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“We were born into a mystery, one that has haunted us since at least as long as we've been human.” 

(Quote from Cosmos: A Spacetime Odyssey, 2014, s01e03). 

 

Our world is filled with an infinite amount of colors and shapes. Sight enables us to perceive actions, 

while vision allows us to make assessments about those actions. Animals have been sensing 

brightness for a very long time. ‘’The ‘race’ between predator and prey and the need ‘to see’ and ‘to 

be seen’ or ‘not to be seen’ were drivers for the origin and subsequent evolution of efficient visual 

systems’’ (quote from Schoenemann et al., 2017).1 The oldest eye recorded dates from the Cambrian 

period, about 530 million years ago, and belongs to a hard-shelled species, the trilobite.1 The first 

light-sensing cell would have evolved much earlier, and since then, evolution of light-sensing organs 

has come a long way. 

 

In this introductory chapter, we will give a general overview of the process of human vision and its 

main components: the eye and the retina. Because the content of this thesis will mainly cover 

molecular studies on the photoreceptor-specific ciliary gene C2ORF71/PCARE, we will particularly 

focus on the photoreceptor cell and its ciliary axoneme, discuss the current status of research of 

retinal ciliopathies, introduce different cellular and animal models that are used to model these 

diseases, and give an overview of potential therapies. 
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1.1 The eye 

The eye is the sensory organ for vision. When light enters the eye, it travels through the cornea to 

the iris and pupil, which regulate the amount of light that passes, just like a shutter in a camera. The 

pupil constricts when light enters the eye, and it widens when it becomes dark. Light rays continue 

their path through the lens, which focuses the light, and cross the vitreous humor that fills the 

eyeball to maintain its intraocular pressure and thus spherical shape. Finally, the rays reach the 

retina, a layered tissue of neuroepithelial origin that is composed of different cell types. In the retina, 

photoreceptor cells receive the light and convert it into electrochemical impulses, that are 

transferred through the optic nerve to the visual centers in the brain (Figure 1). 

 

 

 

Figure 1. Anatomy of the eye. The eye 
is composed of a cornea, iris, pupil, 
lens, vitreous, retina, macula, choroid 
and optic nerve. Vision starts when 
light rays enter the eye through the 
cornea, and reach the retina at the 
back of the eye. Photoreceptor cells in 
the retina transform the light photons 
into electrical signals that are 
transferred through the optic nerve to 
the brain. 

 

 

1.2 Anatomy of the retina 

The father of neuroscience, Santiago Ramón y Cajal, was fascinated by the retina, and described it as 

“an advantageous structure for the neurobiologist because of its accessibility, its orderly organization 

in alternate layers of cell bodies and intercellular contacts, and the easy identification of the main 

direction of the nervous message flow”.2 His studies were fundamental to understand the retinal 

architecture as a neural tissue.  

The retina is the light-receptive tissue at the back of the eye, located between the choroid and the 

vitreous. The retina arises from neural ectoderm and consists of a pigmented layer, derived from the 

outer layer of the optic cup, and the neural retina, derived from the inner layer of the optic cup.3 The 

retina is composed of ten representative layers (Figure 2).  
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The layer closest to the vitreous body is the inner limiting membrane, composed of astrocytes and 

terminations of Müller cells. Astrocytes are special glial cells4 which provide neurotrophic support, 

mechanical support for degenerating axons, and are important for the maintenance of the blood-

retina barrier.5 The Müller cells are the predominant glial cells in the retina, and they provide 

homeostatic and metabolic support to the retinal neurons.  

The next layer, the (optic) nerve fiber layer, is formed by the axons of ganglion cells. Ganglion cells 

receive electrical signals from bipolar and amacrine cells that were generated by the photoreceptor 

cells, and transmit them through the continuation of their axons in the optic nerve to the brain. The 

ganglion cell layer consists of retinal ganglion cells and displaced amacrine cells.  

The dendrites of the ganglion cells connect in the inner plexiform layer with the axons of the bipolar 

cells through the synapses. Amacrine cells in the inner plexiform layer receive information from 

bipolar neurons and transfer this information to ganglion cells. 

The inner nuclear layer contains the nuclei of amacrine cells, bipolar cells, horizontal cells and Müller 

cells. Bipolar cells are neurons that receive signals from a set of photoreceptor cells and transmit it to 

ganglion cells. In the dark, photoreceptor cells are depolarized and release glutamate. This glutamate 

activates OFF-center bipolar cells, named so because they are active when the light is off, and inhibits 

ON-center bipolar cells. When exposed to light, photoreceptors release less glutamate, which 

activates the ON-center bipolar cells, which are active when the light is on.6 Horizontal cells are 

horizontally oriented neurons with dendrites that connect with the synaptic terminations of the 

photoreceptor cells.  

The outer plexiform layer is composed by the synapses between rod spherules or cone pedicles and 

dendrites of bipolar cells and processes of the horizontal cells. The outer nuclear layer contains the 

cell bodies of rod and cone photoreceptors. The external (or outer) limiting membrane is made of 

tight junction and adherent junction proteins that help to maintain the structure of the retina 

through mechanical strength.7 

The outermost layer of the retina is the photoreceptor cell layer, composed by the inner and outer 

segments of rod and cone photoreceptor cells. 

The retina is supported by the retinal pigment epithelium (RPE), which sits between the 

photoreceptor cell layer and the choroid. The RPE is composed of pigmented cells important for 

many physiological functions. Some of these functions are the maintenance of adhesion of the neural 

retina,8,9 phagocytosis of shed photoreceptor outer segments,10 participation in the visual cycle,11 

and transport plus storage of metabolites and vitamins.12  
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Figure 2. Anatomy of the retina. The retina is a multilayered tissue that consists of different cell types: the 
photoreceptor cells (rods and cones), the interneuronal cells (bipolar, amacrine and horizontal cells), the 
ganglion cells, the astrocytes and the Müller cells.  

 

1.3 The photoreceptor cells  

Photoreceptors are sensory neurons in the retina that are in charge of receiving the light and 

transforming it into electrical signals, a process named phototransduction. There are two main types 

of photoreceptor cells in the retina: the rods and the cones. The human retina is composed of ~120 

million rod photoreceptor cells (~95% of the total number of photoreceptors) and 6 million cone 

photoreceptor cells (~5%).13 The rods mediate highly sensitive vision in dim light, which is perceived 

as colorless “greyscale” since only one type of rod cells exist. The cones mediate color vision in bright 

light, and the human retina contains three types of cone cells. Cones sensitive to low-frequency 

photons (λmax~555–565 nm) are named L-cones, M-cones detect middle-frequency photons 

(λmax~530–537 nm), and supra-frequency photons (λmax~415–430 nm) are detected by S-cones.14 
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In humans, the center of the retina is constituted by a cone-enriched region, called the fovea, which 

is responsible for high visual acuity as its central positioning allows sharp focusing of the received 

light.15 Each photoreceptor cell is organized in four distinct compartments: the outer segment (OS), 

the inner segment (IS), the nucleus and the synaptic terminal (Figure 3).  

1.3.1 The phototransduction cascade 

The phototransduction cascade takes place in the outer segments of photoreceptor cells.  

In the dark, the cyclic guanosine monophosphate (cGMP) levels are high inside the outer segments, 

inducing the depolarization of the photoreceptor membrane. As a result, the Ca2+-channels are open 

at the photoreceptor synapse, and the cell releases the neurotransmitter glutamate. Because of this, 

ON-center bipolar cells are hyperpolarized as they have inhibitory (metabotropic) glutamate 

receptors. When the ON-center bipolar cells are hyperpolarized, they do not release glutamate onto 

the ganglion cells, which therefore remain at rest and do not relay information to the brain. The 

other type of bipolar cells (the OFF-center bipolar cells) have excitatory glutamate receptors and are 

depolarized in absence of light, allowing for specific relay of information regarding fluctuating 

variation in light intensity to complex receptive fields in the retina. 

The phototransduction cascade is activated when a photon reaches an opsin G-protein coupled 

receptor molecule (e.g. rhodopsin). The chromophore it contains, 11-cis retinal, then undergoes 

photoisomerization to all-trans retinal, becomes enzymatically activated, and catalyzes the activation 

of the G-protein transducin. Transducin, in turn, activates the effector phosphodiesterase (PDE). PDE 

hydrolyzes cyclic guanosine monophosphate (cGMP) into 5'-GMP. The decrease in cytoplasmic free 

cGMP concentration leads to the closure of the cGMP-gated cation channels on the plasma 

membrane. The closure of these channels leads to reduction of cation influx into the outer segment 

(while the efflux of cations continues undisturbed). This results in membrane hyperpolarization, 

meaning the intracellular voltage becomes more negative. Hyperpolarization of the photoreceptor 

cell membrane inhibits its glutamate release at the synapse.16 This reduction of glutamate causes 

depolarization of the ON-center bipolar cells in absence of the inhibitory signal, which then release 

glutamate neurotransmitter to the ganglion cells. These are in turn activated to release action 

potentials that are transferred to the brain through the optic nerve. Hyperpolarization of OFF-center 

bipolar cells has the opposite effect, and stops release of glutamate onto the ganglion cells, 

increasing the ability to rapidly and accurately relay differences in lighting information. 

Within the outer segment, the drop in intracellular Ca2+ triggers the recovery phase of 

phototransduction, which involves active turnoff and recycling of the transduction components. This 
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mediates light adaptation in the case of a sustained stimulus, which is important in order to maintain 

visual sensitivity under light conditions. It also rapidly restores the cell to its pre-activated state in the 

case of a transient stimulus, which is essential to maintain the ability to respond to a single light 

photon. 

1.3.2 The outer segments 

The outer segments (OS) of photoreceptor cells are highly modified and specialized sensory cilia.17-19 

Primary cilia are microtubule-based protrusions of the plasma membrane found in nearly all cell 

types. Cilia modulate different signaling pathways that regulate proliferation, differentiation, 

transcription, migration, polarity and tissue morphology.20 The OS is composed by hundreds of 

stacked membrane discs essential for phototransduction. Outer segments connect to the 

biosynthetic compartment, the inner segment (IS), by a narrow microtubule-based connecting cilium 

(CC) that is homologous to the transition zone of a primary non-motile cilium.21 Daily, approximately 

10% of the rod photoreceptor opsin-loaded discs are shed and phagocytized by the adjacent RPE 

cells,22 while the same amount of new membrane discs are generated and restacked at the OS base, 

ensuring photoreceptor homeostasis.  

1.3.3 The photoreceptor ciliary axoneme 

Back in the 17th century, Antony van Leeuwenhoek was first to identify cilia in protozoa.23 He 

described them as “incredibly thin feet, or little legs, which were moved very nimbly”. The word 

‘cilium’ (latin word for eyelash) was probably first formulated by Otto Muller in 1786.24 This organelle 

was named primary cilium in 1968,25 when the first cilia were observed to arise directly from the 

walls of pre-existing centrioles. The primary cilium is linked to other cellular organelles and regulates 

many important cellular processes such as the cell cycle, division and cytokinesis, and signaling 

pathways important for development: Hedgehog, Wnt and Notch.26 

The connecting cilium (CC) of photoreceptors is homologous to the transition zone (TZ) of a primary 

cilium and is part of the photoreceptor ciliary axoneme. The connecting cilium was named by De 

Robertis in 1956, when he was studying some of the first electron micrographs of photoreceptor 

cells.27 However, some authors refer to this region as the transition zone of photoreceptor cilia.18 The 

photoreceptor ciliary axoneme is composed of nine microtubule doublets arranged in a circle (9 + 0), 

lacking the central pair of microtubules characteristic of motile cilia (9 + 2), and expands from the 

basal body until two-thirds into the outer segments.27,28 The basal part of the photoreceptor 

axoneme connects with the basal body. The basal body (BB) is composed of nine sets of microtubule 

triplets and has a rootlet extending basally into the IS. The distal part of the photoreceptor ciliary 
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axoneme contains singlets of microtubules (Figure 3B).29,30 As in primary cilia, the CC is distal of the 

mother centriole and forms a barrier to regulate protein entry into the cilium.31 The CC measures 

~0.3 mm in diameter and 1–1.5 mm in length, and it is composed of transition fibers, the ciliary 

necklace, and Y-fibers essential for membrane anchoring and formation of a selectively permeable 

pore that prevents random diffusion and ciliary entry of cytoplasmic components.31,32 At the tip of 

the CC, newly outer segment discs are believed to form by an evagination mechanism of the ciliary 

plasma membrane.33-36 

1.3.4 Ciliary transport to the outer segments 

The daily renewal of photoreceptor outer segments requires a high level of protein synthesis. 

Because of this, proteins are constantly transported from the biosynthetic compartment in the inner 

segment through the connecting cilium to the outer segments. There are two known types of protein 

transport to the outer segments: protein transport by molecular motors and protein transport by 

diffusion. 

1.3.4.1  Protein transport by molecular motors 

The process of protein movement along the axoneme for ciliogenesis and cilia maintenance is called 

intraflagellar transport (IFT). Ciliary axonemal microtubules serve as tracks for protein transport 

driven by two families of molecular motors, kinesins and dyneins. This transport occurs in two 

directions helped by the IFT trains, the primary cargo of the motor proteins: anterograde from the 

base to the tip of the cilium, and retrograde, from the tip to the ciliary base (Figure 3C).37 The 

anterograde transport of cargoes along the axoneme is regulated by the IFT protein subcomplex B 

and powered by the motor protein kinesin-2. Retrograde transport from the OS to the IS is regulated 

by the IFT protein subcomplex A and driven by a dynein motor complex.30 The major protein in the 

membrane of rod outer segments, rhodopsin,38,39 is transported by actin filament-based and 

microtubule-associated transport mechanisms driven by the motor proteins myosin VIIa40,41 and  

kinesin-2.42 The BBSome, composed by eight Bardet-Biedl syndrome (BBS) proteins, moves 

associated to IFT trains, and regulates IFT assembly and turnaround in cilia.43-45 The importance of 

correct IFT transport has been frequently reported, and mutations in genes encoding for IFT proteins 

(e.g. TTC21B,46,47 IFT80,48 IFT144,49 IFT14050,51) can lead to defects in the cilium that lead to diseases 

(ciliopathies) that may also display retinal degeneration (see section 1.4 for retinal ciliopathies). 
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Figure 3. The photoreceptor cilium. A, Schematic representation of a rod photoreceptor. The outer segment 
(OS) is connected to the adjacent inner segment (IS) through the connecting cilium (CC). The photoreceptor 
ciliary axoneme (Ax) extends from the basal body (BB) up to two thirds into the outer segments. B, 
Magnification of the CC region. The basal body is localized basally from the CC, and is an anchor point of the 
ciliary rootlet (CR). Calyceal processes (CaP) extend from the inner segment. C, Transport of cargoes to the CC is 
mediated by cytoplasmic dynein 1 towards the minus-end along microtubules (MTs). Anterograde transport 
along the CC is mediated by the IFT protein subcomplex B and powered by the motor protein kinesin-2 towards 
the plus-end. The retrograde transport along the CC is regulated by the IFT protein subcomplex A and 
cytoplasmic dynein 2 towards the minus-end. Some proteins are transported to the OS by myosin 7a-driven 
transport along actin filaments. CR: ciliary rootlet, Ax: axoneme, CJ: Connecting junctions, CP: ciliary pocket, 
DA: Distal appendages, ER: endoplasmic reticulum, FL: fiber links, MI: mitochondria, RPE: Retinal pigment 
epithelium, SA: Sub-distal appendages, ST: Synaptic terminal. YL: Y-linkers. (Figure adapted from May-Simera et 
al., 201752 and Falk et al., 201553). 
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1.3.4.2 Protein transport by diffusion 

Protein diffusion has recently gained attention as an alternative or complementary mechanism to 

flagella and cilia protein transport.54,55 Diffusion of soluble proteins in the CC was first reported by 

Calvert et al.56 Although the microtubular arrangement impedes diffusion at the axoneme periphery, 

the core of the axoneme is permeable to diffusion. It is known that phototransduction proteins can 

translocate by simple diffusion.57 This translocation depends on the size and shape of the molecules 

and the geometry of the compartment, limiting the entry of high molecular-weight molecules.58 The 

work of Kuznetsov59 describes a model to quantify transport of OS proteins through the CC. In this 

model, because protein concentration is higher in the OS than in the IS, the diffusion would occur 

from the OS to the IS if protein diffusivity in the CC is not zero. More recently, Luo et al.60 have found 

a passive-diffusion route in the axonemal lumen in primary cilia. While IFT20, a component of the IFT 

subcomplex B,61 is transported solely using the IFT train pathway, up to half of the kinesin-2 family 

motor protein KIF17 and one third of α-tubulin, a protein known as “cargo” of the IFT train,62 diffuse 

through the axonemal lumen in addition to the directional movements with the IFT train.60  

 

1.4 Retinal ciliopathies 

Ciliopathies are a group of rare genetic disorders that occur as a consequence of cilia dysfunction. 

Retinal ciliopathies are inherited retinal diseases (IRDs) in which the function of the photoreceptor 

outer segments or the ciliary axoneme is disturbed. IRDs caused by mutations in genes expressed in 

the RPE or that encode proteins from a different compartment of the photoreceptor cell (e.g., 

splicing factor genes) are excluded from the “retinal ciliopathies” classification. Retinal ciliopathies 

can include retinitis pigmentosa (RP), cone-rod dystrophy (CRD) and Leber congenital amaurosis 

(LCA), although not all genes mutated in these subtypes of IRD code for ciliary proteins. 

1.4.1 Prevalence and inheritance patterns 

Retinitis pigmentosa (RP, OMIM #268000), caused by degeneration of rod photoreceptors, is the 

most common form of IRD, affecting around 1 in 4,000 individuals worldwide.63,64 RP can be inherited 

in an autosomal dominant (adRP), autosomal recessive (arRP) or X-linked (XL-RP) manner. Mutations 

in the gene RHO, coding for the protein rhodopsin, account for 20-30% of adRP cases.65,66 Over 40 

genes and loci have been implicated in autosomal recessive RP (RetNet, https://sph.uth.edu/retnet/), 

and most of them are responsible for around 1% or fewer cases.67 Around 10-15% of RP patients 

show X-linked inheritance.68 Two genes, RP2 and RPGR, account for 10-20% and 70-90% of cases, 

respectively.69-72 Rare digenic forms have been reported in individuals who are heterozygous for both 
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a ROM1 pathogenic variant and a PRPH2 pathogenic variant,73 and in one family with syndromic RP, 

heterozygous RP1L1 and C2ORF71/PCARE null mutations have been described.74  

Cone dystrophy (CD, OMIM #602093), which affects solely the cones, and cone-rod dystrophy (CRD, 

OMIM #120970), affecting first the cones and later the rods, have a prevalence of 1-30,000-40,000 

individuals.75,76 Mutations in more than 20 genes can cause autosomal recessive cone-rod dystrophy, 

most commonly in the ABCA4 gene, which accounts for 30-60% of cases. At least 10 genes have been 

associated with cone-rod dystrophy that is inherited in an autosomal dominant pattern. Mutations in 

the GUCY2D and CRX genes account for about half of these cases.77,78 CRX-associated autosomal 

dominant cone-rod dystrophy, however, would not be included in the spectrum of retinal 

ciliopathies, since it codes for a transcription factor.79,80 

Leber congenital amaurosis (LCA; OMIM #204000) is a rare subtype of IRD that occurs in ~1:50,000 

individuals, but it is the most common cause of blindness in children. LCA has an autosomal recessive 

pattern of inheritance in most cases. Mutations in 24 genes have been associated with LCA (RetNet, 

https://sph.uth.edu/retnet/). The most frequently mutated genes in LCA are CEP290 (15%),81 

GUCY2D (12%)82 and CRB1 (10%).83 A small number of dominant cases have been reported in patients 

with mutations in CRX84  or IMPDH1.85 

1.4.2 Symptoms 

RP, LCA, and CD/CRD in general are considered progressive diseases, meaning that the visual 

impairment worsens with time. The most common symptom in RP is night blindness, caused by initial 

loss of rod photoreceptors, which develops into impairment of peripheral vision (tunnel vision) and 

eventually leads to complete blindness at the end-stage of the disease. In CD/CRD, the cones are 

primarily affected, leading to reduced visual acuity, light sensitivity (photophobia), involuntary 

movements of the eyes (nystagmus) and abnormal color vision. When the rods also become affected, 

patients with CRD can suffer from night vision loss. LCA is more severe than RP and CRD, since it 

affects both rods and cones at early stages. Patients diagnosed with LCA are usually infants,86,87 and 

the most common symptoms include photophobia, nystagmus and extreme farsightedness.  

1.4.3 Non-syndromic retinal ciliopathies 

Non-syndromic retinal ciliopathies are ciliopathies of the retina that do not present systemic 

abnormalities. Nineteen genes that encode ciliary proteins have only been identified mutated in 

patients with non-syndromic retinal ciliopathies: C2ORF71/PCARE,88,89 C8ORF37,90 CDHR1,91 EYS,92,93 

FAM161A,94,95 KIZ,96 LCA5,97 MAK,98,99 NEK2,100 PROM1,101 PRPH2,102 RAB28,103 ROM1,73 RPGRIP1,104 

RP1,105,106 RP2,71,72 SPATA7,107 TOPORS,108 TULP1.109,110 Diseases caused by mutations in genes 
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encoding phototransduction cascade and visual cycle proteins are also considered retinal ciliopathies 

by some authors, since they reside in the sensory cilium.18 Non-syndromic forms have been 

described for the genes ABCA4,111 CNGA1,112 CNGA3,113 CNGB1,114 CNGB3,115 GNAT1,116 GNAT2,117,118 

GRK,119 GUCA1A,120,121 GUCA1B,122 GUCY2D,77 LRAT,123 OPN1LW,124-126 OPN1MW,124,126 OPN1SW,127,128 

PDE6A,129 PDE6B,130 PDE6C,131 PDE6G,132 RDH5,133,134 RDH12,135,136 RGS9,137 RGS9BP,137 RHO,138 

RPE65,139 and SAG.140 The exclusive retinal expression of some of these genes explains the retina-

specific phenotype.141 However, the specificity of the phenotype is unknown for those genes who are 

expressed in other tissues, and genetic modifiers of the disease may explain some of the cases.18 

1.4.4 Syndromic retinal ciliopathies 

Mutations in the same gene can also lead to different phenotypes.142-144 For example, specific 

mutations in the gene IFT140 can cause short rib thoracic dysplasia 9 with or without 

polydactyly,51,145 while other IFT140 mutations can cause non-syndromic retinal degeneration.50 

Because of this, the spectrum of ciliopathies is broad, and accurate diagnosis is needed. Below, we 

review the most common forms of syndromic retinal ciliopathies: Usher syndrome, Joubert 

syndrome, Meckel-Gruber syndrome and Bardet-Biedl syndrome. 

Usher syndrome (OMIM #276900-902) is the most frequent syndromic form of retinitis pigmentosa 

with a prevalence of ~1:25,000 individuals.146 Usher syndrome is characterized by hearing 

impairment combined with vision loss. Mutations in at least eleven genes can cause Usher syndrome 

type I, II or III. The most frequent type is Usher syndrome type IIa, caused by mutations in the USH2A 

gene.147,148 USH2A is required for the long-term maintenance of retinal photoreceptors and for the 

development of cochlear hair cells.149 Mutations in GPR98150,151 and DFNB31152 are causative of the 

remaining Usher syndrome type II cases. Usher syndrome type III is caused by mutations in CLRN1 or 

HARS. CLRN1 locates to the base of photoreceptor cilia and to synaptic ribbons.153 HARS codes for a 

histidyl-tRNA synthetase and its relation to cilia is still unknown.154 

Usher syndrome type I is not strictly a ciliopathy because the function of the protein encoded by 

these genes (MYO7A, USH1C, CDH23, PCDH15, USH1G and CIB2) is related to actin-based structures 

in the periciliary region, the calyceal processes, and not directly to cilia.155 However, since the protein 

encoded by MYO7A has a role in transport of rhodopsin and the visual retinoid cycle enzyme RPE65  

to the outer segments,41,156  Usher syndrome type I caused by mutations in MYO7A could be included 

in the retinal ciliopathies as well. 

Rare forms of Usher syndrome have been reported in which the phenotype is explained by mutations 

in two different genes simultaneously: USH2A with PDZD7,157 and CEP250 with C2ORF71/PCARE.158 
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Additionally, mutations in CEP78 can cause cone-rod dystrophy and hearing loss associated with 

primary-cilia defects.159 

Joubert syndrome (JBTS, OMIM #213300) and Meckel-Gruber syndrome (MKS, OMIM #249000) are 

recessive neurodevelopmental conditions that overlap genetically, in the sense that both JBTS and 

MKS are caused by mutations in genes encoding proteins that are structural or functional 

components of the primary cilium.160 JBTS is characterized by a distinctive cerebellar and brain stem 

malformation called the molar tooth sign. Patients may also present with hypotonia (low muscle 

tone), developmental delay, ataxia, retinal degeneration, renal or hepatic defects, polydactyly, and 

orofacial dysmorphism.161,162 The most common genetic causes of JBTS involve mutations in the 

genes AHI1,163,164 C5orf42,165 CC2D2A,166,167 CEP290,168 CSPP1,169,170 INPP5E,171,172 KIAA0586,173,174 

MKS1,175 NPHP1,176 RPGRIP1L,177 TCTN2,178 TEMEM67,179 TMEM216.180 

Clinical features of Meckel-Gruber syndrome include central nervous system malformation, cystic 

kidneys, and fibrotic changes to the liver. Other frequent features are optic disc coloboma, postaxial 

polydactyly, heart defects, skeletal dysplasia, microphthalmia, genital anomalies and cleft lip.181 

Mutations in twelve genes have been reported to cause MKS (B9D1,182,183 B9D2,182 CC2D2A,184 

CEP290,185,186 KIF14,187 MKS1,188 NPHP3,189 RPGRIP1L,177 TCTN2,190 TMEM67,191 TMEM216,192 

TMEM231193).18 Garcia-Gonzalo et al., 2011, identified a transition zone complex of Meckel and 

Joubert syndrome proteins that regulates ciliary assembly and trafficking, and are important for 

modulation of Sonic Hedgehog (Shh) signaling transduction, suggesting that transition zone 

dysfunction is the cause of these ciliopathies.178 

Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder caused by mutations in genes 

important for proper cilia function. Some of these genes code for the BBSome proteins, a complex of 

proteins that localize to the ciliary basal body and associate to and regulate the IFT trains, travelling 

together with it along the axoneme.194 The clinical features of BBS include kidney dysfunction, 

photoreceptor degeneration, obesity, polydactyly, behavioral dysfunction and hypogonadism.195,196 

The majority of BBS mutations are present in the gene BBS1.197,198 Nineteen other genes have been 

associated with BBS (ARL6,199 BBIP1,200 BBS2,201 BBS4,202 BBS5,203 BBS7,204 BBS9,205 BBS10,206 BBS12,207 

CEP290,208 IFT27,209 IFT172,210 LZTFL1,211 MKKS,212,213 MKS1,208 SDCCAG8,214 TRIM32,215 TTC8,216 

WDPCP217).18 Two diseases have a similar phenotype to BBS: Alström syndrome, for which only one 

gene, ALMS1,218 has been identified to date, and MORM (mental retardation, truncal obesity, retinal 

disease and micropenis) syndrome, for which only one family with a homozygous mutation in INPP5E 

has been described.219,220 

 

Ch
ap

te
r 1



CHAPTER 1 

30 
 

1.5 From gene to protein function 

For many of the newly discovered genes associated to retinal diseases, the function remains a 

mystery. Nowadays, the molecular characterization of proteins is coming to light thanks to the 

systematic study of protein-protein interactions. Proteins and other biological molecules never work 

alone, and they tend to either interact stably with other proteins in multi-subunit protein complexes 

that act as molecular machines or interact transiently with other proteins as part of a biochemical 

reaction or pathway. Inherited defects in the components of such complexes or pathways can affect 

human health. The first high-quality maps of the human interactome have recently been 

published.221-224 There are several high-throughput complementary methods to study protein-protein 

interactions, two of which are most commonly used: protein-protein interaction trap screens in yeast 

(yeast two-hybrid system) and protein complex affinity purification followed by mass spectrometry. 

