(Σ,Σ′))

Σ; Γ,Γ′ ` K ≤d K′ Σ; Γ ` K0 kind

Σ; Γ, x:K0,Γ′ ` K ≤d K′
(x 6∈ dom(Γ,Γ′))

Σ0, c:L,Σ1; Γ ` K ≤d K′ Σ0;<>` L = L′

Σ0, c:L′,Σ1; Γ ` K ≤d K′
Σ; Γ0, x:K,Γ1 ` L ≤d L′ Σ; Γ0 ` K = K′

Σ; Γ0, x:K′,Γ1 ` L ≤d L′

Σ; Γ0, x:K,Γ1 ` K1 ≤c K2 Σ; Γ0 ` k:K
Σ; Γ0, [k/x]Γ1 ` [k/x]K1 ≤[k/x]c [k/x]K2

Subkinding for Dependent Product Kind

Σ; Γ ` K′1 ≤c1 K1 Σ; Γ, x:K1 ` K2 kind Σ; Γ, x′:K′1 ` K′2 kind Σ; Γ, x:K1 ` [c1(x′)/x]K2 ≤c2 K
′
2

Σ; Γ ` (x:K1)K2 ≤[f :(x:K1)K2][x′:K′1]c2(f(c1(x′))) (x:K′1)K′2

Figure 11 Inference Rules for Π[C];0K (2).

Coercive Application

(CA1)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0):[c(k0)/x]K′

(CA2)
Σ; Γ ` f = f ′:(x:K)K′ Σ; Γ ` k0 = k′0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f ′(k′0):[c(k0)/x]K′

Coercive Definition

(CD)
Σ; Γ ` f :(x:K)K′ Σ; Γ ` k0:K0 Σ; Γ ` K0 ≤c K

Σ; Γ ` f(k0) = f(c(k0)):[c(k0)/x]K′

Figure 12 The coercive application and definition rules in Π[C];.
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Abstract
In this paper, we present a probabilistic analysis of Boolean games. We consider the class of
Boolean games where payoff functions are given by random Boolean formulas. This permits
to study certain properties of this class in its totality, such as the probability of existence of a
winning strategy, including its asymptotic behaviour. With the help of the Coq proof assistant,
we develop a Coq library of Boolean games, to provide a formal proof of our results, and a basis
for further developments.
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parameters are not fully controlled. The augmented frequency of interaction that usually
surpasses any conceivable capacity of human players, and rapid evolution of parameters of
interaction makes the use of probabilistic methods quite natural.

In this paper we present the first results obtained via this approach applied to Boolean
Games [11, 10, 7, 3]. More precisely, we limit our study to Boolean Games with random
formulas that represent payoff functions. This model is naturally related to the situation
when games between automated systems (e.g., embedded systems in computer networks) are
considered. Indeed, assuming that the players are finite non-deterministic machines, they
can be simulated by a family of Boolean formulas.

Before the exploration may start, several choices have to be made concerning the probab-
ilistic model.

Regarding elementary events: we have chosen Boolean functions as elementary events.
Another possible choice would be to consider formulas as syntactic objects, but the former
choice makes it easier to define probability distributions that are naturally related to the
properties on the associated Boolean games (while the latter choice would require to cope
with the complex behaviour of the logical equivalence of formulas).

It seems natural also to consider a probability space for each n, where n is the number of
variables. Indeed, n is one of the key parameters involved when considering the complexity
of Boolean functions, and if we shall need to consider different values of n, it is possible to
combine in some way the spaces built for each n.

Let us recall some basic properties of Boolean functions.
(i) The domain of these functions is 2n = {false, true}n, the set of all Boolean vectors of

length n (which contains 2n elements).
(ii) Each Boolean function can be identified with a characteristic function of a subset

of 2n and thus with the subset itself, so the set of all elementary events is Ω = 22n

.

(iii) A subset of 2n may be identified with a formula of n variables in the full disjunctive
normal form2 that is satisfied by exactly these vectors (to each vector corresponds the
conjunction of variables and their negations: to true at the i-th place corresponds vi and to
false corresponds ¬vi).

(iv) The set Ω is a complete Boolean algebra, and logical operators on elements of Ω
correspond to the set-theoretic operators on 2n. The top element of this algebra is the set
2n ∈ Ω (it represents the Boolean function true) and the bottom element of this algebra is
the set ∅ ∈ Ω (it represents the Boolean function false). How these logical operators “interact”
with probability on Ω is a separate question, for example, P(true) needs not of course be
equal to 1.

(v) There is a natural partial order on the elements of Ω, that is defined by the inclusion
of subsets of 2n and at the same time by Boolean implication (see Definition 1 below).

Since the elements of Ω may be seen at the same time as Boolean functions and as sets
of Boolean vectors, we pose the following definition:

I Definition 1. Let ω1, ω2 be two Boolean functions (ω1, ω2 ∈ Ω := 22n). We shall write
ω1 ⇒0 ω2 and say that “ω2 is true on ω1” if for each vector v ∈ 2n, ω1(v) = true implies
ω2(v) = true. Also, this is equivalent to the inclusion of ω1 in ω2, seen as subsets of 2n:

∀ω1, ω2 ∈ 22n

. (ω1 ⇒0 ω2) ⇐⇒ (ω1 ⊆ ω2) .

2 In particular, the empty subset may be identified with the empty DNF, that is the constant false (the
neutral element of the disjunction).
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I Remark. We may see random Boolean functions as (not necessarily independent) vectors
of 2n random variables with values in 2 = {false, true}.

Regarding the sigma-algebra of events: as usual for finite probability spaces, we consider
the sigma-algebra S of all subsets of Ω:

S = 222n

.

Regarding the probability distributions on the spaces of Boolean formulas: as it is noticed
in [8], it is often assumed that all Boolean functions on a given number of variables have
the same probability (see also [16]). In this paper where we start our study, we decided to
consider a slightly more general class of probability distributions, where Boolean functions
are generated by a Bernoulli scheme on Boolean vectors, with any probability p as parameter.
Some more sophisticated ways to define probability distributions on Boolean expressions are
discussed in [8] and we plan to explore them in a near future.

In Section 2, we prove several general results on the probability of winning strategies
assuming an arbitrary probability distribution. Then in Section 3, we study the case of
Boolean functions constructed through a finite Bernoulli process, specialise our results in this
simpler setting, then discuss the relevance of these results. In Section 4, we further study
the probability that a winning strategy exists for player A, with the new assumption that
player A knows s bits of the opponent player. Then in Section 5, we study the growth rate of
the aforementioned probability, with respect to the knowledge of the second player’s choices.
Section 6 is devoted to technical remarks about the formalisation of our results within the
Coq [5] formal proof assistant. Finally, a discussion on the notion of “non-guaranteed win”
and its relationship with the order of moves is presented in Appendix A.

All the results of the paper have been formally verified within Coq.3
The Coq code is available online at https://github.com/erikmd/coq-bool-games and

it also has been archived, see [14].
Beyond the fact that formal certification is interesting in itself to the types community, it

is nowadays common in the development and characterisation of the behaviour of autonomous
programs, which is one of the subjects of this study.

2 Probability of Winning Strategies

Building upon the material of the previous section, we can consider any probability P defined
on the sigma-algebra S = 222n

, and thus obtain a probability space (Ω,S,P). We shall show
in this section that several results can be derived in this setting, however general as it may
sound.

I Example 2 (using Definition 1). The probability of the event “ω is true on ω0”, with fixed
ω0 ∈ Ω, is

P(ω0 ⇒0 ω) =
∑

ω
ω0⇒0ω

P({ω}).

