
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/197678

Please be advised that this information was generated on 2019-06-02 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/200776988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/197678

ar
X

iv
:1

90
2.

08
41

4v
1

 [
cs

.L
O

]
 2

2
Fe

b
20

19

Fast Computations on Ordered Nominal Sets⋆

David Venhoeka, Joshua Moermana, Jurriaan Rotb,a

aInstitute for Computing and Information Sciences,

Radboud Universiteit, Nijmegen, The Netherlands
bUniversity College London, London, UK

Abstract

We show how to compute efficiently with nominal sets over the total order
symmetry, by developing a direct representation of such nominal sets and basic
constructions thereon. In contrast to previous approaches, we work directly
at the level of orbits, which allows for an accurate complexity analysis. The
approach is implemented as the library Ons (Ordered Nominal Sets).

Our main motivation is nominal automata, which are models for recognis-
ing languages over infinite alphabets. We evaluate Ons in two applications:
minimisation of automata and active automata learning. In both cases, Ons
is competitive compared to existing implementations and outperforms them for
certain classes of inputs.

Keywords: nominal sets, automata theory, minimisation, automata learning

1. Introduction

Automata over infinite alphabets are natural models for programs with un-
bounded data domains. Such automata, often formalised as register automata,
are applied in modelling and analysis of communication protocols, hardware,
and software systems (see [2, 3, 4, 5, 6, 7] and references therein). Typical in-
finite alphabets include sequence numbers, timestamps, and identifiers. This
means one can model data flow in such automata beside the basic control flow
provided by ordinary automata. Recently, it has been shown in a series of papers
that such models are amenable to learning [8, 9, 10, 11, 12, 13] with the verifi-
cation of (closed source) TCP implementations as a prominent example [14].

A foundational approach to infinite alphabets is provided by the notion of
nominal set, originally introduced in computer science as an elegant formalism

⋆This is a revised and extended version of a paper which appeared in the proceedings of
ICTAC 2018 [1]. The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie
Grant Agreement No. 795119.

Email addresses: david@venhoek.nl (David Venhoek), joshua.moerman@cs.ru.nl
(Joshua Moerman), jrot@cs.ru.nl (Jurriaan Rot)

Preprint submitted to Theoretical Computer Science February 25, 2019

http://arxiv.org/abs/1902.08414v1

for name binding [15, 16]. Nominal sets have been used in a variety of ap-
plications in semantics, computation, and concurrency theory (see [17] for an
overview). Bojańczyk et al. introduce nominal automata, which allow one to
model languages over infinite alphabets with different symmetries [2]. Their re-
sults are parametric in the structure of the data values. Important examples of
data domains are ordered data values (e.g., timestamps) and data values that
can only be compared for equality (e.g., identifiers). In both data domains,
nominal automata and register automata are equally expressive [2].

Important for applications of nominal sets and automata are implementa-
tions. A couple of tools exist to compute with nominal sets. Notably, Nλ [18]
and Lois [19, 20] provide a general purpose programming language to manipu-
late infinite sets.1 Both tools are based on SMT solvers and use logical formulas
to represent the infinite sets. These implementations are very flexible, and the
SMT solver does most of the heavy lifting, which makes the implementations
themselves relatively straightforward. Unfortunately, this comes at a cost as
SMT solving is in general Pspace-hard. Since the formulas used to describe
sets tend to grow as more calculations are done, running times can become
unpredictable.

In the current paper, we use a direct representation, based on symmetries
and orbits, to represent nominal sets. We focus on the total order symmetry,
where data values are rational numbers and can be compared for their order.
Nominal automata over the total order symmetry are more expressive than
automata over the equality symmetry (i.e., traditional register automata [5]).
A key insight is that the representation of nominal sets from [2] becomes rather
simple in the total order symmetry; each orbit is presented solely by a natural
number, intuitively representing the number of variables or registers.

Our main contributions include the following.
• We develop the representation theory of nominal sets over the total or-
der symmetry. We give concrete representations of nominal sets, their
products, and equivariant maps.

• We provide time complexity bounds for operations on nominal sets such
as intersections and membership. Using those results we give the time
complexity of Moore’s minimisation algorithm (generalised to nominal au-
tomata) and prove that it is polynomial in the number of orbits.

• Using the representation theory, we are able to implement nominal sets
in a C++ library Ons. The library includes all the results from the repre-
sentation theory (sets, products, and maps). We also developed a Haskell
implementation, called Ons-hs.

• We evaluate the performance of Ons(-hs), and compare it to Nλ and

1Other implementations of nominal techniques that are less directly related to our setting
(Mihda, Fresh OCaml, and Nominal Isabelle) are discussed in Section 10.

2

Lois, using two algorithms on nominal automata: minimisation [21] and
automata learning [12]. We use randomly generated automata as well as
concrete, logically structured models such as FIFO queues. For random
automata, our methods are considerably faster in most cases than the
other tools. On the other hand, Lois and Nλ are faster in minimising the
structured automata as they exploit their logical structure. In automata
learning, the logical structure is not available a-priori, and Ons(-hs) is
faster in most cases.

The structure of the paper is as follows. The first three sections contain
backgroundmaterial: Section 2 on nominal sets, Section 3 on nominal automata,
and Section 4 on representation of nominal sets. Next, Section 5 describes the
concrete representation of nominal sets, equivariant maps and products in the
total order symmetry. The implementation in C++ and Haskell are presented in
Sections 6 and 7 respectively. Complexity results are presented in Section 8.
Section 9 reports on the evaluation of Ons on algorithms for nominal automata.
Related work is discussed in Section 10, and future work in Section 11.

The current paper extends the conference version (ICTAC 2018 [1]) with
proofs of all results, new experiments for evaluating Ons based on randomly
generated formulas, and an implementation in Haskell, Ons-hs.

2. Nominal sets

Nominal sets are infinite sets that carry certain symmetries, allowing a fi-
nite representation in many interesting cases. We recall their formalisation in
terms of group actions, following [2, 17], to which we refer for an extensive
introduction.

2.1. Group actions.

Let G be a group, with the multiplication denoted by juxtaposition and the
unit by 1. Given a set X , a (right) G-action is a function · : X × G → X
satisfying x · 1 = x and (x · g) · h = x · (gh) for all x ∈ X and g, h ∈ G. A set
X with a G-action is called a G-set and we often write xg instead of x · g. The
orbit of an element x ∈ X is the set {xg | g ∈ G}. A G-set is always a disjoint
union of its orbits (in other words, the orbits partition the set). We say that X
is orbit-finite if it has finitely many orbits, and we denote the number of orbits
by N(X).

A map f : X → Y between G-sets is called equivariant if it preserves the
group action, i.e., for all x ∈ X and g ∈ G we have f(x)g = f(xg). If an
equivariant map f is bijective, then f is an isomorphism and we write X ∼= Y .
A subset Y ⊆ X is called equivariant if for all y ∈ Y and g ∈ G, we have
yg ∈ Y . The product of two G-sets X and Y is given by the Cartesian product
X × Y with the pointwise group action on it, i.e., (x, y)g = (xg, yg). Union
and intersection of X and Y are well-defined if the two actions agree on their
common elements.

3

2.2. Nominal sets.

A data symmetry is a pair (D, G) where D is a set and G is a subgroup
of Sym(D), the group of bijections on D. Note that the group G naturally
acts on D by defining xg = g(x).2 In the most studied instance, called the
equality symmetry, D is a countably infinite set and G = Sym(D). In this
paper, we will mostly focus on the total order symmetry given by D = Q and
G = {π | π ∈ Sym(Q), π is monotone}.

Let (D, G) be a data symmetry and X be a G-set. A finite set of data
values S ⊆ D is called a support of an element x ∈ X if for all g ∈ G with
∀s ∈ S : sg = s we have xg = x. A G-set X is called nominal if every element
x ∈ X has a (necessarily finite) support.

Example 2.1. We list several examples for the total order symmetry. The set
Q2 is nominal as each element (q1, q2) ∈ Q2 has the finite set {q1, q2} as its
support. The set has the following three orbits:

{(q1, q2) | q1 < q2} , {(q1, q2) | q1 > q2} , {(q1, q2) | q1 = q2} .

For a set X , the set of all subsets of size n ∈ N is denoted by

Pn(X) = {Y ⊆ X | #Y = n} .

The set Pn(Q) is a single-orbit nominal set for each n, with the action defined
by direct image: Y g = {yg | y ∈ Y }.

The group of monotone bijections also acts by direct image on the full power
set P(Q), but this is not a nominal set. For instance, the set Z ∈ P(Q) of
integers has no finite support.

If S ⊆ D is a support of an element x ∈ X , then any finite set S′ ⊆ D such
that S ⊆ S′ is also a support of x. A set S ⊆ D is a least support of x ∈ X if
it is a support of x and S ⊆ S′ for any support S′ of x. The existence of least
supports is crucial for representing orbits. Unfortunately, even when elements
have a finite support, in general they do not always have a least support. A data
symmetry (D, G) is said to admit least supports if every element of every nominal
set has a least support. Both the equality and the total order symmetry admit
least supports. For other (counter)examples of data symmetries admitting least
supports, see [2]. Having least supports is useful for a finite representation.

Given a nominal set X , the size of the least support of an element x ∈ X is
denoted by dim(x), the dimension of x. We note that all elements in the orbit
of x have the same dimension. For an orbit-finite nominal set X , we define

dim(X) = max{dim(x) | x ∈ X} .

For a single-orbit nominal set O, observe that dim(O) = dim(x) where x is any
element x ∈ O.

2This is a well-defined action if we use the group multiplication f · g = g ◦ f .

4

3. Automata over Nominal Sets

Nominal sets are used to formalise languages over infinite alphabets. These
languages naturally arise as the semantics of register automata. Register au-
tomata were introduced by Kaminski and Francez [5] and the connection to
nominal automata is well exposed by Bojańczyk [22]. The definition of register
automata is not as simple as that of ordinary finite automata. Consequently,
transferring results from automata theory to this setting often requires non-
trivial proofs. Nominal automata, instead, are defined as ordinary automata
by replacing finite sets with orbit-finite nominal sets. The theory of nomi-
nal automata is developed in [2] and it is shown that many algorithms from
automata theory transfer to nominal automata. For instance, emptiness and
equivalence of deterministic automata can be decided with a slight adaptation
of the classical algorithms. Nonetheless, not all algorithm generalise: equiva-
lence of non-deterministic automata is undecidable in the nominal setting.

Example 3.1. Consider the following language on rational numbers:

Lint = {a1b1 · · ·anbn | ai, bi ∈ Q, ai < ai+1 < bi+1 < bi for all i}.

We call this language the interval language as a word w ∈ Q∗ is in the lan-
guage when it denotes a sequence of nested intervals. This language contains
arbitrarily long words. For this language it is crucial to work with an infinite
alphabet as for each finite set C ⊂ Q, the restriction Lint ∩ C∗ is just a finite
language. Note that the language is equivariant: w ∈ Lint ⇐⇒ wg ∈ Lint for
any monotone bijection g, because nested intervals are preserved by monotone
maps.3 Indeed, Lint is a nominal set, although it is not orbit-finite.

Informally, the language Lint can be accepted by the automaton depicted in
Figure 1. Here we allow the automaton to store rational numbers and compare
them to new symbols. For example, the transition from q2 to q3 is taken if any
value c between a and b is read and then the currently stored value a is replaced
by c. For any other value read at state q2 the automaton transitions to the sink
state q4. Such a transition structure is made precise by the notion of nominal
automaton.