Yeast two-hybrid systems are identifying direct, binary interactions between two proteins that are 

ectopically expressed in a yeast cell, while mass-spectrometry-based approaches are able to map 

entire interacting protein complexes without obtaining detailed knowledge about direct interactions. 

1.5.1 Interaction trap screening in yeast 

The GAL4-based yeast two-hybrid system (Y2H) was generated by Fields and Song,225,226 taking 

advantage of the GAL4 protein of the yeast Saccharomyces cerevisiae. GAL4 is a transcriptional 

activator required for the expression of genes encoding enzymes required for galactose utilization. In 

this Y2H, the cDNA encoding the DNA binding domain of the GAL4 protein is N-terminally fused to a 

bait protein ‘X’, and subsequently subcloned in a yeast expression plasmid vector. The cDNA 

encoding the GAL4 activating region is C-terminally fused to a prey protein ‘Y’ and subcloned in a 

different plasmid. When these two plasmids are co-transformed in yeast, only if proteins X and Y 

interact, they will reconstitute a functional GAL4 transcription factor by recruiting all required 

components of the RNA polymerase complex such that the transcription of several reporter genes 

that are under GAL4 control is activated. The yeast cells are then grown in selective media, and only 

the yeast cells expressing two interacting proteins that activate the auxotrophic markers will grow 

(Figure 4A). Additional reporter genes such as colorimetric markers are evaluated simultaneously to 

improve the specificity of the system. Genes expressing the prey proteins can subsequently be 

identified by Sanger sequencing. This system can be applied to study the direct binding of a specific 

bait-prey combination, or to screen prey protein-expressing cDNA libraries of a specific tissue with a 

bait protein of interest.  
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1.5.2 Tandem affinity purification (TAP) 

The tandem affinity purification (TAP) method was described in 2001 by Puig et al.227 The TAP 

method is based on the strongly enhanced specificity of a sequential double affinity purification of 

the protein complex associated with a protein of interest in a cell, compared to a single purification 

step. The original TAP tag consists of two IgG binding domains of Staphylococcus aureus protein A 

and a calmodulin binding peptide separated by a TEV protease cleavage site. An advanced 

purification approach combines a Strep-tag II and a FLAG-tag with the TAP tag (SF-TAP).228 Because 

this is a very small tag that displays a very limited nonspecific binding capacity, the inefficient 

protease cleavage step can be omitted. Once the TAP-tagged bait protein is ectopically expressed, 

proteins are extracted from the cell, and the SF-TAP fusion protein and its associated complex are 

recovered by two rounds of affinity purification/elution. The first round of purification uses the 

tandem Strep-tag II moiety, and the second round uses the FLAG-tag moiety. After purification, the 

complexes are eluted and subjected to mass spectrometry in order to identify the affinity purified 

members of the protein complex associating with the protein of interest (Figure 4B).  

 

 

Figure 4. Schematic overview of A, yeast two-hybrid system (adapted from Giorgini and Muchowski, 2005229) 
and B, tandem affinity purification. (B is partially adapted from Marissa Fessenden, 2017230 and 
https://www.helmholtz-muenchen.de/proteinscience/research/proteomics-technology-
development/interaction-proteomics/overview/index.html). BD= Binding Domain, AD= Activation Domain, G= 
General transcription machinery. 
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1.6 Animal models of retinal disease 

The importance of animal models for studying retinal dystrophies rests not only in understanding the 

pathogenesis of the disease, but also in assessing the efficacy of new means of treatment. Mendelian 

inheritance was first observed in retinal degeneration animal models of mice and rats back in the 

early 20th century by Keeler231 and Bourne et al.232 Some decades later, retinal degeneration (rd) 

mice,233 harboring a mutation in Pde6b234 and retinal degeneration slow (rds) mice,235 with a defect in 

Prph2236 were described. The generation of mutant animal models and the discovery of human 

mutations came hand in hand. For instance, mutations in the gene CHM, associated to 

choroideraemia237 and in RHO, associated to adRP138 were discovered in 1990, while their respective 

mouse models appeared just few years after.238,239 To date, over 100 different genes that underlie 

human retinal diseases have been modeled in mice.240 

An advantage of using mice for retinal degeneration research is their genetic similarity with humans, 

with 75% of mouse genes being in 1:1 orthologous relationship with human genes.241 Importantly, 

mice and humans share 79% of amino acid sequence identity of proteins encoded by IRD genes.240 

The mice genome is well covered,242 and the techniques available for targeted manipulation of their 

genome are well developed (Knockout Mouse Project (KOMP), http://www.knockoutmouse.org/).243 

However, the use of mice to study retinal degeneration also has certain drawbacks. Contrary to 

humans, mice are nocturnal animals, they lack the cone cell-enriched area of the retina, the fovea, 

and instead, their cones are spread throughout the retina.244 The photoreceptor anatomy of the mice 

is different from the humans, since mice lack photoreceptor calyceal processes,155 although this has 

been debated.245 Moreover, some retinal genes are not present in the mice (i.e. EYS), whereas others 

are duplicated (i.e. TIMM8A). 

The zebrafish, Danio rerio, is a tropical freshwater fish frequently used as a vertebrate model in 

research given the number of offspring, its amenability to genetic manipulation, and the transparent 

nature of the embryo, which allows to readily study developmental processes. Lately, the zebrafish 

has gained attention as an excellent animal model to study retinal degeneration. Like humans, 

zebrafish are diurnal animals, although they have a higher proportion of cone photoreceptors versus 

rods.  Besides short (S), medium (M) and long (L) wavelength cone photoreceptors, zebrafish contain 

an additional cone photoreceptor sensitive to UV light, which is also the first to mature. Importantly, 

between 72 to 96 hours post fertilization (hpf), most major classes of cells can be identified in the 

central retina.246 Research using zebrafish has generated different mutant models of retinal 

degeneration to date (cacna1fa,247 ush1c,248 gnat2,249 gc3,250 gucy2f,251 myo7a,252,253 crb2a,254,255 

pde6c,256 eys,257,258 ift57,259,260 ift88,260 ift172260). 
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Unlike mammals, however, zebrafish are able to regenerate the retina once damaged.261 Factors 

secreted by dying cells are received by Müller glia cells, which stimulate their proliferation.262 This 

regeneration process may be an impediment to study retinal degeneration. Moreover, a whole-

genome duplication event that occurred during the divergence of the teleost fish263,264 made the 

present-day zebrafish genome to contain many duplicated genes, of which more than 67 correspond 

to genes mutated in IRDs. These, together with the evolutionary distance of zebrafish to humans,240 

are the major drawbacks of using zebrafish for retinal research. 

Pigs are diurnal animals with a cone-enriched retina,155 which make them a good choice for the study 

of cone-associated disorders. Models for the genes rho,265-267 elovl4,268 and Gucy2d,269 have been 

generated in pigs. However, the large space needed for housing pigs and the elevated maintenance 

costs, make this model less attractive for research. 

Not only research models but also naturally occurring animal models of IRD have been identified. The 

most commonly reported one is the dog, a domestic animal that is often inbred, expressing many 

recessively inherited disorders. Retinal degeneration in dogs is named progressive retinal atrophy 

(PRA), and has been described for more than 100 breeds, while more than twenty causative mutant 

genes have been identified. Importantly, gene therapy successfully restored vision in RPE65 mutant 

dogs,270-272 and built a path for its translation to humans. 

 

1.7 Cellular models of retinal disease 

Many of the genes associated with retinal ciliopathies still have an unknown function. Given the 

difficulty to access the retina, study of the disease has been limited to animal models, which do not 

always portrait the same human traits. In recent years, induced pluripotent stem cell (iPSC) 

technology273,274 has opened the possibility to study retinal degeneration in vitro. To generate a 

proper disease cellular model, there are three important factors to consider in advance: a selection 

of somatic patient cells, a reprogramming strategy, and a differentiation protocol that allows 

researchers to mimic the physiological conditions of the tissue of interest. 

The somatic cell type of choice is important due to epigenetic memory, which may influence the 

differentiation capacity of iPSCs towards a different lineage than the original one.275 Most studies use 

fibroblasts, while there are studies that generated RPE and photoreceptor cells using lymphocytes276 

or keratinocytes.277 iPSCs can be easily obtained from patient’s blood cells with minimal risk to the 

donor.278-280 Peripheral blood-derived human iPS lines are similar to human embryonic stem cells in 
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relation to morphology, expression of surface antigens, activation of endogenous pluripotency genes, 

DNA methylation and differentiation potential.  

An even less invasive source of somatic cells is urine. Exfoliated cells present in the urine are an 

excellent source for noninvasive reprogramming. The advantage of using urine is that it can be 

obtained at any age, gender and ethnic origin, and allows sample collection under any circumstance 

except for renal failure.281 Other somatic cell sources to generate iPSCs are adipose stem cells,282,283 

periosteum membrane,282 periodontal ligament,284 neural stem cells, hepatocytes, or amniocytes. 

Modeling of retinitis pigmentosa has been performed in two-dimensional cultures using specific 

medium supplemented with developmental signaling molecules. The first differentiation was done 

by the group of Takahashi.285,286 Their studies consisted in the differentiation of iPSCs derived from 

patients with mutations in the genes RP1, RP9, PRPH2 or RHO. Because the proteins encoded by 

these genes have roles in the phototransduction cascade and OS morphogenesis of rod 

photoreceptors, the iPSCs were induced to differentiate towards a photoreceptor cell fate. Scientists 

observed expression of photoreceptor-specific markers, like rhodopsin and recoverin. Additionally, 

there was decreased rod cell survival and increased endoplasmic reticulum stress, indicating that the 

in vitro model of rod degeneration was successful. 

Yoshida et al. generated induced pluripotent stem cells (iPSCs) from an RP patient carrying a 

mutation in RHO (p.E181K).287 They went one step further and re-inserted the correct copy of the 

gene using a helper-dependent adenoviral vector gene transfer. In a different study, Tucker and 

colleagues performed exome sequencing of iPSCs from a patient with RP to identify a homozygous 

insertion in a retina-specific isoform of male germ cell-associated kinase (MAK) as a cause of RP.99 

The same group used next-generation and Sanger sequencing on iPSC-derived retinal cells to identify 

disease-causing USH2A mutations in a patient with autosomal recessive RP.277 

Obtaining RPE cells from iPSCs in vitro is less challenging than obtaining photoreceptors. To generate 

RPE in vitro, scientists take advantage of the tendency of pluripotent cells to differentiate towards 

ectoderm upon fibroblast growth factor withdrawal. A number of studies have investigated the 

disease mechanisms of RP when the primary defect resides in the RPE cells. Examples of this include 

mutations in MERTK,288 MFRP,289 HADHA,290 or BEST1.291 Schwarz et al. generated iPSC-derived RPE 

from a patient carrying the mutation p.R120* in the gene RP2 [PMID: 25292197], encoding a GTPase-

activating protein for Arf-like 3.292 

Several protocols for retinal differentiation of non-disease cell types have been successfully 

published, which recapitulate in vitro key structural and functional features of the native retina, in 
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particular the presence of photoreceptors with outer segment discs and light sensitivity.293-295 These 

protocols share the formation of optic cups in a three-dimensional (3D) culture. After differentiation, 

the optic cups develop into retinal organoids that contain the cells and organization of the neural 

retina: horizontal, amacrine, bipolar, ganglion cells, Müller cells and photoreceptors.  

Phillips et al. modeled microphthalmia associated to mutations in the transcription factor visual 

system homeobox 2 (VSX2).276 The differentiated cultures failed to produce bipolar cells, a distinctive 

feature previously observed in Vsx2 mutant mice. VSX2-deficient iPSCs also demonstrated delayed 

photoreceptor maturation, which was overcome via exogenous expression of wild-type VSX2 at early 

stages of retinal differentiation. 

Parfitt et al. modeled LCA associated with mutations in the gene encoding the ciliary protein 

CEP290.296 Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and 

restored expression of full-length CEP290, restoring normal cilia-based protein trafficking. 

Modulation of X-linked RP caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) 

gene by iPSCs showed a clinically-significant role for RPGR in the activation of the actin-severing 

protein gelsolin linked to photoreceptor actin dynamics.297 Human 3D optic cups were also used to 

investigate REEP6 expression levels and confirmed the expression of a retina-specific isoform 

REEP6.1, and that disruption of this isoform alone within rod photoreceptors can lead to retinal 

disease.298  

 

1.8 Therapies for inherited retinal diseases 

The retina is a highly suitable tissue for gene therapy, due to its accessibility, immune privilege, and 

compartmentalization. Given the high heterogeneity of retinal ciliopathies, development of generally 

applicable therapies is still a challenge. Therefore, different therapeutic strategies are being 

developed that depend on the causative gene, the mutation, and the inheritance pattern (Figure 5). 

1.8.1 Viral vectors 

Recessive mutations are a good target for gene augmentation therapy because they generally cause 

absence of protein, and consequently, the expression of wild-type protein is likely to ameliorate the 

disease phenotype. Adeno-associated virus (AAV), lentivirus and adenovirus are the preferred viral 

vectors for this type of therapy. Adenovirus and lentivirus, while having a relatively larger packaging 

capacity (>5 kb), do not target photoreceptor cells very efficiently.299 AAVs have been the 

preferentially used vectors due to their safety and ease of manipulation.300 Among the different 
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serotypes, AAV2/5, 2/7, 2/8 and 2/9 have demonstrated more efficient transduction of 

photoreceptor cells and RPE.301-304 The drawback of using AAVs is its small packaging capacity of ~4,8 

kb, which is not suitable for large transgenes. Different clinical trials for mutations in RPE65 have 

been completed to date, with a very variable outcome (ClinicalTrials.gov, identifiers NCT00749957, 

NCT01496040, NCT00643747). Some patients show improved retinal activity but some of them also 

showed deterioration after some time. In 2017, a phase III clinical trial using AAV2-hRPE65v2 for 

patients with mutations in RPE65 showed effectiveness in improvement of visual function in the 

intervention group versus the control group,305 and by the end of 2017, this study lead to the 

commercialization approval of this vector by the FDA under the name LuxturnaTM. 

1.8.2 Non-viral vectors 

Gene therapy using non-viral vectors is also a promising therapy for the treatment of retinal 

degeneration. Liposomes, polymers, polypeptides and nanoparticles are non-viral vectors, which 

have the advantage of having low immunogenicity, high capacity and the possibility of large-scale 

production. CK30PEG10K nanoparticles containing the wild-type Rds gene under the control of the 

MOP promoter provided a therapeutically effective gene delivery system for rescuing the disease 

phenotype in a mouse model for RP (rds+/−).306 The lack of long-term gene expression however is a 

major drawback for these types of vectors.300,307 One study, nonetheless, showed long-term 

expression of the Rpe65 gene in mice lacking Rpe65 using a nanoparticle, liposome-protamine-DNA 

complex (LPD).308 

1.8.3  Stem cell therapy 

Transplantation of healthy cells able to generate retinal cells is a treatment alternative for patients 

with severe retinal degeneration. The advantage of stem cell therapy lies in that it may be applied 

independently of the gene and mutation. To date, there are a few clinical trials that have tested the 

efficacy of cell transplantation for patients with retinal dystrophies. A phase III clinical trial using 

bone marrow-derived mononuclear cells showed no adverse effects and visual improvement in 

patients with RP and CRD.309 A different trial in twenty RP patients showed an improvement in the 

quality of life after three months of treatment, however, the improvement stopped after one year.310 

Retinal stem cells may be obtained in vitro using two different sources: induced pluripotent stem 

cells (iPSCs) or embryonic stem cells (ESCs). As mentioned in section 1.7, different groups have been 

able to generate functional photoreceptor cells from human iPSCs. Transplantion of iPSCs-derived 

retinal cells, however, has been only studied in animal models so far. MacLaren et al. showed that 

only stage-specific photoreceptor precursors, corresponding to postmitotic committed 
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photoreceptors, are able to efficiently integrate into the degenerating retina, differentiate into 

mature photoreceptors, form synaptic connections, and possibly lead to recovery of visual 

function.311 Transplantation of differentiated photoreceptor cells derived from human ESCs into a 

mouse model was able to restore vision in Crx-deficient mice.312 Transplantation of ESCs- and iPSCs-

derived 3D retinal sheets showed to be efficacious in the advanced retinal degeneration mouse 

model rd1,313 and in two primate models of retinal degeneration.314 

The use of iPSCs overcomes the risks of rejection associated to use of ESCs from an allogenic donor. 

However, iPSCs may be associated to malignant characteristics due to the use of transcription factors 

for its production, impurities in the culture, unwanted differentiation, and the presence of the 

patient’s mutation.315 Transplantation of photoreceptor cells derived from iPSCs or ESCs in humans 

have not yet been reported, but clinical trials for retinitis pigmentosa patients are underway 

(ClinicalTrials.gov, identifiers NCT02320812, NCT03073733, NCT02464436). 

1.8.4 Genome-targeted retinal therapy 

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 is a DNA cleavage system 

that originates from the immune defense system of bacteria and archaea, first identified by Mojica et 

al. in the 1990s.316,317 The Cas9 nuclease cleaves double-stranded DNA at a target genomic locus. 

After that, the targeted locus is repaired by either the non-homologous end joining (NHEJ) pathway, 

which results in insertions and/or deletions in the targeted locus, or by the homology-directed repair 

(HDR) pathway, which allows precise gene editing in the presence of an exogenously introduced 

repair template. This genome editing technique represents nowadays a powerful tool for the 

treatment of genetic diseases. Use of CRISPR/Cas9 technology to disrupt the dominant Rho p.S334* 

mutation in adRP rat models has recently been reported.318 Interestingly, AAV-mediated CRISPR/Cas9 

delivery to post-mitotic photoreceptors to disrupt Nrl, helps rod survival and preserves cone function 

in three different mouse models of retinal degeneration.319 Although promising, translation of 

CRISPR/Cas9 genome editing of retinal diseases into the clinic may be delayed by several factors.320 

One factor is the few studies that report off-target effects of CRISPR/Cas9. Reports have shown off-

target mutations at sites that differ by five nucleotides.321 Additionally, replacement of a mutation by 

HDR is not only challenging, but unlike NHEJ, HDR occurs only substantially in dividing cells and 

hardly in post-mitotic photoreceptor or RPE cells. Therefore, CRISPR/Cas9-based systems are better 

suited for degrading mutant alleles. 
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Figure 5. Current therapeutic strategies to treat inherited retinal diseases. A, Gene augmentation therapy 
using adeno-associated virus (AAV), adenovirus, lentivirus, liposomes, nanoparticles or polymers. These vectors 
carry wild-type cDNA of the mutated gene, and restore the wild-type protein exogenously. B, Genome-targeted 
therapy using CRISPR/Cas9 to correct DNA defects, or C, RNA therapy to correct mRNA defects. D, Stem cell 
transplantation of healthy retinal cells. E, Retinal prostheses and optogenetics are options for advanced stages 
of the disease. (Partially adapted from May-Simera et al., 201752; França Dias et al., 2017322 and GenSight, 
https://labiotech.eu/company/gensightbiologics/?nabe=6526793858416640:1) 
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RNA therapy is a mutation-specific treatment option for retinal disease patients.323 Antisense 

oligonucleotides (AONs) are small DNA or RNA molecules that can complementary bind to target pre-

mRNA sequences to control the splicing or the degradation of transcripts. Garanto et al. showed that 

delivery of AONs targeting a deep-intronic CEP290 mutation in fibroblasts restored normal CEP290 

pre-mRNA splicing.324 In a recent study by the group of Michael Cheetham, AON delivery to 

differentiated iPSCs-derived photoreceptor cells was able to restore CEP290 splice defects and 

photoreceptor ciliary structures.296 Although yet in its early stages, RNA therapy is thus a promising 

treatment for retinal disease when the mutations occur outside the coding sequence. 

1.8.5 Other therapeutic options 

When the disease is diagnosed in an advanced stage, the few remaining photoreceptor cells might 

not be sufficient for patients to benefit from gene therapy, or even cell transplantation. Retinal 

prostheses are a therapeutic option in these cases. The concept of retinal prostheses consists on the 

stimulation of the retinal cells by application of an electrical charge by an electrode activated by 

light.325 Another emerging technique to treat patients with advanced retinal degeneration is 

optogenetics. Optogenetics is a type of gene therapy that aims at photosensitizing remnant bipolar 

or ganglion cells by genetically introducing photosensitive opsin-based proteins into the cell 

membrane. Ectopic expression of human rhodopsin has been shown effective in restoring some 

visual responses and behavior in mutant rd1 mice.326 A phase I/II clinical trial using optogenetic 

therapies for a patient with advanced RP is ongoing (ClinicalTrials.gov, identifier: NCT02556736). 

Vision through light-sensitive ganglion cells is different than vision through photoreceptor cells, 

therefore the aim of this type of therapy is not to fully restore vision, but to provide the eye with 

some vision, thus improving the life quality of the patients. 
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1.9 Aim of this thesis 

The main purpose of this thesis is to unravel the molecular mechanisms behind PCARE-associated 

retinal disease, and to build a path towards a therapy for this disease. 

In chapter 2, we show that PCARE directly interacts with several proteins involved in the dynamic 

actin filament biogenesis. PCARE is able to recruit this actin module to the primary cilium to 

evaginate the ciliary plasma membrane. We propose that a similar actin dynamics-driven membrane 

evagination process is operational at the base of the photoreceptor outer segments where the 

PCARE module and actin co-localize, thereby shedding light on the mechanistic context of outer 

segment disc biogenesis. 

In chapter 3, we offer an overview of all the reported mutations in PCARE and analyze any potential 

correlation between the genotype and the severity of PCARE-associated retinal disease. 

In chapter 4, we report the duplication of the pcare gene in zebrafish. Generation of a pcare1 mutant 

zebrafish using CRISPR/Cas9 technology shows that this gene is essential for proper outer segment 

morphogenesis and visual function in zebrafish. 

In chapter 5, we study the potential of an iPS cell line derived from a patient with a homozygous 

mutation in PCARE to differentiate into a retinal fate. Transcriptome analysis reveals differences 

between wild-type and patient-derived cell lines, such as the downregulation of the expression of 

genes encoding cytoskeleton-associated proteins in PCARE-deficient iPSCs compared to controls. 

Moreover, wild-type cells are able to differentiate into a neuronal fate, contrary to patient-derived 

iPSCs. 

Chapter 6 describes the generation and characterization of an adeno-associated virus (AAV) vector 

containing full-length PCARE cDNA for future therapeutic purposes. 

In chapter 7 the main topics of this thesis are discussed, focusing on the molecular mechanisms 

behind actin-driven outer segment disc morphogenesis. We also analyze PCARE-associated retinal 

disease, different models currently available to further study the disease features, and potential 

therapeutic strategies. 
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2.1 Abstract 

The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain 

hundreds of opsin-loaded stacked membrane discs that enable phototransduction. The biogenesis of 

these discs is initiated at the OS base, but the driving force has been debated. Here, we show that the 

protein encoded by the photoreceptor-specific gene C2ORF71, which is mutated in inherited retinal 

dystrophy (RP54), localizes to the OS base. We demonstrate that C2ORF71/PCARE (photoreceptor cilium 

actin regulator) can interact directly with the Arp2/3 activator WASF3, and several other proteins involved 

in the dynamic actin filament biogenesis, which it efficiently recruits to the primary cilium. Ectopic co-

expression of PCARE and WASF3 in ciliated cells results in the activation of an evagination process at the 

ciliary tip resembling that of lamellipodia, a process that was disrupted by a retinal dystrophy-associated 

missense mutation in PCARE. We propose that a similar actin dynamics-driven evagination process is 

operational at the base of the photoreceptor OS where the PCARE module and actin co-localize, but which 

is abrogated in Pcare-/- mice. The observation that several proteins involved in retinal ciliopathies are 

translocated to this evagination process renders it a potential common denominator in the 

pathomechanisms of these hereditary disorders. Together, our findings show that a tightly regulated 

deployment of actin dynamics is orchestrated by the photoreceptor-specific protein PCARE, thereby 

shedding more light on the mechanistic context of outer segment disc biogenesis. 
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2.2 Introduction 

Photoreceptor cells in the neural retina of vertebrates are postmitotic, neuroepithelial cells that are highly 

polarized and compartmentalized.1-3 The apical phototransductive outer segment is connected to the 

biosynthetic compartment, the inner segment (IS), by a narrow microtubule-based connecting cilium (CC) 

that is homologous to the transition zone of a primary non-motile cilium.4 The replacement of damaged 

molecular OS components requires renewal by a specialized refurbishing mechanism. Daily, 

approximately 10% of the rod photoreceptor’s opsin-loaded discs are shed at the apical OS tip,5 and 

phagocytised by the adjacent RPE cells, while the same amount of new membrane discs are generated 

and restacked at the OS base, ensuring photoreceptor homeostasis. The canonical mechanism behind the 

onset of the formation of new discs was recently established to be evagination and subsequent expansion 

of the ciliary plasma membrane at the region where the CC enters the OS base.6,7 Actin was proposed to 

be a critical factor in this, after a branched actin network was observed at the site of evagination initiation 

over three decades ago,8,9 and inhibition of actin polymerization interfered with this process.10 Despite 

these observations, detailed molecular insights into the dynamics or regulation of this actin-driven 

membrane evagination process have remained elusive. 

We set out to identify the molecular disease mechanism of a progressive subtype of inherited retinal 

dystrophy, autosomal recessive retinitis pigmentosa type 54 (RP54) that is caused by mutations in 

C2orf71.11,12 Using an affinity capture approach, we here show that the ciliary protein encoded by this 

gene interacts with basal body/centriole-associated proteins, microtubule-associated proteins and, 

intriguingly, also with several proteins involved in the assembly and activation of actin. Localization studies 

in human and mouse retinae, both of wild-type and C2orf71 knockout mice, confirmed the C2orf71-

dependent localization of these proteins to the base of the photoreceptor outer segments. Subsequent 

studies in ciliated cells demonstrated the capacity of this protein module to form structures resembling 

membrane evaginations. We have renamed C2orf71 to PCARE, which stands for ‘photoreceptor cilium 

actin regulator’, as our study indicates that this protein plays an important role in delivering an actin 

module to the base of outer segment discs.  
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2.3 Results 

2.3.1 PCARE is a ciliary and actin-associated protein  

PCARE is predominantly expressed in the retina11 and encodes a 140-kDa ciliary protein that is predicted 

to be myristoylated and palmitoylated at its N-terminus (Figure 1a).12 These post-translational 

modifications promote stable attachment to membranes and are critically important in ciliary 

translocation.13 PCARE does not contain any highly conserved functional domains, but several structural 

protein sequence motifs are predicted, including a tentative actin-binding motif (Figure 1a). Evaluation of 

the localization of full-length and three subfragments of PCARE in ciliated hTERT RPE-1 cells (Supplemental 

Figure 1a) showed that both full-length PCARE and the N-terminal fragment 1 (PCARE-F1; amino acids (aa) 

2-449) localize to the basal body and axoneme of the primary cilium. The middle fragment 2 (PCARE-F2; 

aa450-900) localizes to the cytosol where it appears to induce and/or decorate cellular cytoskeletal 

filaments. Co-staining with phalloidin indicated that these filaments are actin-based (Supplemental Figure 

1b). The C-terminal fragment 3 (PCARE-F3; aa901-1289) that contains a predicted nuclear localization 

signal, mainly localizes to the nucleus, although some axonemal staining was also observed (Supplemental 

Figure 1a).  

2.3.2 PCARE interacts with microtubule-, centrosome-, and actin-associated proteins  

We used PCARE as a bait in protein-protein interaction screens to identify potential physical links to known 

biochemical pathways. Screens for binary retinal interactors of PCARE and its three subfragments were 

carried out using the yeast two-hybrid system (Supplemental Table 1). Assessment of the resulting 41 

candidate interactors, after confirmation by co-transformation in yeast, revealed six proteins that are 

known to be associated with the centriole(s) of the centrosome and/or the ciliary basal body, of which 

three are known to be involved in retinal ciliopathies, i.e. OFD1, CEP290, and CEP250 (Figure 1b).14 Other 

interacting proteins are also microtubule-associated, like the dynactin subunits DCTN1/p150-glued and 

DCTN2/p50 dynamitin, PCM1, NINL, and KNSTRN. In addition, three components of microtubule-based 

kinesin motors (KIF20A, KLC2 and KLC4) were found to interact with PCARE. Importantly, a direct 

association with one of the key proteins involved in activating actin dynamics was identified, the WAVE 

regulatory complex (WRC) member WAVE3/WASF3 (Wiskott-Aldrich syndrome protein family member 3). 