Below we shall consider the Boolean Games of two players A and B with a random
Boolean function F of n variables as the payoff function of A, and its negation as the payoff

3 In the sequel of the paper, all definitions and theorems will be stated in mathematical syntax, and the
corresponding Coq identifier will be given between brackets.
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function for B. We shall assume that A controls the first k variables, and B the remaining
n− k variables.

The strategy of A is any vector that belongs to 2k (valuation of the first k variables) and
the strategy of B any valuation of the remaining n− k variables (a vector of 2n−k).

The outcome of the game is given by player A’s payoff function F : 2n → 2, which can
thereby be viewed as a function F : 2k × 2n−k → 2 (mapping a profile strategy to a Boolean
outcome). In the sequel of the paper, we shall identify these two possible types for the
function F – while in the formal development they will be encoded respectively as (bool_fun
n) and (bool_game n k).

I Definition 3 (winA). For any game F : 2k × 2n−k → 2, a strategy a = (a1, . . . , ak) of
player A is winning if it wins against any strategy b ∈ 2n−k of B:

winA[F ](a) := ∀b ∈ 2n−k. F (a, b) = true.

If there is no ambiguity, we shall omit the name of the game and simply write winA(a).

In other words, a is winning if the payoff function is equal to true on all vectors of length
n that “extend” a. This led us to introduce the following

I Definition 4 (w_, W_). For any a ∈ 2k, let ωa be the set of vectors in 2n that extend a:

ωa := {v ∈ 2n | v1 = a1 ∧ · · · ∧ vk = ak} ∈ Ω

and Wa be the set of all Boolean functions that are true on ωa:

Wa := {ω ∈ Ω | ωa ⇒0 ω} ∈ S.

These definitions straightforwardly imply the following lemma:

I Lemma 5 (winA_eq). For any Boolean function F : 2n → 2 and any strategy a ∈ 2k of
player A in the associated Boolean game, we have:

winA(a) ⇐⇒ F ∈Wa.

Lemma 5 implies that the probability that a winning strategy exists satisfies:

P(∃a : 2k.winA(a)) = P

 ⋃
a∈2k

Wa

 . (1)

Then we shall rely on the inclusion-exclusion formula, which we proved in full generality
as follows:

I Theorem 6 (Pr_bigcup_incl_excl). For any finite probability space (Ω,S,P) and any
sequence of events (Si)0≤i<n, we have:

P

 ⋃
0≤i<n

Si

 =
n∑

m=1
(−1)m−1

∑
J⊆N∩[0,n)
Card J=m

P

⋂
j∈J

Sj

 . (2)

Proof. For proving this theorem in Coq we formalise a small theory of indicator functions
IndS : Ω→ {0, 1} for any finite set S ⊆ Ω, including the fact that the expectation satisfies
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E(IndS) = P(S), then formalise an algebraic proof of the inclusion-exclusion formula.4
These proofs strongly rely on the bigop theory of the MathComp library, as well as on the
tactic “under” that we developed in Ltac to easily “rewrite under lambdas” (e.g., under the∑

symbol). These tactics facilities will be further detailed in Section 6. J

Hence the following result:

I Theorem 7 (Pr_ex_winA). For any finite probability space (Ω,S,P), the probability that
there exists some strategy a = (a1, . . . , ak) of A that is winning satisfies:

P(∃a : 2k.winA(a)) =
∑

a∈2k

P(Wa)−
∑

a,a′∈2k

a6=a′

P(Wa ∩Wa′) + · · ·

=
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

P

(⋂
a∈J

Wa

)
.

Proof. The result follows from (1) and (2), after reindexing all big-operators
⋃
,
∑

,
⋂

by
natural numbers instead of Boolean vectors a ∈ 2k, or conversely. J

Theorem 7 is applicable with any probability P , but it is not easy to handle. In the
upcoming section, we shall investigate in more detail the case when P is relatively simple.

Before refining Theorem 7 with specific definitions of P, we formally study the dual case
(i.e., the existence of a winning strategy from the point of view of player B).

I Definition 8 (winB). For any game F : 2k × 2n−k → 2, a strategy b = (b1, . . . , bn−k) of
player B is winning if it wins against any strategy a ∈ 2k of A:

winB [F ](b) := ∀a ∈ 2k. F (a, b) = false.

If there is no ambiguity, we shall omit the name of the game and simply write winB(b).

A first result consists in showing that player B wins in a given game if and only if player
A wins in the “dual game”.

I Lemma 9 (winB_eq). Any Boolean game F : 2k × 2n−k → 2 (with n variables, k of which
are controlled by player A) can be associated with a dual Boolean game F ′ : 2n−k × 2k → 2
such that

winB [F ](b) ⇐⇒ winA[F ′](b)

Proof. First, we define the dual game F ′ := bool_game_sym(F ) associated with F as:

F ′ := (b, a) 7→ ¬F (a, b).

Then, we define bool_game_sym’ (the inverse of function bool_game_sym) and show that
both functions are bijections. In the formal development, the related lemmas are named
bool_game_sym_bij and bool_game_sym’_bij. J

We then deduce the following result, which relates the probability of existence of a winning
strategy for player B with respect to that of player A.

4 taking inspiration from the proof path presented at https://en.wikipedia.org/wiki/
Inclusion-exclusion_principle#Algebraic_proof
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I Theorem 10 (Pr_ex_winB). For any finite probability space (Ω,S,P), the probability that
there exists some strategy b = (b1, . . . , bn−k) of B that is winning satisfies:

P
(
∃b : 2n−k.winB [F ](b)

)
= P

(
∃a : 2n−k.winA[F ′](a)

)
,

where F ′ := bool_game_sym(F ).

Proof. The proof straightforwardly derives from Lemma 9. J

Finally, we prove the intuitive fact that the events “∃a.winA(a)” and “∃b.winB(b)” are
disjoint, and thereby their probability adds up:

I Lemma 11 (Pr_ex_winA_winB_disj). For any finite probability space (Ω,S,P), we have:

P (∃a.winA(a) ∨ ∃b.winB(b)) = P (∃a.winA(a)) + P (∃b.winB(b)) .

Proof. Given the definitions of winA and winB , for a given game F and any strategies a and
b, the events “winA(a)” and “winB(b)” are disjoint. So the proof path just amounts to lift
this fact (considering existence) and use the additivity of P. J

3 Bernoulli Process and Winning Strategies

In this section we still consider the space Ω = 22n of random Boolean formulas of n variables
endowed with the discrete σ-algebra S = 222n

, and the associated Boolean games with
parameter 0 ≤ k ≤ n. But now, we assume that the Boolean formulas (in DNF) are
determined by a random choice of the Boolean vectors that satisfy the formulas.

To be more precise, we assume the probability that each vector v ∈ 2n belongs to the
truth-set of the formula F is equal to p, (0 ≤ p ≤ 1). As usual, we write q = 1− p.

In the sequel, we shall often identify Boolean functions F : 2n → 2 and their truth-set
F−1 ({true}) ∈ 22n . In the Coq formalisation, the distinction between the two is always
made explicit, and the function that gives the truth-set of a Boolean function is implemented
by a function

finset_of_bool_fun : ∀ n : nat, bool_fun n -> {set bool_vec n}

and the inverse of this function is formalised as a function DNF_of (disjunctive normal form).
Our setup amounts to constructing a Bernoulli process, that is a series of independent

Bernoulli trials, to decide whether each vector v ∈ 2n belongs to the truth-set of F or not.
We obtain the following result:

I Lemma 12 (dist_BernoulliE). For any F ∈ Ω, the probability of an elementary event
{F} with respect to the considered probability Pn; p (modelling a series of 2n independent
Bernoulli trials of parameter p) is:

Pn; p({F}) = pm(1− p)2n−m

where m denotes the number of vectors in the truth-set of F , and 2n−m denotes the number
of vectors in the truth-set of the negation of F .