Definition 3.2. A nominal language is an equivariant subset L ⊆ A∗ where A
is an orbit-finite nominal set.

Definition 3.3. A nominal deterministic finite automaton is a tuple (S,A, F, δ),
where S is an orbit-finite nominal set of states, A is an orbit-finite nominal set
of symbols, F ⊆ S is an equivariant subset of final states, and δ : S ×A→ S is
the equivariant transition function.

Given a state s ∈ S, we define the usual acceptance condition: a word
w ∈ A∗ is accepted if w denotes a path from s to a final state.

3The G-action on words is defined point-wise: (w1 . . . wn)g = (w1g) . . . (wng).

5

q0 q1(a) q2(a, b) q3(a, b)

q4

a b > a

b ≤ a

a < c < b
a← c

a < c < b
b← c

c ≤ a c ≥ b

c ≤ a

c ≥ b

a

Figure 1: Example automaton that accepts the language Lint.

The automaton in Figure 1 can be formalised as a nominal deterministic
finite automaton as follows. Let

S = {q0, q4} ∪ {q1(a) | a ∈ Q} ∪ {q2(a, b) | a < b ∈ Q} ∪ {q3(a, b) | a < b ∈ Q}

be the set of states, where the group action is defined as one would expect. The
transition we described earlier can now be formally defined as

δ(q2(a, b), c) = q3(c, b) for all a < c < b ∈ Q .

By defining δ on all states accordingly and defining the final states as

F = {q2(a, b) | a < b ∈ Q} ,

we obtain a nominal deterministic automaton (S,Q, F, δ). The state q0 accepts
the language Lint.

3.1. Minimisation of Nominal Automata

For languages recognised by nominal DFAs, a Myhill-Nerode theorem holds
which relates states to right congruence classes [2]. This guarantees the existence
of unique minimal automata. We say an automaton is minimal if its set of
states has the least number of orbits and each orbit has the smallest dimension
possible.4

Example 3.4. Consider the language

Lmax = {wa ∈ Q∗ | a = max(w1, . . . , wn)}

consisting of those words where the last symbol is the maximum of previous
symbols. Figure 2 depicts a nominal automaton accepting Lmax, which is how-
ever not minimal. Figure 3 is the minimal nominal automaton accepting Lmax.

4Abstractly, an automaton is minimal if it has no proper quotients. Minimal deterministic
automata are unique up to isomorphism.

6

q0 q1(a) q2(a, a)

q3(a, b)
b > a

q4(a, b)
b < a

a

b >
a

a

b <
a

b > a
b
a← b

b < aa

c > b
a← b
b← c

c < a
a← a
b← c

a
c < b
a← b
b← c

c > a
a← a
b← c

Figure 2: Example automaton that accepts the language Lmax.

q′0 q′1(a) q′2(a)
a a

b < a
a← a

b > a
a← b

b < a
a← a

b > a
a← b

Figure 3: The automaton from Figure 2, minimised.

7

There exist algorithms in order to minimise automata. In this paper we
focus on Moore’s minimisation algorithm. It generalises to nominal DFAs since
it uses set operations which work just as well on nominal sets (see Algorithm 1).
We will perform a complexity analysis in Section 8 and later use this algorithm
for testing our library.

Algorithm 1 Moore’s minimisation algorithm for nominal DFAs

Require: Nominal automaton (S,A, F, δ).
1: i← 0, ≡−1 ← S × S, ≡0 ← F × F ∪ (S\F)× (S\F)
2: while ≡i 6= ≡i−1 do

3: ≡i+1 = {(q1, q2) | (q1, q2) ∈ ≡i ∧ ∀a ∈ A, (δ(q1, a), δ(q2, a)) ∈ ≡i}
4: i← i+ 1
5: end while

6: E ← S/≡i

7: FE ← {e ∈ E | ∀s ∈ e, s ∈ F}
8: Let δE be the map such that, if s ∈ e and δ(s, a) ∈ e′, then δE(e, a) = e′.
9: return (E,A, FE , δE).

3.2. Learning nominal automata
Another interesting application is automata learning. The aim of automata

learning is to infer an unknown regular language L. We use the framework of
active learning as set up by Dana Angluin [23] where a learning algorithm can
query an oracle to gather information about L. Formally, the oracle can answer
two types of queries:

1. membership queries, where a query consists of a word w ∈ A∗ and the
oracle replies whether w ∈ L, and

2. equivalence queries, where a query consists of an automaton H and the
oracle replies positively if L(H) = L or provides a counterexample if
L(H) 6= L.

With these queries, the L⋆ algorithm can learn regular languages efficiently [23].
In particular, it learns the unique minimal automaton for L using only finitely
many queries. The L⋆ algorithm has been generalised to νL⋆ in order to learn
nominal regular languages [12]. In particular, it learns a nominal DFA (over
an infinite alphabet) using only finitely many queries. The algorithm is not
polynomial, unlike the minimisation algorithm described above. However, the
authors conjecture that there is a polynomial algorithm.5 For the correctness,
termination, and comparison with other learning algorithms see [12].

Learning register automata is an active research area with applications such
as bug-finding in internet protocols [24]; see [13] for other applications. We will
implement νL⋆ to test our library in Section 9.4.

5See joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html for a
sketch of the polynomial algorithm.

8

joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html

4. Representing nominal orbits

In this section we recall the representation of nominal sets according to [2].
We represent nominal sets as collections of single orbits. The finite represen-
tation of single orbits is makes use of the technical notions of restriction and
extension. We only briefly report their definitions here. However, the reader
can safely move to the concrete representation theory in Section 5 with only a
superficial understanding of Theorem 4.1 below.

The restriction of an element π ∈ G to a subset C ⊆ D, written as π|C , is
the restriction of the function π : D → D to the domain C. The restriction of a
group G to a subset C ⊆ D is defined as

G|C = {π|C | π ∈ G, Cπ = C} .

The extension of a subgroup S ≤ G|C is defined as

extG(S) = {π ∈ G | π|C ∈ S} .

For C ⊆ D and S ≤ G|C , define

[C, S]ec = {{sg | s ∈ extG(S)} | g ∈ G} ,

i.e., the set of right cosets of extG(S) in G. Then [C, S]ec is a single-orbit
nominal set.

Using the above, we can formulate the representation theory from [2] that we
will use in the current paper. This gives a finite description for all single-orbit
nominal sets X , namely a finite set C together with some of its symmetries.

Theorem 4.1. Let X be a single-orbit nominal set for a data symmetry (D, G)
that admits least supports and let C ⊆ D be the least support of some element
x ∈ X. Then there exists a subgroup S ≤ G|C such that X ∼= [C, S]ec.

Proof sketch. We restrict to a sketch of the main ideas of the proof, and refer
the reader to [2] for a fully worked out version of the proof.

First, we note that an element x ∈ X can be fully described by the subgroup
H of G of all group elements that leave x invariant. Properties such as whether
a set C is a support of x can be determined by just examining the structure
of the subgroup H . Most importantly here, it can be shown that, similarly
to how one can reconstruct the single-orbit set X from x as the latter’s orbit
{xg | g ∈ G}, the orbit X is isomorphic to the set of right cosets of H in G.

This approach reduces the problem to describing subgroups of the group G.
This is not possible for general subgroups, as there can be uncountably many
such subgroups. However, the subgroups from the previous step are special in
that they have a least support.

To represent such a subgroup we use the least support to split the elements
of this subgroup into three categories. First, there are group elements that are
“trivially” part of H as they have the elements of the least support C as fixed
points. Second, there are elements that act as the identity outside of C, but

9

permute the elements of C. Finally, there are the elements of H that both
permute the elements of C, and that do not act as the identity outside of C.

This last category of elements can be shown to be generated by elements
from the first and second category. But the first two categories have relatively
straightforward, finite, representations:

• The group elements that have the elements of C as a fixed points can
simply be described by the set C.

• The group elements that only permute C can be restricted to C, and then
form (with addition of the identity) a subgroup of the permutation group
of C, which is a finite group.

These elements combined form the representation of the above theorem: A finite
subset C of D, and a finite group S acting on C.

5. Representation in the total order symmetry

This section develops a concrete representation of nominal sets over the total
order symmetry, as well as equivariant maps and products. It is based on the
abstract representation theory from Section 4. From now on, by nominal set we
always refer to a nominal set over the total order symmetry. Hence, our data
domain is Q and we take G to be the group of monotone bijections.

5.1. Orbits and nominal sets

From the representation in Section 4, we find that any single-orbit set X can
be represented as a tuple (C, S). Our first observation is that the finite group of
‘local symmetries’, S, in this representation is always trivial, i.e., S = I, where
I = {1} is the trivial group. This follows from the following lemma and the fact
that S ≤ G|C .

Lemma 5.1. For every finite subset C ⊂ Q, we have G|C = I.

Proof. Let π ∈ G|C be any element of G|C . If π is not the identity, then since C
is finite, there exists a smallest element c ∈ C with cπ 6= c. Since π is a bijection
mapping C to C, we find cππ 6= cπ and cπ ∈ C, hence c < cπ. Furthermore,
there exists some c′ ∈ C with c′π = c. Since by assumption c′ 6= c, also c < c′.
But then both c < c′ and cπ > c = c′π, contradicting monotonicity of π. Hence
π is the identity element, and G|C = I.

Immediately, we see that (C, S) = (C, I), and hence that the orbit is fully
represented by the set C. Together with Theorem 4.1 this leads to a complete
characterisation of [C, I]ec in Lemma 5.3. In its proof, we also need the following.

Lemma 5.2 (Homogeneity). For any two finite C ⊆ Q, C′ ⊆ Q, if #C = #C′,
then there is a π ∈ G such that Cπ = C′.

10

Q

Q

C(1) C(2) C(3)

C′(1) C′(2) C′(3)

Figure 4: Visualisation of π from Lemma 5.2

Proof. This is shown through construction of π. Number the elements of C
from smallest to largest, such that C(1) is the smallest element and C(n) the
largest. Do the same for C′. We define π such that C(i)π = C′(i), interpolating
in between (see Figure 4 for a visualisation):

x < C(1) =⇒ xπ = x− C(1) + C′(1)

x ≥ C(1) ∧ x < C(2) =⇒ xπ = (x− C(1))C
′(2)−C′(1)
C(2)−C(1) + C′(1)

x ≥ C(2) ∧ x < C(3) =⇒ xπ = (x− C(2))C
′(3)−C′(2)
C(3)−C(2) + C′(2)

· · ·

x ≥ C(n) =⇒ xπ = x− C(n) + C′(n)

Note that since C′(i)−C′(i−1)
C(i)−C(i−1) > 0 for any 1 < i ≤ n, π is monotone. Further-

more, its inverse is given by:

x < C′(1) =⇒ xπ−1 = x− C′(1) + C(1)

x ≥ C′(1) ∧ x < C′(2) =⇒ xπ−1 = (x− C′(1)) C(2)−C(1)
C′(2)−C′(1) + C(1)

x ≥ C′(2) ∧ x < C′(3) =⇒ xπ−1 = (x− C′(2)) C(3)−C(2)
C′(3)−C′(2) + C(2)

· · ·

x ≥ C′(n) =⇒ xπ−1 = x− C′(n) + C(n)

Hence π is a monotone bijection, and we conclude π ∈ G.

Lemma 5.3. Given a finite subset C ⊂ Q, we have [C, I]ec ∼= P#C(Q).