This protein is required for the nucleation of a dynamic branched F-actin network by activating the Arp2/3 

complex.15 

The photoreceptor-specific protein PCARE interacts with WASF3 to deploy a ciliary actin dynamics module 



64

 
 

  

Figure 1. PCARE interacts with microtubule-, centrosome-, and actin-associated proteins. a, Schematic 
representation of the PCARE protein structure and subdivision into three fragments. Indicated are the N-
myristoylation and S-palmitoylation residues, a predicted coiled coil domain (by COILS Server, http://embnet.vital-
it.ch/software/COILS_form.html), a WH2 actin binding motif (by ELM, http://elm.eu.org/), a nuclear localization 
signal (by ELM) and a proline-rich region (by HHpred, https://toolkit.tuebingen.mpg.de/hhpred). b, Overview of the 
main protein modules associated to PCARE, as found in the Y2H and TAP studies. Three prominent modules can be 
distinguished: a module composed by proteins linked to actin dynamics (in green), a module of 
centrosomal/centriolar/basal body proteins (in purple), and a module of microtubule-associated proteins (in 
orange). c, Validation of the binary interactions by co-immunoprecipitation. HEK293T cells were co-transfected with 
cDNA constructs encoding 3xHA-PCARE and 3xFLAG-WASF3, 3xFLAG-OFD1, 3xFLAG-CEP250 or 3xFLAG-CEP290. The 
unrelated protein 3xFLAG-STRAD was used as negative control of PCARE interaction. As positive control, the 
interaction between 3xHA-LCA5 and 3xFLAG-OFD1 was used. Protein complexes were immunoprecipitated with 
anti-HA antibodies, while input or immunoprecipitated fractions were immunoblotted with anti-HA or anti-FLAG 
antibodies.  
 

Next to WASF3, four other proteins with different roles in actin dynamics were identified as putative 

PCARE interactors (Figure 1b, Supplemental Table 1). To validate the specificity of the direct binding of 

PCARE to a representative subset of potential binary interacting partners identified in the Y2H screens, 
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we performed co-immunoprecipitations using HEK293T cells ectopically expressing 3xHA-PCARE and 

3xFLAG-tagged WASF3, OFD1, CEP250 or CEP290 (Figure 1c). All four putative PCARE-interacting proteins 

were indeed found to specifically co-immunoprecipitate with PCARE, albeit somewhat less strong for 

CEP290. For WASF3, the main interacting region was delineated to the N-terminal PCARE Fragment 1, 

while PCARE Fragment 2 also had some affinity for this protein (Supplemental Figure 1c).  

To further explore the PCARE interactome, we performed tandem affinity purification (TAP) of Strep-

II/FLAG-tagged full-length PCARE expressed in HEK293T cells. Interacting proteins were subsequently 

identified by mass spectrometry (Figure 1b, Supplemental Table 2). Although limited overlap is generally 

observed in Y2H and TAP-MS data,16 five proteins, DCTN2, KIF20A, IFFO1, PCM1 and WASF3, were found 

to interact with PCARE in both the Y2H and the TAP assay, again demonstrating the importance of these 

interactions. Moreover, the three functional protein modules we identified by the Y2H assays could also 

be distinguished in this experiment: a microtubule-associated module (6 proteins), a centrosome/basal 

body module (12 proteins), and 18 proteins that are known to play diverse roles in de novo actin network 

assembly, including most members of the ARP2/3 complex that regulates actin polymerization. These 

proteins include the actin assembly regulator ENAH, the actin capping/severing protein gelsolin, the actin 

cytoskeleton restructuring factors profilin 1 and 2, myosin regulatory subunits 12A and 12B, the actin 

bundling protein LIMA1, the actin bundling and membrane-associating protein filamin A, and several 

chaperonins (Figure 1b, Supplemental Table 2).  

2.3.3 PCARE co-localizes with an actin dynamics module at the OS base  

We next evaluated the localization of representative components of these three modules in the retina. 

Immunofluorescence staining of PCARE and its direct interactors WASF3 and α-actinin (ACTN1) in human 

retina showed staining in the area of the connecting cilium (Figure 2a). Co-staining with centrin-3 (CEN3) 

that marks the axoneme of the connecting cilium (CC) and the daughter centriole (dC) showed that all 

three proteins localized at the site of initiation of OS disc morphogenesis in the apical CC region of 

photoreceptors, where F-actin co-localized with WASF3. The three proteins also localized to the base of 

the connecting cilium and the daughter centriole (Figure 2a). Immunofluorescence co-staining of WASF3 

and F-actin at the apical and basal CC regions was also confirmed (Figure 2b). Although suitable for 

western-blot, PCARE antibody did not yield a specific staining in immunohistochemical analyses on mouse 

retinae (Supplemental Figure 5). 
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Figure 2. PCARE co-localizes with actin-associated proteins at the OS base in the retina. a-b, Localization of PCARE, 
WASF3, ACTN1 and F-actin in a human donor retina (66 years old) and in wild-type mouse retinas (1 month old). 
PCARE co-localizes with WASF3, ACTN1 and F-actin at the tip of the connecting cilium (CC, counterstained with anti-
centrin (CEN3) or GT335) and at the basal body (BB) and the adjacent daughter centriole (dC). c-e, Immuno-EM 
localization of PCARE in mouse photoreceptors (3 months old) affirm localization in the outer segment (OS) at the 
tip of the CC (asterisks) associated with nascent discs (arrows) and the centrioles of photoreceptors. f, In age-
matched Pcare-/- mouse retinas, WASF3 and F-actin mislocalize from the apical part of the CC. Outer nuclear layer, 
ONL; IS, inner segment; BB, basal body; dC, daughter centriole. Scale bars: a: upper panel: 25 µm, middle and lower 
panels: 1 µm; b,f: upper panels 10 µm, lower panels: 0.5 µm; c: 300 nm; d: 150 nm; e: 175 nm. 
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High-resolution localization analysis of PCARE in mouse photoreceptors by immuno-electron microscopy 

(EM) further validated and specified these findings (Figure 2c-e), demonstrating that PCARE decorates the 

microtubules of the apical region of the connecting cilium, and extends to the first nascent discs of the OS 

base (Figure 2c,d). Furthermore, it decorates the microtubules of the ciliary basal body (Figure 2e) and 

daughter centriole (Figure 2c), while some more dispersed signal around the basal body and in the inner 

segment/calyceal process could also be observed (Figure 2c,e). Evaluation of the actin dynamics module 

in retinae of one-month old Pcare-/- mice that develop early-onset retinal degeneration17 showed that 

WASF3 and F-actin were absent from the CC region, while the CC itself remained present, as indicated by 

the staining of the axonemal marker polyglutamylated tubulin (GT335) (Figure 2f). 

2.3.4 PCARE recruits WASF3 to the ciliary tip and induces membrane evaginations  

To further study the importance of the interactions of PCARE and its binding partners, we first evaluated 

the localization of ectopically expressed PCARE and the Arp2/3 complex activating factor WASF3 in ciliated 

hTERT RPE-1 cells (Figure 3a,b), and compared this with their localization upon co-expression (Figure 3c,d). 

In the absence of PCARE, which is not endogenously expressed in these cells, WASF3 associates to F-actin 

in the vicinity of the nucleus (Figure 3b). When PCARE was co-expressed, it efficiently recruited WASF3 

and translocated it into the cilium (Figure 3c), where actin filaments could be identified (Figure 3d). 

Intriguingly, this induced the formation of a membrane evagination, appearing as a bulge with some 

variety in shape and size (Figure 3c,d). This process was not cell-type specific, as it could also be observed 

in murine ciliated mIMCD-3 cells (Supplemental Figure 2). Several intermediate stages of this process 

could be observed, suggesting a progressively extensive evagination in time at the ciliary tip (Figure 3c-e). 

A more detailed evaluation of several confocal planes of a cell ectopically co-expressing PCARE, WASF3 

and the centrosomal/basal body protein DCTN2, one of the binary PCARE interactors, further 

demonstrated that docking of the module at the ciliary tip initiates ciliary membrane evagination (Figure 

3f). To validate that actin dynamics is involved in the formation of these evaginations, we treated the cells 

with actin polymerization inhibitors. Cytochalasin D administration, which prevents polymerization of the 

barbed ends of F-actin filaments,18 did not affect the formation of these structures. In contrast, treatment 

with latrunculin B, which sequesters G-actin monomers and thereby prevents its polymerization,19 

completely blocked the formation of the evaginations (Figure 3g). Other compounds such as CK-660 and 

nocodazole did not affect this process (Figure 3g). 
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Figure 3. Formation of ciliary evaginations upon ectopic co-expression of PCARE and WASF3. a, Ectopic expression 
of PCARE in hTERT RPE-1 cells shows localization of PCARE (green) at both the ciliary base and axoneme, and 
presence of F-actin (red) inside the primary cilium, stained with ARL13B (purple). b, Overexpression of WASF3 
(green) recruits F-actin (red) to the nucleus. c, Co-expression of PCARE and WASF3 translocates the latter from the 
nucleus into the cilium (left panel). An evagination of the ciliary membrane forms at the ciliary tip (right panel). d, 
This evagination is filled with polymerized actin. e, Cells were transfected with plasmids expressing FLAG-WASF3 and 
PCARE-FLAG and stained 4 hours after transfection with antibodies directed against ARL13B (red), WASF3 (green) 
and PCARE (blue). At this point we can already observe accumulation of the proteins at the ciliary base and tip. f, 
hTERT RPE-1 cells were transfected with plasmids expressing HA-DCTN2, FLAG-WASF3 and PCARE-FLAG and stained 
with antibodies directed against HA (red), WASF3 (green) and PCARE (purple). Recombinant WASF3 (green) and 
PCARE (purple) proteins accumulate at the tip of the primary cilium (f’, arrows). DCTN2 (red) marks the base of the 
cilium. Imaging was performed using focal plane merging in a Zeiss LSM 800 microscope with Airyscan. g, 
PCARE/WASF3 co-transfected cells were treated for 18 h with 1 µM of cytochalasin D, the ARP2/3 complex inhibitor 
CK-666, nocodazole or latrunculin B, and stained with WASF3 (green), F-actin (red) and acetylated tubulin (blue). 
Nocodazole, cytochalasin D or CK-666 treatment did not disrupt the formation of the ciliary evaginations, while 
latrunculin B caused complete disruption of these. Scale bars: a-b: left panels: 20 µm, middle panels: 5 µm, insets: 1 
µm; c-d: left panels: 5 µm, insets: 1 µm; e,f: 1 µm; g: all 1 µm, except latrunculin B-treated cells: 5 µm. 
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Evaluation of the constitution of these evaginations by immunofluorescence showed that they contain all 

tested core components of the PCARE-associated actin dynamics module we identified in our affinity 

screens: ENA/VASP (Figure 4a) and the RhoGEF kinase kalirin (Figure 4b), that is known to affect the actin 

cytoskeleton and is a RAC1 activator.20 Its substrate RAC1, which was not identified in our affinity screen 

but is known to activate the Wave regulatory complex,21 indeed was also present at the evaginations 

(Figure 4c). Co-expression of PCARE, WASF3, and the ARP3 protein, a member of the Arp2/3 complex and 

involved in activation of the branched actin network,22 did confirm co-localization of these proteins and 

F-actin throughout the evagination structure (Figure 4d). Evaluation of the localization of markers of the 

ciliary microtubule axoneme, acetylated tubulin (Supplemental Figure 3a) and polyglutamylated tubulin 

(Supplemental Figure 3b) upon ectopic co-expression of PCARE and WASF3 showed a partial 

colocalization, which was also the case for the intraflagellar transport protein IFT88 (Supplemental Figure 

3c). 

 
Figure 4. Actin-associated proteins localize to the ciliary evagination. Ciliated hTERT RPE-1 cells were transfected 
with plasmids expressing PCARE-FLAG and HA-WASF3 (a-c) or FLAG-WASF3 (d), and stained with antibodies directed 
against: a, PCARE (blue), WASF3 (green, ENA/VASP (red); b, RPGRIP1L (blue), KALRN (green), WASF3 (red), PCARE 
(purple); c, RPGRIP1L (blue), RAC1 (green), WASF3 (red), PCARE (purple); d, HA to detect HA-ARP3 (blue), WASF3 
(green), F-actin (red), PCARE (purple). Scale bars are 1 µm. 
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To investigate the pathophysiology underlying PCARE-associated RP54, the p.(I201F) missense mutation 

12 was introduced into PCARE. Although p.(I201F) mutant PCARE still translocated to the ciliary axoneme, 

there were observable differences between the evaginations formed by wild-type and mutant PCARE 

(Figure 5). To analyse these differences in more detail, we classified the different cilia phenotypes of co-

transfected cells in three types: type I (large, extended evagination), type II (small bulge), type III (no bulge) 

(Figure 5a,b). Three independent evaluations of these cilia were performed in a total of 40 cilia for the 

wild-type condition and 41 cilia for the mutant condition (Figure 5c). The majority of the cilia (~79% of the 

total for the WT and ~65% for the mutant) presented some degree of bulging. Importantly, cells 

transfected with wild-type PCARE contained predominantly cilia with the large, extended evaginations 

(type I, 56% on average) compared to the PCARE p.(I201F) mutant (16% on average). Moreover, the area 

of the bulges was significantly increased in the wild-type condition compared to the mutant (Figure 5d).  

2.3.7 Distinct retinal ciliopathy proteins modify the structure of the ciliary evaginations  

Interestingly, we observed that the ciliary marker ARL13B (Fig. 3c,e) and the ciliary transition zone marker 

RPGRIP1L (Figure 4b,c) also localized to the evaginations. As mutations in these two proteins cause the 

retinal ciliopathy Joubert syndrome, and genes encoding several of the identified PCARE interactors have 

also been found to be mutated in ciliopathies, we evaluated the relevance of the encoded proteins to the 

evagination process. Upon ectopic co-expression of PCARE and WASF3, several of these proteins are co-

translocated into the ciliary tip evaginations, similar to RPGRIP1L and ARL13B. These include the basal 

body protein OFD1 (Figure 6a) and the ciliary axonemal proteins spermatogenesis-associated protein 7 

(SPATA7, Figure 6b) and lebercilin/LCA5 (Figure 6c). Two PCARE interactors of the centrosomal/basal body 

module that we tested, DCTN2 (Figure 3f) and CEP250 (Figure 6d) however were not translocated to the 

ciliary evaginations and remained at the ciliary basal body. Although OFD1, SPATA7 and lebercilin were all 

efficiently translocated to the evagination structures, different expression patterns and effects were 

observed. Lebercilin was predominantly found at the base of the structures (Figure 6c), in contrast to 

OFD1 and SPATA7 (Figure 6a,b). Intriguingly, the latter two were found to expand the size of the 

evagination structures by, on average, 40% (Figure 6e).  
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Figure 5. RP-associated mutant p.(I201F) PCARE generates distinct ciliary evaginations. hTERT RPE-1 cells were co-
transfected with plasmids expressing FLAG-tagged WASF3, and either wild-type PCARE or mutant PCARE p.(I201F) 
fused to HA (a, b). Cells were stained with antibodies recognizing PCARE (green), WASF3 (red) and polyglutamylated 
tubulin (GT335, purple). Scale bars are 2 µm. To compare the cilia transfected with wild-type PCARE (WT) to mutant 
PCARE (I201F), we categorized the different phenotypes in type I (expanded evagination / ring structure), II (small 
bulged cilium) or III (regular cilium) structures. Cells transfected with wild-type PCARE contain more type I cilia than 
mutant transfected cells (c). d) Quantifications of the area of the evaginations is represented for each measured 
cilia, and shows that cilia transfected with the I201F mutant present smaller evaginated areas than the wild type; 
n=37 (WT), I201F (n=34), p-value = 0.0001.  

 

 

The photoreceptor-specific protein PCARE interacts with WASF3 to deploy a ciliary actin dynamics module 



72

 
 

Figure 6. Retinal ciliopathy proteins modify the structure of the ciliary evaginations. Triple co-expression of PCARE 
(a, b, green; c, d, purple), WASF3 (a, b, purple; c, red; d, green) and OFD1 (a, red) or SPATA7 (b, red) increases the 
size of the ciliary evaginations in hTERT RPE-1 cells, but it does not increase for LCA5 (c, green) and CEP250 (d, red). 
In these evaginations, the transition zone marker RPGRIP1L (blue) shows different localization patterns. e, 
Quantifications of the area of the evaginations is represented for each cilia, and revealed a statistically significant 
increase in size for the OFD1 and SPATA7 transfected cilia. The mean for each condition is indicated in red. *OFD1 
(p-value = 0.0027), *SPATA7 (p-value = 0.0011); n=44 (Control), n=39 (OFD1); n=41 (SPATA7). Scale bars are 1 µm. 
 

 

2.4 Discussion 

The neogenesis of photopigment-loaded membrane discs of a vertebrate photoreceptor cell is a tightly 

regulated, multistep process that takes place at the base of the sensory primary cilium of this cell.23 This 

results in the assembly of hundreds of new discs each day at the OS base where it connects to the ciliary 

stalk. The shedding and subsequent phagocytosis by the RPE at the tip of the OS tip balances this process 

that allows, at least in humans, a complete renewal cycle every 10 days. This elegant evolution towards 

high resolution colour vision requires over a thousand proteins for its function, but comes with a prize: 

critical defects in these processes due to genetic mutations that disrupt ciliary proteins are a major cause 

for non-syndromic and syndromic hereditary blindness, collectively known as the retinal ciliopathies.4,24,25 

The combination of high-resolution imaging studies with protein-protein interaction analyses has shown 

to be an effective way to expand our knowledge of cilium function in health and disease in an iterative 

way.4,26 In this study, we took this approach to investigate the role of PCARE in the photoreceptor cilium 

to understand the disease pathogenesis of RP54.  
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Although PCARE is expressed specifically in the retina,11,17 the full-length protein efficiently localizes to the 

cilium upon ectopic expression in cultured ciliated cells (i.e. hTERT RPE-1 and mIMCD-3 cells). The 

subdivision of PCARE into three fragments was done to avoid potential size restraints and increase the 

sensitivity of our Y2H screening.27 This also allowed the evaluation of the contribution of the predicted 

domains residing in these fragments to the PCARE localization. Only N-terminal fragment 1 (aa2-449) 

efficiently localized to the entire cilium including the basal body, similar to the full-length protein, which 

is likely to be induced by the predicted N-Myristoylation (Gly2) and S-Palmitoylation (Cys3) signals present 

in this fragment. The C-terminal fragment 3 (aa901-1289) seems to use its predicted nuclear localization 

signal to translocate to the nucleus, although the relevance of this signal in full-length PCARE is unclear. 

The central fragment 2 (aa450-900) contains a predicted actin-binding motif, and is indeed capable of 

decorating actin filaments. The relevance of this latter finding became clear when we evaluated the 

protein-protein interaction data. Besides the identification of several centrosomal/basal body-, and 

microtubule-associated interacting proteins that matched the ciliary localization of PCARE, our yeast two-

hybrid screen for binary PCARE interactors yielded several proteins that have been shown to be involved 

in the regulation of actin. This process concerns the dynamic cycling between polymerization and 

disassembly of the 42 kDa monomeric, globular actin (G-actin) protein into filamentous actin (F-actin), 

and the subsequent formation of higher order, branched F-actin networks. This allows cells to efficiently 

and rapidly remodel their cytoskeleton, and has been adopted as their main and most versatile force-

generating system, as it facilitates most cellular processes that require cell membrane protrusion, 

contraction, and remodelling.28,29 Most interestingly, we identified WASF3/WAVE3 as a direct PCARE 

interactor. This protein is incorporated into a conserved, heteropentameric WAVE regulatory complex 

(WRC) that activates the Arp2/3 complex for actin filament nucleation and assembly of a branched F-actin 

network.15 Specific subtypes of the wide variety of actin dynamics-regulated processes can be 

distinguished by their protein constitution. The WRC is known to activate the Arp2/3 complex specifically 

in lamellipodia, ribbon-like flat cell membrane protrusions driven by actin dynamics that provide cellular 

motility across a surface.30 In turn, the Arp2/3 complex activation occurs downstream of the Rho GTPase 

family member RAC1. Interestingly, RAC1 can be activated by the Rho GEF kalirin. Both kalirin and alpha-

actinin, direct interactors of PCARE, are proteins with spectrin-like repeats that allow the interaction with 

a variety of substrates.31 The association of PCARE with an extensive actin dynamics module was further 

solidified and extended by our tandem affinity purification experiments, identifying a further 18 proteins 

associated with actin dynamics. These included most members of the Arp2/3 complex (that can be 

activated by WASF3), the actin assembly regulator ENAH, the actin capping/severing protein gelsolin, the 
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actin cytoskeleton restructuring factors profilin 1 and 2, myosin regulatory subunits 12A and 12B, the actin 

bundling protein LIMA1, the actin bundling and membrane-associating protein filamin A, and several 

chaperonins of the CCT family, all known to be important for correct actin filament folding.  

As several differentially localized actin-based processes have been suggested to regulate photoreceptor 

outer segment neogenesis and homeostasis,23 it was important to accurately determine the location of 

PCARE in the retina. As its capacity to localize to the primary cilium of cultured cells already suggested, 

PCARE was indeed found at the photoreceptor connecting cilium. More precise localization by 

immunofluorescence and immuno-EM determined that PCARE localizes to three prominent sites: the 

ciliary basal body, the accompanying daughter centriole, and a narrow region at the tip of the connecting 

cilium stalk, directly adjacent to the site of the neogenesis of the first outer segment membrane discs. 

WASF3 also localized to these three sites, while F-actin localized with WASF3 at the tip of the connecting 

cilium. This latter finding was particularly exciting, as it directly links to one of the axioms in photoreceptor 

cell biology: the observation of a branched F-actin network at this exact location over thirty years ago, 

when the involvement of F-actin in the neogenesis of OS discs was first suggested.8 This hypothesis was 

later strengthened by results of treatment with the actin poison cytochalasin D that prohibited the 

generation of new discs, but not the (over)growth of existing ones.10 Further support was obtained from 

immuno-EM observations that demonstrated the presence of alpha-actinin at this site.9 This hypothesis 

of actin dynamics-driven membrane evagination has been challenged several times since then, as 

different fixation and imaging techniques showed different results.23 We here demonstrate that ectopic 

co-expression of PCARE and WASF3 in cultured ciliated cells, in which PCARE is not endogenously 

expressed, recruits all WASF3 from the cytoplasm to the cilium, and induces membrane evagination at 

the ciliary tip. The fact that the formation of these evaginations can be prohibited by the F-actin poison 

latrunculin-B, suggests the involvement of actin in this process. Evaluation of the components present in 

these ciliary evaginations, either by co-localization or co-expression, confirmed that they contained all 

tested proteins of the actin dynamics module that were identified in our protein-protein interaction 

studies (Figure 7).  
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Figure 7. Proposed model of actin network formation at the photoreceptor ciliary membrane. Accurate delivery of 
a multimeric actin assembly module by PCARE, paired with the WAVE regulatory complex member WASF3 and 
several other modifiers of a dynamic F-actin network assembly at the primary cilium (a) and at the photoreceptor 
connecting cilium (c). Most of these actin modifiers are found in the process of lamellipodia formation. b, Zoom-in 
of the marked region. In this hypothetical scheme, the Arp2/3 complex acts as main nucleator of actin polymerization 
at the edge of the membrane.32PCARE recruits WASF3 to the ciliary tip, where they may act as nucleator promoting 
factors, probably by use of their WH2 domain and proline-rich region, contributing to the extension of the 
evagination.33 The PCARE interactor kalirin (Supplemental Table 1), a Rho-GEF, activates the Rho GTPase RAC1.34 
RAC1, a WAVE complex activator,21 would be responsible for WASF3 activation. ENAH/VASP (VASP) and profilin 
would act as elongation factors, tethering actin filaments to the membrane.35 Potent actin cross-linkers in this 
network like filamin A and FILIP1L (filamin A-interacting protein 1-like, Supplemental Table 1) would help to stabilize 
the network. Capping proteins like gelsolin act to prevent the loss of actin subunits at the barbed end and increase 
the rate of nucleation.  

 

Several aspects of our study provide important new insights into the molecular disease mechanisms 

underlying the disturbed photoreceptor function observed in not only PCARE-associated RP but also in 

several other retinal ciliopathies. First, as we identified that a missense mutation (p.I201F) in PCARE alters 

the ciliary tip evaginations, we propose that the disturbance of actin dynamics-driven OS disc neogenesis 

is the underlying mechanism in PCARE-associated retinal dystrophy. Both the phenotype of the 

photoreceptors of Pcare-/- mice,17 and the absence of Wasf3, and F-actin that we observed at the tip of 

the connecting cilium stalk of the photoreceptors in these mice, validate this hypothesis. Second, in a 

recent whole genome sequencing effort, WASF3 variants were found in a patient with cone-rod 

dystrophy.36 As WASF3 is a direct interactor of PCARE, our data suggest WASF3 could be a bona fide gene 

in which mutations could underlie retinal dystrophy. Third, we identified and validated three retinal 

ciliopathy proteins as binary interactors of PCARE: CEP250, CEP290, and OFD1. Disruption of their 
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function, or their interaction with PCARE, may therefore be associated to the retinal disease pathogenesis. 

Intriguingly, homozygosity mapping combined with whole exome sequencing in an Iranian cohort 

revealed nonsense mutations in both CEP250 and PCARE to be responsible for atypical Usher syndrome 

with early-onset hearing loss and mild retinal degeneration,37 suggesting that the proteins encoded by 

these genes could be involved in the same molecular processes. Here, we show that CEP250 strictly 

localizes to base of the cilium and it is not recruited into the ciliary lumen by PCARE, in contrast to most 

other interacting and ciliary proteins that we tested. This may indicate that CEP250 forms a docking base 

for PCARE at the ciliary base prior to its ciliary entry, allowing assembly of its actin dynamics module. 

Fourth, several other retinal ciliary proteins that we tested are also translocated to the ciliary tip 

evaginations upon ectopic co-expression of PCARE and WASF3. These proteins include RPGRIP1L, ARL13B, 

SPATA7, and Lebercilin/LCA5. Interestingly, the co-expression of OFD1 and SPATA7 significantly expanded 

the size of the structures, suggesting a dynamic participation of these proteins in the evagination process. 

RPGRIP1L was the only protein that clearly translocated to the ciliary lumen and tip only by PCARE without 

expression of WASF3 (Supplemental Figure 4). Fifth, the previous detection of both Rpgrip1l and Lebercilin 

at the apical CC region of mouse photoreceptors by immuno-EM,38,39 and the recent discovery of the 

interaction of the X-linked RP-associated protein RPGR with gelsolin40 (which was also present in our TAP 

dataset), strengthens the hypothesis that several retinal ciliopathy proteins play a role in the actin-driven 

membrane evagination process, either as their primary function or as an alternative one. 

To conclude, we here demonstrate that the protein PCARE, encoded by the former C2orf71 gene that is 

mutated in inherited retinal dystrophy, interacts with several ciliary proteins as well as those that are 

involved in the regulation of actin. The membrane evaginations that were observed in our cellular 

transfection studies, as well as the localization of the endogenous proteins within the photoreceptor cell 

suggests that PCARE could be involved in the first steps of outer segment disc neogenesis by the 

recruitment of an actin dynamics module to the ciliary base and the subsequent transfer of this module 

to the apical connecting cilium region. We do not yet have sufficient information about the precise mode 

of subsequent steps involved in this process that even may still involve membrane blebbing and/or 

ectocytosis. Also, we obtained the identity of likely only a subset of the components that are part of this 

machinery. Further analysis of the developing Pcare-/- mouse retina by EM, would be needed to address 

the exact defect in OS formation. We did however show that we can model the process of ciliary tip 

evagination in cultured mammalian cells by ectopic expression of PCARE and WASF3, which allows the 

future evaluation and elucidation of many components that may participate in this critical step in outer 

CHAPTER 2



Ch
ap

te
r 2

 

77

 
 

segment development and homeostasis. Finally, our study provides unique insights into the accurate 

delivery and activation of a multimeric module of actin dynamics regulating proteins, at a tightly restricted 

sub-organellar site of action by a single trafficking molecule, PCARE. This expands the already broad 

repertoire of the cell to dynamically activate and modulate filamentous actin networks to drive membrane 

morphogenesis. 