Proof. The proof (and its formal counterpart in Coq) straightforwardly derives from the
definitions. J
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For now, we assume that the choices of player A and B are done simultaneously. A wins
if the value of F is true, otherwise B wins. What is the probability that A has a winning
strategy?

First, suppose that the strategy a of A is fixed, and let us compute the probability that
it is winning. We first prove the following

I Lemma 13 (Pr_implies0_Bern). Let S ⊆ 2n, and let us write m := CardS. Then the
probability that F is true on S satisfies: Pn; p(S ⇒0 F ) = pm.

Proof. We follow the following proof path:

Pn; p(S ⇒0 F ) =
∑

F
S⊆F

Pn; p({F})

=
∑

S′⊆2n\S
F =S∪S′

Pn; p({F})

=
∑

S′⊆2n\S

pCard(S∪S′)q2n−Card(S∪S′) by Lemma 12

=
2n−m∑
m′=0

(
2n −m
m′

)
pm+m′q2n−m−m′

= pm
2n−m∑
m′=0

(
2n −m
m′

)
pm′q(2n−m)−m′

= pm(p+ q)2n−m

= pm. J

I Lemma 14 (card_w_a_Bern). For any strategy a of player A, we have

Cardwa = 2n−k.

Proof. This lemma easily follows from the fact that wa is the image of the strategy space
2n−k of B by an injective function. J

Hence the following theorem, which gives the probability that a fixed strategy of A is
winning:

I Theorem 15 (Pr_winA_Bern). For any strategy a of player A, we have

Pn; p(winA(a)) = p2n−k

.

Proof. This result is an immediate consequence of Lemmas 13 and 14. J

Now, let us determine what is the probability that A has at least one winning strategy.
One may first notice the following

I Lemma 16 (w_trivIset). The truth-sets of wa (for a ∈ J ⊂ 2k) are pairwise disjoint.

Proof. By contradiction: if we had a, a′ ∈ 2k such that wa 6= wa′ and wa ∩wa′ 6= ∅, then let
us pose x ∈ wa∩wa′ . By unfolding Definition 4, this means that the first k bits of x coincides
with all bits of a, and likewise for a′. This implies that a = a′ and thereby wa = wa′ , which
contradicts the initial hypothesis. J
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Lemma 16 implies that we have

Card
(⋃

a∈J

wa

)
=
∑
a∈J

Cardwa = Card J · 2n−k. (3)

We can now prove the following

I Theorem 17 (Pr_ex_winA_Bern). For any n and k, if Pn; p follows the Bernoulli scheme
that we previously constructed, the probability that player A has a winning strategy is:

Pn; p(∃a.winA(a)) = 1−
(

1− p2n−k
)2k

.

Proof. Thanks to Theorem 7, we can write:

Pn; p(∃a : 2k.winA(a)) =
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

Pn; p

(⋂
a∈J

Wa

)

=
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

Pn; p

(⋂
a∈J

[wa ⇒0 F ]
)

=
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

Pn; p

[(⋃
a∈J

wa

)
⇒0 F

]

=
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

p

(
Card

(⋃
a∈J

wa

))
by Lemma 13

=
2k∑

m=1
(−1)m−1

∑
J⊆2k

Card J=m

pm·2n−k

by using (3) and Lemma 14

=
2k∑

m=1
(−1)m−1

(
2k

m

)
pm·2n−k

= 1−
2k∑

m=0

(
2k

m

)
(−p2n−k

)m12k−m

= 1−
(

1− p2n−k
)2k

. J

By duality, one can derive the existence of a winning strategy for player B:

I Corollary 18 (Pr_ex_winB_Bern). For any p, n, k, if Pn; p denotes the considered Bernoulli
scheme (with parameters 0 ≤ p ≤ 1 and n ∈ N) and if k denotes the number of variables
controlled by player A, then the probability that player B has a winning strategy is:

Pn; p(∃b : 2n−k.winB(b)) = 1−
(

1− (1− p)2k
)2n−k

.

Proof. The result follows from Theorems 10 and 17. Also, the proof makes use of our under
tactic for rewriting under lambdas (it will be presented in Section 6). J
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Table 1 The probability that a winning strategy exists neither for A nor for B (n = 10).

p\k 1 2 3 4 5 6 7 8 9
0.25 1.52e-184 5.11e-43 1.37e-6 0.525 0.997 1 0.998 0.367 4.46e-15
0.5 1.07e-64 6.68e-8 0.606 0.999 1 0.999 0.606 6.68e-8 1.07e-64
0.75 4.46e-15 0.367 0.998 1 0.997 0.525 1.37e-6 5.11e-43 1.52e-184

Table 2 The probability that a winning strategy exists neither for A nor for B (n = 20).

p\k 1 2 3 4 5 6 7 8 9 10
0.25 1.27e-188231 2.04e-43307 2.15e-6005 1.99e-287 3.72e-2 1 1 1 1 1
0.5 1.32e-65504 2.74e-7348 1.61e-223 0.368 1 1 1 1 1 1
0.75 7.53e-14696 2.58e-446 0.135 1 1 1 1 1 1 1

p\k 11 12 13 14 15 16 17 18 19
0.25 1 1 1 1 1 1 0.135 2.58e-446 7.53e-14696
0.5 1 1 1 1 1 0.368 1.61e-223 2.74e-7348 1.32e-65504
0.75 1 1 1 1 3.72e-2 1.99e-287 2.15e-6005 2.04e-43307 1.27e-188231

I Corollary 19 (Pr_nex_winA_winB_Bern). For any p, n, k, if Pn; p denotes the considered
Bernoulli scheme (with parameters 0 ≤ p ≤ 1 and n ∈ N) and if k denotes the number of
variables controlled by player A, then the probability that no player has a winning strategy is:

Pn; p

(
¬
(

(∃a.winA(a)) ∨ (∃b.winB(b))
))

=
(

1− p2n−k
)2k

+
(

1− (1− p)2k
)2n−k

− 1. (4)

Proof. The result follows from Lemma 11, Theorem 17 and Corollary 18. J

3.1 Discussion
The computations above may seem elementary, but lead to some observations that are less
trivial. As we may see, there is a considerable probability that there is no winning strategy
at all. For example, if p ∈ { 1

4 ,
1
2 ,

3
4}, n ∈ {10, 20}, 0 < k < n, the probability that a winning

strategy exists neither for A nor for B (cf. Equation (4)) is given in Tables 1 and 2 (the
values were computed using Sollya5 with 3-digit decimal output). In both tables, it should
be noted that 1 actually means a value extremely close to 1, not 1 exactly.

Also, one may notice that when p ∈ (0, 1) is fixed, k = c ·n for a given constant 0 < c < 1,
and n tending towards +∞, the probability that a winning strategy exists neither for player
A, nor for player B, tends to 1.

If (for some game F ) a winning strategy exists neither for A nor for B, then the order
of moves becomes important. Indeed, let a be an arbitrary strategy of A. Since it is not
winning, there exists at least one b of B such that F (a, b) = false. If B makes his choice after
A, he may always win. Similarly, if A makes his choice after B, he may always win.

We shall elaborate on this observation and give a motivating example in Appendix A.
Bradfield, Gutierrez and Wooldridge notice [4] (as do some other authors): “As they

are conventionally formulated, Boolean games assume that players make their choices in
ignorance of the choices being made by other players – they are games of simultaneous moves.

5 http://sollya.gforge.inria.fr/
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For many settings, this is clearly unrealistic.” Our simple probabilistic analysis provides a
direct quantitative argument to support this general observation.