Proof. From Lemma 5.2 it follows that P#C(Q) consists of a single orbit. Given
this, in combination with the fact that C ∈ P#C(Q), Theorem 4.1 gives a
subgroup S ≤ G|C such that P#C(Q) ∼= [C, S]ec. Since S ≤ G|C , Lemma 5.1
implies S = I. This proves that [C, I]ec ∼= P#C(Q).

By Theorem 4.1 and the above lemmas, we can represent an orbit by a single
integer n, the size of the least support of its elements.

11

Corollary 5.4. Let X be an orbit-finite nominal set. Then X ∼= Pdim(X)(Q).

Proof. By Theorem 4.1, we get C and S ≤ G|C such that X ∼= [C, S]ec. By
Lemma 5.1, S = I, and by Lemma 5.3 we get

X ∼= [C, I]ec ∼= P#C(Q) .

But #C = dim(X), since C is the least support of some element x ∈ X .

This naturally extends to (orbit-finite) nominal sets with multiple orbits by
using a multiset of natural numbers, representing the size of the least support of
each of the orbits. These multisets are formalised here as functions f : N→ N.

Definition 5.5. Given a function f : N→ N, we define a nominal set [f]o by

[f]o =
⋃

n∈N
1≤i≤f(n)

{i} × Pn(Q).

Proposition 5.6. For every orbit-finite nominal set X, there is a unique func-
tion f : N→ N such that X ∼= [f]o and the set {n | f(n) 6= 0} is finite.

Proof. We start by proving the existence. For this, grade X by the dimension
of its elements, defining Xi = {x ∈ X | dim(x) = i}. Now split each Xi up into
its ki orbits Oi,j , such that

Xi =
⋃

1≤j≤ki

Oi,j .

By Corollary 5.4, we have Oi,j
∼= {j} × Pi(Q) for each orbit Oi,j .

Define f : N→ N such that f(i) = ki. Then {n | f(n) 6= 0} is finite, since X
is orbit-finite. Writing out gives

[f]o =
⋃

i∈N
1≤j≤f(i)

{j} × Pi(Q) ∼=
⋃

i∈N
1≤j≤ki

Oi,j = X.

Next, we need to show that f is unique. Suppose g : N → N also represents
X , e.g. X ∼= [g]o. Then it follows that [f]o ∼= [g]o. Let h : [f]o → [g]o be the
isomorphism. Grade [f]o and [g]o, letting [f]oi = {x ∈ [f]o | dim(x) = i}, and
similarly for [g]oi . Since h is an isomorphism, we have for any x ∈ [f]o that
dim(h(x)) = dim(x), implying h([f]oi) = [g]oi . Furthermore, the fact that h is
an isomorphism gives N(h([f]oi)) = N([f]oi). Using N([f]oi) = f(i), we find that
f(i) = N([f]oi) = N(h([f]oi)) = N([g]oi) = g(i). Hence f = g, proving that f is
unique.

Example 5.7. Consider the set Q×Q. The elements (a, b) split in three orbits,
one for a < b, one for a = b and one for a > b. These have dimension 2, 1 and
2 respectively, so the set Q×Q is represented by the multiset {1, 2, 2}.

12

Remark 5.8. The presentation in terms of a function f : N→ N enforces that
there are only finitely many orbits of any given dimension. The first part of
the above proposition generalises to arbitrary nominal sets by replacing the
codomain of f by the class of all sets and adapting Definition 5.5 accordingly.
However, the resulting correspondence will no longer be one-to-one.

5.2. Equivariant maps

We show how to represent equivariant maps, using two basic properties. Let
f : X → Y be an equivariant map. The first property is that the direct image of
an orbit (in X) is again an orbit (in Y), that is to say, f is defined ‘orbit-wise’.
Second, equivariant maps cannot introduce new elements in the support (but
they can drop them). More precisely:

Lemma 5.9. Let f : X → Y be an equivariant map, and O ⊆ X a single orbit.
The direct image f(O) = {f(x) | x ∈ O} is a single-orbit nominal set.

Proof. Let y and y′ both be elements of f(O). To show that f(O) is single-orbit,
we need to construct a π ∈ G such that yπ = y′. By definition of f(O), there
exist x ∈ O, x′ ∈ O such that f(x) = y and f(x′) = y′. Since O is single-orbit,
there exists a π ∈ G such that xπ = x′. As f is an equivariant function, we find
yπ = f(x)π = f(xπ) = f(x′) = y′. This proves that f(O) is single-orbit.

Lemma 5.10. Let f : X → Y be an equivariant map between two nominal sets
X and Y . Let x ∈ X and let C be a support of x. Then C supports f(x).

Proof. Let π ∈ G be such that ∀c ∈ C, cπ = c. Then since C is the support of
x, xπ = x. But then also f(x)π = f(xπ) = f(x) = f(x). Hence C is a support
of f(x). Then, by definition, the least support of f(x) is contained in C.

Hence, equivariant maps are fully determined by associating two pieces of
information for each orbit in the domain: the orbit on which it is mapped and a
string denoting which elements of the least support of the input are preserved.
These ingredients are formalised in the first part of the following definition.
The second part describes how these ingredients define an equivariant function.
Proposition 5.12 then states that every equivariant function can be described in
this way.

Definition 5.11. Let H = {(I1, F1, O1), . . . , (In, Fn, On)} be a finite set of
tuples where the Ii’s are disjoint single-orbit nominal sets, the Oi’s are single-
orbit nominal sets with dim(Oi) ≤ dim(Ii), and the Fi’s are bit strings of length
dim(Ii) with exactly dim(Oi) ones.

Given a setH as above, we define fH :
⋃

Ii →
⋃

Oi as the unique equivariant
function such that, given x ∈ Ii with least support C, fH(x) is the unique
element of Oi with support {C(j) | Fi(j) = 1}, where Fi(j) is the j-th bit of Fi

and C(j) is the j-th smallest element of C.

Proposition 5.12. For every equivariant map f : X → Y between orbit-finite
nominal sets X and Y there exists a unique set H as in Definition 5.11 such
that f = fH .

13

Proof. We start with showing existence by construction. Split X into its con-
stituent orbits, call them I1 through In. For each of these, select an element
ei ∈ Ii. Let Oi be the orbit of f(ei). By Lemma 5.9, f(Ii) = Oi. For each
ei, let Ci be the least support of ei and C′

i the least support of f(ei). Let
Fi be the string with Fi(j) = 1 if Ci(j) ∈ C′

i, and Fi(j) = 0 otherwise. Let
H = {(Ii, Fi, Oi) | i ∈ {1, . . . , n}}. By construction, fH(ei) is the unique el-
ement of Oi with support C′

i ∩ Ci. By Lemma 5.10, C′
i ∩ Ci = C′

i, implying
fH(ei) = f(ei). Since both are equivariant functions with the same domain, we
have f(x) = fH(x) for all x ∈ X . Hence f = fH .

To show that H is unique, consider an H ′ such that f = fH′ . As a con-
sequence, we have fH = fH′ . From the definition of orbits it follows im-
mediately that the split of X into Ii is essentially unique, and that we can
label the tuples (I ′i, F

′
i , O

′
i) in H ′ such that I ′i = Ii. It then follows that

Oi = fH(Ii) = fH′(I ′i) = O′
i. To show Fi = F ′

i , consider an x ∈ Ii. Let C
denote the least support of x, and Cf the least support of f(x). By definition
of fH and fH′ , it follows that {C(j) | Fi(j) = 1} = Cx = {C(j) | F ′

i (j). But
this is only possible if Fi = F ′

i , and hence H = H ′.

Example 5.13. Consider the function min : P3(Q) → Q which returns the
smallest element of a 3-element set. Note that both P3(Q) and Q are single
orbits. Since for the orbit P3(Q) we only keep the smallest element of the
support, we can thus represent the function min with {(P3(Q), 100,Q)}.

Example 5.14. Consider the (right) projection π2 : Q × Q → Q. Recall from
Example 5.7 that the set Q × Q has three orbits Q1 = {(a, b) | a < b}, Q2 =
{(a, b) | a = b} and Q3 = {(a, b) | a > b}. The function π2 is represented by
{(Q1, 01,Q), (Q2, 1,Q), (Q3, 10,Q).

5.3. Products

The product X ×Y of two nominal sets is again a nominal set and hence, it
can be represented itself in terms of the dimension of each of its orbits as shown
in Section 5.1. However, this approach has some disadvantages.

Example 5.15. We start by showing that the orbit structure of products can be
non-trivial. Consider the product ofX = Q and the set Y = {(a, b) ∈ Q2 | a < b}.
This product consists of five orbits, more than one might naively expect from
the fact that both sets are single-orbit:

{(a, (b, c)) | a, b, c ∈ Q, a < b < c}, {(a, (a, b)) | a, b ∈ Q, a < b},
{(b, (a, c)) | a, b, c ∈ Q, a < b < c}, {(b, (a, b)) | a, b ∈ Q, a < b},
{(c, (a, b)) | a, b, c ∈ Q, a < b < c}.

We find that this product is represented by the multiset {2, 2, 3, 3, 3}. Un-
fortunately, this is not sufficient to accurately describe the product as it ab-
stracts away from the relation between its elements with those in X and Y .
In particular, it is not possible to reconstruct the projection maps from such a
representation.

14

The essence of our representation of products is that each orbit O in the
product X × Y is described entirely by the dimension of O together with the
two (equivariant) projections π1 : O → X and π2 : O → Y . This combination
of the orbit and the two projection maps can already be represented using
Propositions 5.6 and 5.12. However, as we will see, a combined representation
for this has several advantages. For discussing such a representation, let us first
introduce what it means for tuples of a set and two functions to be isomorphic:

Definition 5.16. Given nominal setsX,Y, Z1 and Z2, and equivariant functions
l1 : Z1 → X , r1 : Z1 → Y , l2 : Z2 → X and r2 : Z2 → Y , we define (Z1, l1, r1) ∼=
(Z2, l2, r2) if there exists an isomorphism h : Z1 → Z2 such that l1 = l2 ◦ h and
r1 = r2 ◦ h.

Our goal is to have a representation that, for each orbit O, produces a
tuple (A, f1, f2) isomorphic to the tuple (O, π1, π2). The next lemma gives a
characterisation that can be used to simplify such a representation.

Lemma 5.17. Let X and Y be nominal sets and (x, y) ∈ X × Y . If C, Cx,
and Cy are the least supports of (x, y), x, and y respectively, then C = Cx ∪Cy.

Proof. Let π ∈ G be a group element such that ∀c ∈ Cx ∪ Cy, cπ = c. Then
(x, y)π = (xπ, yπ) = (x, y) since Cx and Cy are supports of x and y respectively.
Hence Cx ∪ Cy is a support of x, and since C is the least support of x, C ⊆
Cx ∪ Cy.

Now suppose that C is strictly smaller than Cx ∪ Cy. Then there is an
element c ∈ Cx ∪ Cy with c /∈ C. Without loss of generality we can assume
c ∈ Cx. The set (Cx ∪ Cy) \ {c} is not a support of x, since the least support
Cx of x is not contained in (Cx ∪ Cy) \ {c}. Hence, there is some π ∈ G
such that ∀c′ ∈ (Cx ∪ Cy) \ {c}, c

′π = c′, but xπ 6= x. For this π, we have
(x, y)π = (xπ, yπ) 6= (x, y). However, (Cx∪Cy)\{c} is a support of (x, y), since
C ⊆ (Cx ∪Cy) \ {c}. Hence (x, y)π = (x, y), yielding a contradiction.