2.5 Methods 

2.5.1 DNA constructs 

Human C2orf71/PCARE [NCBI GeneID:388939] full length cDNA was obtained by PCR using Human Retina 

Marathon®-Ready cDNA (Clontech). Upon Sanger sequencing, two deviations from the reference 

sequence were identified, both of which are known as common polymorphisms 

(rs10166913:p.(Thr580Met); rs139768554:p.(Ser1225dup)). PCARE fragments F1 (aa2-449), F2 (aa450-

900) and F3 (901-1,289) were generated using pENTR-PCARE as template. The PCARE p.(I201F) mutant 

(c.601A>T) was generated via site-directed mutagenesis using primers 5’-

TCCAAATATGAAGCATTTCTGTGCATCATCC-3’ and 5’-GGATGATGCACAGAAATGCTTCATATTTGGA-3’ (mutated nucleotide 

underlined). The eGFP-CEP250 plasmid was kindly donated by Dr. Erich Nigg (Biozentrum, University of 

Basel, Basel, Switzerland) and used as template to obtain CEP250 full length cDNA by PCR. pENTR-WASF3 

[NP_001278894.1] and pENTR-SPATA7 [NP_001035518.1] were a generous gift from Prof. N. Katsanis 

(Duke University School of Medicine, Durham, US). pENTR-CEP290 was produced using human testis cDNA 

(Clontech) as starting material. pENTR-ARP3 [NCBI GeneID: 10096] was generated using brain cDNA as 

input. pENTR-LCA5, pENTR-OFD1 and pENTR-DCTN2 were previously generated in-house.41 The sequence 

of all entry clones was verified by Sanger sequencing. Expression constructs for yeast-two-hybrid assay, 

tandem affinity purification, co-immunoprecipitation or immunolocalization experiments were created by 

transferring the entry clones into the appropriate destination clones using Gateway Technology (Life 

Technologies). 

2.5.2 Yeast-two-hybrid assay 

For the yeast-two-hybrid assays, full length PCARE (aa2-1,289) and the three PCARE fragments (F1-F3, see 

above) were cloned into a plasmid containing the binding domain of the GAL4 transcription factor (pBD 

vector, Gateway cloning, Life Technologies). These pBD vectors were used as bait to screen both human 

(oligo-dT primed) and bovine (random primed) retinal cDNA libraries, as described previously 27. 
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Interactions were analyzed by assessment of reporter gene (HIS3 and ADE2) activation via growth on 

selective media and β-galactosidase colorimetric filter lift assays (LacZ reporter gene). cDNA inserts of 

clones containing putative interaction partners were confirmed by Sanger sequencing. 

2.5.3 Cell culture 

For co-immunoprecipitation and tandem affinity purification experiments, HEK293T (ATCC® CRL-3216™) 

cells were grown in DMEM medium (Sigma-Aldrich, D0819) supplemented with 10% FCS (Sigma-Aldrich, 

F0392), 1% sodium pyruvate (Sigma-Aldrich, S8636) and 1% penicillin/streptavidin (Sigma-Aldrich, P4333). 

For immunolocalization studies, hTERT RPE-1 (ATCC® CRL-4000™) and mIMCD-3 (ATCC® CRL-2123™) cells 

were grown in DMEM/F12, supplemented with 10% FCS (Sigma-Aldrich, F0392), 1% sodium pyruvate 

(Sigma-Aldrich, S8636) and 1% penicillin/streptavidin (Sigma-Aldrich, P4333).  

2.5.4 Tandem Affinity Purification 

N-terminal and C-terminal Strep-FLAG-PCARE constructs were transfected into HEK293T cells using 

Effectene Transfection Reagent (QIAGEN). Forty-eight hours post-transfection, cleared cell lysates were 

obtained by lysing cells in a buffer containing 0.5% Nonidet-P40 (NP-40), protease inhibitor cocktail 

(Roche), and phosphatase inhibitor cocktails II (Sigma-Aldrich) and III (GBiosciences) in TBS (50 mM Tris-

HCl, pH 7.4 and 150 mM NaCl) for 20 min at 4 °C. Cell debris and nuclei were removed by centrifugation 

at 10,000 g for 10 min. The Streptavidin- and FLAG-based tandem affinity purification steps were 

performed as described previously.42,43 Five percent of the final eluate was evaluated by SDS-PAGE 

followed by silver staining, according to standard protocols, while the remaining 95% was subjected to 

protein precipitation with chloroform and methanol. Protein precipitates were subsequently subjected to 

mass spectrometry analysis and peptide identification as described before.44,45 

2.5.5 Antibodies 

Rabbit anti-PCARE polyclonal antibody was generated in our lab. A human PCARE C-terminal peptide 

corresponding to amino acids 1192 to 1286 was selected based on antigenicity, hydrophilicity, surface 

accessibility and linearity. This peptide was cloned into pGEX-6P vector (Gateway technologies) and 

expression of the GST-fusion protein was induced in BL21-DE3 cells. The GST-fused antigen was then 

cleaved by Prescission protease (Sigma-Aldrich), after which the purified antigen was used to immunize 

rabbits (Eurogentec). Affinity purification of the antibody was achieved by running 6xHis-MBP tagged 
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PCARE C-terminal peptide on nitrocellulose blots, subsequent binding of serum antibody, and final 

elutions using an acidic glycine buffer (glycine/HCl 100 mM, pH 2.5). Specificity of the antibody was 

confirmed by immunocytochemistry and western blot analysis to detect the recombinant PCARE protein 

(Supplemental Figure 5). All other primary and secondary antibodies used in this study are listed in 

Supplemental Table 3, including their origin and the antibody dilutions used for each experiment type.   

2.5.6 Co-immunoprecipitation 

A plasmid expressing 3xHA-PCARE was co-transfected with plasmids expressing 3xFLAG-WASF3, 3xFLAG-

OFD1, 3xFLAG-CEP250 and 3xFLAG-CEP290 into HEK293T cells using FuGENE HD Transfection Reagent 

(Promega) following manufacturer’s instructions. As a negative control, 3xHA-PCARE was co-transfected 

with 3xFLAG-STRAD. The interaction between 3xHA-LCA5 and 3xFLAG-OFD1 was used as positive 

control41. Forty-eight hours post-transfection, cells were washed and lysed on ice using lysis buffer (50 

mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40, 10% glycerol) supplemented with cOmplete™ Protease 

Inhibitor Cocktail (Roche Diagnostics). Lysates were incubated with anti-HA Affinity Matrix beads 

(SigmaAldrich) and processed as described previously.41 Beads were precipitated by centrifugation and 

supernatant was run on NuPAGE Novex 3-8% Tris-Acetate gels. The interactions were assessed by 

immunoblotting, followed by staining with monoclonal mouse α-FLAG or monoclonal mouse α-HA as 

primary antibody and goat-anti mouse RDye800 or RDye680 as secondary antibody (Supplemental Table 

3).  

2.5.7 Western blot analysis 

HEK293T cell pellets were resuspended in 150 µl RIPA buffer (50 mM Tris pH 7.5, 1 mM EDTA, 150 mM 

NaCl, 0.5% Na-Deoxycholate, 1% NP-40 plus protease inhibitors) rotating for 30 min at 4 °C. Cells were 

sonicated for 15 seconds and centrifuged for 5 min at 12,000 g, 4 °C. The supernatant was mixed with 

loading buffer supplemented with 0.1 M DTT and proteins were separated on a 3-8% NuPAGE Tris-Acetate 

Gel. Proteins were transferred onto a nitrocellulose membrane (Amersham Protran 0.45 NC, GE 

Healthcare Life Sciences) overnight at 4 °C. After transfer, membrane was briefly washed in PBS and 

blocked for 1 h at RT in 5% Blotting-Grade Blocker (Bio-Rad) in PBS. Primary antibodies were incubated 

overnight in 2.5% blocker (Blotting Grade Blocker Non-Fat Dry Milk, Bio-Rad) in PBS. Subsequently, the 

membrane was washed three times in PBS-Tween 0.2% at RT and incubated with secondary antibodies in 

2.5% blocking milk for 45 min. After secondary antibody incubation, the membrane was washed three 
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times for 10 min in PBS-Tween 0.2% followed by a finally wash in 1xPBS. Fluorescence was analyzed on a 

Li-Cor Odyssey 2.1 infrared scanner using Image Studio 4.0 software. 

2.5.8 Immunocytochemistry 

hTERT RPE-1 or mIMCD-3 cells were grown on 12-well plates until reaching 90% confluency. To induce 

cilia growth, cells were fed with serum starvation medium (DMEM/F12, 0.2% FCS + 1% Pen/Strep + 1% 

NaPy). Twenty-four hours post-starvation, cells were transfected with DNA plasmids using lipofectamine 

2000 in a 1:2.5 ratio following manufacturer’s instructions. Twenty hours post-transfection, cultured cells 

were fixed in PFA 2% for 20 min at RT, followed by 1% Triton-X-100 treatment for 3 min and blocking in 

2% BSA for 20 min. Subsequently, cells were incubated with primary antibodies diluted in blocking solution 

for 1 h. After incubation, cells were washed three times in PBS and incubated with the corresponding 

Alexa Fluor conjugated secondary antibody (Supplemental Table 3). Finally, slides were washed three 

times in PBS for 5 min and mounted in ProLong(R) Gold antifade reagent (P36930, Life Technologies). 

2.5.9 Compound treatments 

Prior to treatment, hTERT RPE-1 cells were seeded, serum starved and transfected as described above. 

Cells were treated with cytochalasin D 1.0 µM and 5.0 µM, and CK-666 1 µM, nocodazole 1 µM or 

Latrunculin B 1 µM for 18 hours before fixation. Cells were fixed and stained as described in the 

immunocytochemistry section above. 

2.5.10 Animals 

C57BL/6J JAXTM wild-type mice were purchased from Charles River. Pcare-/- mice were previously 

described.17 Animal experiments were approved by the national authorities (Centrale Commissie 

Dierproeven, project number AVD103002016758) and the local animal welfare committee, and 

conducted according to the regulations of the Association for Research in Vision and Ophthalmology. 

2.5.11 Immunohistochemistry 

The retina from a 66 year-old female human donor with no history of retinal disease was obtained from 

the Department of Ophthalmology, University Medical Center Mainz, Germany, adhering to the guidelines 

of the Declaration of Helsinki (http://www.wma.net/en/30publications/10policies/b3/), and were 

processed for indirect immunofluorescence staining as described previously.46 For the mouse sections, 
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eyes of sacrificed animals were enucleated, embedded in OCT and slowly frozen in liquid nitrogen. Seven-

micron cryosections of one-month old wild-type or Pcare-/- mouse retinas were used for 

immunohistochemistry purposes as described before.47 Primary antibodies were incubated overnight at 

4 °C in blocking solution in a humid and dark atmosphere. Subsequently, sections were washed three 

times in PBS and secondary antibody, including DAPI, was incubated. Finally, sections were washed three 

times in PBS, mounted in ProLong® Gold Antifade Mountant (ThermoFisher Scientific) and sealed with nail 

polish. Slides were imaged using a Z1 Axio Imager (Zeiss) microscope.  

2.5.12 Electron microscopy (pre-embedding labelling)  

Immunoelectron microscopy on mouse retinae (3 months old) was performed as described previously.48,49 

Ultrathin sections were analyzed in a transmission electron microscope (Tecnai 12 BioTwin) and processed 

as previously described. 

2.5.13 Statistical Analysis  

To study the size changes in the cilium, the area of bulged cilia (in µm2) was measured using ImageJ.  

In Figure 5, the area was measured in 37 cells for the wild-type (double transfection of hTERT RPE-1 cells 

with constructs expressing HA-PCARE-WT and HA-WASF3) and 34 cells for the PCARE p.I201F mutant 

(double transfection of hTERT RPE-1 cells with constructs expressing PCARE-I201F-FLAG and HA-WASF3). 

For the comparison in figure 5, the p-value = 0,0001; t=4,207; df=42. 

In Figure 6, the area of the bulged cilia was measured using ImageJ in 44 cells for the control (double 

transfection of hTERT RPE-1 cells with constructs expressing PCARE-FLAG and HA-WASF3), 39 cells for 

OFD1 (triple transfection of hTERT RPE-1 cells with constructs expressing PCARE-FLAG, HA-WASF3 and HA-

OFD1) and 41 cells for SPATA7 (triple transfection of hTERT RPE-1 cells with constructs expressing PCARE-

FLAG, HA-WASF3 and HA-SPATA7). For control vs. OFD1, p-value = 0,0032; t=3,054; df=72. For control vs. 

SPATA7, p-value = 0,0013; t=3,351; df=76. 

Statistical analysis was performed using a two-tailed Student t-test with Welch’s correction. 
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Supplemental Figure 1. Intracellular localization of PCARE fragments and validation of their interaction with 
WASF3. a, Subcellular localization of PCARE full length and three fragments. hTERT RPE-1 cells were transfected with 
constructs encoding C-terminally HA-tagged full length PCARE or fragments 1, 2 or 3 (Fr1, Fr2, Fr3). PCARE was 
detected using anti-HA antibody (green). ARL13B (red) was used as a marker of the axonemal cilium. Nuclei were 
stained with DAPI (blue). b, Localization of C-terminally HA-tagged PCARE-Fr2 (anti-HA staining, green) to 
filamentous structures, co-localizing with F-actin (phalloidin staining, red) . Scale bars are 20 µm (b), and 10 µm (c). 
c. PCARE fragments Fr1, Fr2 and Fr3 fused to HA were co-transfected with 3xFLAG-WASF3 in HEK293T cells. The 
interaction between full length PCARE and WASF3 was used as a positive control, while the protein 3xFLAG-STRAD 
was used as a negative control. In addition, a non-transfected control was taken along. Notice that WASF3 is present 
in the immunoprecipitated fraction when co-transfected with PCARE-Fr1-HA, and only at low levels when co-
expressed with PCARE-Fr2. d, Subcellular localization of PCARE fragments when co-transfected with WASF3 in hTERT 
RPE-1 cells. PCARE fragments were detected using anti-HA antibodies (red) and WASF3 using anti-WASF3 (green). 
ARL13B (purple) was used as axonemal marker. While all PCARE fragments are able to locate to the cilium, only 
PCARE-Fr1 is able to transport WASF3 into the cilium and generate ciliary evaginations. Scale bar: 10 µm, for insets: 
2.0 µm. 
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Supplemental Figure 2. Ciliary membrane evaginations in murine inner medullary collecting duct (mIMCD-3) cells. 
mIMCD-3 cells were co-transfected with constructs expressing HA-WASF3 and PCARE-FLAG cells and stained with 
antibodies recognizing PCARE (blue), WASF3 (green) and the ciliary membrane marker ARL13B (red). In a, the ciliary 
evagination is visible at one end of the primary cilium (arrows). In b, a completely modified cilium with disc-like 
appearance of the ciliary membrane evagination is shown, with all three detected proteins colocalizing at the 
periphery of the structure, indicating close proximity to the ciliary membrane. Scale bars are 1 µm. 

 

 

 
Supplemental Figure 3. Localization of tubulin-associated components in the ciliary membrane evaginations. 
Ciliated hTERT RPE-1 cells were transfected with plasmids expressing PCARE-FLAG and HA-WASF3 (a-c) and stained 
with antibodies directed against: a, acetylated tubulin (green), WASF3 (red), PCARE (purple); b, polyglutamylated 
tubulin GT335 (green), WASF3 (red), PCARE (purple); c, RPGRIP1L (blue), WASF3 (green), IFT88 (red), PCARE (purple). 
Scale bars are 1 µm. 
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Supplemental Figure 4. Localization of PCARE interacting proteins in hTERT RPE-1 cells. Ciliated hTERT RPE-1 cells 
were either transfected with plasmids expressing PCARE interacting proteins (a-f) or co-transfected with these 
plasmids and plasmids expressing PCARE-FLAG (g-l) to study the ciliary localization of PCARE in presence of the 
following proteins: a, g, CEP250, b, h, CEP290, c, i, OFD1, d, j, ARP3, e, k, Lebercilin and f, l, SPATA7. In single 
transfected cells, GT335 (red) marks the ciliary axoneme (a-f). In co-transfected cells, PCARE-FLAG (green) decorates 
the entire cilium (g-l). RPGRIP1L (blue) was used as transition zone marker (a-l). Interestingly, PCARE is able to 
transport RPGRIP1L, ARP3 and SPATA7 into the axoneme of the cilium, but not CEP250, CEP290 or OFD1. Scale bars 
are 1 µm. 
 

 

 

 

The photoreceptor-specific protein PCARE interacts with WASF3 to deploy a ciliary actin dynamics module 



 

88

 
 

 
Supplemental Figure 5. Antibody characterization. a, PCARE and WASF3 antibody test in mouse and bovine retina 
lysates. Blot was incubated with PCARE and WASF3 antibodies, respectively. The first line corresponds to mouse 
retinal lysate, the second line to bovine retinal lysate, and the third line to a lysate of HEK293T cells transfected with 
either PCARE or WASF3 construct. A band at the expected size of ~140kDa can be observed when incubating the blot 
with PCARE antibody. A second, stronger band can be also observed at ~280 kDa. A band for WASF3 can be observed 
at ~55 kDa in all three lysates. b, Immunohistochemistry in mouse retina using PCARE antibody. While there is 
observable staining at the inner segment (IS) and connecting cilium (CC) region, it does not seem to be specific. Scale 
bars = 25 µm (upper panel), 10 µm (lower panel). OS: Outer Segments; IS: Inner Segments; ONL: Outer Nuclear Layer; 
OPL: Outer Plexiform Layer; INL: Inner Nuclear Layer. 
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3.1 Abstract 

Mutations in the gene PCARE can cause non-syndromic autosomal recessive retinitis pigmentosa and 

occasionally cone-rod dystrophy. The aim of this study is to offer an overview of all the reported 

mutations in PCARE and analyze any potential correlation between the genotype and the severity of 

the disease. A literature search was conducted using PubMed and the Cochrane library. Clinical data 

of patients with disease-causing mutations in PCARE were extracted. A genotype-phenotype 

correlation analysis was performed based on mutation position and patient’s age of onset. Clinical 

and genetic information was collected for 41 patients. The median age at first visit was 31.5 years, 

and the median best-corrected visual acuity was 0.30 for both eyes. Myopia was present in 12 

(66.67%) patients, and night blindness in 16 (72.73%) patients. A total of 26 different mutations were 

identified. Homozygous PCARE mutations are mostly predicted to result in premature termination of 

protein synthesis, with only two homozygous missense mutations reported. The majority of patients 

(58.53%) present truncating or missense mutations at the N-terminus of PCARE, between amino 

acids 135 and 425. Finally, analysis of the position of the mutation in the PCARE protein and the age 

of onset revealed no clear correlation between these two variables. Our data suggest no clear 

correlation between the age of disease onset and the position of the PCARE mutation in patients 

with PCARE-associated retinal disease. 
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3.2 Introduction 

Retinitis Pigmentosa (RP; MIM #268000) is an inherited retinal disease characterized by progressive 

vision loss, with a prevalence of around 1 in 4,000 individuals.1-3 RP is clinically and genetically very 

heterogeneous and shows different patterns of inheritance: autosomal dominant (ad), autosomal 

recessive (ar) or X-linked (XL). The disease is characterized by progressive visual impairment, usually 

starting in childhood or adolescence, which may lead to blindness. Initially, the rod photoreceptor 

cells which regulate vision under low light conditions, degenerate. Subsequently, the cone cells, 

necessary for color vision and high visual acuity, also become affected. To date, more than 50 genes 

and loci have been implicated in arRP (RetNet; https://sph.uth.edu/retnet/), and most of them are 

responsible for around 1% or fewer cases.4 

One of the genes found to be mutated in patients with arRP (OMIM #613428) is C2orf71/PCARE 

(photoreceptor cilium actin regulator, OMIM #613425).5-11 In addition, one study reported cone-rod 

dystrophy in a patient with the nonsense mutation c.1837C>T;p.R613* in PCARE.12 Of interest, PCARE 

mutations are a frequent cause of arRP in the Swiss population.8 PCARE contains only two exons, and 

codes for a photoreceptor-specific ciliary protein of 1288 amino acids (aa). Pcare-/- mice present 

highly disorganized photoreceptor outer segments and severe retinal degeneration, strengthening 

the cilium photoreceptor-specific role of PCARE.13 In chapter 2, we have shown that PCARE is an 

actin-associated protein important for the recruitment of the Arp2/3 complex activator WASF3 to the 

primary cilium and, subsequently, for the actin-driven evagination of the ciliary plasma membrane. 

Exogenous expression of mutant p.Ile201Phe PCARE together with WASF3 produces smaller and less 

evaginations than wild-type PCARE, suggesting this as one of the pathogenic mechanisms underlying 

PCARE-associated retinal disease. 

In this study, we have collected all reported PCARE variants associated to retinal dystrophy up to 

April 2018. Given the presence of three predicted functional modules in the PCARE protein, we have 

assessed a potential correlation of the position of PCARE mutations with age of onset.  
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3.3 Results 

3.3.1 Clinical phenotype of PCARE-associated retinal disease 

Information of a total of 41 patients was collected (Table 1). The median age at first visit was 31.5 

years (mean 33.46±16.20 years; range 12 – 75 years), and the median best-corrected visual acuity 

was 0.30 LogMAR (mean 0.47±0.52; range 0.10 – 2.50) for the right eye, and 0.30 LogMAR (mean 

0.48±0.58; range -0.10 – 2.60) for the left eye at first visit. Refractive error was recorded for 18 

patients, and myopia was present in 12 (66.67%). The presence or absence of night blindness was 

recorded for 22 patients, and night blindness was present in 16 (72.73%) patients. The general 

fundus image consisted of (mid-) peripheral retinal atrophy, with peripheral pigment changes and 

bone spicules, and vessel attenuation (Figure 1). Macular atrophy is often seen in later stages of the 

disease. Fundus autofluorescence revealed patches of hypofluorescence in 9 patients (out of 22 

recorded, or 40.91%), and a speckled or atrophic macular area in 14 (out of 22 recorded, or 63.64%) 

patients. Optical coherence tomography data were available for 20 patients and revealed retinal 

thinning and loss of retinal lamination structure in all patients. Full-field electroretinography was 

performed in 25 patients and was severely reduced or non-recordable in 21 (84%) patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Fundus photographs of patients with PCARE-associated retinal disease. Paired fundus- (A, B) and 
ultra-widefield photographs (C-F) of the right (A, C, E) and left (B, D, F) eyes of three patients with two 
confirmed mutations in the PCARE gene. The phenotype in fundo resembles a classic retinitis pigmentosa, with 
optic disc pallor, vessel attenuation, bone-spicules in the (mid-) periphery and (mid-) peripheral RPE atrophy.  

Ch
ap

te
r 3



 

 
 Ta

b
le

 1
. C

lin
ic

al
 c

h
ar

ac
te

ri
st

ic
s 

o
f 
P
C
A
R
E-

as
so

ci
at

e
d

 r
e

ti
n

al
 d

is
e

as
e

 p
at

ie
n

ts
. 

 
 

 
V

is
u

al
 A

cu
it

y*
 

R
e

fr
ac

ti
o

n
 

 
 

 
 

 

P
at

. 
ID

 
Fa

m
. 

ID
 

Se
x 

O
D

 
O

S 
O

D
 

O
S 

N
ig

h
t 

b
lin

d
n

e
ss

 
ff

ER
G

 
FA

F 
O

C
T 

R
e

fe
re

n
ce

s 

1
 

1
7

 
F 

2
0

/6
0 

2
0

/5
0 

-9
.0

0 
-7

.0
0 

Y 
P

 v
er

y 
lo

w
 

Sm
al

l a
tr

o
p

h
ic

 s
p

o
ts

 g
ro

u
p

ed
 in

 f
o

ve
al

 a
re

a
 

 
1

1  

2
 

1
1

 
F 

2
0

/3
2 

2
0

/3
2 

-4
.0

0 
-2

.9
0 

Y 
S 

se
ve

re
ly

 r
ed

u
ce

d
, P

 n
o

rm
al

 
P

er
ip

h
er

al
ly

 s
p

ec
kl

ed
 

R
et

in
al

 t
h

in
n

in
g,

 p
u

ck
er

in
g 

8  

3
 

2
5

 
M

 
FC

 
FC

 
 

 
 

N
R

 /
 N

R
 

 
 

1
4  

4
 

2
5

 
M

 
2

0
/2

0
0 

2
0

/4
0

0 
 

 
 

N
R

 /
 N

R
 

 
 

1
4  

5
 

2
5

 
M

 
2

0
/8

0 
2

0
/4

0 
-8

.5
0 

-6
.0

0 
 

N
R

 /
 N

R
 

 
 

1
4  

6
 

2
5

 
F 

 
 

 
 

 
 

 
 

1
4  

7
 

1
2

 
M

 
H

M
 

H
M

 
 

 
Y 

 
 

 
1

5  

8
 

2
2

 
F 

 
 

 
 

Y 
 

P
er

if
o

ve
al

 r
in

g,
 c

en
tr

al
 m

o
tt

lin
g 

at
ro

p
h

y 
O

D
S 

p
h

o
to

re
ce

p
to

r 
lo

ss
, l

o
ss

 o
f 

re
ti

n
al

 la
ye

r 
st

ru
ct

u
re

 

6  

9
 

2
2

 
F 

2
0

/1
2

5 
2

0
/3

2 
 

 
 

Se
ve

re
ly

 r
e

d
u

ce
d

 O
D

S 
P

er
if

o
ve

al
 r

in
g,

 c
en

tr
al

 m
o

tt
lin

g 
at

ro
p

h
y 

O
D

S 
V

it
el

lif
o

rm
 le

si
o

n
 s

u
b

fo
ve

al
, 

p
h

o
to

re
ce

p
to

r 
la

ye
r 

lo
ss

 

6  

1
0

 
2

2
 

M
 

2
0

/3
2 

2
0

/4
0 

 
 

 
Fl

at
 O

D
S 

Fo
ve

al
 s

p
ar

in
g,

 h
yp

er
 r

in
g 

m
ac

u
la

, h
yp

o
 b

ac
kg

ro
u

n
d

 
an

d
 m

an
y 

n
u

m
m

u
la

r 
at

ro
p

h
ic

 a
re

as
 O

D
S 

P
R

-l
o

ss
 w

it
h

 a
b

n
o

rm
al

 
re

ti
n

a 
la

m
in

at
io

n
 

6  

1
1

 
2

2
 

M
 

2
0

/2
0

0 
2

0
/6

3 
-0

.7
5 

-0
.7

5 
Y 

 
Ex

te
n

si
ve

 w
id

es
p

re
ad

 h
yp

o
, f

ew
 s

m
al

l h
yp

er
 a

re
as

 
th

ro
u

gh
o

u
t 

O
D

S 

 
6  

1
2

 
2

2
 

M
 

 
 

0
.7

5 
0

.7
5 

Y 
 

Ex
te

n
si

ve
 w

id
es

p
re

ad
 h

yp
o

, f
ew

 s
m

al
l h

yp
er

 a
re

as
 

th
ro

u
gh

o
u

t 
O

D
S 

P
R

-l
o

ss
 w

it
h

 c
h

ao
ti

c 
re

ti
n

al
 

st
ru

ct
u

re
 

6  

1
3

 
5

 
F 

2
0

/8
0 

2
0

/5
0 

N
/A

 
N

/A
 

Y 
N

R
 

M
ac

u
la

r 
an

d
 m

id
p

er
ip

h
e

ra
l s

p
ec

kl
ed

 
R

et
in

al
 t

h
in

n
in

g,
 p

u
ck

er
in

g 
8  

1
4

 
2

4
 

M
 

2
0

/6
0 

2
0

/3
0 

 
 

 
Se

ve
re

ly
 a

b
n

o
rm

al
 /

 S
ev

er
e

ly
 

ab
n

o
rm

al
 

 
 