4 Partial Information on the Opponent’s Choices

Now, let us consider the case when A may have partial information about the choices
of B before making his own choice. Without loss of generality, we may assume that he
knows the values of the first s variables among the variables vk+1, ..., vn controlled by B.
We shall consider the probability of existence of strategies of A such that for every vector
b1:s = (b1, ..., bs) ∈ 2s there exists a strategy a ∈ 2k that wins against any strategy b ∈ 2n−k

where first s values coincide with b1:s.
In other words, we are interested in the probability of guaranteed win by A when s choices

by B among n− k are known (assuming 0 ≤ s ≤ n− k). We thus introduce the following
predicate:

I Definition 20 (winA_knowing). For any game F : 2k × 2n−k → 2 and any b1:s ∈ 2s, we
say that a strategy a ∈ 2k is winning under the knowledge of b1:s if it is winning against all
strategy profile (a, b) ∈ 2k × 2n−k that is compatible with b1:s:

winA(a | b1:s) := ∀b ∈ 2n−k. compat_knowing(b1:s, b) =⇒ F (a, b) = 1,

where

compat_knowing(b1:s, b) := ∀i ∈ 2s. (b1:s)i = bi.

For relating this predicate with that of Definition 3, the proof of the following lemma is
immediate:

I Lemma 21 (winA_knowingE). For any game F : 2k × 2n−k → 2 and any bit-vectors
b1:s ∈ 2s and a ∈ 2k, we have:

winA[F ](a | b1:s) = winA[bgk(F, b1:s)](a)

where bgk(F, b1:s) : 2k × 2n−s−k is the Boolean game defined by:

bgk(F, b1:s)(a, b′) = F (a, (b1:s, b
′)).

Now, to compute the probability Pn; p

(
∀b1:s ∈ 2s. ∃a ∈ 2k. winA(a | b1:s)

)
in the space

(Ω,S,Pn; p) introduced in Section 3, we shall first construct a probability space (Ω′,S ′,P′)
that is provably isomorphic to (Ω,S,Pn; p), but which is simpler to handle.

First, we note that there are 2s possible Boolean vectors b1:s = (b1, ..., bs) and for all b1:s,
we pose

Bb1:s = {v ∈ 2n | vk+1 = b1 ∧ · · · ∧ vk+s = bs}.

The family (Bb1:s)b1:s∈2s constitutes a partition of 2n (we have 2n =
⋃

b1:s∈2s Bb1:s , intersec-
tions of Bb1:s for different b1:s are empty, and no set Bb1:s is empty).

Second, we define Ωb1:s := 2Bb1:s as the powerset of Bb1:s and show that there is a
one-to-one correspondence between Ωb1:s and 22n−s . We shall denote the corresponding
bijections by g : Ωb1:s → 22n−s and h : 22n−s → Ωb1:s . In the formal development, the related
lemmas are named bool_fun_of_OmegaB_bij and OmegaB_of_bool_fun_bij.
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Next, we consider the probability Pb1:s := Pn−s; p ◦h−1 defined as the pushforward
distribution (with respect to function h) of the Bernoulli process Pn−s; p with parameters
n− s and p.

We then consider the product space (Ω′,S ′,P′) defined by:
Ω′ =

∏
b1:s∈2s Ωb1:s

S ′ = 2Ω′

P′ =
⊗

b1:s∈2s Pb1:s

Relying on functions g and h, we finally show that there is a one-to-one correspondence
between Ω′ and Ω = 22n . We shall denote the corresponding bijections by g′ : Ω′ → Ω and h′ :
Ω→ Ω′. In the formal development, the related lemmas are named bool_fun_of_Omega’_bij
and Omega’_of_bool_fun_bij.

We now prove that the spaces (Ω,S,Pn; p) and (Ω′,S ′,P′) are isomorphic:

I Lemma 22 (isom_dist_Omega’). The probability distribution Pn; p (defined in Section 3
as the Bernoulli process with parameters n and p) is extensionally equal to the pushforward
distribution of P′ with respect to function g′.

Proof. In the Coq formal proof, this lemma amounts to splitting a big-operator expression
with respect to the partition of 2n, reindexing big-operator expressions half-a-dozen times,
and rewriting “cancellation lemmas” for simplifying the composition of a bijection and its
inverse function. Also, the use of our under tactic (see Section 6) contributed to simplify the
mechanisation of this proof. J

A key ingredient for the sequel will be the following

I Lemma 23 (ProductDist.indep). Given a finite type I and a family of finite probability
spaces (Ωi,Si=2Ωi ,Pi)i∈I , the product space defined by

ΩΠ =
∏

i∈I Ωi

SΠ = 2ΩΠ

PΠ =
⊗

i∈I Pi

is such that the projections (πi : ΩΠ → Ωi)i∈I are independent random variables. In other
words, for any family of events (Qi)i∈I ∈

∏
i∈I Si, we have:

PΠ

(⋂
i∈I

π−1
i (Qi)

)
=
∏
i∈I

Pi(Qi).

We can now prove the following

I Theorem 24 (Pr_ex_winA_knowing_Bern). For all p ∈ [0, 1] and for all integers n, k, s
satisfying 0 ≤ s ≤ n−k ≤ n, if Pn; p is the Bernoulli process with parameters n and p defined
in Section 3, the probability of guaranteed win for player A knowing s choices of player B
among his n− k variables is:

Pn; p

(
∀b1:s ∈ 2s. ∃a ∈ 2k. winA(a | b1:s)

)
=
(

1−
(

1− p2n−k−s
)2k)2s

. (5)
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Proof. We follow the following proof path:

Pn; p

(
∀b1:s ∈ 2s. ∃a ∈ 2k. winA(a | b1:s)

)
= Pn; p

{
F ∈ Ω

∣∣ ∀b1:s ∈ 2s. ∃a ∈ 2k. winA[F ](a | b1:s)
}

hence by using Lemma 21

= Pn; p

{
F ∈ Ω

∣∣ ∀b1:s ∈ 2s. ∃a ∈ 2k. winA[bgk(F, b1:s)](a)
}

hence by using Lemma 22

= (P′ ◦ g′−1)
{
F ∈ Ω

∣∣ ∀b1:s ∈ 2s. ∃a ∈ 2k. winA[bgk(F, b1:s)](a)
}

hence by using elementary facts on g, g′ and the bgk function defined in Lemma 21

= P′
{
f ∈ Ω′

∣∣ ∀b1:s ∈ 2s. f(b1:s) ∈
{
S ∈ Ωb1:s

∣∣ ∃a ∈ 2k. winA[g(S)](a)
}}

hence by using Lemma 23

=
∏

b1:s∈2s

Pb1:s

{
S ∈ Ωb1:s

∣∣ ∃a ∈ 2k. winA[g(S)](a)
}

hence by definition of Pb1:s

=
∏

b1:s∈2s

(
Pn−s; p ◦h−1) {S ∈ Ωb1:s

∣∣ ∃a ∈ 2k. winA[g(S)](a)
}

hence by definition of g and h

=
∏

b1:s∈2s

Pn−s; p

{
F ∈ 22n−s

∣∣∣ ∃a ∈ 2k. winA[F ](a)
}

hence by using Theorem 17 in the case of random Boolean functions with n− s variables

=
∏

b1:s∈2s

(
1−

(
1− p2n−s−k

)2k)

=
(

1−
(

1− p2n−k−s
)2k)2s

. J

We may compare this probability with the probability of existence of unconditionally
winning strategy studied in Section 3 (Theorem 17). The upcoming section will focus on this
question.
I Remark. In Theorems 17 and 24, we formally studied the probability of guaranteed win
(knowing partial information on the opponent), that is, the probability that for every value
taken by the first s variables of B,6 there exists a strategy for A that wins against all strategies
of B given this fixed value of the first s variables of B. This problem is purely combinatorial
and does not depend on the “preferences” of B (regarding the variables that he controls).
So this probability will typically be different from the probability of non-guaranteed win
for player A, as this latter probability could be influenced by the preferences of B for some
choices, the dependency of these choices on F , and so on.