With Proposition 5.12 we represent the maps π1 and π2 by tuples (O,F1, O1)
and (O,F2, O2) respectively. Using Lemma 5.17 and the definitions of F1 and
F2, we see that at least one of F1(i) and F2(i) equals 1 for each i.

We can thus combine the strings F1 and F2 into a single string P ∈ {L,R,B}∗

as follows. We set P (i) = L when only F1(i) is 1, P (i) = R when only F2(i) is 1,
and P (i) = B when both are 1. The string P fully describes the strings F1 and
F2. This process for constructing the string P gives it two useful properties:

• The number of Ls and Bs in the string P equals the dimension of O1.

• The number of Rs and Bs in the string P equals the dimension of O2.

We will call strings P with the above two properties valid (with respect to
O1, O2).

Thus, to describe a single orbit of the product X × Y , a valid string P
together with the images of π1 and π2 is sufficient. This is stated more precisely
in Proposition 5.20.

15

Definition 5.18. Let O1 ⊆ X , O2 ⊆ Y be single-orbit sets, and let P ∈
{L,R,B}∗ be a valid string with respect to O1, O2. Define

[(P,O1, O2)]
t = (P|P |(Q), fH1

, fH2
),

where Hi = {(P|P |(Q), Fi, Oi)} and the string F1 is defined as the string P with
Ls and Bs replaced by 1s and Rs by 0s. The string F2 is similarly defined with
the roles of L and R swapped.

This construction generates orbits of X × Y :

Lemma 5.19. Let (P,O1, O2) be a tuple as in Definition 5.18. Then we have
[(P,O1, O2)]

t ∼= (O, π1, π2) for some orbit O ⊆ X × Y .

Proof. Let (O′, f, g) = [(P,O1, O2)]
t. By construction, we find f(O′) ⊆ X

and g(O′) ⊆ Y . Denote by 〈f, g〉 : O′ → X × Y the pairing, i.e., 〈f, g〉(x) =
(f(x), g(x)). By Lemma 5.9, since O′ is single-orbit, so is 〈f, g〉(O′). The latter
is an orbit of X × Y .

We now show that 〈f, g〉 is an isomorphism. First, by construction of f and
g, we find that if C is the least support of x ∈ O′, then C is also the least
support of (f(x), g(x)), since every element in the support of x is in at least one
of the least supports of f(x) and g(x), and by Lemma 5.17, the least support
of (f(x), g(x)) is the union of the least supports of f(x) and g(x). This implies
that the elements of both O′ and 〈f, g〉(O′) have the same support size. Since
both O′ and 〈f, g〉(O′) are single-orbit, this makes 〈f, g〉 a bijection. Hence,

[(P,O1, O2)]
t = (O′, f, g) ∼= (〈f, g〉(O′), π1|〈f,g〉(O′), π2|〈f,g〉(O′)) .

The following result shows that every orbit of X × Y arises in this way, up
to isomorphism.

Proposition 5.20. For every orbit O ⊆ X×Y there is a unique tuple (P,O1, O2)
such that O1 ⊆ X, O2 ⊆ Y are orbits, P is a valid string and

[(P,O1, O2)]
t ∼= (O, π1|O, π2|O) .

Proof. Let us start by constructing such a tuple (P,O1, O2) for a given orbit
O ⊆ X × Y . Since O is an orbit, Lemma 5.12 provides two tuples (O,F1, O1)
and (O,F2, O2) with O1 an orbit of X and O2 an orbit of Y such that π1|O =
f{(O,F1,O1)} and π2|O = f{(O,F2,O2)}. Now construct P as the sequence of length
dim(O) as follows:

P (i) =











L if F1(i) = 1 and F2(i) = 0

R if F1(i) = 0 and F2(i) = 1

B if F1(i) = F2(i) = 1

This covers all cases, since Lemma 5.17 guarantees that it will never be the case
that the i-th letters of F1 and F2 are both 0.

16

We first show that P is valid. To see this, observe that by Definition 5.11,
each 1 in the string F1 corresponds to a unique element in the least support
of an element of O1. Hence dim(O1) = |F1|. By definition of F1 we find
dim(O1) = |F1| = |P |L + |P |B. A similar line of reasoning, replacing L with R,
shows dim(O2) = |F2| = |P |R + |P |B.

To show that the correspondence is bijective, we first show that, given an
orbit O ⊆ X × Y , if (P,O1, O2) is the corresponding triple then

(O, π1|O, π2|O) ∼= [(P,O1, O2)]
t .

Let n = dim(O). By Corollary 5.4, we have Pn(Q) ∼= O. Let g : O
∼=
→ Pn(Q) be

the isomorphism between them. Then f{(O,F1,O1)} = f{(P|F1|(Q),F1,O1)} ◦ g and
f{(O,F2,O2)} = f{(P|F2|(Q),F2,O2)} ◦ g. As a consequence, we have

(O, π1|O, π2|O) ∼= (P|F1|(Q), f{(P|F1|(Q),F1,O1)}, f{(P|F2|(Q),F2,O2)}) .

By Definition 5.18 and the above construction of P , the right-hand side of the
above equation equals [(P,O1, O2)]

t. Hence, (O, π1|O, π2|O) ∼= [(P,O1, O2)]
t.

Finally, for uniqueness, consider two tuples (P,O1, O2) and (P ′, O′
1, O

′
2),

such that [(P,O1, O2)]
t ∼= [(P ′, O′

1, O
′
2)]

t. We let F1 and F2 denote the strings
from Definition 5.18 for [(P,O1, O2)]

t, and similarly F ′
1 and F ′

2 the strings for
[(P ′, O′

1, O
′
2)]

t.
Since [(P,O1, O2)]

t ∼= [(P ′, O′
1, O

′
2)]

t we have P|P |(Q) ∼= P|P ′|(Q), hence
|P | = |P ′|. Furthermore, by the isomorphism, for any x ∈ P|P |(Q), there exists
an x′ ∈ P|P ′|(Q) such that

f{(P|P |(Q),F1,O1)}(x) = f{(P|P ′|(Q),F ′
1
,O′

1
)}(x

′) , and

f{(P|P |(Q),F2,O2)}(x) = f{(P|P ′|(Q),F ′
2
,O′

2
)}(x

′) .
(1)

Since O1, O2, O
′
1 and O′

2 single-orbit, this implies O1 = O′
1 and O2 = O′

2.
Moreover, by Lemma 5.17, the least support of any element x ∈ P|P |(Q)

equals the least support of (f{(P|P |(Q),F1,O1)}(x), f{(P|P |(Q),F2,O2)}(x)). But if we
choose x′ corresponding to x as in the previous paragraph, then by (1) we obtain
that the least support of x equals the least support of x′. Hence x = x′. But
this implies that f{(P|P |(Q),F1,O1)} = f{(P|P ′|(Q),F ′

1
,O1)} and f{(P|P |(Q),F2,O2)} =

f{(P|P ′|(Q),F ′
2
,O2)}, hence also F1 = F ′

1 and F2 = F ′
2. But F1 = F ′

1 and F2 = F ′
2

can hold only if P and P ′ are equal. From this, we conclude that (P,O1, O2) =
(P ′, O′

1, O
′
2).

From the above proposition it follows that we can generate the productX×Y
simply by enumerating all valid strings P for all pairs of orbits (O1, O2) of X
and Y . Given this, we can calculate the multiset representation of a product
from the multiset representations of both factors.

Theorem 5.21. For X ∼= [f]o and Y ∼= [g]o we have X × Y ∼= [h]o, where

h(n) =
∑

0≤i,j≤n
i+j≥n

f(i)g(j)

(

n

j

)(

j

n− i

)

.

17

Proof. Every string P ∈ {L,R,B}∗ of length n with |P |L = n− j, |P |R = n− i
and |P |B = i + j − n satisfies the requirements of Lemma 5.20, and hence
describes a unique orbit for every pair of orbits O1 and O2 where the least
support of the elements of O1 has size i, and the least support of elements
of O2 have size j. Combinatorics tells us that there are

(

n
j

)(

j
n−i

)

such strings.
Summing over all i ≥ 0, j ≥ 0 such that i+j−n, n−j and n−i are positive, and
multiplying with the number of orbits of the required size gives the result.

Example 5.22. To illustrate some aspects of the above representation, let us
use it to calculate the product of Example 5.15. First, we observe that both
Q and S = {(a, b) ∈ Q2 | a < b} consist of a single orbit. Hence any orbit
of the product corresponds to a triple (P,Q, S), where the string P satisfies
|P |L+ |P |B = dim(Q) = 1 and |P |R+ |P |B = dim(S) = 2. We can now find the
orbits of the product Q×S by enumerating all strings satisfying these equations.
This yields:

• LRR, corresponding to the orbit {(a, (b, c)) | a, b, c ∈ Q, a < b < c},

• RLR, corresponding to the orbit {(b, (a, c)) | a, b, c ∈ Q, a < b < c},

• RRL, corresponding to the orbit {(c, (a, b)) | a, b, c ∈ Q, a < b < c},

• RB, corresponding to the orbit {(b, (a, b)) | a, b ∈ Q, a < b}, and

• BR, corresponding to the orbit {(a, (a, b)) | a, b ∈ Q, a < b}.

Each product string fully describes the corresponding orbit. To illustrate, con-
sider the string BR. The corresponding bit strings for the projection functions
are F1 = 10 and F2 = 11. From the lengths of the string we conclude that the
dimension of the orbit is 2. The string F1 further tells us that the left element of
the tuple consists only of the smallest element of the support. The string F2 indi-
cates that the right element of the tuple is constructed from both elements of the
support. Combining this, we find that the orbit is {(a, (a, b)) | a, b ∈ Q, a < b}.

5.4. Summary

We summarise our concrete representation in the following table. Proposi-
tions 5.6, 5.12 and 5.20 correspond to the three rows in the table.

Notice that in the case of maps and products, the orbits are inductively
represented using the concrete representation. As a base case we can represent
single orbits by their dimension.

6. C++ Implementation of Ons

The ideas outlined above have been implemented in the C++ library Ons.6

The library can represent orbit-finite nominal sets and their products, (disjoint)

6Ons can be found at https://github.com/davidv1992/ONS

18

https://github.com/davidv1992/ONS

Object Representation

Single orbit O Natural number n = dim(O)

Nominal set X =
⋃

iOi Multiset of these numbers

Map from single orbit f : O → Y The orbit f(O) and a bit string F

Equivariant map f : X → Y Set of tuples (O,F, f(O)), one for
each orbit

Orbit in a product O ⊆ X × Y The corresponding orbits of X and Y ,
and a string P relating their supports

Product X × Y Set of tuples (P,OX , OY), one for
each orbit

Table 1: Overview of representation.

unions, and maps. A full technical description of what it can do, and how to
use it, is given in the documentation included with Ons.

Let us start here by showing an example program to calculate the product
of the sets {(a, b) | a < b} and Q (see Example 5.22). The program below
calculates this product, and then prints one element for each orbit of the result.

nomset <rational > A = nomset_rationals ();

nomset <pair <rational , rational >> B({ rational (1), rational (2)});

auto AtimesB = nomset_product (A, B); // compute the product

for (auto orbit : AtimesB)

cout << orbit.getElement () << " ";

In the first line, we create a nominal set A, and initialize it with the built-in
set Q. The type of such a nominal set variable is nomset<T>, where T is the
type of the elements. In case of A this is the rational type.