1
4  

1
5

 
2

4
 

F 
2

0
/6

0 
2

0
/6

0 
 

 
 

N
R

 /
 N

R
 

 
 

1
4  

1
6

 
2

4
 

M
 

2
0

/2
5 

2
0

/1
6 

 
 

 
Se

ve
re

ly
 a

b
n

o
rm

al
 /

 N
R

 
 

 
1

4  

1
7

 
2

4
 

F 
2

0
/5

0 
2

0
/4

0 
 

 
 

N
R

 /
 N

R
 

 
 

1
4  

1
8

 
8

 
F 

2
0

/3
0 

2
0

/4
0 

0
 

0
 

N
 

SP
 s

ev
er

el
y 

re
d

u
ce

d
 

P
er

if
o

ve
al

 s
p

ec
kl

ed
 

R
et

in
al

 t
h

in
n

in
g,

 p
u

ck
er

in
g 

8  

1
9

 
2

 
M

 
2

0
/2

5 
2

0
/2

5 
m

yo
p

ia
 

m
yo

p
ia

 
Y 

S 
N

R
, P

 s
ev

er
el

y 
re

d
u

ce
d

 
M

ac
u

la
r 

la
rg

e 
h

yp
o

 a
re

a,
 s

p
ec

kl
ed

 t
o

 m
id

p
er

ip
h

er
al

 
R

et
in

al
 t

h
in

n
in

g 
8  

2
0

 
2

 
F 

LP
 

LP
 

m
yo

p
ia

 
m

yo
p

ia
 

N
 

N
R

 
 

R
et

in
al

 t
h

in
n

in
g,

 O
R

T 
8  

2
1

 
1

6
 

F 
 

 
 

 
 

 
 

 
9  

2
2

 
2

0
 

F 
 

 
 

 
 

 
 

 
7  

2
3

 
2

7
 

F 
N

/A
 

N
/A

 
 

 
Y 

 
 

 
1

2  

CHAPTER 3

106



  

2
4

 
4

 
F 

2
0

/2
5 

2
0

/3
0 

-7
.0

0 
-6

.5
0 

N
 

N
R

 
 

R
et

in
al

 t
h

in
n

in
g 

8  

2
5

 
2

6
 

M
 

N
/A

 
N

/A
 

 
 

 
N

R
 /

 N
R

 
 

 
1

4  

2
6

 
2

6
 

M
 

N
/A

 
N

/A
 

 
 

 
N

R
 /

 N
R

 
 

 
1

4  

2
7

 
2

6
 

F 
2

0
/3

2 
2

0
/3

2 
 

 
Y 

N
R

 
 

 
n

o
ve

l 

2
8

 
3

 
M

 
2

0
/2

0
0 

2
0

/4
0

0 
-2

.5
0 

-1
.3

0 
Y 

S 
N

R
, P

 s
ev

er
el

y 
re

d
u

ce
d

 
M

ac
u

la
r 

an
d

 m
id

p
er

ip
h

e
ra

l s
p

ec
kl

ed
 

R
et

in
al

 t
h

in
n

in
g,

 f
o

rm
in

g 
O

R
T 

8  

2
9

 
1

4
 

M
 

2
0

/5
0 

2
0

/2
0

0 
 

 
Y 

A
b

o
lis

h
ed

 
P

er
ip

h
er

al
 b

o
n

e 
sp

ic
u

le
s,

 c
ir

cu
la

r 
p

at
ch

es
 o

f 
R

P
E,

 
R

P
E 

p
ig

m
en

ta
ti

o
n

, v
es

se
l a

te
n

u
at

io
n

 O
D

S 

 
1

6  

3
0

 
1

2
 

F 
 

 
 

 
Y 

 
P

er
ip

h
er

al
 b

o
n

e 
sp

ic
u

le
s,

 a
tt

en
u

at
ed

 v
es

se
ls

, o
p

ti
c 

d
is

c 
p

al
lo

r 

 
1

7  

3
1

 
6

 
F 

2
0

/7
0 

2
0

/8
0 

N
/A

 
N

/A
 

 
N

/A
 

La
rg

e 
p

at
ch

es
 o

f 
h

yp
o

 
R

et
in

al
 t

h
in

n
in

g 
8  

3
2

 
9

 
M

 
2

0
/3

0 
2

0
/3

0 
0

.4
0 

0
.8

0 
N

 
S<

P
 s

ev
er

el
y 

re
d

u
ce

d
 

P
er

if
o

ve
al

 s
p

ec
kl

ed
 

R
et

in
al

 t
h

in
n

in
g 

8  

3
3

 
1

8
 

M
 

2
0

/4
0 

2
0

/5
0 

0
 

0
 

Y 
N

R
 

 
 

7  

3
4

 
7

 
M

 
2

0
/2

5 
2

0
/3

0 
0

.5
0 

0
.5

0 
Y 

N
/A

 
M

ac
u

la
r 

an
d

 n
as

al
 p

at
ch

y 
h

yp
o

 
R

et
in

al
 t

h
in

n
in

g,
 p

u
ck

er
in

g 
8  

3
5

 
2

1
 

M
 

2
0

/4
0 

2
0

/4
0 

1
.5

0 
1

.5
0 

Y 
S 

b
ar

el
y 

d
et

e
ct

ab
le

, P
 p

re
se

n
t 

al
th

o
u

gh
 a

tt
en

u
at

ed
 

M
o

d
er

at
el

y 
h

et
e

ro
ge

n
eo

u
s 

m
ac

u
la

, p
er

ip
h

er
y 

n
o

rm
al

 
R

et
in

al
 t

h
in

n
in

g,
 lo

ss
 o

f 
IS

/O
S 

1
8  

3
6

 
2

1
 

M
 

2
0

/3
0 

2
0

/3
0 

-6
.7

5 
-5

.7
5 

Y 
SP

 b
ar

el
y 

d
et

ec
ta

b
le

 
H

et
er

o
ge

n
eo

u
s 

m
ac

u
la

, p
er

ip
h

er
y 

n
o

rm
al

 
R

et
in

al
 t

h
in

n
in

g,
 lo

ss
 o

f 
IS

/O
S 

1
8  

3
7

 
1

 
M

 
2

0
/3

0 
2

0
/3

0 
-7

.6
0 

-3
.0

0 
N

 
SP

 s
ev

er
el

y 
re

d
u

ce
d

 
M

ac
u

la
r 

sp
ec

kl
ed

 
R

et
in

al
 t

h
in

n
in

g 
8  

3
8

 
1

 
M

 
2

0
/2

5 
2

0
/2

5 
-4

.4
0 

-5
.5

0 
N

 
SP

 s
ev

er
el

y 
re

d
u

ce
d

 
P

er
if

o
ve

al
 a

n
d

 m
id

p
er

ip
h

er
al

 s
p

ec
kl

e
d

 
R

et
in

al
 t

h
in

n
in

g 
8  

3
9

 
1

0
 

F 
2

0
/4

0 
2

0
/4

0 
-3

.0
0 

-5
.0

0 
Y 

S 
N

R
, P

 s
ev

er
el

y 
re

d
u

ce
d

 
Fo

ve
al

 s
p

ar
in

g 
h

yp
o

, s
p

ec
kl

ed
 p

er
ip

h
er

y,
 s

p
ar

ed
 

m
id

p
er

ip
h

er
y 

R
et

in
al

 t
h

in
n

in
g,

 O
R

T 
8  

4
0

 
1

9
 

M
 

LP
 

LP
 

-3
.5

0 
-3

.2
5 

Y 
N

R
 

 
 

7  

4
1

 
1

5
 

M
 

2
0

/2
0 

2
0

/2
0 

-3
.5

0 
-3

.5
0 

Y 
N

R
 

R
in

g-
sh

ap
ed

 m
ac

u
la

r 
h

yp
er

fl
u

o
re

sc
e

n
ce

 
EZ

 p
re

se
n

t 
in

 t
h

e 
fo

ve
a 

1
9  

 C
lin

ic
al

 c
h

ar
ac

te
ri

st
ic

s 
o

f 
th

e 
st

u
d

y 
co

h
o

rt
. A

ll 
d

at
a 

re
fl

e
ct

 f
ir

st
 a

va
ila

b
le

 m
ea

su
re

m
en

ts
. R

ef
ra

ct
io

n
 d

at
a 

re
fl

ec
t 

sp
h

er
ic

al
 e

rr
o

rs
. 

FA
F 

= 
fu

n
d

u
s 

au
to

fl
u

o
re

sc
en

ce
; 

O
C

T 
= 

o
p

ti
ca

l c
o

h
er

en
ce

 t
o

m
o

gr
ap

h
y;

 f
fE

R
G

 =
 f

u
ll-

fi
e

ld
; 

LP
 =

 li
gh

t 
p

e
rc

ep
ti

o
n

; 
C

F 
= 

co
u

n
ti

n
g 

fi
n

ge
rs

; 
H

M
 =

 h
an

d
 m

o
ve

m
en

ts
; 

N
/A

 =
 n

o
t 

av
ai

la
b

le
; 

R
P

E 
= 

re
ti

n
al

 p
ig

m
en

t 
ep

it
h

e
liu

m
; 

N
R

 

= 
n

o
n

-r
ec

o
rd

ab
le

; S
 =

 s
co

to
p

ic
; P

 =
 p

h
o

to
p

ic
; O

R
T 

= 
o

u
te

r 
re

ti
n

al
 t

ab
u

la
ti

o
n

; I
S/

O
S 

= 
in

n
er

 s
eg

m
en

t 
/ 

o
u

te
r 

se
gm

en
t;

 H
yp

o
 =

 h
yp

o
fl

u
o

re
sc

en
ce

; H
yp

er
 =

 h
yp

er
fl

u
o

re
sc

en
ce

. 

*V
is

u
al

 a
cu

it
y 

m
ea

su
re

s 
re

p
re

se
n

t 
fi

rs
t 

av
ai

la
b

le
 m

ea
su

re
m

en
ts

.

Clinical and genetic overview of PCARE-associated retinal disease 

107

Ch
ap

te
r 3



CHAPTER 3 

108 
 

3.3.2 Correlation analysis of PCARE mutation position with age of onset 

Table 2 shows the summary of all reported patients and the corresponding PCARE mutations. Within 

the PCARE protein three defined regions can be observed: A conserved N-terminal region, which 

includes N-myristoylation and S-palmytoylation residues on aa 2 and 3 respectively, important for 

membrane attachment,6,20 and a predicted globular domain (by ELM prediction tool; 

http://elm.eu.org/); a middle region with a predicted actin-binding motif (by ELM prediction tool; 

http://elm.eu.org/), and a C-terminal region rich in proline residues, which are known to be 

important for protein-protein interactions (Figure 2).21,22 The different mutations identified in the 

patients are highlighted within the protein structure. Most of the patients (28 patients, 68.29%) 

present homozygous truncating mutations, whereas ten patients present heterozygous truncating 

mutations. Only two patients carry homozygous missense mutations, namely p.(Ile201Phe) or 

p.(Cys599Arg). In addition, one patient was reported with compound heterozygous missense 

mutations, p.(Arg29Trp) and p.(Arg1250Cys). The allele frequency of the p.Arg29Trp variant is 0.003 

(gnomAD; gnomad.broadinstitute.org), whereas the p.Arg1250Cys variant has only been described in 

this patient. Whole-exome sequencing revealed heterozygous carriership of truncating mutations in 

recessive genes associated with retinal disease in this specific patient,19 rendering the pathogenicity 

of the two PCARE missense mutations uncertain. To further examine the potential pathogenicity of 

these variants, we collected Grantham, PhyloP, SIFT and PolyPhen-2 pathogenicity prediction data, 

and the variants were classified based on the ACMG guidelines (Table 3). 

 

Figure 2. PCARE protein and mutation overview. At the N-terminus, PCARE protein contains N-myristoylation 
and S-palmytoylation residues and a predicted globular structure. An actin-binding WH2 motif is predicted 
between amino acids 597 and 615. At the C-terminus, PCARE contains a proline-rich region. Indicated are the 
aminoacidic positions of all reported disease-causing PCARE variants. To improve visibility, one instead of  
three-letter codes are used. 
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Although PCARE lacks a structurally highly conserved domain, it does contain three predicted main 

functional domains. We therefore hypothesized that PCARE stop mutations affecting the N-terminal 

region of the protein could be more severe than those affecting the C-terminal part of the PCARE 

protein, and we tried to correlate the position of homozygous truncating mutations with the age of 

onset of disease (Figure 3). Three clusters can be distinguished, corresponding to the three defined 

protein regions. Two patients with the earliest onset, early childhood, carry mutations in the cluster 

of the middle (aa 570 to 650) and C-terminal regions (aa 744 to 1250). However, in these regions the 

disparity in age of onset is high, ranging from early childhood to an advanced age. For example, 

family 26 has two members with age at first visit of 47 and 59 years old, while one member visited 

the clinic at 6 years old. In contrast, the N-terminal region clusters all patients with an age at onset 

ranging from 17 to 42 years. Despite these observations, the limited total number of patients does 

not allow to establish a clear correlation between the age of disease onset and the position of the 

PCARE mutation. 

 

 

 

Figure 3. Correlation between the position of PCARE mutations and the age of onset in PCARE-associated 
retinal disease. Age of onset corresponds to the age of first visit to the clinic. 
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3.4 Discussion 

Retinitis pigmentosa is the most common form of inherited retinal disease (IRD), a major cause of 

blindness. The full genetic spectrum of IRDs is not yet defined, and the information on genotype-

phenotype correlations is limited, since mutations in different genes may result in a similar 

phenotype. Alternatively, many different clinical phenotypes may be caused by mutations in the 

same gene. The purpose of this study was to present an overview of all reported cases of PCARE-

associated retinal disease and to determine any potential genotype-phenotype correlation for this 

specific subtype. 

A total of 41 patients have been reported harboring mutations in PCARE associated with retinal 

disease. Interestingly, the median age at first visit was 31.5 years, an advanced age compared to 

other retinal disease genes.23 As described in chapter 2, prediction programs show that PCARE 

contains three potential functional regions, and hypothesized that patients lacking two of the regions 

would have a more severe effect, ergo earlier age of onset, than those lacking only one of the 

regions. This is not the case, since some of the patients with mutations in the actin-binding motif 

seem to have an earlier onset than those where this motif remains intact. Several scenarios could 

underlie this result: first, PCARE mRNA can be degraded by non-sense mediated decay, preventing 

translation of any faulty truncated protein; second, mutated PCARE could be marked for degradation 

by the proteasome, with the same result; third, if the mutated protein is translated and stable, it may 

exhibit a negative effect on photoreceptor homeostasis. To further study the effect of missense and 

truncating mutations in the PCARE protein, we are currently performing localization studies in 

ciliated cells to analyze any potential effect in their localization and protein-protein interaction 

profiles. 

The first limitation of studying PCARE-associated retinal disease is the small number of patients 

reported. This limitation is common for other IRDs, as the total number of genes associated to retinal 

diseases amounts to 261 (RetNet: https://sph.uth.edu/retnet/), and the majority of genes represent 

~1% or less of all cases.4 Even the most commonly mutated gene in arRP, USH2A, only accounts for 

about ~13% of cases.23 Another constraint is a poor record of clinical data for some of the patients, 

that sometimes even lack any records of tests for visual acuity or electroretinograms. This calls for a 

better and more standardized protocol of clinical assessment of IRD patients. As a mutation in PCARE 

may be a modifier of Usher syndrome caused by mutations in CEP250,24 it would also be important to 

include assessment of potential hearing loss in PCARE patients. 

One patient harbored compound heterozygous missense mutations of unknown pathogenicity 

(p.Arg29Trp / p.Arg1250Cys). While clinical examinations revealed a classic retinitis pigmentosa 
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phenotype consisting of night blindness, concentrally constricted visual fields, non-recordable 

electroretinograms and typical fundus abnormalities, there is still some uncertainty that the 

encountered PCARE mutations are responsible for retinal disease in this patient. Based on current 

prediction programs and availability of population data, it may well be that (one of) these variants 

are benign, and thus mutations in PCARE are not the underlying cause of IRD in this patient. 

Segregation analysis, combined with functional studies on the missense mutant protein products, 

should be performed to determine whether these PCARE missense variants are truly disease-causing. 

Because the age of onset is defined as the age of diagnosis, there may be a lot of divergence 

between the real age of onset of the disease and the first visit to the clinic. Interestingly, some 

families sharing the same causal mutation in PCARE have members with very early onset and others 

with late onset. This also obstructs the interpretation of the severity of the mutation. The presence 

of only one intron in the PCARE gene makes it less likely to encounter splice-site mutations, although 

it still should be investigated, as intronic mutations have been described for other retinal genes like 

ABCA4,25,26 CEP290,27 or USH2A.28 Digenic forms of RP are known, therefore polygenic inheritance of 

retinal diseases cannot be ruled out.29,30 Additionally, miRNAs may induce transcript degradation or 

translational inhibition of their target mRNAs,31 and may also explain the differences in phenotypic 

severity when the causal mutation is the same. 

In summary, we have presented an overview of the clinical and genetic characteristics of PCARE-

associated retinal disease. The small number of patients reported and the limited clinical data 

collected from these patients makes it difficult to assess any potential genotype-phenotype 

correlation. Functional studies in different cellular and animal models are needed to shed more light 

into the function of PCARE and help to understand the disease better. A more detailed clinical 

examination of patients, together with a larger cohort of patients of PCARE-associated retinal 

disease, may help to obtain more accurate genotype-phenotype correlations and aid clinical 

diagnosis and personalized treatment for these patients. 

 

 

3.5 Methods 

3.5.1 Clinical data gathering 

A literature search was conducted between October 1st 2017 and April 4th 2018. We searched 

PubMed and the Cochrane Library for “C2orf71” (as PCARE was previously known), which resulted in 

21 results, and one more paper was found through references. All papers that included clinical data 

were selected, leading to the inclusion of a total of 11 papers with human clinical data on a total of 
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41 patients.6-9,11,12,14-18 Clinical data were extracted, and authors were contacted to provide more 

information in case the published data were too limited. 

3.5.2 Statistical analyses 

Statistical analyses were performed using IBM SPSS version 22. Best-corrected visual acuity (BCVA) 

was transformed to the logarithm of the minimal angle of resolution (LogMAR) for statistical analysis. 

Counting fingers (CF) and light perception (LP) were assigned arbitrary BCVA values in order to 

perform Spearman ranked correlation analysis to assess inter-eye symmetry at baseline. Age of onset 

was defined as the age at which the patient first reported visual complaints. In case the age of onset 

was not reported or unknown, the age at first visit was considered the age of onset.  

We investigated a genotype-phenotype correlation based on mutation position and the age of onset. 

Only patients that harbored homozygous mutations were included in this analysis, as the residual 

protein activity, and the contribution of individual mutations to this residual activity, is hard to 

predict for patients with compound heterozygous mutations. 

 

3.6 References 

1. Daiger, S.P., Sullivan, L.S., and Bowne, S.J. (2013). Genes and mutations causing retinitis pigmentosa. Clinical 
genetics 84, 132-141. 

2. Parmeggiani, F. (2011). Clinics, epidemiology and genetics of retinitis pigmentosa. Current genomics 12, 236-
237. 

3. Haim, M. (2002). Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand Suppl, 1-34. 
4. Ferrari, S., Di Iorio, E., Barbaro, V., Ponzin, D., Sorrentino, F.S., and Parmeggiani, F. (2011). Retinitis 

pigmentosa: genes and disease mechanisms. Curr Genomics 12, 238-249. 
5. Collin, R.W.J., Safieh, C., Littink, K.W., Shalev, S.A., Garzozi, H.J., Rizel, L., Abbasi, A.H., Cremers, F.P.M., den 

Hollander, A.I., Klevering, B.J., et al. (2010). Mutations in C2ORF71 cause autosomal-recessive retinitis 
pigmentosa. Am J Hum Genet 86, 783-788. 

6. Nishimura, D.Y., Baye, L.M., Perveen, R., Searby, C.C., Avila-Fernandez, A., Pereiro, I., Ayuso, C., Valverde, D., 
Bishop, P.N., Manson, F.D., et al. (2010). Discovery and functional analysis of a retinitis pigmentosa 
gene, C2ORF71. Am J Hum Genet 86, 686-695. 

7. Audo, I., Lancelot, M.E., Mohand-Said, S., Antonio, A., Germain, A., Sahel, J.A., Bhattacharya, S.S., and Zeitz, 
C. (2011). Novel C2orf71 mutations account for approximately 1% of cases in a large French arRP 
cohort. Hum Mutat 32, E2091-2103. 

8. Gerth-Kahlert, C., Tiwari, A., Hanson, J.V.M., Batmanabane, V., Traboulsi, E., Pennesi, M.E., Al-Qahtani, A.A., 
Lam, B.L., Heckenlively, J., Zweifel, S.A., et al. (2017). C2orf71 Mutations as a Frequent Cause of 
Autosomal-Recessive Retinitis Pigmentosa: Clinical Analysis and Presentation of 8 Novel Mutations. 
Invest Ophthalmol Vis Sci 58, 3840-3850. 

9. Coppieters, F., Van Schil, K., Bauwens, M., Verdin, H., De Jaegher, A., Syx, D., Sante, T., Lefever, S., 
Abdelmoula, N.B., Depasse, F., et al. (2014). Identity-by-descent-guided mutation analysis and exome 
sequencing in consanguineous families reveals unusual clinical and molecular findings in retinal 
dystrophy. Genet Med 16, 671-680. 

10. Xu, Y., Guan, L., Shen, T., Zhang, J., Xiao, X., Jiang, H., Li, S., Yang, J., Jia, X., Yin, Y., et al. (2014). Mutations of 
60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum 
Genet 133, 1255-1271. 

11. Bocquet, B., Marzouka, N.A., Hebrard, M., Manes, G., Senechal, A., Meunier, I., and Hamel, C.P. (2013). 
Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations. 
Mol Vis 19, 2487-2500. 



Clinical and genetic overview of PCARE-associated retinal disease 

115 
 

12. Mendonca, L.S.M., Avila, M.P., Silva, I.M.B.M., Lavigne, L.C., Oliveira, T., Chiang, J., Jordão, A., Rassi, A.T., 
Chaves, L.F.O.B., and Gabriel, L.A.R. (2014). Novel nonsense mutation in C2orf71 gene in a brazilian 
patient with autosomal recessive cone-rod dystrophy. Investigative Ophthalmology & Visual Science 
55, 3275-3275. 

13. Kevany, B.M., Zhang, N., Jastrzebska, B., and Palczewski, K. (2015). Animals deficient in C2Orf71, an 
autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal 
degeneration. Hum Mol Genet 24, 2627-2640. 

14. Collin, R.W., Safieh, C., Littink, K.W., Shalev, S.A., Garzozi, H.J., Rizel, L., Abbasi, A.H., Cremers, F.P., den 
Hollander, A.I., Klevering, B.J., et al. (2010). Mutations in C2ORF71 cause autosomal-recessive retinitis 
pigmentosa. Am J Hum Genet 86, 783-788. 

15. Beheshtian, M., Saee Rad, S., Babanejad, M., Mohseni, M., Hashemi, H., Eshghabadi, A., Hajizadeh, F., 
Akbari, M.R., Kahrizi, K., Riazi Esfahani, M., et al. (2015). Impact of whole exome sequencing among 
Iranian patients with autosomal recessive retinitis pigmentosa. Arch Iran Med 18, 776-785. 

16. Sanchez-Alcudia, R., Corton, M., Avila-Fernandez, A., Zurita, O., Tatu, S.D., Perez-Carro, R., Fernandez-San 
Jose, P., Lopez-Martinez, M.A., del Castillo, F.J., Millan, J.M., et al. (2014). Contribution of mutation 
load to the intrafamilial genetic heterogeneity in a large cohort of Spanish retinal dystrophies families. 
Invest Ophthalmol Vis Sci 55, 7562-7571. 

17. Gonzalez-del Pozo, M., Mendez-Vidal, C., Bravo-Gil, N., Vela-Boza, A., Dopazo, J., Borrego, S., and Antinolo, 
G. (2014). Exome sequencing reveals novel and recurrent mutations with clinical significance in 
inherited retinal dystrophies. PLoS One 9, e116176. 

18. Hebrard, M., Manes, G., Bocquet, B., Meunier, I., Coustes-Chazalette, D., Herald, E., Senechal, A., Bolland-
Auge, A., Zelenika, D., and Hamel, C.P. (2011). Combining gene mapping and phenotype assessment 
for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families. Eur 
J Hum Genet 19, 1256-1263. 

19. Katagiri, S., Akahori, M., Sergeev, Y., Yoshitake, K., Ikeo, K., Furuno, M., Hayashi, T., Kondo, M., Ueno, S., 
Tsunoda, K., et al. (2014). Whole exome analysis identifies frequent CNGA1 mutations in Japanese 
population with autosomal recessive retinitis pigmentosa. PLoS One 9, e108721. 

20. Godsel, L.M., and Engman, D.M. (1999). Flagellar protein localization mediated by a calcium-
myristoyl/palmitoyl switch mechanism. EMBO J 18, 2057-2065. 

21. Williamson, M.P. (1994). The structure and function of proline-rich regions in proteins. Biochem J 297 ( Pt 
2), 249-260. 

22. Morgan, A.A., and Rubenstein, E. (2013). Proline: the distribution, frequency, positioning, and common 
functional roles of proline and polyproline sequences in the human proteome. PLoS One 8, e53785. 

23. Bravo-Gil, N., Gonzalez-Del Pozo, M., Martin-Sanchez, M., Mendez-Vidal, C., Rodriguez-de la Rua, E., 
Borrego, S., and Antinolo, G. (2017). Unravelling the genetic basis of simplex Retinitis Pigmentosa 
cases. Sci Rep 7, 41937. 

24. Khateb, S., Zelinger, L., Mizrahi-Meissonnier, L., Ayuso, C., Koenekoop, R.K., Laxer, U., Gross, M., Banin, E., 
and Sharon, D. (2014). A homozygous nonsense CEP250 mutation combined with a heterozygous 
nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet 51, 460-469. 

25. Sangermano, R., Bax, N.M., Bauwens, M., van den Born, L.I., De Baere, E., Garanto, A., Collin, R.W., 
Goercharn-Ramlal, A.S., den Engelsman-van Dijk, A.H., Rohrschneider, K., et al. (2016). Photoreceptor 
Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T-->C Mutation 
in Stargardt Disease. Ophthalmology 123, 1375-1385. 

26. Bax, N.M., Sangermano, R., Roosing, S., Thiadens, A.A., Hoefsloot, L.H., van den Born, L.I., Phan, M., 
Klevering, B.J., Westeneng-van Haaften, C., Braun, T.A., et al. (2015). Heterozygous deep-intronic 
variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant. 
Hum Mutat 36, 43-47. 

27. den Hollander, A.I., Koenekoop, R.K., Yzer, S., Lopez, I., Arends, M.L., Voesenek, K.E., Zonneveld, M.N., 
Strom, T.M., Meitinger, T., Brunner, H.G., et al. (2006). Mutations in the CEP290 (NPHP6) gene are a 
frequent cause of Leber congenital amaurosis. Am J Hum Genet 79, 556-561. 

28. Liquori, A., Vache, C., Baux, D., Blanchet, C., Hamel, C., Malcolm, S., Koenig, M., Claustres, M., and Roux, 
A.F. (2016). Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations. Hum 
Mutat 37, 184-193. 

29. Kajiwara, K., Berson, E.L., and Dryja, T.P. (1994). Digenic retinitis pigmentosa due to mutations at the 
unlinked peripherin/RDS and ROM1 loci. Science 264, 1604-1608. 

30. Gao, F.J., Zhang, S.H., Chen, J.Y., Xu, G.Z., and Wu, J.H. (2017). Digenic heterozygous mutations in EYS/LRP5 
in a Chinese family with retinitis pigmentosa. Int J Ophthalmol 10, 325-328. 

Ch
ap

te
r 3



CHAPTER 3 

116 
 

31. Karali, M., Persico, M., Mutarelli, M., Carissimo, A., Pizzo, M., Singh Marwah, V., Ambrosio, C., Pinelli, M., 
Carrella, D., Ferrari, S., et al. (2016). High-resolution analysis of the human retina miRNome reveals 
isomiR variations and novel microRNAs. Nucleic Acids Res 44, 1525-1540. 