6 Theorem 17 being a particular case of Theorem 24 (s = 0).
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5 Probability of Guaranteed Win: Growth Rate

Using the result given by Theorem 24, we would like to study how the probability of
guaranteed win grows with each bit of information concerning the choice of B.

For fixed values of p ∈ (0, 1), n, k ∈ N such that 0 < k < n, and for 0 ≤ s ≤ n− k, let us
write g(s) the quantity given in Equation (5).

First, we note that when s tends to n− k, the probability of guaranteed win for A tends
to:

g(n−k) =
(

1−
(

1− p20
)2k)2n−k

=
(

1− (1− p)2k
)2n−k

= 1−
[
1−

(
1− (1− p)2k

)2n−k]
︸ ︷︷ ︸
proba. of guaranteed win for B

Then, an interesting question may be: what is the order of growth of the difference

φ(s) := g(s)− g(0) (∈ [0, 1])

with respect to s? The following result is a first answer to this question:

I Theorem 25 (phi_ineq). For any p ∈ (0, 1), n, k ∈ N∗ such that 0 ≤ s ≤ n − k, if the
following condition holds:

2kp2n−k−s

< 1, (6)

then we have

φ(s) >
(

2(k−1)2s

− 2k
)
p2n−k

, (7)

where

φ(s) = g(s)− g(0) =
(

1−
(

1− p2n−k−s
)2k)2s

−
(

1−
(

1− p2n−k
)2k)

.

In particular, condition (6) is satisfied as soon as the following, stronger condition is satisfied:

s ≤ (n− k)− log2(k + 1) + log2(| log2 p|). (8)

Proof. Let us write t = p2n−k−s . By the binomial formula, we have:

1− (1− t)2k

= 2kt− (2kt)2
2k∑

i=2
(−1)i2−2k

(
2k

i

)
ti−2. (9)

We notice that if (6) holds, that is if 2kt < 1, then the absolute value of the (i + 1)th
member of the sum

∑
in (9) is less than that of the i-th member because it is obtained by

multiplication by ((2k−i)/(i+1))t < 2kt. So, if (6) holds, then the sum (positive) is less than
or equal to its first term. Moreover, the first term of the sum

∑
in (9) is 2−2k 2k(2k−1)

2 < 1
2 .

So, if (6) is satisfied for some n, k, s, then from (9) we obtain

1− (1− t)2k

≥ 2kt− 1
2(2kt)2 = 2kt

(
1− 1

22kt

)
> 2k−1t. (10)

Thus, under these conditions

g(s) =
(

1−
(

1− p2n−k−s
)2k)2s

> 2(k−1)2s

p2n−k

. (11)
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Next, a similar analysis applied to
(
1−

(
1− p2n−k)2k)

gives an estimation

g(0) =
(

1−
(

1− p2n−k
)2k)

= 2kp2n−k

−
2k∑

i=1

(
2k

i

)(
−p2n−k

)i

≤ 2kp2n−k

(12)

Combining (11) and (12) yields the following inequality:

g(s)− g(0) > 2(k−1)2s

p2n−k

− 2kp2n−k

=
(

2(k−1)2s

− 2k
)
p2n−k

. (13)

Finally, the following condition is obviously stronger than (6):

2kp2n−k−s

≤ 1
2 ,

which is equivalent to

2n−k−s log2 p ≤ −(k + 1).

Since 0 < p < 1 we may write instead

2n−k−s| log2 p| ≥ (k + 1).

Applying the log a second time, we obtain

s ≤ (n− k)− log2(k + 1) + log2(| log2 p|),

which is thereby a sufficient condition for (6). J

For example, if p = 1
2 , condition (8) becomes

s ≤ (n− k)− log2(k + 1). (14)

And if 0 < p < 1
2 , log2(| log2 p|) > 0 so we have − log2(k+ 1) < − log2(k+ 1) + log2(| log2 p|),

and thereby we can also rely on condition (14).
It can be noted that inequality (7) essentially gives an order of growth of 2(k−1)2s with

respect to the quantity of information s (number of extra bits known by player A), which is
much faster than usual orders of growth of s or 2s.

Still, a more refined study of the behaviour of the function that describes the growth of
g(s) (the probability of a guaranteed win depending on s) requires much more effort and
space that we could give to it in this exploratory paper. For example, it is intuitively clear
that the graph of this function is a typical “S-form” curve (see Figure 1), but it is not easy
to determine where the critical points are placed; and for small values of the parameter s,
the inequality we get in (7) may be too rude to place with sufficient precision. However the
behaviour of this function g may be of interest for strategic planning concerning both players.
This remains subject of future work.

6 Remarks on the Formal Setup in the Coq Proof Assistant

6.1 Related Works on Formal Libraries of Probability
There have been several works focusing on the formalisation of measure theory or probability
using interactive theorem proving. Some of these works only deal with discrete probability, or
focus on the analysis of randomised algorithms; others formalise large fragments of measure
theory up to Lebesgue’s integration theory.
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Figure 1 Graph of g(s), for the parameters p = 1
2 , n = 10, and k = 6. The vertical line at

s ≈ 1.19 indicates the largest s ∈ R that satisfies (8).

Using the HOL proof assistant, Hurd [13] developed a framework for proving properties of
randomised programs, relying on a formalisation of measure theory, and following a “monadic
transformation” approach that provides the user with an infinite sequence of independent,
identically distributed Bernoulli( 1

2 ) random variables.
Still using the HOL proof assistant and building upon Hurd’s work, Mhamdi, Hasan

and Tahar [12, 15] developed a comprehensive formalisation of measure theory, including
Lebesgue’s integration theory.

Using the Coq proof assistant, Audebaud and Paulin-Mohring [2] developed the ALEA
library7 that provides a framework to reason about randomised functional programs. Unlike
Hurd’s approach, it does not require a complete formalisation of measure theory: it is built
upon a Coq axiomatisation of the interval [0, 1] and it interprets randomised programs as
(discrete) probability distributions.

Still using the Coq formal proof assistant, Affeldt, Hagiwara and Sénizergues [1] developed
the Infotheo library8 that provides a formalisation of information theory. This library comes
with a formalisation of finite probability theory and strongly relies on the theories of the
MathComp library9.

For developing our library on random Boolean games, we have chosen to rely on the
Infotheo library. Even though it only deals with finite probability, this setting was sufficient
for formalising our results and, further, it allowed us to benefit from the facilities of the
SSReflect/MathComp library. In the rest of this section, we shall summarise the main
notions that we used from the MathComp library and present our related contributions (in
Section 6.2), then describe the overall setup of the Infotheo probability theory and present
our related contributions (in Section 6.3).

7 https://www.lri.fr/~paulin/ALEA/
8 https://staff.aist.go.jp/reynald.affeldt/shannon
9 https://math-comp.github.io/math-comp/
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6.2 MathComp and Our Related Contributions
The MathComp library was born in the Mathematical Components project, which aimed at
formalising the Odd Order Theorem in the Coq proof assistant [9], while organising formal
proofs into components to get a reusable library of mathematical facts. It is built upon
SSReflect, an extension of Coq’s proof language that has a native support for the so-called
small scale reflection (and in particular Boolean reflection) and often leads to concise proof
scripts.