In the second line, we create the set B containing the elements of {(a, b) |
a < b}. To do this, we instruct the constructor of B to create the minimal
nominal set containing the element (1, 2). This creates the nominal set with the
orbit of (1, 2), which is exactly the set {(a, b) | a < b}.

Having created these sets, it then computes the product using the func-
tion nomset_product. This returns the product, of type nomset<pair<A,B>>,
where A and B are the types of the elements of A and B respectively. In our
case, this means that the result is a nominal set containing elements of type
pair<rational,pair<rational,rational>>.

Finally, we loop over the orbits of the result, stored in the variable AtimesB,
with for (auto orbit : AtimesB). This returns an orbit object for each
orbit in the nominal set AtimesB. These objects describe the properties of the
individual orbits of a nominal set. We use it here to get an element (with
.getElement()), which is printed through standard out.

Running this code gives the following output (‘/1’ signifies the denominator):

(1/1 ,(2/1 ,3/1)) (1/1 ,(1/1 ,2/1)) (2/1 ,(1/1 ,3/1))

19

(2/1 ,(1/1 ,2/1)) (3/1 ,(1/1 ,2/1))

We see here a list of five elements, each corresponding to a single orbit of
the product Q× {(a, b) | a < b}.

6.1. Core functionality

The main implementation of nominal sets and equivariant functions in the
Ons library is split up in three main concepts:

1. orbit<T>, representing orbits;

2. nomset<T>, representing nominal sets, containing a number of orbit<T>
objects;

3. eqimap, equivariant functions.

The orbit<T> objects contain a complete description of a single orbit of ele-
ments of type T . They allow querying of basic properties such as the size of
the least support (with .supportSize), checking whether an element is a mem-
ber of the orbit (with .isElement), and extraction of sample elements (with
.getElement).

Next, nomset<T> is used to represent entire sets. Functionality includes
checking whether an element or other set is contained in the set (with .contains),
iterating over the orbits (see above), and querying for the size of the set (with
.size).

For working with nominal sets, Ons also provides implementations of com-
mon set operations. Examples of these are set union (with nomset_union), in-
tersection (with nomset_intersect), and set products (with nomset_product).

The Ons library also implements support for filtering (with nomset_filter)
and mapping (with nomset_map) of nominal sets. These take an (equivariant)
function as argument, which can either be given as an equivariant function
object eqimap or as a C++ function or function object, as long as the resulting
behaviour when invoked is equivariant.

Finally, objects of type eqimap can be used to represent dynamically gener-
ated equivariant functions. They implement an evaluation, allowing the appli-
cation of the function to concrete argument values. They also contain several
functions for querying properties of the function represented (such as whether
elements are in its domain, with .inDomain), and manipulating the function
represented (such as extending the mapping, with .add).

6.2. Another example

Let us now consider a slightly more complicated piece of code. It refines a
relation R (called previousPartition) on the states Q of an automaton, using
a transition function f : Q × A → A (called transitionFunction), over an
alphabet A (called alphabet). It returns as a result the set

{(q, q′) ∈ R | ∀a ∈ A : (f(q, a), f(q′, a)) ∈ R} .

The code is as follows.

20

template <typename Q, typename A>

nomset <pair <Q,Q>> refineRelation (

nomset <A> alphabet ,

nomset <pair <Q,Q>> previousRelation ,

eqimap <pair <Q,A>, Q> transitionFunction) {

// calculate R x A

nomset <pair <pair <Q,Q>,A>> transitions =

nomset_product (previousRelation , alphabet);

// Find those where (f(q,a), f(q’,a)) not in R

nomset <pair <pair <Q,Q>,A>> invalid =

nomset_filter (transitions , [&](pair <pair <Q,Q>,A> input) {

Q state1 = input.first.first;

Q state2 = input.first.second;

A letter = input.second;

Q result1 = transitionFunction ({ state1 , letter });

Q result2 = transitionFunction ({ state2 , letter });

return ! previousRelation .contains ({ result1 , result2 });

});

// Strip away alphabet

nomset <pair <Q,Q>> toRemove =

nomset_map (invalid , [](pair <pair <Q,Q>,A> input) {

return input.first;

});

// Calculate result

return nomset_minus (previousRelation , toRemove);

}

This result is computed in four steps. First, it calculates the set of all
transition pairs it still needs to consider (transitions), using nomset_product

to calculate the product R×A.
Next, it uses nomset_filter to select those elements ((q, q′), a) for which

(f(q, a), f(q′, a)) /∈ R. Note that the function which calculates this is specified
as a plain C++ lambda, whose behaviour is equivariant.

For modifying the relation, only the first part of ((q, q′), a) is relevant, so
in the third step we use nomset_map to project out the alphabet letters of the
witnesses in the set invalid.

This leaves the code with a set of pairs (q, q′) which need to be removed from
R to produce the final result. This is calculated using the set minus operation
nomset_minus, resulting in the refined partition.

21

7. Haskell Implementation of Ons

We have implemented a similar library in Haskell, called Ons-hs.7 This
showcases the generality of the theoretical characterisation in Section 5.

At the core, there is the type class Nominal.

class Nominal a where

type Orbit a :: ∗
toOrbit :: a −> Orbit a
getElement :: Orbit a −> Support −> a
support :: a −> Support
index :: Proxy a −> Orbit a −> Int

It provides to basic functionality, toOrbit and getElement, to convert between
elements (of type a) and orbits of elements (of type Orbit a). The functions
support and index are utility functions, returning the (least) support of an ele-
ment, and the dimension of an orbit.

Instances are defined for basic data types such as the type of rational num-
bers, Atom. Other instances can be derived for any algebraic data structure
(following Table 1). For example, the data type for the states of the automaton
in Figure 1 can be defined as:

data State = Q0 | Q1 Atom | Q2 Atom Atom | Q3 Atom Atom | Q4
deriving (Eq, ...)
deriving Nominal via Generic State

Deriving instances with generics make it easy for the user to use the library.
One can also easily define trivial instances, where the group action is defined
as the identity function. This is used for the EquivariantSet data structure.
This data type provides an interface to (infinite) nominal sets and the usual set
constructions are defined. Some of these functions are shown below (we have
omitted the type class context from the type signatures).

data EquivariantSet a = ...
deriving Nominal via Trivial (EquivariantSet a)

map :: (a −> b) −> EquivariantSet a −> EquivariantSet b
filter :: (a −> Bool) −> EquivariantSet a −> EquivariantSet a
product :: EquivariantSet a −> EquivariantSet b −> EquivariantSet (a, b)
rationals :: EquivariantSet Atom

Function arguments (in, e.g., map and filter) are required to be equivariant.
Finally, a data type for equivariant maps, EquivariantMap is provided with the
expected functions for a map data structure.

With these functions, we can define all the states of the automaton in Fig-
ure 1 and the accepting states can easily be filtered out.

7Available at https://gitlab.science.ru.nl/moerman/ons-hs

22

https://gitlab.science.ru.nl/moerman/ons-hs

states = fromList [Q0, Q4] <> map Q1 rationals
<> map (uncurry Q2) (product rationals rationals)
<> map (uncurry Q3) (product rationals rationals)

acceptingStates = filter accept states where
accept (Q2 a b) = a < b
accept = False

8. Complexity of set operations

Since our implementations are directly based on representing orbits, it is
possible to derive concrete complexities for the set operations. To simplify such
an analysis, we make the following assumptions on operations on orbits:

• The comparison of two orbits takes O(1).

• Constructing an orbit from an element takes O(1).

• Checking whether an element is in an orbit takes O(1).

These assumptions are justified as each of these operations takes time propor-
tional to the size of the representation of an individual orbit, which in practice is
small and approximately constant. For instance, the orbit Pn(Q) is represented
by just the integer n and its type.

Furthermore, two of the operations considered make use of an external func-
tion. Since these can be implemented in a variety of ways, and the time com-
plexity of actually invoking these functions is highly dependent both on what it
calculates, and the specific way it is implemented in the program, we will here
simply consider invocations of these functions to take O(1) time.

For the notation in the following statement, recall that N(X) denotes the
number of orbits of X , and dim(X) the maximal size of the least support of its
elements.

Theorem 8.1. If nominal sets are implemented with a tree-based set structure
(as in Ons), the complexity of the following set operations is as follows:

Operation Complexity
Test x ∈ X O(log N(X))
Test X ⊆ Y O(min(N(X) + N(Y),N(X) logN(Y)))

Calculate X ∪ Y O(N(X) + N(Y))
Calculate X ∩ Y O(N(X) + N(Y))

Calculate {x ∈ X | p(x)} O(N(X))
Calculate {f(x) | x ∈ X} O(N(X) logN(X))

Calculate X × Y O(N(X × Y)) ⊆ O(3dim(X)+dim(Y) N(X)N(Y))

The functions p : X → 2 and f : X → Y are user defined, and assumed to
take O(1) time per invocation.

23

Proof. Since most parts are proven similarly, we only include proofs for the first
and last item.

Membership. To decide x ∈ X , we first construct the orbit containing x,
which is done in constant time. Then we use a logarithmic lookup to decide
whether this orbit is in our set data structure. Hence, membership checking is
O(log(N(X))).

Products. Calculating the product of two nominal sets is the most compli-
cated construction. For each pair of orbits in the original sets X and Y , all
product orbits need to be generated. Each product orbit itself is constructed
in constant time. By generating these orbits in-order, the resulting set takes
O(N(X × Y)) time to construct.

We can also give an explicit upper bound for the number of orbits in terms
of the input. Recall that orbits in a product are represented by strings of length
at most dim(X) + dim(Y). (If the string is shorter, we pad it with one of the
symbols.) Since there are three symbols (L,R and B), the product of X and
Y will have at most 3dim(X)+dim(Y) N(X)N(Y) orbits. It follows that taking
products has time complexity of O(3dim(X)+dim(Y) N(X)N(Y)).

Using the above complexity results on individual operations, we can derive
the complexity of algorithms using nominal sets. We will demonstrate this here
using Moore’s algorithm. Recall from Section 3.1:

Algorithm 2 Moore’s minimisation algorithm for nominal DFAs

Require: Nominal automaton (S,A, F, δ).
1: i← 0, ≡−1 ← S × S, ≡0 ← F × F ∪ (S\F)× (S\F)
2: while ≡i 6= ≡i−1 do

3: ≡i+1 = {(q1, q2) | (q1, q2) ∈ ≡i ∧ ∀a ∈ A, (δ(q1, a), δ(q2, a)) ∈ ≡i}
4: i← i+ 1
5: end while

6: E ← S/≡i

7: FE ← {e ∈ E | ∀s ∈ e, s ∈ F}
8: Let δE be the map such that, if s ∈ e and δ(s, a) ∈ e′, then δE(e, a) = e′.
9: return (E,A, FE , δE).

Theorem 8.2. The runtime complexity of Moore’s algorithm on nominal de-
terministic automata is O(35kkN(S)3 N(A)), where k = dim(S ∪ A).

Proof. This is shown by counting operations, using the complexity results of set
operations stated in Theorem 8.1. We first focus on the while loop on lines 2
through 5. The runtime of an iteration of the loop is determined by line 3, as
this is the most expensive step. Since the dimensions of S and A are at most
k, computing S × S × A takes O(N(S)2 N(A)35k). Filtering S × S using that
then takes O(N(S)232k). The time to compute S×S×A dominates, hence each
iteration of the loop takes O(N(S)2 N(A)35k).