 

  



Clinical and genetic overview of PCARE-associated retinal disease 

117 
 

 

Ch
ap

te
r 3





C2orf71a/pcare1 is important
for photoreceptor outer segment

morphogenesis and
visual function in zebrafish

Chapter 4



CHAPTER 4 

120 

 

C2orf71a/pcare1 is important for photoreceptor outer segment 

morphogenesis and visual function in zebrafish 

 

Julio C. Corral-Serrano1,2, Muriël Messchaert1,3, Margo Dona3,4, Theo A. Peters3,4, Leonie M. 

Kamminga2,5, Erwin van Wijk3,4, Rob W.J. Collin1,3 

 

1Department of Human Genetics, 2Radboud Institute for Molecular Life Sciences, Radboud University 

Medical Center, Nijmegen, The Netherlands, 3Donders Institute for Brain, Cognition and Behaviour, 

Radboud University, Nijmegen, The Netherlands, 4Department of Otorhinolaryngology, Radboud 

University Medical Center, Nijmegen, The Netherlands, 5Department of Molecular Biology, Radboud 

University, Nijmegen, The Netherlands. 

 

Scientific Reports, 8: 9675 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish 

 

121 

 

4.1 Abstract 

Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally 

cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important 

for modulation of the ciliary membrane through the recruitment of an actin assembly module, and 

have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report 

on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To 

study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 

mutant zebrafish model (designated pcare1rmc100/rmc100) in which the coding sequence was disrupted 

using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1rmc100/rmc100 

zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype 

observed in Pcare-/- mice. Optokinetic response and visual motor response measurements indicated 

visual impairment in pcare1rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram 

measurements showed decreased b-wave amplitudes in pcare1rmc100/rmc100 zebrafish as compared to 

age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, 

our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the 

function of the PCARE gene is conserved across species. 
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4.2 Introduction 

Retinitis pigmentosa (RP, MIM 268000) is an inherited retinal dystrophies (IRD) characterized by 

progressive visual impairment due to the loss of rod photoreceptors. The prevalence of RP in the 

population ranges between 1:3,000 and 1:5,000, making it the most common form of IRD. In 2010, 

we and others reported that mutations in C2orf71 underlie non-syndromic autosomal recessive RP 

(arRP).1,2 Consecutive studies detected additional C2orf71 disease-causing missense and nonsense 

mutations along its entire coding sequence in cases with RP or cone-rod dystrophy (CRD).3-8 Of 

interest, C2orf71 mutations represent a frequent cause of arRP in the Swiss population.9 

C2orf71 is almost exclusively expressed in the retina1 and encodes a ciliary protein, C2orf71, that 

consists of 1,288 amino acids and localizes to the base of the outer segments (OS) in the retina, 

where OS disk neogenesis is initiated.10 In C2orf71-/- mice, the OS are shortened and disorganized, 

and are marked by a mislocalization of proteins such as rhodopsin and cone opsins.11 Recently, we 

have discovered that C2orf71 recruits a ciliary actin dynamics module that modifies the ciliary 

membrane, and hypothesize that this principle may be the driver of photoreceptor OS disks 

morphogenesis (as reported in chapter 2). Hence, we have renamed the C2orf71 gene to PCARE 

which stands for photoreceptor cilium actin regulator. If PCARE indeed plays a conserved, actin-

related role in vision, we would expect a similar function for this gene across vertebrates. 

The zebrafish, Danio rerio, is a tropical freshwater fish that is commonly used in IRD research.12-14 

Advantages of using zebrafish for such studies are mainly their short life cycle and the large numbers 

of offspring. In addition, their ex utero development allows for easy tracking of eye development.15 

Despite being genetically distant to humans, zebrafish eyes share some similarities in morphology 

and physiology to human eyes. Like humans, zebrafish are also diurnal animals, and their retinas 

present a similar layered structure.16 A whole-genome duplication event that occurred during the 

divergence of the teleost fish17,18 made the present day zebrafish genome to contain many 

duplicated genes, of which over 64 correspond to genes mutated in IRD,15 including pcare. 

Transient morpholino-based knockdown of one of the two copies of pcare in zebrafish, pcare1, 

results in shortening of photoreceptor outer segments and visual dysfunction.2 However, over the 

recent years, the specificity of morpholino-based knockdown studies have been debated, mostly due 

to non-specific binding that may occur.19,20 In addition, the transient nature of the knock-down does 

not allow to study long-term effects. 
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Here, we have generated a stable pcare1 zebrafish mutant using CRISPR/Cas9 technology to 

investigate the effect of the absence of pcare1 in a non-mammalian model, and demonstrate that, 

like in humans, the pcare1 gene is essential for retinal function.  

 

4.3 Results 

4.3.1 PCARE is duplicated in the zebrafish genome 

The zebrafish pcare paralogues, pcare1 and pcare2, were identified by bioinformatic analysis using 

the software programs BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and Ensembl 

(https://www.ensembl.org/index.html). Reciprocal BLAST searches revealed that both genes are true 

orthologues of the human PCARE gene. Bioinformatic analysis revealed that pcare1 is located on 

chromosome 17 and codes for a protein of 1122 amino acids, while pcare2 is locates to chromosome 

20 and encodes a protein of 859 amino acids (Fig. 1). A synteny between part of the zebrafish 

chromosome 17 and the human chromosome 2 on which PCARE is located, suggests that pcare1 is 

the true orthologue of the human counterpart. To study the expression of these genes, we 

performed RT-PCR on wild-type zebrafish eye cDNA at 5 days post fertilization (dpf). We observed 

that both genes are expressed in the zebrafish eye (Fig. 1B). Because of the higher similarity of 

pcare1 with the human PCARE protein sequence (32.1% of pcare1 vs 25.6% of pcare2, see 

Supplemental Figure S1) we decided to target the pcare1 gene for disruption.  

 

 
Figure 1. PCARE is duplicated in the zebrafish genome. A, Graphic representation of the human PCARE gene 
and the two PCARE orthologous zebrafish genes, pcare1 and pcare2. B, Genomic location of the duplicated 
pcare genes in zebrafish. Pcare1 is located in chromosome 17 and pcare2 is located in chromosome 20 (left). 
Expression analysis using zebrafish eyes cDNA of pcare1 and pcare2 (right).  
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4.3.2 Generation of a pcare1 mutant zebrafish line 

For the generation of pcare1 mutant zebrafish, a pcare1 sequence-specific guide RNA was designed, 

and co-injected with Cas9 mRNA into single cell zebrafish embryos. Mosaic fish containing indels 

around the target region were then outcrossed with wild-type fish to determine germline 

transmission and the exact genomic lesion that was introduced. We identified four adult F1 fish 

containing a heterozygous 29-basepair deletion in exon 1 of pcare1 (c. 21_49del) (Fig. 2A-C). 

Subsequently, heterozygous pcare1 carriers were mated to generate homozygous mutant fish, 

named pcare1rmc100/rmc100, and subsequently crossed for a number of generations. Homozygous 

mutant fish did not show any signs of gross morphological abnormalities. The 29-basepair deletion is  

Figure 2. Generation of pcare1rmc100/rmc100 zebrafish. A, The 2 exons of zebrafish pcare1 gene are shown. In red, 
the sequence targeted by the pcare1 guide RNA is indicated. B, The detected DNA change (c.21_49del) leads to 
a 29bp deletion causing a frame shift after aminoacid 8 of pcare1, predicted to result in a truncated protein 
(p.Gly8Glufs*9). C, Sequence validation of the targeted region in pcare1+/+, pcare1+/rmc100 and pcare1rmc100/rmc100 
zebrafish. The deleted 29bp are marked in red in the pcare1+/+ sequence and absent from the heterozygous and 
homozygous sequences (red arrows). 
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predicted to result in the premature termination of translation after amino acid 16 of pcare1 

(p.Gly8Glufs*9), most likely resulting in a functional null allele. RT-PCR analysis showed that mutant 

mRNA is expressed in the pcare1 mutants, indicating that it does not, or at least not completely, 

undergo nonsense-mediated decay (Fig. 2D). Staining with different commercial and custom-made 

antibodies targeting the pcare protein in zebrafish did not yield any specific signals, nor any 

differences between wild-type and pcare1rmc100/rmc100 mutant fish (data not shown). These results 

suggest that the antibodies targeting human PCARE do not recognize the zebrafish protein, most 

likely due to the low conservation between the human and zebrafish PCARE sequences 

(Supplemental Figure S1). 

4.3.3 Pcare1rmc100/rmc100 zebrafish show aberrant photoreceptor morphology  

To analyze the morphology of the photoreceptor OS, pcare1rmc100/rmc100 and wild-type strain-matched 

embryos of 5 dpf were sectioned and stained with boron-dipyrromethene (BODIPY). We observed a 

pronounced dysmorphology of the outer segments in the pcare1rmc100/rmc100 zebrafish as compared to 

wild-type embryos (Fig. 3A). Since we recently discovered that the human PCARE protein is 

associated to actin, we also stained retinas, from embryonic (5 dpf) as well as adult (6 months post 

fertilization, mpf) fish, with an antibody against F-actin. The localization of actin further supported 

the disorganization of the OS (Fig. 3B,C) in the pcare1rmc100/rmc100 retinas. In addition, both the rod-

specific protein rhodopsin and the cone-specific protein Gnat2 exhibited a different pattern in 

pcare1rmc100/rmc100 fish compared to wild-type fish, presumably affected by the change of morphology 

of the outer segments (Fig. 3B,C). Additionally, a reduction in the thickness of both outer and inner 

nuclear layers was observed in pcare1rmc100/rmc100 fish of 6 months of age (Supplemental Figure S2). 

4.3.4 Pcare1rmc100/rmc100 larvae are visually impaired 

To study the response of the zebrafish to visual stimuli, we performed optokinetic response (OKR) 

and visual motor response (VMR) measurements in wild-type and pcare1rmc100/rmc100 larvae at 5 dpf. 

OKR analysis, that measures eye movements in a rotating drum, showed a significant decrease in the 

number of movements in pcare1rmc100/rmc100 larvae compared to wild types (Fig. 4A). Twenty-one 

percent of the mutant larvae responded with less than 5 eye movements, which can be considered 

as spontaneous movements, while 5% of the mutant larvae showed no response at all (Fig. 4A). For 

VMR measurements, we employed the DanioVision system that enables automatic measurement of 

the activity of animals following a series of dark-to-light transitions. Our analysis showed a major 

decrease of the distance moved after the dark-to-light transitions between pcare1rmc100/rmc100 and 
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wild-type larvae (Fig. 4B,C). The velocity of the movements was also higher in the wild-type larvae 

(Fig. 4D,E), though it was not statistically significant. To determine the response of the outer retina to 

a light stimulus, we performed ERG measurements in dark-adapted zebrafish larvae at 5 dpf. The b-

wave response, which measures the action potentials of ON bipolar cells,21 was drastically reduced in 

pcare1rmc100/rmc100 compared to age-matched control larvae (Fig. 5). 

 

Figure 3. Pcare1rmc100/rmc100 zebrafish show aberrant photoreceptor morphology. A, Analysis of the 
morphology of the pcare1rmc100/rmc100 zebrafish larval retina (5 dpf) using boron-dipyrromethene (BODIPY) 
revealed disorganization of photoreceptor outer segments as compared to those of strain- and age-matched 
wild-type larvae (arrows). B, Siblings of adult zebrafish without (wild-type) or containing (pcare1rmc100/rmc100) the 
29bp deletion in pcare1 were sectioned and stained with antibodies against F-actin (red), Rhodopsin (green) or, 
in C, GNAT2 (green). Arrows indicate normal outer segments in control fish and dysmorphic outer segments in 
mutant fish. Nuclei were stained with DAPI. 
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Figure 4. Pcare1rmc100/rmc100 zebrafish are visually impaired. A, Optokinetic response (OKR) measurements 
revealed a decrease in the number of eye movements of  pcare1rmc100/rmc100 larvae (n=38) compared to control 
larvae (n=38). B, Representative graph showing the distance moved (maximum velocity in D) of the larvae 
between light-off to light-on change in a one-minute interval. C, Graphs showing the differences in the distance 
moved (maximum velocity in E) between wild-type and pcare1rmc100/rmc100 larvae in different time points and 
combining three independent experiments. Bars indicate the standard error of the mean. P-values are 
corrected for multiple testing using Benjamini-Hochberg method; the comparisons marked with an asterisk 
showed statistical significance (*) = p-value < 0.05. 
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Figure 5. Pcare1rmc100/rmc100 mutant zebrafish show reduced ERG responses. A, The average ERG amplitude to 
light stimuli of wild-type larvae (n=15) and pcare1 mutant larvae (n=17) was measured. B, Comparison of 
maximal b-wave amplitudes between wild-type and pcare1rmc100/rmc100 zebrafish larvae. The b-wave amplitude is 
significantly reduced in pcare1rmc100/rmc100 mutants compared to wild-type larvae; p-value = 0.0004. Bars indicate 
the standard error of the mean. 

 

4.4 Discussion 

In humans, mutations in the gene PCARE lead to phenotypes where either the rod photoreceptors, in 

case of arRP, or the cone photoreceptors, in arCRD, are primarily affected. The outer segments of 

photoreceptor cells are specialized sensory cilia composed of stacked membrane discs that contain 

all the necessary elements for phototransduction.22 Very recently, we have found evidence that 

PCARE could be an important ciliary actin modulator postulated to drive outer segment disk 

morphogenesis (chapter 2). This study was done using a Pcare-/- mouse model and human hTERT 

RPE-1 cells. Here, we have generated a zebrafish pcare1 mutant (named pcare1rmc100/rmc100) in order 

to obtain a better understanding of the function of pcare in a non-mammalian vertebrate. Based on 

the data presented here, it seems that the function of PCARE is conserved, as the photoreceptor 

outer segments are disorganized in pcare1rmc100/rmc100 zebrafish. 

The age of disease onset in patients with PCARE mutations ranges from the first to the sixth decade.9 

We observed that pcare1rmc100/rmc100 zebrafish show a worse response than wild-type zebrafish, both 

in a behavioral assay and after electrophysiological recordings; however, pcare1rmc100/rmc100 zebrafish 

are not completely blind. These observations correlate with the human phenotype, since patients do 

not become fully blind until a more advanced age. In mice, disruption of Pcare causes severe retinal 

dystrophy with an early onset, with flat ERG responses already at 8 weeks of age.11 Behavioral assays 

using DanioVision did not show statistically significant differences for velocity and some points of 

distance moved; however, we can observe a clear different trend between wild-type and 

pcare1rmc100/rmc100 larvae. This correlates with the high variability in results using visual motor assays 
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that other authors have reported.23 Additionally, photoreceptive molecules in the zebrafish brain 

may mediate some of the behavioral responses to light.24,25 

In our study, pcare1rmc100/rmc100 zebrafish ERG responses show a reduction in the b-wave amplitude as 

early as 5 dpf, similar to the phenotype observed in mice. Since rod photoreceptors are still not 

functional in zebrafish at 5 dpf,26,27 this indicates that cone photoreceptor cells and/or bipolar cells 

could be affected by depletion of pcare1, although we only measured b-wave responses that are 

derived from the bipolar cells. In addition, light detection through non-retinal tissues could be 

accounting for some of the responses. 

Because the outer segments are not completely disrupted in pcare1rmc100/rmc100 zebrafish, we 

hypothesize that other proteins involved in outer segment disc formation may still be functional at 

their action site. Unlike for other vertebrates, the common ancestor from the teleost lineage 

underwent a whole-genome duplication event.18 A consequence of this is the presence of 26,206 

protein-coding genes, more than any other sequenced vertebrate species.28 For some of the 

duplicated genes, their function has diverged since then,29,30 while for others it has remained 

unchanged.31 Interestingly, parts of zebrafish chromosome 17 and 20 where pcare1 and pcare2 are 

located, descend from the same pre-duplication in the ancestral chromosome. Although disruption 

of the pcare1 copy is sufficient to generate a strong retinal phenotype, there is still a possibility that 

pcare2 may be involved in a similar process within the photoreceptor cells. Thus, a more severe 

retinal defect could be expected if both gene copies are disrupted, and future studies will be needed 

to address the function of pcare2.  

Alternatively, other proteins involved in photoreceptor outer segment formation or maintenance 

could be responsible for our observations. Examples of such proteins are the subunits of the 

intraflagellar transport (IFT) particle, and the motor protein kinesin-2,32 which are needed for 

axonemal protein traffic along the connecting cilium. Knockdown of IFT proteins in zebrafish causes 

severe retinal degeneration.33 Ift57-deficient zebrafish mutants however are able to form a primitive 

photoreceptor connecting cilium, rod sacs and flattened outer segment discs, but the discs fail to 

acquire a proper length and subsequently the photoreceptors die.33,34 Because of the similarities 

between the phenotypes of Ift57 mutants and pcare1rmc100/rmc100 zebrafish mutants, we hypothesize 

that a similar degenerative process of pcare1rmc100/rmc100 zebrafish outer segments might take place.  

 

Contrary to mammals, where Müller glia cells rarely divide followed by retinal injury, retinal 

regeneration does occur in zebrafish.35,36 Upon injury, Müller glia are able to reprogram into retinal 

stem cells.37 We however observed a disorganization of the photoreceptor outer segments and 
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degeneration of the outer nuclear layer at pcare1rmc100/rmc100 zebrafish, both at 5 dpf and at 6 mpf. 

Therefore, the regeneration occurring in zebrafish is apparently not sufficient to halt the 

photoreceptor degeneration caused by absence of pcare1. 

In summary, we have generated a pcare1-deficient zebrafish line using CRISPR/Cas9 technology. 

Analysis of the morphology and physiology of embryonic and adult pcare1rmc100/rmc100 zebrafish results 

in a clear retinal disease phenotype. We provide an additional excellent model organism to study 

retinal degeneration caused by PCARE mutations which will be useful to understand the disease 

mechanisms. Furthermore, our findings support the hypothesis of the involvement of PCARE in 

forming and/or maintaining photoreceptor outer segments and, thereby, proper vision. 

 

4.5 Methods 

4.5.1 Ethics statement 

Animal experiments were conducted in accordance with the Dutch guidelines for the care and use of 

laboratory animals, with the approval of the local Animal Experimentation Committee (Dier 

Experimenten Commissie [DEC]) (Protocol #DEC 2016–0091). 

4.5.2 Zebrafish maintenance 

Experimental procedures were conducted in accordance with international and institutional 

guidelines. Wild-type adult Tupfel Long Fin (TLF) zebrafish were used. Zebrafish eggs were obtained 

from natural spawning of wild-type breeding fish. Larvae were maintained and raised by standard 

methods.38 In brief, embryos were raised in E3 medium (5 mM NaCL, 0.17 mM KCL, 0.33 mM CaCl2, 

0.33 mM MgSO4, supplemented with 0.1% methylene blue) in a 28°C incubator with the same 

day/night cycle (14 h light / 10 h dark). The medium was daily changed and during the process curved 

and dead larvae were discarded. Behavioral testing was carried out at 5 days post-fertilization (dpf). 

4.5.3 Target site selection and gRNA synthesis 

Sites for targeted genome editing were selected using the online software ZiFiT Targeter version 4.2 

(http://zifit.partners.org/ZiFiT/).39,40 Templates for gRNA transcription were generated by annealing 

gene-specific oligonucleotides containing the T7 (5’-TAATACGACTCACTATA-3’) promoter sequence, 

the 20-base target sequence without the PAM (5’-GGGGGAGAACACTACTTCCA-3’), and a 

complementary region to a constant oligonucleotide encoding the reverse complement of the 

http://zifit.partners.org/ZiFiT/
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tracrRNA tail. T4 DNA polymerase (New England Biolabs, Ipswich, Massachusetts, USA) was used to 

fill the ssDNA overhang and the template was purified using columns (Sigma, St. Louis, Missouri, 

USA). Transcription of the gRNAs was performed using the MEGAshortscript Kit (Ambion®, Thermo 

Fisher Scientific, Waltham, Massachusetts, USA). 

4.5.4 Microinjections 

Zebrafish embryos were collected and injected at single cell stage with 1 nl of a mix consisting of 4.5 

µl gRNA (173,72 ng/ul), 2.5 µl Cas9 protein (2 µg/µl, PNA Bio Inc, Newbury Park, California, USA), 2 µl 

1M KCl and 1 µl 0.5% phenol red dye. To screen for genomic lesions, genomic DNA was extracted 

from a pool of 15 embryos at 2.5 dpf. 

4.5.5 Genotyping PCR 

After injections, genomic DNA was extracted from 2.5 dpf larvae or caudal fin tissue of adult 

zebrafish. Tissue was incubated in 25 µl (larvae) or 75 µl (fin tissue) lysis buffer (40 mM NaOH, 0.2 

mM EDTA) for 20 min at 95°C. The lysed samples were diluted 10 times after which 1 µl was 

incubated together with 0.5 µM of the forward and reverse primer, 100 µM dNTPs (Roche, Basel, 

Switzerland), 0.25 U Taq polymerase (Roche, Basel, Switzerland) and 10x PCR buffer + 15 mM MgCl2 

(Roche, Basel, Switzerland) in a total volume of 25 µl. Samples were denatured at 94°C for 5 min 

followed by 35 cycles of amplification consisting of 30 seconds (sec) at 94°C, 30 sec at 58°C and 60 

sec at 68°C, followed by a final primer extension of 10 min at 72°C. To screen for genomic lesions, 

PCR products were sequenced directly. Primer sequences are listed in Supplemental Table S1. 

4.5.6 Establishment of a pcare1rmc100/rmc100 zebrafish line 

Mosaic fish were out-crossed with wild-type TLF fish to determine germline transmission and the 

exact introduced genomic lesion. Heterozygous mutants were mated to generate homozygous 

pcare1 mutants, which were subsequently crossed for a number of generations. A pcare1rmc100/rmc100 

zebrafish line was established containing a 29-basepair deletion at the start of exon 1 of pcare1 (c. 

21_49del). This is predicted to lead to premature termination of translation after amino acid 16. 

4.5.7 RT-PCR analysis  

To analyze the expression of pcare1 and pcare2, we performed RT-PCR using cDNA extracted from 

wild-type zebrafish eyes. One microgram of total RNA was incubated with 1 µl iScript Reverse 

Transcriptase (1708891, Bio-Rad, Hercules, California, USA) and 1x reaction mix in a total volume of 

20 µl nuclease free water. For the RT-reaction, the mixture was incubated for 5 min at 25°C, 30 min 
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at 42°C and the reaction was stopped by heating at 85°C for 5 min. PCR analysis was performed as 

described above. The primers used are listed in Supplemental Table S1. 

4.5.8 Preparation of zebrafish sections 

Larvae (5 dpf) were collected in an eppendorf tube and sedated with 2-phenoxyethanol (1:500). After 

one wash with PBS, embryos or adult eyes (6 mpf) were fixed in 4% PFA overnight, brought gradually 

to 100% MetOH and stored overnight at -20°C. After the overnight incubation, samples were 

rehydrated (75% MetOH in 0.1% PBS-Tween20 (PBS-T), 50% MetOH in 0.1% PBS-Tween20, 25% 

MetOH in 0.1% PBS-Tween20 for 15 min each), followed by 15 min incubation in 0.1% PBS-Tween20. 

After this, 10% sucrose in 0.1% PBS-Tween20 was added, followed by an incubation step in 30% 

sucrose in 0.1% PBS-Tween20 for 1 h at room temperature (RT). Samples were embedded in O.C.T. 

compound (Tissue-Tek®, 25608-930, VWR, Radnor, Pennsylvania, USA) and snap frozen in isopentane 

cooled by liquid nitrogen. Cryosectioning was done following standard protocols (seven μm thickness 

along the lens/optic nerve axis).  

4.5.9 Bodipy staining 

To analyze outer segments morphology, cryostat sections of 5 dpf larvae were briefly washed with 

1xPBS, permeabilized with 0.5% Triton X-100 in PBS, washed in PBS and incubated for 20 min with TR 

methyl ester (Bodipy, 1:5,000, Life Technologies, Carlsbad, Califoria, USA) and DAPI (1:8000, ITK 

Diagnostics, Uithoorn, The Netherlands). Sections were washed in PBS, followed by a brief wash with 

MilliQ and mounted with ProLong(R) Gold antifade reagent (P36930, Life Technologies, Carlsbad, 

California, USA). 

4.5.10 Immunohistochemistry 

Slides were incubated for 2 min in 0.1% PBS-T. Antigen retrieval was done by autoclaving the slides in 

10 mM sodium citrate for 1 min at 121°C. After that, sections were washed three times in 0.1% PBS-T 

and blocked for 1 h in blocking solution (10% non-fat dry milk in 0.1% PBS-T). Primary antibody 

(Rhodopsin clone 4D2, mouse, 1:2000, Novus Biological NBP1-48334; GNAT2, rabbit, 1:500, MBL 

PM075) was incubated in blocking solution overnight at 4°C. After primary antibody incubation, 

sections were washed in 0.1% PBS-T, followed by secondary antibody (Alexa Fluor 568® phalloidin, 

1:100, Molecular Probes A-12380; Goat IgG, Alexa Fluor 488, donkey, 1:500, Molecular Probes 

A11055; Mouse IgG, Alexa Fluor 488, donkey, 1:500, Life Technologies A21202) incubation for 45 min 

in blocking solution. Afterwards, sections were washed in PBS-T and mounted with anti-fade 

Prolong(R) Gold antifade reagent (P36930, Life technologies, Carlsbad, California, USA). To analyze 
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the thickness of ONL and INL in 6 mpf zebrafish, up to 10 different measurements were taken for 

each section. Two different sections were analyzed for one wild-type fish and one pcare1 mutant fish 

(Supplemental Figure S2). 

4.5.11 Optokinetic response (OKR) assay 

All measurements were conducted between 10 am and 5 pm. The OKR was measured as described 

previously.41-43 In brief, zebrafish larvae were mounted in an upright position in 3% methylcellulose in 

a small Petri dish placed on a platform surrounded by a rotating drum. A pattern of alternating black 

and white vertical stripes was displayed on the drum interior. Larvae (5 dpf) were visualized through 

a stereomicroscope positioned over the drum. Eye movements were recorded while larvae were 

optically stimulated by the rotating stripes. Larvae were subjected to a protocol of a 30 sec 

counterclockwise rotation, a 10 sec rest, and a 30 sec clockwise rotation. Measurements were 

recorded blinded. Graphs were generated and statistical analysis was done with Graphpad Prism6 

software (La Jolla, CA, USA).  

4.5.12 Visual motor response (VMR) assay (DanioVision) 

Locomotor activity in response to light-dark conditions was analyzed using the DanioVision system 

(Noldus B.V., Wageningen, The Netherlands). Larvae were transferred to a 48-wells plate filled with 

200 µl E3 medium without methylene blue. Each run consisted of 24 mutant larvae and 24 age-

matched control wild-type zebrafish larvae using a 48-wells plate. During the experiment, the 

temperature was constant at 28°C using a heating/cooling system (Noldus B.V., Wageningen, The 

Netherlands). The protocol consisted of 20 min of acclimation (with lid of the system open; room 

light: 500-650 lux), closing of the lid followed by alternating periods of 10 min dark, 10 min bright 

light (about 3000 lux) and 10 min dark (in total 12 cycles).  

Variables of interest were: distance moved (mm) for general activity under dark and light conditions; 

change in maximum velocity (mm∙s-1), to measure the change from dark to light (maximum velocity 

first 30 sec with light minus maximum velocity last 30 sec without light); change in distance moved 

(mm), to measure the change from light to dark (distance moved first 30 seconds without light minus 

distance moved from last 30 sec with light).44-46 Zebrafish tracks were analyzed using the analysis 

software (EthioVision). First, the missed subjects (<10%) were filtered out. Next, the heat maps of 5-

minute interval were plotted, to check for general activity. Fish not moving were removed from the 

analysis. The distance moved (DM (mm)) per unit of time (1 min, 30 sec or 1 sec intervals) for each 

animal and group was used as a measure for locomotor activity. In addition, the speed of movement 

(Vmax (mm/s)) was measured in the dark-to-light transition. The values of 1-second interval were 

Ch
ap

te
r 4



CHAPTER 4 

134 

 

used to study more precisely immediate effects of a sudden change from the dark to the light 

transition and from the light to dark transition. First, the distance moved was expressed by 30 sec/1 

min intervals and compared between the different groups; Second, the more precise per 1 sec 

interval was used to analyze the direct effects of light/dark and dark/light transitions. EthioVision XT 

was used to quantify the experiments. Complementary to it, R programming language was used to 

generate plots, calculate mean values and SEM values, and perform statistical tests. The difference 

between wild-type and mutant was analyzed using two-tailed, unpaired Student’s t-test, and p-

values were corrected for multiple testing using Benjamini-Hochberg method. The means vs. 

standard errors of the mean are shown. Exact p-values can be found in Supplemental Table S2. The 

means vs. standard errors of the mean are shown. 