For our library of random Boolean games, we have been especially using the following
libraries: (i) fintype for finite types with decidable equality, (ii) finfun for functions over
finite domains, (iii) finset for finite sets, (iv) bigop for properties on “big-operators”.

Big-operators and rewriting under lambdas

Regarding big-operators such as
∑

,
∏
,
⋂

or
⋃
, they are formalised in MathComp as a

higher-order function bigop that takes several arguments, including a function that specifies
the “domain predicate” and the “general term”. For example, the sum

4∑
i=1

i odd

i2

can be formally written as \sum_(1 <= i < 5 | odd i) i^2, which amounts to the follow-
ing term if we get rid of the \sum notation:

bigop 0 ( index_iota 1 5) (fun i:nat => BigBody i addn (odd i) (i^2))

If we want to transform such a big-operator expression by rewriting its domain predicate or
general term, the following two MathComp lemmas on big-operators can be used.

eq_bigr :
forall (R : Type) (idx : R) (op : R -> R -> R) (I : Type)
(r : seq I) (P : pred I) (F1 F2 : I -> R),
( forall i : I, P i -> F1 i = F2 i) ->
\big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i

eq_bigl :
forall (R : Type) (idx : R) (op : R -> R -> R) (I : Type)
(r : seq I) (P1 P2 : pred I) (F : I -> R),
P1 =1 P2 ->
\big[op/idx]_(i <- r | P1 i) F i = \big[op/idx]_(i <- r | P2 i) F i

Still, applying them directly would require to provide the entire term corresponding to the
function we want to obtain.

We thus developed a Coq tactic “under” for rewriting under the lambdas of big-operators.
A generalised version of our tactic, also applicable for MathComp notions such as matrices,

polynomials, and so on, is available online at https://github.com/erikmd/ssr-under-tac
and we plan to submit it for possible inclusion in MathComp.

Below is a typical example of use for that generalised implementation of the under tactic.

https://github.com/erikmd/ssr-under-tac
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For a goal that looks like
A : finType
n : nat
F : A -> nat

========================================================
0 <= \sum_ (0 <= k < n)

\sum_(J in {set A} | #|J :&: [set: A]| == k)
\sum_(j in J) F j

the proof script
under eq_bigr [k Hk] under eq_bigl [J] rewrite setIT.

will yield the following goal:
A : finType
n : nat
F : A -> nat

========================================================
0 <= \sum_ (0 <= k < n)

\sum_(J in {set A} | #|J| == k)
\sum_(j in J) F j

Dependent product of finTypes

MathComp has built-in support for finite functions: for any (A:finType) and (T:Type), the
notation {ffun A -> T} stands for the type of finite functions from A to T. If n denotes the
cardinal of A, these functions are represented by a n-tuple of elements of T, which allows one
to obtain convenient properties such as the extensionality of finite functions, which wouldn’t
hold otherwise in the constructive, intensional logic of Coq.

If T is also a finite type, then the MathComp library allows one to automatically retrieve
(thanks to type inference and so-called canonical structures) a finite type structure for the
type {ffun A -> T} itself. Thus, this construct amounts to the non-dependent product of a
finType.

However, for formalising our results and in particularly to construct the type Ω′ that
appears in Section 4, we have been led to formalise the dependent product of a finite family
of finite types. This material is gathered in a file fprod.v which provides a type fprod,
some notations in MathComp style and several support results such as lemmas fprodP and
fprodE, whose signature is as follows:
fprod : forall I : finType , (I -> finType ) -> finType

fprodP : forall (I : finType ) (T_ : I -> finType ) (f1 f2: fprod I T_),
( forall x : I, f1 x = f2 x) <-> f1 = f2

fprodE : forall (I : finType ) (T_ : I -> finType )
(g : forall i : I, T_ i) (x : I),

[fprod i => g i] x = g x

This theory involves proofs with dependent types, and to facilitate the formalisation process we
tried to follow a MathComp formalisation style as much as possible, by using finite functions,
records with Boolean conditions, and so on. This enabled us to rely on extensionality
of functions, the Altenkirch-Streicher K axiom and proof irrelevance, which can be used
“axiom-free” in the decidable fragment of MathComp finTypes.
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6.3 Infotheo and Our Related Contributions
The Infotheo library relies on MathComp as well as the Reals theory from Coq’s standard
library. Among the Infotheo theories, the proba theory was the starting point of our
formalisation. It first defines distributions as a dependent record dist, gathering a function
pmf that gives the probability of each elementary event, and a proof that the sum of these
probabilities is equal to 1:

Record dist (A : finType ) :=
mkDist { pmf :> A -> R+ ;

pmf1 : \rsum_(a in A) pmf a = 1 }.

Then, it defines the probability of a subset of A as the sum of the probabilities of all elementary
events in A:

Definition Pr (A : finType ) (P : dist A) (E : {set A}) :=
\rsum_(a in E) P a.

Then, basic properties of probability and expectation are provided in this setting.
On top of the Infotheo theories, we have developed the following contributions:

(i) a formalisation of the pushforward distribution dist_img with the associated lemma

Lemma Pr_dist_img :
forall {A B : finType } (X : A -> B) (PA : dist A) (E : {set B}),
Pr ( dist_img X PA) E = Pr PA (X @^-1: E).

(ii) a formal proof of a general version of the inclusion–exclusion theorem that we presented
above in Theorem 6; (iii) the product distribution of a family of distributions, whose signature
is as follows:

ProductDist .d :
forall (I : finType ) (T_ : I -> finType ),
( forall i : I, dist (T_ i)) -> dist (fprod I T_)

The associated independence result was presented above as Lemma 23.

7 Conclusion

In this work, we used the basics of the theory of Boolean games. In this sense, our work is
obviously related to this area. But to the best of our knowledge, the idea of using probability
theory applied to a certain class of Boolean games as a whole (in difference from merely
random strategies) is new. The analysis of the whole class of games permits to discover some
quantitative properties of these games that would be difficult to discover in the study of an
individual game.

Furthermore, we used type theory and interactive theorem proving to formalise our results
in order to give strong guarantees on their correctness as well as to extend existing formal
libraries with new items.

In particular, we have proved a closed formula for the probability of existence of winning
strategies in those random Boolean games. We specialised this result with a probability
distribution on Boolean functions that are generated by a Bernoulli scheme on Boolean
vectors with any probability p as parameter (it can be noted that this setting subsumes
the simpler case where all Boolean functions have the same probability: this latter case
corresponds to choosing p = 1

2 in our setting).
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In this paper our methods remained elementary, but they permitted to estimate the
relative importance of the cases where the players use simultaneous and alternative moves.
Another interesting phenomenon seems to us to be the growth of probability of the win as
function of the information about the choices of the opponent. Essentially, it is much faster
than usual 2s where s is the quantity of information (number of extra bits) known by the
player. This phenomenon emphasises the difference between the information that is required
for winning and the “measure of knowledge” of the opponent and its strategies.

We already mentioned the interest of machine checked verification for the games between
autonomous programs (embedded systems).

As a future work, we plan to consider more general classes of probability distributions
and explore the “weight” of information with respect to winning in this more general setting.