Next, we need to count the number of iterations of the loop. Each iteration
of the loop gives rise to a new partition, which is a refinement of the previous

24

partition. Furthermore, every partition generated is equivariant. Note that this
implies that each refinement of the partition does at least one of two things:
distinguish between two orbits of S previously in the same element(s) of the
partition, or distinguish between two members of the same orbit previously
in the same element of the partition. The first can happen only N(S) − 1
times, as after that there are no more orbits lumped together. The second can
only happen dim(S) times per orbit, because each such a distinction between
elements is based on splitting on the value of one of the elements of the support.
Hence, after dim(S) times on a single orbit, all elements of the support are used
up. Combining this, the longest chain of partitions of S has length at most
O(kN(S)).

Since each partition generated in the loop is unique, the loop cannot run
for more iterations than the length of the longest chain of partitions on S. It
follows that there are at most O(kN(S)) iterations of the loop, giving the loop
a complexity of O(kN(S)3 N(A)35k)

The remaining operations outside the loop have a lower complexity than
that of the loop, hence the complexity of Moore’s minimisation algorithm for a
nominal automaton is O(kN(S)3 N(A)35k).

The above theorem shows in particular that minimisation of nominal au-
tomata is fixed-parameter tractable (FPT) with the dimension as fixed param-
eter. The complexity of Algorithm 1 for nominal automata is very similar to
the O((#S)3#A) bound given by a naive implementation of Moore’s algorithm
for ordinary DFAs. This suggest that it is possible to further optimise an im-
plementation with similar techniques used for ordinary automata.

9. Evaluation

This section presents an experimental evaluation of Ons and Ons-hs, com-
paring them against existing tools in two tasks related to nominal automata:
learning and minimisation.

9.1. The Tools: Ons, Ons-hs, Nλ, and Lois

In order to evaluate our libraryOns(-hs), we compare it against two existing
libraries for computing with nominal sets, Nλ [18] and Lois [19, 20]. We briefly
describe how these tools work and what the differences are with Ons.

Both Nλ and Lois work symbolically. Nominal sets are represented with set-
builder expressions: values with variables and a first-order formula describing
those values. For example, the orbit {{a, b, c} | a, b, c ∈ Q, a < b < c} is
represented simply as:

{fromList [x0, x1, x2] | x0 < x1 ∧ x1 < x2}.

(Here fromList takes a list and constructs a set.) In Ons, orbits are represented
more compactly: in this case, the integer 3 suffices. On the other hand, a set
such as Q3 has a compact representation in Nλ and Lois:

{(x0, x1, x2) | ⊤}

25

and a larger representation in Ons, consisting of 13 strings (see Section 5.3).
Since Nλ and Lois use formulas, many set operations are expressed by ma-

nipulating these formulas. One of the crucial operations is determining whether
a set is empty, which can be resolved by checking satisfiability of the formula.
To this end, these libraries use an SMT solver (by default, both libraries use Z3
[25]). Consequently, the runtime will depend on the size of these formulas, and
both libraries have routines to simplify formulas.

9.2. Benchmarks

We evaluate the scalability of each library by implementing the automata
minimisation algorithm and learning algorithm discussed in Section 3. These
are then tested on the following three sets of automata.

Structured automata. We define the following automata.

FIFO(n) Automata accepting valid traces of a finite FIFO data structure of size n.
The alphabet is defined by two orbits: {Put(a) | a ∈ Q} and {Get(a) |
a ∈ Q}.

ww(n) Automata accepting the language of words of the form ww, where w ∈ Qn.

Lmax The language Lmax where the last symbol is the maximum of previous
symbols (Example 3.4).

Lint The language accepting a series of nested intervals (Example 3.1).

The first two classes of structured automata are used as test cases in [12].
These two classes are also equivariant w.r.t. the equality symmetry. The struc-
tured automata can be encoded directly in symbolic form in Nλ or Lois. In
Ons, this structure is lost and the algorithms operate purely on orbits. Where
applicable, the automata listed above were generated using the same code as
used in [12], ported to the other libraries as needed.

The automaton accepting the FIFO language is not minimal. It is based on
the purely functional queue which has two lists of data values: one for pushing,
one for popping. If the list for popping is empty, the list for pushing is reversed
and moved to the list for popping [26]. The use of two lists is redundant and
hence the automaton is not minimal.

Orbit-wise random automata. Besides structured automata, we generate orbit-
wise random automata as follows. The input alphabet is always Q and the
number of orbits and dimension k of the state space S are fixed. For each orbit
in the set of states, its dimension is chosen uniformly at random between 0 and
k, inclusive. Each orbit has a probability 1

2 of consisting of accepting states.
To generate the transition function δ, we enumerate the orbits of S×Q and

choose a target state uniformly from the orbits S with small enough dimension.
The bit string indicating which part of the support is preserved is then sampled
uniformly from all valid strings. We will denote these automata as randN(S),k.
The choices made here are arbitrary and only provide basic automata. We note
that the automata are generated orbit-wise and this may favour our tool.

26

Random automata with formulae. The two classes above (orbit-wise random
and structured) are very different in nature. The random ones are defined orbit-
wise (which is an advantage for Ons), whereas the structured ones hardly use
the values in an interesting way. To provide a middle-ground, we also generate
random automata which use formulas on transitions.

For these automata, the state space is constructed from multiple copies of
Qn. We will refer to these copies as locations and we will refer to the number
of locations in the state space as the size of the automaton. We fix the size of
the automaton, and then for each location we sample its dimension n uniformly
from [0, k], where k is a chosen constant. This creates the set of states. Every
location has a probability 1

2 of being accepting. Note that Qn consists of more
than one orbit if n > 1, and consequently, the number of orbits in the state of
the resulting automata can vary. The alphabet used is always the set Q.

To generate the transition function, we generate a formula for each of the
locations. This is done by creating a tree, where every node is one operation.
The tree starts with an empty root, and is then expanded by repeatedly selecting
one of the empty nodes and replacing it with either a logical operation (‘and’
or ‘or’) with two new empty nodes, or by a literal, i.e., a comparison between
two variables (either <, =, or >). Both options occur with equal chance. In
the latter case, the variables are drawn from either the state values or the input
value. This process is repeated until either there are no more empty nodes,
or the limit on the number of logical operators is reached, at which point the
remaining empty nodes are filled with literals. Finally, for each node in the tree
we randomly invert the output or not.

These formulas are then used to create two edges: one for when the formula
is true, and one for when the formula is false. The target state is specified by
randomly choosing a location, and randomly selecting which elements of the
original state and input are kept in the target location (we allow for duplicate
values).

Properties of the random automata. Our main motivation for using the above
described random automata is the unavailability of a good source of nominal
automata used in practical applications. However, this makes it difficult to judge
whether or not our random automata are representative for actual performance
in real test cases. We will show some properties of the generated automata so
the reader can make their own judgement. In particular, we will focus primarily
on the degree to which the size of the automata is reduced during minimisation.

For the orbit-wise generated automata, this is shown in Figure 5. It can be
clearly seen that the vast majority of the generated automata is either minimal,
or very close to being minimal.

In contrast, the data for the formula automata (see Figures 6 and 7) shows
a much broader distribution, generating automata that use significantly more
orbits than needed for the recognised languages.

Given this, we think that our test cases are varied enough to give a decent
representation of the performance of the various libraries.

27

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5

#automata

(a) N(S) = 5, k = 1

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

#automata

(b) N(S) = 15, k = 1

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

#automata

(c) N(S) = 15, k = 3

Figure 5: Histogram of the number of orbits after minimisation for orbit-wise random au-
tomata. Each figure shows 1000 automata. The number of orbits before minimisation is N(S)
and the dimension is k.

 0

 100

 200

 300

 400

 500

 1 2 3 4 5

#automata

(a) 5 locations, k = 1

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14

#automata

(b) 15 locations, k = 1

Figure 6: Number of state orbits after minimisation for formula automata of size 5 and 15,
of dimension 1. The figure shows 1000 automata. Note that because the dimension is 1, the
number of orbits before minimisation is always 5 or 15 respectively.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

#automata

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

#automata

Figure 7: Number of state orbits before (left) and after (right) minimisation for formula
automata of size 15 and dimension 3. Each figure shows 1000 automata. The striped pattern
on the left is a consequence of the fact that the used settings only generate automata with an
odd number of orbits.

28

Model N L dim Ons (s) Ons-hs (s) Nλ (s) Lois (s)
Random 5 ≤ 1 0.00 0.00 0.05 0.71
Random 10 ≤ 1 0.00 0.00 0.93 12.31
Random 10 ≤ 2 0.01 0.00 26.60 > 2h
Random 15 ≤ 1 0.00 0.00 5.01 41.31
Random 15 ≤ 2 0.01 0.00 61.98 > 2h
Random 15 ≤ 3 0.04 0.02 418.22 > 2h
Formula 5 ≤ 2 0.00 0.01 0.25
Formula 10 ≤ 2 0.01 0.02 1.52
Formula 10 ≤ 3 0.62 0.57 1.52
Formula 25 ≤ 2 0.06 0.05 48.81
Formula 25 ≤ 3 2.89 1.58 108.46
Formula 25 ≤ 5 > 2h 2176.83 255.39
FIFO(1) 4 4 1 0.02 0.00 0.01 0.03
FIFO(2) 13 7 2 0.01 0.01 1.03 0.24
FIFO(3) 65 11 3 0.35 0.70 9.32 2.44
FIFO(4) 440 16 4 37.60 39.77 68.44 15.33
FIFO(5) 3686 22 5 > 2h 3027.54 382.33 71.59
ww1 4 4 1 0.02 0.00 0.01 0.03
ww2 8 6 2 0.00 0.00 0.12 0.03
ww3 24 8 3 0.16 0.17 0.75 0.16
ww4 112 10 4 23.71 30.51 2.85 0.60
ww5 728 12 5 5880.04 > 2h 9.27 1.83
Lmax 5 2 0.02 0.00 1.08 0.06
Lint 5 2 0.01 0.00 1.71 0.04

Table 2: Running times for Algorithm 1. N (dim) is the size (resp. dimension) of the
input. The column L denotes the number of locations, if the automaton can be expressed
symbolically. The first two sets of automata (‘Random’ and ‘Formula’) are the randomly
generated automata. Each rows consists of 10 automata and we report the average runtime.
If one of the runs times out, the cell indicates > 2h.

9.3. Minimisation Results

For Nλ and Lois we used the implementations of Moore’s minimisation
algorithm from the original papers [18, 19, 20]. For each of the libraries, we
wrote routines to read in an automaton from a file and, for the structured test
cases, to generate the requested automaton. For Ons, all automata were read
from file. The output of these programs was manually checked to see if the
minimisation was performed correctly.

The results in Table 2 show a clear advantage for Ons for random automata.
The library is capable of running all supplied test cases in less than one second.
This in contrast to both Lois and Nλ, which take more than 2 hours on the
largest random automata.

The results for structured automata show a clear effect of the extra structure.
Both Nλ and Lois remain capable of minimising the automata in reasonable
amounts of time for larger sizes. In contrast, Ons benefits little from the extra

29

structure. Despite this, it remains viable: even for the larger cases it falls
behind significantly only for the largest FIFO automaton and the two largest
ww automata.

The random automata with formulae show a mixed bag (as expected). (We
have not implemented this for LOIS.) We note that when the number of locations
grow, Nλ becomes rather slow. Nonetheless, Nλ catches up when increasing the
dimension. All the results show that Ons(-hs) is faster in lower dimensions,
even with a high number of orbits, but that Nλ and Lois can handle higher
dimensions.