4.5.13 Electroretinograms (ERG) 

ERG was performed on isolated larval eyes (5 dpf) as previously described.47 Larvae were dark-

adapted for a minimum of 30 min prior to the measurements and subsequently handled under dim 

red illumination. The isolated eye was positioned to face the light source. Under visual control via a 

standard microscope equipped with red illumination (Stemi 2000C, Zeiss, Oberkochen, Germany), the 

recording electrode with an opening of approximately 20 μm at the tip was placed against the center 

of the cornea. This electrode was filled with E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl, 

and 0.33 mM MgSO4), the same in which the embryos were raised and held. The electrode was 

moved with a micromanipulator (M330R, World Precision Instruments Inc., Sarasota, USA). A 

custom-made stimulator was invoked to provide light pulses of 100 ms duration, with a light intensity 

of 6000 lux. It uses a ZEISS XBO 75W light source and a fast shutter (Uni-Blitz Model D122, Vincent 

Associates, Rochester, NY, USA) driven by a delay unit interfaced to the main ERG recording setup. 

Electronic signals were amplified 1000 times by a pre-amplifier (P55 A.C. Preamplifier, Astro-Med. 

Inc, Grass Technology) with a band pass between 0.1 and 100 Hz, digitized by DAQ Board NI PCI-

6035E (National Instruments) via NI BNC-2090 accessories and displayed via self-developed NI 

Labview program.48 All the experiments were performed at room temperature (22°C). Statistical 

analysis was performed using GraphPad Prism6 (La Jolla, CA, USA), and graphs were generated in R 

(Boston, USA) or GraphPad Prism6. For statistical analysis of b-wave amplitude (Figure 5B), two-tailed 

unpaired t-test with Welch’s correction was performed; p-value = 0,0004; t=4.309, df=19.  
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4.8 Supplemental Data 

 
Supplemental Figure S1. Sequence alignment of human PCARE protein with zebrafish pcare1, pcare2 and 
mutant pcare1rmc100/rmc100 proteins. Identical residues in all sequences are white on a black background, 
whereas similar amino acids are white on a gray background. Residues that are common for two protein 
sequences are indicated in black on a light gray background. 
                              

          PCARE human     (1) MGCTPSHS--DLVNSVAKSGIQFLKKPKAIRPGCQGGSERGSIPLLVKNS 

     pcare1 zebrafish     (1) MGCSPSRG--RTLLPGTHESPGETQSHNGSIGDSERGNSTARPYERKFST 

     pcare2 zebrafish     (1) MGCSPSKGQLFSKRPALPSGPAESKKNPNLLSGGDQIQSKAEDSEELAET 

  pcare1rmc100 zebrafish    (1) MGCSPSREPRRNTVS----------------------------------- 

                                 

          PCARE human    (49) TCYDAGEGLAEEQPSPRRNQTTAKGLCQLMGDPASGKRKDMEGLIPGTKT 

     pcare1 zebrafish    (49) AECEADGAASAKLSTQEININILS-------------------------- 

     pcare2 zebrafish    (51) EIEEPAKHSEGKRHSVDDVVCDATAIVR---------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                            

          PCARE human    (99) SSSQLNKSQSHMAKDIPFKTQGSHGSQGADFSGDESEESSTQDTSKWKRT 

     pcare1 zebrafish    (73) --------------------------QAKEK-----QEEKREDCEKKGGK 

     pcare2 zebrafish    (79) ------------------EDAAEKILEIISSHDEQRAQETLLEQQEEAVE 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (149) AKCHTSSTQSHCYQTIHPAHEPEGKVDFPEPLVKAHQQAYTYLHSSLSKY 

     pcare1 zebrafish    (92) KSKKSTKSVRVNKRKEKEIKLVQEKVDFPEELVKAHQAAYGYLNPSITKY 

     pcare2 zebrafish   (111) EKKTREKQVKRKKQRKPRLRKNSHVLAKAEFVLIAHQAAYAYLNPSISKY 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (199) EAILCIIHQATQTRELLQPMVSFLLLCFEEISQLLGEISKDGEVLLQEVR 

     pcare1 zebrafish   (142) EDLLGLLDHAAQTQISLQPMVAFMVLRYEEINKGLQEIVEEGEAMFKGNG 

     pcare2 zebrafish   (161) EALLGLLGQAAQTQRSLQTTVASVVLHFEEINQALEDLAADGEQLLREHG 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (249) EDLAWPLKKRE-------------PQEQPNLLQQLLQYTVSKLQVLNGTV 

     pcare1 zebrafish   (192) EHLAWPCEKNKSSYNAKNATTSTCSDPPPDLLQQLLQYTVQRMRQVGQSV 

     pcare2 zebrafish   (211) HNMTWPASLKDYPPTAANGQTG--SPLPSELLQQMLLHSTVNMASMGDSV 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (286) ASLTGSFLEGSSSYLHSTATHLENKLSTKRNVDERLLRALRQLESLASGC 

     pcare1 zebrafish   (242) CGIGDTALEEAVEYFSSITDILDEKLRAKRASESRLMWLLSRIEAASQKK 

     pcare2 zebrafish   (259) RCRSDSALQELAQYFGSMSELIGEKLLAKRAAEERLKQVLCHVEAAAFRK 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                            

          PCARE human   (336) GDPGVQGLPLCSEDSGIGADNESVQSVDKLGKQTSWDLAPEPEEWKSVTS 

     pcare1 zebrafish   (292) PSP--EDSALFSEDSGLGAESESLAGSDRQRQRRESSES-----SG--TI 

     pcare2 zebrafish   (309) PGP--EDSALHSEDSGIGAENDCQNGSERQRRSRGSSGS----------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (386) PHTEARQSGHTWQQSPFCLGSGRPQDCLLSGAPMAKVQPRAQDEARSPCL 

     pcare1 zebrafish   (333) CATISSPCGFTPIQR----GSYRG-------------------------- 

     pcare2 zebrafish   (346) ----GANAGITSAFN----------------------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                          

          PCARE human   (436) SSTSPENITSPPLKLGTSTPCDSFGIGVSVEPHLSKTSRPMDASSLSDSE 

     pcare1 zebrafish   (353) -----R--LLKTMS--SSSSLNSLDSTCTITAKDKKDTDSLLGSVSLDEG 

     pcare2 zebrafish   (357) ------------NS----ASLDQQHASEPVSEDDEDD------EED--DE 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (486) DSSPEEEEEDKMSSMSLCAWQEKTPHSRPQSSPADRESPFQARTRRLRSL 

     pcare1 zebrafish   (394) DFTNGSE---------KVKWNEKRSKQSEASTSELRQ-PRRLPAKRIENP 

     pcare2 zebrafish   (383) DAEPEEE-------------------------------ASGKDELEVQED 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 
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          PCARE human   (536) QAQEMILKMKESISERIKFVPVP-------------CGHQDWSEEEEGRT 

     pcare1 zebrafish   (434) QNVEMTLKLKDAISGRIRFLPTQGPGEKAKQTESPKSSSQQWAEDGDKSS 

     pcare2 zebrafish   (402) KKIETTCGFSEAHTSRPAFQGGL--------------QEPAKASYLKRKI 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (573) VVPPRPSTVSGSRRAPERQT----RSQSESCLQSHVEDPTFQELRRVQRD 

     pcare1 zebrafish   (484) KRPQTAASRTSKKKTTVTK-----RSRSADSLRNKAEDPTLIELERTQKE 

     pcare2 zebrafish   (438) RRPKTADNNTLQMKPKHRHLRGPKRSQSAECLCSEEKDSDPHEKLGYQRN 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (619) LSQKLEAFYALGAKGQGQSQEQILQPRAAAVWPNGTCRVSPSNTTSRLKA 

     pcare1 zebrafish   (529) LNQKLERMTKVKGEGN---------KRQCSSKKFLPCQTQNISSVTDRQR 

     pcare2 zebrafish   (488) QHAQHWRRKNCLPEGR----------VRSKIR------------------ 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (669) SLTKNFSILPSQDKSILQKCNPHPEDEQGKAGKLPNAIPSGE-VSEAAKA 

     pcare1 zebrafish   (570) SLTRNIFSPSNQRKACNAKVEQATTQNG-------------TEKMDNEKG 

     pcare2 zebrafish   (510) ---GGSSGAPSADRYYG-------LQYG---------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (718) TDWNVRGCPTRTSVKKLIETFSPTESLRMLGDSKDAGASPCLRNC---IM 

     pcare1 zebrafish   (607) KEKDKKAPPVKGSVKIIPVPSPPPSPRQSSGLYRERNSVQKLIDTFSQGL 

     pcare2 zebrafish   (528) ---S--KGPFRAAPPSSPPTFTPEPP--------GRNAVRRLINTFSQGV 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (765) PPRFPKYTGLAPLYPKPQISPASGRESLKMGIGWKPLAPIFPPLPKAEAA 

     pcare1 zebrafish   (657) EESKQVPESVKILGPLKGVRKCGVPIIPGLGP--SGTSAFIDNSILCGQG 

     pcare2 zebrafish   (565) EDSSRQRLLDQRPVRARGHKKCSLPLLQ---------N--SRAALTTGAD 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (815) KSEELSCEMEGNLEHLPPPPMEVLMDKSFASLESPESSKSTENSPKETQE 

     pcare1 zebrafish   (705) ESQCSERTDDLDIDNLPPPPLEVIMDNSFENVQTNAKSENISR------- 

     pcare2 zebrafish   (604) LHLLSDRPEILDLDSLPPPPPEMLMDSSYSSSAGPSAEEGPHDVQCR--- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                             

          PCARE human   (865) PGPGEAGPTRRTWASPKLRASVSPLDLLPSKSTASLTKPHSTGPGSGRSS 

     pcare1 zebrafish   (748) ---GRSTLTKKTAMSQKLRASLLSVTVLPSRGNLCKGPVSMSQVCSTQND 

     pcare2 zebrafish   (651) -------------G-QRTLTQR--QPVPLSRANVQRCSISSSRP-----S 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                            

          PCARE human   (915) CQPRKPALDLSSPPATSQSPEVKGGTWSQAEKATSLYRQPRKAIAWHHSG 

     pcare1 zebrafish   (795) TREVVKGAHHDSSHETDTESEEAASLYK----------QSRKIIHLRHSS 

     pcare2 zebrafish   (680) RQDAFLGSSIERDYTQVTEG-ENASLYT---------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                           

          PCARE human   (965) PPSGQNRTSESSLARP---RQSRERSPPVGRKASPTRTHWVPQADKRRRS 

     pcare1 zebrafish   (835) DSPMEKNTSEQDNRQLSSS----CRSDVGEQKDNSTNETMPNSACRSQNP 

     pcare2 zebrafish   (707) -----------------------------------------KCYP----P 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                           

          PCARE human  (1012) LPSSYRPAQPSPSAVQTPPSPPVSPRVLSPPTTKRRTSPPHQPKLPNPPP 

     pcare1 zebrafish   (881) LTSPISRTRVLPSTPLLHRRLPSPPVLKSQPSSSTSSSPPINRKLPSTPS 

     pcare2 zebrafish   (712) TTPPVSRTRLPPSCPSVHHAVPSPPSTTWPPNGRWTPS----AKPHTLPP 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                           

          PCARE human  (1062) ESAPAQCKVPSPPTQHPEASPPFSIPSPSPPMSPSQEHKETRDSEDSQAV 

     pcare1 zebrafish   (931) AGQRTLPSTPLMQQEHTPITMTGVTYPFKAPSPPASPKVQRWSRENSTED 

     pcare2 zebrafish   (758) GSQSYLEARAKFCQENQPWPPSCTSTLPRPWGDPARGRVSMGHLQPSGHC 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                        

          PCARE human  (1112) IAKVSGNTHSIFCPATSSLFEAKPPLSTAHPLTPPSLPPEAGGPLGNPAE 

     pcare1 zebrafish   (981) TSRVFSNARSVFCPASSSLFEAQSVPTPKPPQAWTS-------------- 

     pcare2 zebrafish   (808) PQAHSEPLPDIRAQEGLIEDASDSTSDGTRPECEP--------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 
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          PCARE human  (1162) CWKNSSGPWLRADSQRRAALCALNPLPFLRRTASDRQPGGRPQPPTLDPT 

     pcare1 zebrafish  (1017) --TGSNVLPRPWGERGRLPVSARGPQPFIRRSQSDRRP--SLSMSSRVPV 

     pcare2 zebrafish   (843) -------------EPADSHLNTLQPQQIAD-------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                                           

          PCARE human  (1212) STSYESQLGQNSS----SEESPKKDTEPGSSPCSPELQGG-TRRASPPEF 

     pcare1 zebrafish  (1063) ISVAETCGSEPAICTHGLEEGPVREDKIRSEQ---TEIRSAVRSVSHPDL 

     pcare2 zebrafish   (860) -------------------------------------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------------------------- 

                                                        

          PCARE human  (1257) CVLGHGLQPEPRTGHIQDKSQPEAQPQQEEVS 

     pcare1 zebrafish  (1110) CIVGQGLQREWEK------------------- 

     pcare2 zebrafish   (860) -------------------------------- 

  pcare1rmc100 zebrafish   (16) -------------------------------- 

 
 
 
 

Supplemental Figure S2. Measurement of the thickness of outer and inner nuclear layers in pcare1rmc100/rmc100 
and wild-type zebrafish at 6mpf. A, Representative images of wild-type and pcare1rmc100/rmc100 zebrafish retinas 
at 6 mpf. Nuclear layers were stained with DAPI and inverted in grey images. RPE: Retinal Pigment Epithelium; 
ONL: Outer Nuclear Layer; OPL: Outer Plexiform Layer; INL: Inner Nuclear Layer; IPL: Inner Plexiform Layer; GCL: 
Ganglion Cell Layer. Scale bars: 20 µm. B, Measurements in wild-type and pcare1rmc100/rmc100 zebrafish at 6 mpf 
shows a significant reduction of both ONL and INL thickness in the pcare1rmc100/rmc100 zebrafish. p-values < 0,01 
using a Mann-Whitney U test. 
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Supplemental Table S1. Primers used in this study. 
 

 
 
 
 
 
 
 
 
 

 
 
 

Supplemental Table S2. P-values of A, ΔDistance moved (mm) and B, ΔVmax (mm/s). R programming language 
was used to generate plots, calculate mean values and SEM values, and perform statistical tests. The difference 
between wild-type and mutant larvae was analyzed using two-tailed, unpaired Student’s t-test, and p-values 
were corrected for multiple testing using Benjamini-Hochberg method. 
 

A, 
Time 
point 
(min.) 

Experiment 
1 – Average 
wild types 

Experiment 
2 – Average 
wild types 

Experiment 
3 – Average 
wild types 

Experiment 1 – 
Average 

pcare1rmc100/rmc100 

mutants 

Experiment 2 – 
Average 

pcare1rmc100/rmc100 

mutants 

Experiment 3 – 
Average 

pcare1rmc100/rmc100 

mutants 

p-value Adjusted 
p-value 

30 4.489031 3.417126 3.099486 2.977334 0.766855 1.027767 0.076637 0.084301 

50 7.982758 5.421336 2.889139 2.966498 0.637896 0.951405 0.09942 0.09942 

70 6.509943 4.097312 4.064718 2.596576 0.773006 1.246267 0.032556 0.05864 

90 8.29358 6.715224 4.338462 2.303252 0.884807 1.39785 0.038115 0.05864 

110 7.61268 5.575122 6.094735 2.01309 0.445177 2.39469 0.0049 0.017968 

130 7.515253 5.567596 5.10233 2.183769 1.133339 1.964503 0.016343 0.035954 

150 7.343226 6.447082 6.517712 1.394266 0.940354 2.536749 0.001805 0.017968 

170 4.840743 7.028744 6.056858 2.460793 0.942638 1.85287 0.007478 0.020563 

190 5.800346 5.243898 6.054689 2.121457 0.840032 2.275547 0.004418 0.017968 

210 9.109013 6.809481 3.597526 1.60152 0.221808 2.653249 0.071066 0.084301 

230 8.23621 4.533497 5.385639 1.619625 0.701135 1.9175 0.042647 0.05864 

 

B, 
Time 
point 
(min.) 

Experiment 
1 – 

Average 
wild types 

Experiment 
2 – 

Average 
wild types 

Experiment 
3 – 

Average 
wild types 

Experiment 1 – 
Average 

pcare1rmc100/rmc100 

mutants 

Experiment 2 – 
Average 

pcare1rmc100/rmc100 

mutants 

Experiment 3 – 
Average 

pcare1rmc100/rmc100 

mutants 

p-value Adjusted 
p-value 

30 32.90559 21.00921 23.42852 18.3454 6.149363 7.165309 0.04644 0.073936 

50 48.34021 28.71532 21.14943 20.63709 7.536889 8.933083 0.111795 0.111795 

70 39.96277 24.55223 27.03901 18.93714 5.513233 10.22137 0.03933 0.073936 

90 46.33764 31.22294 21.29981 13.46355 8.134596 8.308291 0.080041 0.088046 

110 45.24621 29.19242 25.68748 14.22291 4.724764 14.50949 0.046076 0.073936 

130 46.59508 29.04535 26.0247 12.64319 9.390405 12.43636 0.069475 0.084914 

150 41.43107 31.15287 26.87081 15.17567 10.33201 15.93244 0.03246 0.073936 

170 26.16697 33.99695 26.01176 17.57142 6.420388 15.40455 0.024947 0.073936 

190 39.15427 24.80746 30.02824 14.69152 3.367739 19.32694 0.041441 0.073936 

210 43.72703 31.82563 21.26107 9.284293 3.57503 19.82126 0.06193 0.084914 

230 43.39386 24.82262 27.74842 9.85108 5.58792 11.89881 0.04705 0.073936 

 

Primer Name Sequence (5’-3’) 

pcare1_zebrafish_genotyping_F TCAATGTGTAACTACTGTGG 

pcare1_zebrafish_genotyping_R TTCTTTGACTTCTTTCCTCC 

pcare1_zebrafish_F TGGACCTCCACTGGTAGCAATG 

pcare1_zebrafish_R CAGCTATTTCATTCCCCAGCAG 

pcare2_zebrafish_F TCCAACCACTCCACCAGTCT 

pcare2_zebrafish_R GTTCAGGTGAGAGTCTGCCG 
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5.1 Abstract 

Retinitis Pigmentosa (RP) and cone-rod dystrophy (CRD) are a group of monogenic diseases 

characterized by progressive degeneration of the photoreceptor cells of the outer neural retina. 

Mutations in the ciliary gene PCARE (photoreceptor cilium actin regulator) are causative for 

autosomal recessive RP or CRD. Ciliation studies in fibroblast cells from an individual carrying a point 

mutation in PCARE (c.947del; p.Asn316Metfs*7) that is predicted to result in premature termination 

of protein synthesis, showed no defects in cilium length. This could be explained by the low 

expression levels of PCARE in fibroblasts compared to retinal cells, and it is in line with the hypothesis 

that the function of PCARE is restricted to the photoreceptor cells within the retina. To model the 

disease in vitro, we have generated patient-specific induced pluripotent stem cells (iPSCs) and 

followed a 90-day differentiation protocol to generate iPSCs-derived photoreceptor-like cells from 

patient-derived fibroblasts. Transcriptome analysis of the differentiated cells revealed that, while 

wild-type cells were able to differentiate into a neuronal cell fate, the majority of patient-derived 

iPSCs differentiate into a plasma cell fate. In addition, a relatively low number of reads for 

photoreceptor- and RPE-specific genes was detected, indicating that this population of cells is under-

represented in the differentiated cultures. These data suggest a defect in the patient cells to 

differentiate into a neuronal fate, and an improved protocol of iPSCs differentiation will be needed to 

assess the pathophysiological mechanisms behind the disease. 
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5.2. Introduction 

Inherited retinal diseases (IRDs) are a group of disorders that affect the cells from the retina. The 

prevalence of these diseases in the population is of 1:4,000 individuals worldwide.1 Clinical features 

include night blindness, tunnel vision, and loss of central vision in advanced cases. As described in 

chapter 2 of this thesis, we have identified that the protein PCARE, encoded by the gene PCARE 

(formerly known as C2orf71), mutated in autosomal recessive retinitis pigmentosa (arRP) or cone-rod 

dystrophy (CRD), is important for the morphogenesis of photoreceptor outer segments by the 

delivery and deployment of a ciliary actin assembly module. However, the process of photoreceptor 

cell morphogenesis when PCARE is mutated has not yet been studied.  

PCARE is a ciliary protein presumed to be specifically active in photoreceptor cells.2 Since it is not 

possible to obtain photoreceptor cells from a patient to study the defective protein without inflicting 

permanent damage to the retina, the best alternative model is the use of induced pluripotent stem 

cell (iPSC) technology to generate photoreceptor-like cells.3 To this aim, e.g. fibroblasts are obtained 

from a skin biopsy of patients with mutations in the gene of interest and reprogrammed into iPSCs. 

Different studies have demonstrated that, under specific culture conditions, embryonic stem cells 

(ESCs) and iPSCs can be differentiated into a retinal fate, including photoreceptor precursor cells.4-8  

In vivo, retinal cell differentiation takes place through several steps. It starts with the development of 

the eye field, a centrally-organized domain that contains anterior neuroepithelial cells that will 

become retinal progenitors.9 The eye field is characterized by the expression of a group of 

transcription factors, mainly PAX6, RX, LHX2 and SIX6.9 Next, the eye field develops into the future 

neural retina (NR) and retinal pigment epithelium (RPE). Two transcription factors, VSX2 and MITF, 

regulate this specification and they are expressed in the NR (VSX2) and RPE (MITF). After this, the 

neuroretina begins to differentiate to give rise to the different retinal layers. 

Three-dimensional retinal organoids reproduce many aspects of embryonic retinal development, 

including the formation of a bi-layered optic cup and light-detecting photoreceptor cells.8 However, 

until now, there has been little research about the transcriptome changes during the differentiation 

of iPSCs into photoreceptor cells. Such analyses are currently commonly performed by the direct 

sequencing of transcripts using high-throughput RNA Sequencing (RNA-Seq) technology. Compared 

to microarrays, RNA-Seq directly detects transcripts, avoiding hybridization biases and providing 

more precise information on transcript levels.10 

In this study, we aimed to study PCARE-associated retinal disease in an in vitro context. We first show 

that PCARE-deficient fibroblasts do not present any ciliary defects. Subsequently, we have 

reprogrammed these fibroblasts into iPSCs and followed a 90-day protocol of differentiation into 
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photoreceptor-like cells. Finally, we have conducted RNA-Seq to study the transcriptional landscape 

of iPSCs-derived PCARE-deficient photoreceptor-like cells.  

 

5.3 Results 

5.3.1. Fibroblasts from a patient with a homozygous PCARE mutation do not show ciliary defects 

Since PCARE is a ciliary protein, we first aimed to assess whether it has an important function in the 

primary cilium of fibroblasts. Therefore, we monitored ciliogenesis and cilium length in primary 

fibroblasts derived from a patient with a mutation in PCARE (c.947del) that is predicted to lead to a 

frame shift p.(Asn316Metfs*7), and compared them to cells derived from three age-matched healthy 

controls. Immunocytochemical analysis did not show any morphological defect in the cilium (Figure 

1A).  

Figure 1. Patient-derived fibroblast cells carrying the PCARE (p.Asn316Metfs*7) mutation do not show ciliary 
defects. A, Fibroblasts from a patient with a homozygous PCARE mutation (c.947del) were serum-starved for 
cilium growth and compared with three different control fibroblasts in two different experiments. Cilia were 
stained with acetylated α-tubulin (red). Nuclei are marked in blue (DAPI). Scale bars = 20 µm. B, Percentage of 
ciliated cells for the three unrelated healthy controls, the average of all controls combined and the PCARE 
(c.947del) mutant fibroblasts is represented in the graph. At least 200 cells were counted per condition. C, 
Cilium length was measured by using ImageJ.11 PCARE (p.Asn316Metfs*7) fibroblasts do not show a significant 
difference in cilium length compared with controls. P-value control 1 vs patient = 0,0157, *, two-tailed, t=2,429 
df=339. P-value control 2 vs patient = 0,0794, ns, two-tailed, t=1,759, df =371. P-value control 3 vs. patient < 
0,0001, ***, two-tailed, t=5,158, df=836. P-value controls combined vs. patient = 0.8025. D, RT-PCR analysis to 
detect PCARE expression in different ciliated cell types reveals low expression in fibroblasts compared with 
induced pluripotent stem cell-derived retinal cells and human retina. PCARE is not expressed in HEK293T cells 
and hTERT RPE-1 cells. 
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PCARE mutant fibroblasts developed over 90% of ciliated cells, similar to the healthy controls, 

indicating that ciliogenesis was not altered (Figure 1B). Similarly, the cilium length of the mutant cells 

did not differ significantly from all three controls (Figure 1C). Our results show no major ciliary 

defects, which could be explained by the very low gene expression of PCARE in fibroblast cells (Figure 

1D). 

5.3.2. Generation of iPSCs cells from fibroblasts 

The absence of ciliary defects in patient fibroblasts strengthened our hypothesis of a more 

photoreceptor-specific function of PCARE. Therefore, we followed a protocol to reprogram the 

patient-derived fibroblasts into iPSCs, which can then be further used for differentiation into 

photoreceptor cells. In addition, fibroblasts from a control individual were taken along. 

Immunocytochemistry revealed that the iPSCs were positive for the pluripotency markers NANOG, 

SSEA4, OCT4 and TRA1-81 (Figure 2A). The positive expression of the pluripotency markers was 

validated by quantitative real-time polymerase chain reaction (qRT-PCR) (Figure 2B).  

5.3.3. Differentiation of iPSCs into photoreceptor-like cells  

To mimic the in vivo retinal differentiation process, we have followed a retinal differentiation 

protocol adapted from previous work (Figure 3A).7,12 Morphological changes were tracked during the 

whole differentiation process. We observed that patient cells morphology was different from wild-

type cells, showing a deficient aggregation process (Figure 3B). In wild-type cells, spheres formed a 

solid structure. Importantly, no evident neuroretinal vesicles were observed in either wild-type or 

patient-derived cultures (Figure 3C).  

5.3.4. Transcriptome analysis of iPSCs-derived differentiated cells 

To study the transcriptomic changes after differentiation, undifferentiated iPSCs at day 0 (D0) and 

iPSCs-derived differentiated cells at day 90 (D90), that underwent the differentiation protocol 

towards photoreceptor-like cells, were collected. Total RNA was extracted from 10 independent 

samples: 2 biological replicates of RNA at day 0 (one control, one patient), and 8 biological replicates 

of RNA at day 90 (4 biological replicates of the control line and 4 biological replicates of the patient 

line). Each biological replicate at day 0 was subdivided in 4 different samples (technical replicates).  
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Figure 2. Characterization of iPSCs obtained from control and patient fibroblast cells. A, Both iPSC lines 
reprogrammed from control and patient fibroblasts express the pluripotency markers NANOG, SSEA4, OCT4 
and TRA1-81, marked in green. DAPI is stained in blue. Scale bar is 50 µM (upper panels) and 20 µM (lower 
panels). B, qRT-PCR reveals the expression of pluripotency markers LIN28, NANOG, OCT3/4 and SOX2 in the 
control and patient iPSCs clones. Log expression values were normalized against the housekeeping gene GUSB.  