We plan also to consider more closely the connection with algorithmic games [6].
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A Non-Guaranteed Win: When the Order of Choices Matters

Let us consider an example of three variables a, b, c and two players, Alice who controls a
and Bob who controls b, c. Let us consider all possible Boolean functions as payoff functions.
There are 256 that may be identified with the subsets of the nodes of the cube below. Each
subset is interpreted as the disjunction of the conjunctions in the nodes.

abc abc

abc abc

abc abc

abc abc

It makes sense to analyse this situation in a purely combinatorial way before we consider
randomly generated payoff functions. We notice the following facts:

Alice has an unconditionally winning strategy in 31 cases (these cases correspond to all
subsets that contain all nodes of either the face with a or the face with a; the number of
subsets is easily counted by the formula of inclusions-exclusions).
Bob has an unconditionally winning strategy in 175 cases (the cases correspond to the
subsets that do not intersect with one of the four edges defined by the choice of two
literals among b, c, b, c; the number is counted as above).
There are 50 cases when neither Alice nor Bob has an unconditionally winning strategy.
In these cases the order of choice matters:

If Alice chooses the value of a first, then Bob has a winning strategy (he may win in
all these cases).
Similarly, if Bob chooses the values of b, c first then Alice may win in all these cases.

http://dx.doi.org/10.1007/s10817-008-9113-6
http://dx.doi.org/10.1007/s10817-008-9113-6
http://dx.doi.org/10.5281/zenodo.1317609
http://dx.doi.org/10.5281/zenodo.1317609
http://dx.doi.org/10.1007/978-3-642-14052-5_27
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Now let us consider in more detail the case where the order of choices is B −A−B. In fact,
here we need to distinguish three subcases:
1. Bob may give a value to any of b, c at his first step.
2. At his first step, Bob gives a value to b, and at his second to c.
3. At his first step, Bob gives a value to c, and at his second to b.

It can be noted that these three variants may correspond to preferences or to obligations
(extra constraints) concerning Bob, in line with the remark at the end of Section 4 (page 12).
We elaborate on these three subcases below.
1. The choice of Bob may be interpreted as the selection of one of the four faces of the cube

that corresponds to b, b, c, c respectively. There are four cases when Alice may win if she
knows the first choice of Bob. One subset is shown below in bold, other are obtained by
rotation. (We exclude the cases of unconditional win that were counted before.)

abc abc

abc abc

abc abc

abc abc

In the case displayed above, if Bob has chosen b = true then Alice has to choose a = true
and wins because the remaining formula will be c ∨ c.

2. If at the first step Bob must choose the value of b, then it may be seen as the choice of one
of the two faces of the cube that correspond to b or b. This gives Alice more possibilities
to win. Indeed, she may win if the subset of nodes includes either abc, abc, abc, abc or
abc, abc, abc, abc. We may add one or more nodes to each subset of four, but if we exclude
the previously considered cases, we shall have 12 more cases when Alice may win.

3. Similar analysis shows that it will be 12 cases (not considered previously) where Alice
may win if Bob must choose the value of c first.

It is important to notice that the choices of Alice and Bob are not necessarily interpreted
as the choices of logical values of a, b, c. This model may be used to model any binary choice.
Indeed, let a = true mean the choice of some value va and a = false mean the choice of v′a
by Alice. Similarly, Bob may choose one of vb, v

′
b and one of vc, v

′
c. Instead of conjunction

of literals (e.g., abc) let us take for each such conjunction a predicate10 Pabc(x, y, z) which
is true if and only if x = va, y = v′b, z = v′c. Instead of considering the disjunction of these
conjunctions, let us take the disjunction of corresponding predicates. It appears that the
logical value of the result will exactly be the logical value of the payoff function represented
by the DNF (or Boolean function).

The roles of Alice and Bob may be seen as the roles of “coaches” who choose the players
for a series of matches. Alice wins if her “champion” wins at least one match. Also, to come
back to the situation with random payoff functions, it makes perfect sense that in a real
tournament the coach cannot know in advance which matches will be necessary to play.

10 defined for (x, y, z) ∈ {va, v′
a} × {vb, v′

b} × {vc, v′
c}
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The same idea may be used to model markets (the choice a = true may mean that Alice
orders to buy a certain product a, a = false that she orders to sell, and the presence of abc
that she makes profit when she buys at the same time when Bob sells his two products).

This analysis also clearly shows what may be the role of introduction of random choice of
payoff functions. It takes into account certain amount of unpredictability in a real situation.
Notice that it does not eliminate some “geometric flavour” displayed in the above example.

However, as we emphasised before, we intend to use probability mostly for the analysis of
the totality of games with all possible Boolean functions as payoff, rather than for considering
one game with a randomly-chosen payoff function (though this may sometimes make sense).

The choice of probability distribution will influence the relative “weight” of the cases that
we considered above in a purely combinatorial way, and has to be taken into account when
additional conditions are considered, such as the order of moves or access to the information.

For example, if the probability parameter p takes a value of 1
2 (i.e., if we focus on the

instance P3; 1
2
of the Bernoulli process presented in Section 3), this will give the uniform

distribution on the 256 cases considered in the appendix.
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Abstract
We give a completeness theorem for the BCD theory of intersection types in an operational
semantics based on logical relations.
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1 Introduction

The theorem of Coppo, Dezani, and Pottinger ([3], [6])states that an untyped lambda term
is strongly normalizable if and only if it provably has an intersection type. Here we consider
which terms have which types.

We define an operational semantics for the collection of intersection types which assigns
to every intersection type A a set of strongly normalizable terms [[A]]. We show that the
theory of intersection types BCD (Barendregt, Coppo, Dezani) proves X : A for an untyped
term X if and only if X : [[A]] for all interpretations of [[, ]] in the operational semantics.
Here we shall use the notation “:” for both the formal statement that X has type A, and
also set theoretic membership.

Our view of what operational semantics should be begins with Tait style proofs ([8])
of strong normalization. These proofs consider a complete lattice of sets S of strongly
normalizable untyped terms([2] 9.3). Not all such sets are considered but the lattice operations
are union and intersection. We require that S is closed under reduction, and possibly some
other conditions,such as head expansion with strong normalizable arguments, depending on
the variant. The operation → is then introduced

S → T = {X|for all Y : S ⇒ (XY ) : T}.

This is certainly familiar from the theory of logical relations ([2] 3.3) for the simple typed
case, positive recursive types, and our principal concern in this note; intersection types.
Given an intersection type A, if the atoms (atomic types) of A are evaluated among the sets
S then A has a value among the sets S. This will be the interpretation [[A]].

2 Beth Models

SN is the set of strongly normalizable untyped terms. Here, we do not distinguish beta from
beta-eta strong normalizability since they are equivalent. A Beth model consists of a pair
(O,E) where O is a poset with partial order [, and E is a monotone map from O x Atoms
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into the subsets of SN closed under beta reduction and we shall assume that E(p, a) is non
empty except possibly when p is the [ smallest element of O, should this exist.

For λ terms X we define the “forcing relation” |= by

p |= X : a if for all q]p there exists r]q s.t. X : E(r, a)
p |= X : A/\B if p |= X : Ap |= X : B
p |= X : A→ B if whenever q]p and q |= U : A there exists r]q

such that r |= (XU) : B

and we assume that E satisfies the generalized monotonicity property if [Y/x]X : E(p, a), q]p,
and q |= Y : A then there exists r]q such that (\xXY ) : E(r, a) where [Y/x] is the the
substitution operation (the term Y for the variable x).

I Definition 1. An O chain (linearly ordered subset) W is generic if
(i) for any X and atom a there exists p : W such that either X : E(p, a) or there is no q]p

such that q |= X : a, and
(ii) for each A→ B there exists p : W such that either p |= X : A→ B or there exists U

and q : W such that q]p and q |= U : A but there is no r]q such that r |= (XU) : B. We
could just as easily use directed subsets of O instead of chains but chains suffice.
For what follows the reader should consult the definition of BCD in [2] which appears
on pages 582-583,but without the top element (Utop). When we wish to include the
top element, Utop, together with its axiom ([2] page 583), we will write BCD + Utop.
Especially, the reader should look at the definitions of equality and the ordering of
types on page 582. These are reproduced in the appendix.