The libraries Ons and Ons-hs are very comparable in terms of scalability.
However, we note that Ons-hs is sometimes faster, we expect this is due to the
lazy nature of Haskell: When iterating through a set (especially those formed
by products), breaking early means that the remainder of the set does not need
to be constructed.

9.4. Learning Results

Both implementations in Nλ and Ons are direct implementations of the
pseudocode for νL⋆ with no further optimisations. The authors of Lois imple-
mented νL⋆ in their library as well.8 They reported similar performance as the
implementation in Nλ (private communication). Hence we focus our compar-
ison on Nλ and Ons. We use the variant of νL⋆ where counterexamples are
added as columns instead of prefixes.

The implementation in Nλ has the benefit that it can work with different
symmetries. Indeed, the structured examples, FIFO and ww, are equivariant
w.r.t. the equality symmetry as well as the total order symmetry. For that
reason, we run the Nλ implementation using both the equality symmetry and
the total order symmetry on those languages. For the languages Lmax, Lint and
the random automata, we can only use the total order symmetry.

To run the νL⋆ algorithm, we implement an external oracle for the member-
ship queries. This is akin to the application of learning black box systems [13].
For equivalence queries, we constructed counterexamples by hand. All imple-
mentations receive the same counterexamples. We measure CPU time instead
of real time, so that we do not account for the external oracle.

The results in Table 3 show an advantage for Ons for random automata.
Additionally, we report the number of membership queries, which can vary for
each implementation as some steps in the algorithm depend on the internal
ordering of set data structures.

We have not benchmarked the learning algorithm with the random automata
with formulae. The reason is that the logical information, the formulae, are not
even given to the learning algorithm, since the learning algorithm can only query
the language.

In contrast to the case of minimisation, the results suggest that Nλ cannot
exploit the logical structure of FIFO(n), Lmax and Lint as it is not provided

8Can be found on github.com/eryxcc/lois/blob/master/tests/learning.cpp

30

github.com/eryxcc/lois/blob/master/tests/learning.cpp

Ons Ons-hs Nλord Nλeq

Model N dim time (s) MQs time (s) MQs time (s) MQs time (s) MQs
Random 4 1 127.47 2321 6.94 1915 2391.08 1243
Random 5 1 0.12 404 0.08 404 2433.77 435
Random 3 0 0.86 499 0.14 470 1818.97 422
Random 5 1 > 1h 192.18 6870 > 1h
Random 4 1 0.08 387 0.06 387 2097.43 387
FIFO(1) 3 1 0.04 119 0.01 119 3.17 119 1.76 51
FIFO(2) 6 2 1.73 2655 0.55 2655 391.89 3818 40.00 434
FIFO(3) 19 3 2793.93 298400 451.67 302868 > 1h 2047.32 8151
ww1 4 1 0.42 134 0.04 111 2.49 77 1.47 30
ww2 8 2 265.79 3671 14.30 2317 227.66 2140 30.58 237
ww3 24 3 > 1h > 1h > 1h > 1h
Lmax 3 1 0.01 54 0.01 54 3.58 54
Lint 5 2 0.59 478 0.17 478 83.26 478

Table 3: Running times and number of membership queries for the νL⋆ algorithm. For Nλ

we used two version: Nλord uses the total order symmetry Nλeq uses the equality symmetry.

a priori. For ww(2) we inspected the output on Nλ and saw that it learned
some logical structure. For example, it outputs {(a, b) | a 6= b} as a single
object instead of two orbits {(a, b) | a < b} and {(a, b) | b < a}. This may
explain why Nλ is still competitive. For languages which are equivariant for the
equality symmetry, the Nλ implementation using the equality symmetry can
learn with much fewer queries. This is expected as the automata themselves
have fewer orbits. It is interesting to see that these languages can be learned
more efficiently by choosing the right symmetry.

10. Related work

As stated in the introduction, Nλ [18] and Lois [19] use first-order formulas
to represent nominal sets and use SMT solvers to manipulate them. This makes
both libraries very flexible and they indeed implement the equality symmetry
as well as the total order symmetry. As their representation is not unique, the
efficiency depends on how the logical formulas are constructed. As such, they do
not provide complexity results. In contrast, our direct representation allows for
complexity results (Section 6) and leads to different performance characteristics
(Section 9).

A second big difference is that bothNλ and Lois implement a “programming
paradigm” instead of just a library. This means that they overload natural
programming constructs in their host languages (Haskell and C++ respectively).
For programmers this means they can think of infinite sets without having to
know about nominal sets.

It is worth mentioning that an older (unreleased) version of Nλ implemented
nominal sets with orbits instead of SMT solvers [27]. However, instead of charac-
terising orbits (e.g., by its dimension), they represent orbits by a representative
element. The authors of Nλ have reported that the current version is faster
[18].

The theoretical foundation of our work is the main representation theorem
in [2]. We add to that by instantiating it to the total order symmetry and distil

31

a concrete representation of nominal sets. As far as we know, we provide the
first implementation of the representation theory in [2].

Another tool using nominal sets is Mihda [28]. Here, only the equality
symmetry is implemented. This tool implements a translation from π-calculus
to history-dependent automata (HD-automata), with the aim of minimisation
and checking bisimilarity. The implementation in OCaml is based on named
sets, which are finite representations for nominal sets. The theory of named
sets is well-studied and has been used to model various behavioural models with
local names. For those results, the categorical equivalences between named sets,
nominal sets and a certain (pre)sheaf category have been exploited [29, 30]. The
total order symmetry is not mentioned in their work. We do, however, believe
that similar equivalences between categories can be stated. Interestingly, the
product of named sets is similar to our representation of products of nominal
sets: pairs of elements together with data which denotes the relation between
data values.

Fresh OCaml [31] and Nominal Isabelle [32] are both specialised in name-
binding and α-conversion used in proof systems. They only use the equality
symmetry and do not provide a library for manipulating nominal sets. Hence
they are not suited for our applications.

On the theoretical side, there are many complexity results for register au-
tomata [4, 33]. In particular, we note that problems such as emptiness and
equivalence are NP-hard depending on the type of register automaton. This
does not easily compare to our complexity results for minimisation. One differ-
ence is that we use the total order symmetry, where the local symmetries are
always trivial (Lemma 5.1). As a consequence, all the complexity required to
deal with groups vanishes. Rather, the complexity is transferred to the input
of our algorithms, because automata over the equality symmetry require more
orbits when expressed over the total order symmetry. Another difference is that
register automata allow for duplicate values in the registers. In nominal au-
tomata, such configurations will be encoded in different orbits. An interesting
open problem is whether equivalence of unique-valued register automata is in
Ptime [33].

Orthogonal to nominal automata, there is the notion of symbolic automata
[3, 34]. These automata are also defined over infinite alphabets but they use
predicates on transitions, instead of relying on symmetries. Symbolic automata
are finite state (as opposed to infinite state nominal automata) and do not allow
for storing values. However, they do allow for general predicates over an infinite
alphabet, including comparison to constants.

11. Conclusion and Future Work

We presented a concrete finite representation for nominal sets over the total
order symmetry. This allowed us to implement a library, Ons, and provide
complexity bounds for common operations. The experimental comparison of
Ons against existing solutions for automata minimisation and learning show

32

that our implementation is much faster in many instances. As such, we believe
Ons is a promising implementation of nominal techniques.

A natural direction for future work is to consider other symmetries, such as
the equality symmetry. Here, we may take inspiration from existing tools such
as Mihda (see Section 10). Another interesting question is whether it is possible
to translate a nominal automaton over the total order symmetry which accepts
an equality language to an automaton over the equality symmetry. This would
allow one to efficiently move between symmetries. Finally, our techniques can
potentially be applied to timed automata by exploiting the intriguing connection
between the nominal automata that we consider and timed automata [21].

Acknowledgements

We would like to thank Szymon Toruńczyk and Eryk Kopczyński for their
prompt help when using the Lois library. For general comments and suggestions
we would like to thank Ugo Montanari and Niels van der Weide. At last, we
want to thank the anonymous reviewers of ICTAC 2018 for their comments.

References

[1] D. Venhoek, J. Moerman, J. Rot, Fast computations on ordered nominal sets,
in: B. Fischer, T. Uustalu (Eds.), Theoretical Aspects of Comput-
ing - ICTAC 2018 - 15th International Colloquium, Stellenbosch,
South Africa, October 16-19, 2018, Proceedings, Vol. 11187 of Lec-
ture Notes in Computer Science, Springer, 2018, pp. 493–512 (2018).
doi:10.1007/978-3-030-02508-3_26.
URL https://doi.org/10.1007/978-3-030-02508-3_26

[2] M. Bojańczyk, B. Klin, S. Lasota, Automata theory in nomi-
nal sets, Logical Methods in Computer Science 10 (3) (2014).
doi:10.2168/LMCS-10(3:4)2014.

[3] L. D’Antoni, M. Veanes, The power of symbolic automata and transducers,
in: R. Majumdar, V. Kuncak (Eds.), Computer Aided Verification, CAV
2017, Part I, Vol. 10426 of Lecture Notes in Computer Science, Springer,
2017, pp. 47–67 (2017). doi:10.1007/978-3-319-63387-9_3.

[4] R. Grigore, N. Tzevelekos, History-register automata, Logical Methods in
Computer Science 12 (1) (2016). doi:10.2168/LMCS-12(1:7)2016.

[5] M. Kaminski, N. Francez, Finite-memory automata, Theor. Comput. Sci.
134 (2) (1994) 329–363 (1994). doi:10.1016/0304-3975(94)90242-9.

[6] U. Montanari, M. Pistore, An introduction to history dependent au-
tomata, Electr. Notes Theor. Comput. Sci. 10 (1998) 170–188 (1998).
doi:10.1016/S1571-0661(05)80696-6.

33

https://doi.org/10.1007/978-3-030-02508-3_26
https://doi.org/10.1007/978-3-030-02508-3_26
https://doi.org/10.1007/978-3-030-02508-3_26
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.2168/LMCS-12(1:7)2016
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1016/S1571-0661(05)80696-6

[7] L. Segoufin, Automata and logics for words and trees over an infinite al-
phabet, in: Z. Ésik (Ed.), Computer Science Logic, CSL 2006, Vol. 4207
of Lecture Notes in Computer Science, Springer, 2006, pp. 41–57 (2006).
doi:10.1007/11874683_3.

[8] F. Aarts, P. Fiterău-Broştean, H. Kuppens, F. W. Vaandrager,
Learning register automata with fresh value generation, in: M. Leucker,
C. Rueda, F. D. Valencia (Eds.), Theoretical Aspects of Comput-
ing - ICTAC 2015 - 12th International Colloquium Cali, Colom-
bia, October 29-31, 2015, Proceedings, Vol. 9399 of Lecture
Notes in Computer Science, Springer, 2015, pp. 165–183 (2015).
doi:10.1007/978-3-319-25150-9_11.
URL https://doi.org/10.1007/978-3-319-25150-9_11

[9] B. Bollig, P. Habermehl, M. Leucker, B. Monmege, A fresh ap-
proach to learning register automata, in: M. Béal, O. Carton (Eds.),
Developments in Language Theory, DLT 2013, Vol. 7907 of Lec-
ture Notes in Computer Science, Springer, 2013, pp. 118–130 (2013).
doi:10.1007/978-3-642-38771-5_12.

[10] S. Cassel, F. Howar, B. Jonsson, B. Steffen, Active learning for extended
finite state machines, Formal Asp. Comput. 28 (2) (2016) 233–263 (2016).
doi:10.1007/s00165-016-0355-5.