Facts
1. if p |= X : A and q]p then q |= X : A
2. p |= X : A iff for each q]p there exists r]q s.t. r |= X : A
3. if p |= X : A and

A < B or A = B in BCD (page 582)

then p |= X : B
4. if W is generic then for any X and atom a there exists p : W such that for all q]p we

have q |= X : a or there is no q]p s.t. q |= X : a
5. if W is generic then for any X and A/\B there exists a p : W such that p |= X : A/\B

or there is no q]p such that q |= X : A/\B
6. if W is an O chain with a maximal element then there exists a generic O chain extending

W .

I Proposition 2. Let W be a generic O chain and set R(A) = {X| there exists p : W such
that p |= X : A}. Let X : SN then
(i) X : R(a) iff there exists p : W s.t. X : E(p, a)
(ii) X : R(A→ B) iff for each

U : R(A) we have (XU) : R (B)
(iii) X : R(A/\B) iff X : R(A) & X : R(B)

Proof. by induction on A. The basis case (i) is by definition. Induction step; Case (ii) ⇒.
Suppose that we have a p : W such that p |= X : A⇒ B and we have U : R(A). Thus there
exists q : W such that q |= U : A. By fact (1) we may assume that q]p. Now for any r]q
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there exists t]r such that t |= (XU) : B but W is generic so there must be an r : W such
that r |= (XU) : B. That is (XU) : R(B). ⇐. Suppose that for each U : R(A) we have
(XU) : R(B). Now if there is no p : W such that p |= X : A→ B, since W is generic, there
exists p : W and aU such that p |= U : A but there is no q]p such that q |= (XU) : B. But
by fact (1) this contradicts the hypothesis. Case (iii) similar to case (ii). J

The proposition clearly states that if the atoms a are evaluated {X| for some p : W we
have X : E(p, a)} then the value of the type A mentioned in the introduction is R(A)

I Example 3 (finite sets). In this case we let O be the collection of finite sets of SN
terms closed under beta-eta reduction and ordered by inclusion. We set E(p, a) = p.
Suppose that A = A(1) → (...(A(t) →)...) and ∼ (p |= X : A). Then there exists q]p and
Y (1), ..., Y (t) s, t q |= Y (i) : A(i) for i = 1, ..., t but there is no r]q with XY (1)...Y (t) : r. But
this can only be the case if XY (1)...Y (t) is not SN . Thus we can find a generic W such that
X : R(A) or there exists Y (1), ..., Y (t) s.t. Y (i) : R(A(i)) for i = 1, ..., t and XY (1)...Y (t) is
not SN .

I Example 4. In this case we consider sets S : O of closed beta-eta normal terms for which
there exists an integer n such that X : S iff every path in the Bohm tree of X has at most
n lambdas and every node in the Bohm tree ([1] pg 212) of X has at most n descendants.
Then for any partial recursive function f which is total on S and maps S to S there exists
M : R(S → S) such that for any N : S we have MN = f(N) modulo beta-eta conversion.

I Proposition 5. Suppose that O has a smallest element 0. Then, 0 |= X : A iff for every
generic W we have X : R(A).

Proof. Immediate by facts (1)–(6). J

We next consider the theory BCD with its provability relation ` as described in [2] and
reproduced in the appendix. A basis F is a map from a finite set of lambda calculus variables,
dom(F ), to the set of types. Below we shall often conflate F with the finite set

{x : F (x)|x : dom(F )}.

Let O,E be as above and W generic.

I Proposition 6 (soundness). Suppose that @ is a substitution and F is a base such that for
all x : dom(F ),@(x) : R(F (x)). Then if in BCD

F ` X : A

we have @(X) : R(A).

Now let O be the set of bases partially ordered by F [G iff dom(F ) is contained in dom(G)
and for each x : dom(F ) we have G(x) and F (x) are equal types in BCD. Now define E(a)
by X : E(F, a) if FV (X) is contained in dom(F ) and F ` X : a. Clearly E is [ monotone.
In addition, E(F, a) is closed under beta-eta reduction. However, generally E(F, a) is not
closed under beta head expansion for reasons similar to the case of BCD. In particular this
happens when (\uUV ) reduces to X, u is not free in U and there is an x : FV (V )/\FV (U)
such that the basis entry x : F (x) prevents V from having a BCD type. Thus we have to
verify the generalized monotonicity property to insure soundness.First, we observe that there
is no difference between E and |= at atomic types.

TYPES 2016



15:4 The Completeness of BCD for an Operational Semantics

Fact 7. F |= X : a iff X : E(F, a)

Proof. If FV (X) is contained in dom(F ) then the equivalence follows from the monotonicity
of E and the weakening rule of BCD ([2] page 585). Otherwise suppose that F |= X : a. For
each x : FV (X)− dom(F ) add a new atom a(x) and extend F to G by G(x) = a(x). Then
G |= X : a so by the previous argument G ` X : a in BCD. But we may substitute Utop for
each a(x) and (\x.xx)(\x.xx) for each x. So in BCD + Utop we have

F ` [..., (\x.xx)(\x.xx)/x, ...]X : a

and this contradicts the fact that if a term has a BCD type (Utop free) in BCD + Utop then
it is strongly normalizable (theorem 17.2.15 (i) [2]). J

I Lemma 7. Suppose that FV (X) is contained in dom(F ).

F |= X : A iff F ` X : A in BCD

Proof. this is proved by induction on A. The basis case is by fact 7. For the induction
step the case A = B/\C is obvious. We consider the case A = B → C. ⇒. Suppose
that F |= X : B → C. Let z be a new variable and extend F by G by with G(z) = B.
Since G |= z : B by induction hypothesis G |= z : B thus there exists H]G such that
H |= Xz : C. Again by induction hypothesis H ` Xz : C in BCD. Reasoning in BCD,
H − {z : B} ` \z(Xz) : B → C. Now by hypothesis FV (X) is contained in dom(F ), so by
weakening, F ` \z(Xz) : B → C. Hence by subject reduction for eta ([2] page 621)

F ` X : B → C.

Conversely,suppose that F ` X : A. Let G]F and G |= U : B. By induction hypothesis
G ` U : B in BCD Thus by induction hypothesis G |= (XU) : C. Hence

F |= X : B → C. J

I Corollary 8. Generalized monotonicity holds and we have a Beth model.

From the lemma we get the completeness theorem.

I Theorem 9. Let M be closed. Then BCD `M : A iff for every Beth model (O,E) and
generic W,M : R(A).

Proof. ⇒. This is the soundness proposition. ⇐. Consider the Beth model defined by the
conditions above. By proposition 2 0 |= M : A. Hence by the lemma `M : A in BCD. J
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A Appendix

(1) terms and types
variables x, y, z, ... are terms
if X and Y are terms then so are (XY ) and \xX
atoms a, b, c, ... are types
if A and B are types then so are A/\B and A→ B

(2) (quasi) order on types
A less than or equal A
A/\B less than or equal A
A/\B less than or equal B
(A→ B)/\(A→ C) less than or equal A→ (B/\C)
if C less than or equal A and C less than or equal B

then C less than or equal A/\B
if C less than or equal B and B less than or equal A

then C less than or equal A
if A less than or equal C and D less than or equal B

then C → D less than or equal A→ B

A equals B if A less than or equal B and
B less than or equal A

(3) axioms and rules of BCD
F ` x : A if (x : A) belongs to F
if F, x : A ` X : B then F ` \xX : A→ B

if F ` X : A→ B and F ` Y : A then F ` (XY ) : B
if F ` X : A and F ` X : B then F ` X : A/\B
if F ` X : A and A less then or equal B in BCD

then F ` X : B
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