[11] S. Drews, L. D’Antoni, Learning symbolic automata, in: A. Legay, T. Mar-
garia (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2017, Part I, Vol. 10205 of Lecture Notes in Computer
Science, 2017, pp. 173–189 (2017). doi:10.1007/978-3-662-54577-5_10.

[12] J. Moerman, M. Sammartino, A. Silva, B. Klin, M. Szynwelski,
Learning nominal automata, in: Castagna and Gordon [35], pp. 613–625
(2017). doi:10.1145/3009837.
URL http://dl.acm.org/citation.cfm?id=3009879

[13] F. W. Vaandrager, Model learning, Commun. ACM 60 (2) (2017) 86–95
(2017). doi:10.1145/2967606.

[14] P. Fiterău-Broştean, R. Janssen, F. W. Vaandrager, Combining model
learning and model checking to analyze TCP implementations, in:
S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification, CAV 2016,
Part II, Vol. 9780 of Lecture Notes in Computer Science, Springer, 2016,
pp. 454–471 (2016). doi:10.1007/978-3-319-41540-6_25.

[15] M. Gabbay, A. M. Pitts, A new approach to abstract syntax with vari-
able binding, Formal Asp. Comput. 13 (3-5) (2002) 341–363 (2002).
doi:10.1007/s001650200016.

[16] A. M. Pitts, Nominal techniques, SIGLOG News 3 (1) (2016) 57–72 (2016).
doi:10.1145/2893582.2893594.

34

https://doi.org/10.1007/11874683_3
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/978-3-662-54577-5_10
http://dl.acm.org/citation.cfm?id=3009879
https://doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=3009879
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/2893582.2893594

[17] A. M. Pitts, Nominal Sets: Names and Symmetry in Computer Science,
Cambridge Tracts in Theoretical Computer Science, Cambridge University
Press, 2013 (2013).

[18] B. Klin, M. Szynwelski, SMT solving for functional programming over
infinite structures, in: R. Atkey, N. R. Krishnaswami (Eds.), Pro-
ceedings 6th Workshop on Mathematically Structured Functional Pro-
gramming, MSFP 2016, Vol. 207 of EPTCS, 2016, pp. 57–75 (2016).
doi:10.4204/EPTCS.207.3.

[19] E. Kopczynski, S. Toruńczyk, LOIS: an application of SMT solvers, in:
T. King, R. Piskac (Eds.), Proceedings of the 14th International Work-
shop on Satisfiability Modulo Theories, SMT 2016, Vol. 1617 of CEUR
Workshop Proceedings, CEUR-WS.org, 2016, pp. 51–60 (2016).
URL http://ceur-ws.org/Vol-1617/paper5.pdf

[20] E. Kopczynski, S. Toruńczyk, LOIS: syntax and semantics, in: Castagna
and Gordon [35], pp. 586–598 (2017). doi:10.1145/3009837.
URL http://dl.acm.org/citation.cfm?id=3009876

[21] M. Bojańczyk, S. Lasota, A machine-independent characterization of timed
languages, in: A. Czumaj, K. Mehlhorn, A. M. Pitts, R. Wattenhofer
(Eds.), Automata, Languages, and Programming, ICALP 2012, Part II,
Vol. 7392 of Lecture Notes in Computer Science, Springer, 2012, pp. 92–
103 (2012). doi:10.1007/978-3-642-31585-5_12.

[22] M. Bojańczyk, Slightly Infinite Sets, Draft December 4, 2018, 2018 (2018).
URL https://www.mimuw.edu.pl/~bojan/upload/main-6.pdf

[23] D. Angluin, Learning regular sets from queries and coun-
terexamples, Inf. Comput. 75 (2) (1987) 87–106 (1987).
doi:10.1016/0890-5401(87)90052-6.

[24] P. Fiterău-Broştean, Active model learning for the analysis of network protocols,
Ph.D. thesis, Radboud University, Nijmegen, The Netherlands (2018).
URL http://hdl.handle.net/2066/187331

[25] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C. R. Ra-
makrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings, Vol. 4963 of Lecture Notes in Computer Science, Springer, 2008, pp.
337–340 (2008). doi:10.1007/978-3-540-78800-3_24.
URL https://doi.org/10.1007/978-3-540-78800-3_24

[26] C. Okasaki, Purely functional data structures, Cambridge University Press,
1999 (1999).

35

https://doi.org/10.4204/EPTCS.207.3
http://ceur-ws.org/Vol-1617/paper5.pdf
http://ceur-ws.org/Vol-1617/paper5.pdf
http://dl.acm.org/citation.cfm?id=3009876
https://doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=3009876
https://doi.org/10.1007/978-3-642-31585-5_12
https://www.mimuw.edu.pl/~bojan/upload/main-6.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-6.pdf
https://doi.org/10.1016/0890-5401(87)90052-6
http://hdl.handle.net/2066/187331
http://hdl.handle.net/2066/187331
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

[27] M. Bojańczyk, L. Braud, B. Klin, S. Lasota,
Towards nominal computation, in: J. Field, M. Hicks (Eds.), Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylva-
nia, USA, January 22-28, 2012, ACM, 2012, pp. 401–412 (2012).
doi:10.1145/2103656.2103704.
URL https://doi.org/10.1145/2103656.2103704

[28] G. L. Ferrari, U. Montanari, E. Tuosto, Coalgebraic minimization of hd-
automata for the pi-calculus using polymorphic types, Theor. Comput. Sci.
331 (2-3) (2005) 325–365 (2005). doi:10.1016/j.tcs.2004.09.021.

[29] V. Ciancia, A. Kurz, U. Montanari, Families of symmetries as efficient
models of resource binding, Electr. Notes Theor. Comput. Sci. 264 (2)
(2010) 63–81 (2010). doi:10.1016/j.entcs.2010.07.014.

[30] V. Ciancia, U. Montanari, Symmetries, local names and dynamic (de)-
allocation of names, Inf. Comput. 208 (12) (2010) 1349–1367 (2010).
doi:10.1016/j.ic.2009.10.007.

[31] M. R. Shinwell, A. M. Pitts, Fresh objective Caml user manual, Tech. rep.,
University of Cambridge, Computer Laboratory (2005).

[32] C. Urban, C. Tasson, Nominal techniques in isabelle/hol, in: R. Nieuwen-
huis (Ed.), Automated Deduction - CADE-20, Vol. 3632 of Lec-
ture Notes in Computer Science, Springer, 2005, pp. 38–53 (2005).
doi:10.1007/11532231_4.

[33] A. S. Murawski, S. J. Ramsay, N. Tzevelekos,
Bisimilarity in fresh-register automata, in: 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, IEEE Computer
Society, 2015, pp. 156–167 (2015). doi:10.1109/LICS.2015.24.
URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174833

[34] O. Maler, I. Mens, A generic algorithm for learning symbolic automata
from membership queries, in: Models, Algorithms, Logics and Tools, 2017,
pp. 146–169 (2017). doi:10.1007/978-3-319-63121-9_8.

[35] G. Castagna, A. D. Gordon (Eds.), Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, ACM,
2017. doi:10.1145/3009837.

36

https://doi.org/10.1145/2103656.2103704
https://doi.org/10.1145/2103656.2103704
https://doi.org/10.1145/2103656.2103704
https://doi.org/10.1016/j.tcs.2004.09.021
https://doi.org/10.1016/j.entcs.2010.07.014
https://doi.org/10.1016/j.ic.2009.10.007
https://doi.org/10.1007/11532231_4
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174833
https://doi.org/10.1109/LICS.2015.24
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174833
https://doi.org/10.1007/978-3-319-63121-9_8
https://doi.org/10.1145/3009837

Appendix A. Auxiliary results and omitted proofs

Theorem Appendix A.1 (Theorem 8.1). If nominal sets are implemented
with a tree-based set structure (as in Ons), the complexity of the following set
operations is as follows:

Operation Complexity
Test x ∈ X O(log N(X))
Test X ⊆ Y O(min(N(X) + N(Y),N(X) logN(Y)))

Calculate X ∪ Y O(N(X) + N(Y))
Calculate X ∩ Y O(N(X) + N(Y))

Calculate {x ∈ X | p(x)} O(N(X))
Calculate {f(x) | x ∈ X} O(N(X) logN(X))

Calculate X × Y O(N(X × Y)) ⊆ O(3dim(X)+dim(Y) N(X)N(Y))

The functions p : X → 2 and f : X → Y are user defined, and assumed to
take O(1) time per invocation.

Proof. Each of the statements will be proven individually:
Membership. To decide x ∈ X , we first construct the orbit containing x,

which is done in constant time. Then we use a logarithmic lookup to decide
whether this orbit is in our set data structure. Hence, membership checking is
O(log(N(X))).

Inclusion. Similarly, checking whether a nominal set X is a subset of a nom-
inal set Y can be done in O(N(X) log(N(Y))) time. However, it is also possible
to do a simultaneous in-order walk of both sets, which takes O(N(X) +N(Y))
time. The implementation uses a cutoff on the size of X relative to Y to deal
with this, giving a time complexity of O(min(N(X)+N(Y), N(X) log(N(Y)))).

Union and Intersection. This idea of a simultaneous walk through both sets
X and Y is also useful for computing their union and intersection. This gives a
complexity of O(N(X) +N(Y)) for intersections and unions.

Filtering. Filtering a nominal set X using some equivariant function f map-
ping it to the (trivially) nominal set {true, false} can be done in linear time,
as the results are obtained in order, giving a complexity of O(N(X)), assuming
the time complexity of the function to be constant.

Mapping. Mapping is a bit different. The original set can still be pro-
cessed in order, but the results will, in general, be out of order. Hence, for
a tree-based implementation of sets, a sorting step is needed (or equivalently,
iterated insertion needs to be done), which brings the complexity of mapping
to O(N(X) log(N(X))), again assuming the time complexity of the function to
be constant.

Products. Calculating the product of two nominal sets is the most compli-
cated construction. For each pair of orbits in the original sets X and Y , all
product orbits need to be generated. Each product orbit itself is constructed
in constant time. By ordering the generation of these orbits such that they are
generated in-order, the resulting set takes O(N(X × Y)) time to construct.

37

We can also give an explicit upper bound for the number of orbits in terms of
the input. For this we recall that orbits in a product are represented by strings
of length at most dim(X)+dim(Y). (If the string is shorter, we can pad it with
one of the symbols.) Since there are three symbols (L, R and B), the product
of X and Y will have at most 3dim(X)+dim(Y) N(X)N(Y) orbits. It then follows
that taking products has time complexity of O(3dim(X)+dim(Y) N(X)N(Y)).

38

	1 Introduction
	2 Nominal sets
	2.1 Group actions.
	2.2 Nominal sets.

	3 Automata over Nominal Sets
	3.1 Minimisation of Nominal Automata
	3.2 Learning nominal automata

	4 Representing nominal orbits
	5 Representation in the total order symmetry
	5.1 Orbits and nominal sets
	5.2 Equivariant maps
	5.3 Products
	5.4 Summary

	6 C++ Implementation of Ons
	6.1 Core functionality
	6.2 Another example

	7 Haskell Implementation of Ons
	8 Complexity of set operations
	9 Evaluation
	9.1 The Tools: Ons, Ons-hs, N, and Lois
	9.2 Benchmarks
	9.3 Minimisation Results
	9.4 Learning Results

	10 Related work
	11 Conclusion and Future Work
	Appendix A Auxiliary results and omitted proofs