 

Afterwards, deep sequencing of 16 samples was performed. On average, 23.3 million reads were 

generated per sample (Supplemental Figure S1), with a minimal read count of 15.7 million reads. For 

most samples, the majority of reads mapped to the transcriptome, highlighting efficient enrichment 

for poly-A+ RNA (Supplemental Figure S2). Sample-based clustering of the samples showed that 

there were no experimental artefacts and confirmed that the samples were grouped according to the 

known categories (mutant and wild-type) (Figure 4).  

5.3.5. PCARE-deficient differentiated photoreceptor-like cells show reduced expression of 

extracellular matrix organization and cell adhesion genes 

To study the differential gene expression analysis, we performed five different comparisons. In table 

1, the compared conditions and the number of up- and down-regulated genes are listed. The results 

of each test are displayed as Volcano plots (Supplemental Figure S3).  

We then performed analysis of the enriched terms associated with the expressed genes using DAVID 

Software v.8.13,14 Genes with log2FoldChange>5 were taken into the analysis. When comparing the 
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enriched terms associated with the differentially expressed genes between control cells at day 0 vs 

patient day 0, we observed that the control cells have an enrichment in extracellular matrix 

organization and cell adhesion (Table 2), which could explain the differences between the 

morphology of the embryoid bodies of control and patient cell lines. At day 90, the control cells are 

also more enriched in synaptic transmission and neural tissue pathways (Table 3).  

 

Figure 3. Photoreceptor differentiation in 3D cultures from iPSCs. A, Schematic of NR-selective culture of iPSCs 
to recapitulate retinogenesis in vitro. B, Bright-field view of the developing control and PCARE 
(p.Asn316Metfs*7) at different time points. C, Expected morphology of the retinal structures, and C’, 
morphology of non-retinal structures (image adapted from Gonzalez-Cordero et al.15). 
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Figure 4. Sample-based clustering using normalized gene expression data. Pair-wise sample Pearson 
correlation coefficients were visualized in a heat map. The samples form two large groups, day 0 (D0) and day 
90 (D90), with two subgroups based on the respective control and patient cell lines. 
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Table 1. Differential gene expression analysis. Five comparisons were performed. In each comparison, several 
thousand significantly differentially expressed genes were found. 22565 genes with non-zero total read count 
were included in the analysis; up: number of upregulated genes at FDR<0.05; down: number of downregulated 
genes at FDR<0.05. FDR: False discovery rate. D0: Day 0, pluripotent state. D90: Day 90, differentiated state. 

 Comparison Up Down Unique 

A Control_D90 vs. Control_D0 7790 6871 170 

B Patient_D90 vs. Patient_D0 8473 6624 176 

C Patient_D0 vs. Control_D0 4464 4243 181 

D Patient_D90 vs. Control_D90 6270 5737 315 

E D90 vs. D0 8261 6223 142 

 

To confirm the pluripotency of the cells, the average of all the replicate samples was taken and the 

average reads per kilobase per million (RPKM) of pluripotency genes was calculated. For all 

pluripotency markers, NANOG, TRA1-81, LIN28, OCT4 and SOX2, the number of reads was higher in 

the iPSCs than in the differentiated cells (Figure 5A). To study whether the differentiated cells 

expressed retina-specific genes, the average RPKM of retinal pigmented epithelium (RPE) specific 

genes (Figure 5B) and photoreceptor-specific genes (Figure 5C) was also calculated. Compared to the 

iPSCs, we detected an increase in the number of reads for the RPE-specific genes RPE65, LGI1 and 

BEST1, while there was a similar number of reads for RLBP1 between the two time points. 

Interestingly, the analysis detected more reads for the gene LRAT in the iPSCs compared to the 

differentiated cells. Finally, the expression of photoreceptor and neural markers was validated by 

qRT-PCR (Supplemental Figure 4). Interestingly, PCARE expression was detected by qRT-PCR with an 

~80-fold increased comparing the iPSCs to the differentiated cells, indicating that PCARE is expressed 

in the differentiated cells. These results indicate that, although the differentiation did not yield an 

enrichment in cells with morphological photoreceptor-like characteristics, the cells do express 

several photoreceptor-specific genes.  
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Table 2. Enriched terms associated with the differentially expressed genes between control cells at day 0 vs 
patient cells at day 0 and control cells at day 90 vs patient cells at day 90. P-values are Bonferroni corrected. 
Displayed are the top enriched terms for each category. 

Table 3. Enriched terms associated with the differentially expressed genes between control cells at day 90 vs 
day 0 and patient cells at day 90 vs day 0. P-values are Bonferroni corrected. Displayed are the top enriched 
terms for each category. 

 

Category Control (D90 vs D0) 
Gene 

count 
% P-value Category Patient (D90 vs D0) 

Gene 

Count 
% P-value 

Gene 

Ontology 

Anterior/posterior 

pattern formation 
30 3.8 2.0E-21 

Gene 

Ontology 

Anterior/posterior 

pattern specification 
35 3.2 2.4E-18 

Synaptic transmission 54 6.9 7.7E-17 
Embryonic skeletal 

system morphogenesis 
18 1.6 1.1E-8 

Embryonic skeletal 

system morphogenesis 
17 2.2 1.9E-13 

Negative regulation of 

endopeptidase activity 
27 2.4 6.6E-6 

Tissue 

Nervous system 

development 
30 3.8 6.5E-8 

Tissue 

Embryonic forelimb 

morphogenesis 
14 1.3 5.5E-6 

Brain 373 47.6 2.2E-9 Plasma 63 5.7 3.7E-22 

Amygdala 46 5.9 2.6E-4 Liver 175 15.9 1.2E-9 

Hippocampus 38 4.9 2.3E-4 Skeletal muscle 62 5.6 5.9E-8 

Kegg 

Pathway 

Brain cortex 15 1.9 7.6E-3 

Kegg 

Pathway 

Intestine 11 1.0 3.4E-5 

Neuroactive ligand-

receptor interaction 
35 4.5 8.0E-13 

Complement and 

coagulation cascades 
20 1.8 5.6E-10 

Calcium signaling 

pathway 
25 3.2 2.5E-10 Retinol metabolism 18 1.6 1.1E-8 

 

Category 
Control (D0) vs 

Patient (D0) 

Gene 

count 
% P-value Category 

Control (D90) vs 

Patient (D90) 

Gene 

Count 
% P-value 

Gene 

Ontology 

Extracellular matrix 

organization 
57 3.1 8.1E-10 

Gene 

Ontology 

Synaptic 

transmission 
127 6.5 1.8E-41 

Cell adhesion 66 3.6 1.8E-8 
Transmembrane 

transport 
116 6.0 6.2E-16 

Learning 20 1.1 2.4E-8 
Ion transmembrane 

transport 
58 3.0 1.4E-13 

Tissue 

Plasma 57 3.1 8.2E-11 

Tissue 

Brain 935 48.2 2.7E-43 

Brain 670 36.4 1.3E-3 Hippocampus 82 4.2 7.0E-11 

    
Amygdala 96 4.9 1.1E-9 

    
Fetal brain 99 5.1 2.2E-5 

Kegg 

Pathway 

Cell adhesion 

molecules (CAMs) 
31 1.7 8.0E-8 

Kegg 

Pathway 

Neuroactive ligand-

receptor 

interaction 

78 4.0 9.7E-26 

Neuroactive ligand-

receptor interaction 
45 2.4 5.8E-7 

Calcium signaling 

pathway 
47 2.4 1.4E-14 

Hippo signaling 

pathway 
27 1.5 2.7E-5 Nicotine addiction 21 1.1 6.8E-11 
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Figure 5. Analysis of the transcriptome reads for RPE markers and photoreceptor markers confirms the 

expression of these genes in the differentiated cultures. Reads per kilobase per million (RPKM, Y-axis) were 

calculated for A, pluripotency genes NANOG, PDXL, LIN28A, POU5F1 and SOX2, B, retinal pigmented epithelium 

genes RPE65, LGI1, BEST1, RLBP1 and LRAT and C, photoreceptor specific genes RHO, ROM1, CPLX4, GNAT2, 

RCVRN, VSX2, RGR, RP1 and OPN1SW.  

 

5.4. Discussion 

The retina is a tissue of difficult access that cannot be sampled directly from patients. Because PCARE 

is a ciliary protein, we first wanted to assess whether its function could be studied by using a ciliated 

cell type. Consequently, we obtained fibroblasts from a patient with the c.947del (p.Asn316Metfs*7) 

mutation in PCARE to study potential ciliary defects. We did not observe any ciliary defects in the 

fibroblasts, likely due to the low expression of PCARE in this cell type. The observed high variation in 

cilia length within the same sample can be explained by the imaging of 2D projections,16 but also due 

to the variability that can be found in the population. In addition, other genetic variants in ciliary 

genes could potentially act as modifiers, and this may increase the variability among samples.  

Although RPE cells can be more easily obtained than photoreceptors (the RPE differentiation 

protocol only takes up to 30 days),17-19 PCARE expression is restricted to photoreceptors.20 To date, 

protocols for photoreceptor generation from iPSCs require long and expensive cultures,7,8,12,15,21,22 but 

some of those show a relatively high success rate, with expression of photoreceptor markers 
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appearing as early as 12 weeks post-differentiation.12,15 For that reason, and to study the PCARE 

function, we tested a 90-day 3D differentiation protocol to generate photoreceptor-like cells from 

iPSCs of the PCARE c.947del patient, and cells from a non-affected individual as a control.  

Morphological changes were observed during the differentiation, indicating its progression. 

However, using our differentiation protocol, we did not observe evident neuroretinal vesicle 

formation in either wild-type or mutant cell lines. Recent studies showed that the percentage of 

cultures that achieve a good differentiation into neuroretinal vesicles is usually quite low.15,21 On top 

of that, in our 3D protocol, some neuroretinal structures might be hidden inside the conglomerate of 

cells, which would make them difficult to be observed through the microscope. Importantly, we did 

detect formation of pigmented cells in the cultures (data not shown), suggesting that there might 

have been RPE formation, which motivated us to continue with the differentiation. Alternatively, 

melanocytes are also pigmented, and given the heterogeneity of the culture, those cells could be the 

source of the observed pigmentation. 

After 90 days of differentiation, we did not detect any cells clearly positive for different neuroretinal 

markers (e.g., CRX, NRL or OPN1SW) at immunocytochemistry (ICC) level (data not shown). This may 

be because the selected conglomerate of cells for immunostaining from the wild-type cells was not 

neuroretinally differentiated. Additionally, these markers were upregulated in the differentiated cells 

compared to iPSCs (Supplemental Figure S4), although the gene expression levels were perhaps too 

low to be detected at the protein level by ICC.  

Analysis of the transcriptome of the iPSCs at day 0 revealed that the patient cell line presents a 

downregulation of extracellular matrix genes, which could explain the problems in aggregation 

observed in Figure 3. We know that PCARE has a relation with the actin cytoskeleton through its 

interaction with the Wiskott-Aldrich Syndrome protein WASF3, therefore a cytoskeletal problem 

might be taking place in the patient cells at the iPSCs level. Importantly, aggregation is known to be 

crucial for consequent differentiation into a neural fate.7,8 

Both control and patient cells grouped in different independent clusters (Figure 4). Although the NR 

tissues were not enriched in retinal cells, we detected low expression of the photoreceptor-specific 

genes VSX2, RGR, RHO, OPN1SW in the transcriptome, and RPE-specific genes (RPE65, BEST1, RLBP1, 

LGI1, LRAT). Interestingly, for LRAT, the number of transcripts detected in the transcriptome was 

higher in the iPSCs than in the RPE, suggesting that it may have a role in iPSCs in addition to its 

known role in RPE cells (Figure 5B). The low number of reads in the transcriptome for retinal genes 

indicates that, although there may have been some photoreceptor-like cells in our culture, the 

photoreceptor cell population is under-represented in the complete sample. To enrich this 
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photoreceptor population, a selection process such as fluorescence-activated cells sorting (FACS) will 

be needed in future experiments. 

Several factors can be playing a role in the success of differentiation. The first factor is the cell type 

choice. Our protocol is mainly an adaptation of that of Yoshiki Sasai,7 in which they use human 

embryonic stem cells (hESCs) for the differentiation into photoreceptors. In our protocol, we used 

iPSCs derived from fibroblasts, as they did in the groups of Canto-Soler8 and Ali.15 The transcription 

profiles of iPS and ES cells are almost identical, with a small group of genes differentially expressed 

between several iPS and ES cells lines.23 However, there are differences in individual reprogramming 

experiments between iPSC and ESC lines. First, the iPSCs do not efficiently silence the expression 

pattern of the somatic cells from which they are derived. Second, because of the epigenetic memory, 

the iPSCs fail to induce some ESC specific genes to the level of expression in ESCs.23-26 

The second factor playing a role in a successful differentiation is the composition of the medium used 

in the protocol. One important compound is the supplement chosen to allow neural survival. Meyer 

et al.21 and Zhong et al.8 used B27 supplement, in comparison to N2 supplement that was used by 

Nakano et al.7 and Reichman et al.22 Since the type of neural survival supplement does not seem to 

be a limiting factor, N2 supplement was finally chosen for this study. The use of extracellular matrix 

also does not seem to be restrictive for the growth of neuroretinal vesicles. In Gonzalez-Cordero et 

al.,15 they were able to grow neuroretinas in suspension, while the protocol of Zhong and colleagues 

used Matrigel (growth-factor-reduced; BD Biosciences) for maintaining the neuroretinas.8 Another 

important component of the differentiation medium is fetal bovine serum (FBS). FBS has been shown 

to induce the reprogramming into iPSCs in a concentration-dependent manner.27 The concentration 

of FBS also plays an important role in neuroretinal differentiation in vitro. Treatment with low levels 

of FBS favors differentiation of rhodopsin-positive photoreceptors, interneurons and retinal ganglion 

cells, while high FBS concentrations preferentially induce differentiation of glia cells.28 In this protocol 

we used 10% FBS, a concentration previously reported.7,8,15 The addition of DAPT, which is thought to 

increase cone differentiation,29 and retinoic acid, which suppresses cone maturation,29 also vary 

between protocols. Moreover, an increase in addition of compounds does not automatically mean 

better differentiation, since the absence of other supplements during the final stage of 

differentiation helps the maturation of photoreceptor cells.30  

The third factor is the time. Although the majority of protocols report expression of photoreceptor 

markers after 80-100 days, some take up to 120 or 150 days to obtain mature photoreceptors. 

Important in this aspect is the capacity to assess the progression at intermediate states of 

differentiation to analyse the expression of early neural markers and early photoreceptor markers. 
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Because of the restricted yield of the cellular material in this experiment, we did not include these 

evaluations. 

Another important factor is the iPSCs generation using lentivirus. Lentivirus is an integrative virus, 

implicating that rearrangement of the cell genome may occur and there is a chance of random viral 

insertion. An alternative to lentivirus are other non-integrative methods, e.g. Sendai virus, Epstein-

Barr virus-derived sequences that facilitate episomal plasmid DNA replication, or mRNA 

transfection.31 

Current knowledge suggests that a combination of 2D/3D protocols is the best approach for a good 

differentiation. Sometimes it is suggested to excise the neural retinas once they are formed in a 

monolayer, around the third and fourth weeks.8,15 At that time, it is possible to already assess and 

select the neuroretinal vesicles and continue to grow them in 3D suspension. At the same time, it is 

possible to also analyse the expression of neural markers in those cultures. Similarly to what happens 

in the fetal development in vivo, by 15 weeks of differentiation it is possible to observe a defined 

ONL-like layer at the apical edge of the developing neuroepithelium.32 The CRX neural marker 

appears as early as week 6, while RCV1 appears at week 10. NRL and RHO are also abundant after 15 

weeks, indicating the presence of rod photoreceptors.15 The human cone S OPSIN and L/M OPSIN 

proteins appear in the fovea around fetal weeks 11 and 15 respectively,33 while in vitro they are 

observed at week 12 and 17 of differentiation, respectively.15 

Our study used fibroblasts cells from one patient and one control, with the limitations that these 

numbers implicate. To increase the significance of the study, analysis of at least one more control 

and patient cell line would be needed. Alternatively, the use of isogenic lines would reduce some of 

the variation. In this case, the desired PCARE mutation could be introduced by CRISPR/Cas9 

technology in a population of wild-type cells, leaving the non-targeted population as isogenic control. 

In conclusion, we showed that iPSCs derived from a patient with the PCARE c.947del mutation 

present a different gene expression pattern than iPSCs derived from a healthy control. To study the 

potential of these iPSCs to generate photoreceptor cells, we have tested a 90-day differentiation 

protocol into a retinal fate. Transcriptome analysis of the iPSCs at day 0 showed downregulation of 

expression of genes coding for actin cytoskeletal proteins in PCARE-deficient iPSCs, pointing towards 

a defect in the actin cytoskeleton pathway. Analysis of the gene expression of the differentiated cells 

at day 90 revealed that, while wild-type cells showed tendency to differentiate into a neuronal cell 

fate, the majority of patient-derived iPSCs tend to differentiate into a plasma cell fate. However, only 

a low number of reads of photoreceptor-specific genes was detected, indicating that the culture was 

not significantly enriched in photoreceptor cells. Therefore, an improved protocol that allows more 
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enrichment of photoreceptor cells will be needed to specifically assess the potential morphological 

defects due to PCARE mutation.  

 

5.5. Methods 

5.5.1. Isolation of fibroblast cells 

Our research was conducted according to the tenets of the Declaration of Helsinki. The procedures 

for obtaining human skin biopsies to establish primary fibroblasts cell lines were approved by the 

Ethical Committee of the Radboud University Medical Centre (Commissie Mensgebonden Onderzoek 

Arnhem-Nijmegen, file number 2015-1543). Written informed consent was gathered from all 

participating individuals. All procedures were carried out in the Netherlands. 

5.5.2. Immunostaining and cilium length measurements 

Patient and control fibroblasts were cultured in DMEM medium (20% fetal calf serum (FCS), 1% 

sodium pyruvate and 1% Pen/Strep). Cells were seeded in a 24-well plate with a coverslip. To allow 

cilium generation, fibroblasts were serum starved with 0.2% FCS for 48 h before immunostaining. For 

immunocytochemistry, cells were fixed in 2% Paraformaldehyde (PFA) (18501, Ted Pella Inc, Redding, 

California, USA) 20 min, permeabilized in ultra-pure grade phosphate-buffered saline (PBS) (J373-4L, 

VWR, Radnor, Pennsylvania, USA) with 1% Triton® X-100 (cat. # 108643, Merck Millipore, Billerica, 

Massachusetts, United States) 5 min and blocked 30 min with 2% bovine serum albumin (A7906-

100G, Sigma-Aldrich, St. Louis, Missouri, USA) in PBS at room temperature (RT). A mouse anti-

acetylated tubulin antibody (1:1,000, T6793-100ul, Sigma-Aldrich, St. Louis, Missouri, USA) was used 

to detect the cilium axoneme. Cells were incubated with the primary antibody 60 min, followed by 3 

washes of 5 min in PBS. Subsequently, cells were incubated with a 1:500 dilution of the 

corresponding Alexa Fluor-conjugated antibody. Cells were washed 3 x 5 min in PBS, rinsed in MQ 

and mounted in VECTASHIELD® antifade mounting medium with DAPI (VECTH-1200, VWR, Radnor, 

Pennsylvania, USA). Images were taken with a Carl Zeiss Axio Observer Z1 Microscope (Carl Zeiss 

Microscopy GmbH, Oberkochen, Germany). Cells presenting cilia were counted and the cilium length 

was measured using ImageJ.11 
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5.5.3. RT-PCR 

To analyse the gene expression of PCARE, we performed RT-PCR of cDNA extracted from ciliated 

fibroblasts, HEK293T and hTERT RPE-1 cells. As positive controls, cDNA from iPS-derived retinal cells 

and human retina were taken along. For cDNA synthesis, 1 µg of total RNA was incubated with 1 µl 

iScript Reverse Transcriptase (1708891, Bio-Rad, Hercules, California, USA) and 1x reaction mix in a 

final volume of 20 µl. For the RT-reaction, the mixture was incubated 5 min at 25°C, 30 min at 42°C 

and the reaction was stopped by heating it 5 min at 85°C. PCR analysis was performed with Taq DNA 

polymerase (18038042, Life Technologies, Carlsbad, California, USA), the primers: PCARE forward 

5’GCTAAACCGCCACTCTCAAC-3’, PCARE reverse 5’ACAGAACTCTGGGGGAGATG-3’, and the following 

program: 94°C for 3 minutes, followed by 35 cycles of denaturation at 94°C for 20 seconds, annealing 

for 20 seconds at 58°C and extension of 30 sec at 72°C, with a final extension for 6 minutes at 72°C.  

5.5.4. iPSCs generation and characterization 

Before reprogramming, fibroblasts were seeded (200,000 cell/well in a 6-well plate) and grown until 

70% confluence 24 h before infection. Cells were refreshed with DMEM containing 4 μg/ml 

Polybrene. 50 µL of virus (home-made) was added to the well and incubated 24 h at 37°C, 5% CO2. 

Cells were then washed three times with 1xPBS and cultured in hES medium. MEFs were seeded onto 

0.1% (w/v) gelatin. 48 h post infection, fibroblasts were transferred into the MEFs-coated dishes and 

let adhere for 24 h. After that, cells were maintained in hES medium containing 1 mM Valproic acid 

sodium salt (VPA). VPA was removed after 6 days. Twenty-eight days post-transduction, iPSC colonies 

were picked, passaged and clonally expanded. 

5.5.5. 3D Retinal Differentiation from iPSCs 

For retinal differentiation, iPSCs were dissociated to single cells in TrypLE Express (12604013, 

Invitrogen, Carlsbad, California, USA) and quickly re-aggregated in ultra-low attachment 96-well 

plates with U-bottomed conical wells (444-1020 (corn7007), VWR, Radnor, Pennsylvania, USA). Cells 

were counted with Scepter™ 2.0 cell counter and sensors (Merck Millipore, Billerica, Massachusetts, 

USA). To each well, 10,000 cells were seeded in 3D medium (DMEM, cat. # D0819, 10% heat-

inactivated fetal calf serum, 20% knockout serum replacement (KSR) (cat. # 10828-028, Invitrogen, 

Carlsbad, California, USA), 0.1 mM MEM non-essential amino acids (cat. # M7145, Sigma-Aldrich, St. 

Louis, Missouri, USA), 1mM sodium pyruvate (cat. # S8636, Sigma-Aldrich, St. Louis, Missouri, USA), 

0.1 mM 2-Mercaptoethanol (cat. # 31350-010, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA), 1 mL primocin (cat. # ant-pm-2, Bio-Connect, San Diego, California, USA) supplemented with 20 

µM ROCKi Y-27632 (cat. # Y0503, Sigma-Aldrich, St. Louis, Missouri, USA) and 3 nM IWR-1 endo (cat. 
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# 681669, Merck Millipore, Billerica, Massachusetts, USA). The Wnt inhibitor IWR1-1 endo was added 

to counteract the caudalization effect of the KSR serum. The ROCK inhibitor Y-27632 was added to 

avoid dissociation-induced apoptosis, as previously reported.7,34 On day 2, medium was refreshed 

and 1% MaxGelTM ECM mixture (cat # E0282, Sigma-Aldrich, St. Louis, Missouri, USA) was added. 

ROCKi and IWR1e were used from days 0 to 10, and removed on day 12 for optic cup formation. On 

day 12, spheres were transferred to ultra-low-attachment 24 well plates (cat. # 734-1584 (corn3473), 

VWR, Radnor, Pennsylvania, USA). On day 14, the medium was supplemented with 3 µM CHIR99021 

(cat # 4423/10, Bio-Techne, Abingdon, United Kingdom) and 100 nM SAG (cat # ALX-270-426-M001, 

Enzo Life Sciences, New York, USA) until day 18. From day 18 onwards, the culture was sustained 

with neuroretinal (NR) medium composed by DMEM/F12 (cat. # 51448C, Sigma-Aldrich, St. Louis, 

Missouri, USA) 2 mM GlutaMAX Supplement, (cat. # 35050061, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), N2 supplement, (cat. # 17502048, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA), 1 mL primocin, DAPT supplement (cat. # D5942, Sigma-Aldrich, St. Louis, 

Missouri, USA) was added between day 30 and 40 to enhance the number of photoreceptor cells.7 

After that period, spheres were grown in NR medium until day 90 refreshing the medium every other 

day. 

5.5.6. RNA Extraction, quantification and quality control 

Cell pellets were harvested, immediately frozen in liquid nitrogen and stored at -80 °C until RNA 

extraction. Total RNA, including miRNA, was extracted from cells at day 0 and 90 with QIAGEN 

RNeasy kit (cat. # 12943, Qiagen, Hilden, Germany) according to the manufacturer´s instructions. 

RNA was quantified with Qubit fluorometer 2.0 (Thermo Fisher Scientific) and quality was measured 

with Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Samples with an RNA Integrity 

Number >8.0 were used for complementary DNA (cDNA) library preparation. 

5.5.7. PolyA+ RNA sequencing and data processing 

Libraries for mRNA sequencing were prepared with the TruSeq stranded mRNA sample prep kit 

(Illumina, San Diego, CA, USA). One-hundred nanograms of total RNA was mRNA enriched by using 

the oligodT bead system (Illumina). The isolated mRNA was subsequently subjected to enzymatic 

fragmentation. Then, first and second strand synthesis were performed and the double stranded 

cDNA was purified (Agencourt AMPure XP, Beckman Coulter). The cDNA was end repaired, 3’-

adenylated and ligated onto the fragments ends with sequencing adaptors. Then, the library was 

purified and the polyA+ RNA stranded libraries were pre-amplified with PCR and purified (Agencourt 

AMPure XP). The library size distribution was validated and the quality inspected on the 2100 

Bioanalyzer with a high sensitivity DNA chip (Agilent Technologies). High quality libraries were 



Generation and transcriptome analysis of PCARE-deficient iPSCs-derived photoreceptor-like cells 

161 
 

quantified with the Qubit fluorometer (Life Technologies), the concentration was normalized and the 

samples pooled according to the project specification (number of reads). Single-end sequencing was 

performed on NextSeq500 instrument according to the manufacturer instructions (Illumina). 

5.5.8. RNA-Seq alignment with TopHat 2 and Bowtie 2 within the Basespace environment 

Data analysis was performed by using the RNA-Seq Aignment tool v1.0.0 with TopHat 2 and Bowtie 2 

within the Basespace environment.35 TopHat2 is a fast splice junction mapper for RNA-Seq reads. It 

aligns the sequencing reads to the reference genome by using the sequence aligner Bowtie 2. The 

reads were counted and reported and then used for downstream analysis. Annotation of the 

obtained sequences was performed by using the reference annotation “Homo sapiens UCSC hg38 

(RefSeq & Genecode gene annotations)”. 

5.5.9. Transcriptome data analysis 

Sample-sample clustering (Euclidean distance, complete agglomeration) was performed on pair-wise 

Pearson correlation coefficients based on normalized gene expression values for each sample. 

Differential gene expression analysis was performed separately for each condition. Therefore, a total 

of 5 separate analyses were performed. Differential gene expression analysis was performed with the 

DEseq2 package v1.8.2 in R. All visualizations were performed with R. 

5.5.10. qRT-PCR 

Twenty-five nanograms cDNA was used for each reaction in a 96-well plate (Applied Biosystems) 

together with 2x GoTaq master mix (Promega), 3 µM gene-specific forward and reverse primers, 

dissolved in DNase and RNase free water up to 20 μl. Each cDNA sample was run in triplicate. The 

reactions were then run on an ABI Prism 7900HT Fast Real-time Sequence Detection System (Applied 

Biosystems Ltd., UK) equipped with SDS 2.4 software for amplification results analysis. From 

amplification curves, Ct values were obtained for each sample. Expression levels were normalized to 

GUSB gene to assess the relative expression of the genes in different experimental conditions. 

Cycling conditions were as follows: 2 min at 50°C, 10 min at 95°C, 40 cycles of 15 sec at 95°C and 1 

min at 60°C. Supplemental Table 1 contains the list of gene-specific primer sequences used. 
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5.8. Supplemental data 

 

Supplemental Figure S1. Data quality control. A, Number of reads per sample. B, Fraction of reads mapping to 
the transcriptome. For most samples, the majority of reads map to the transcriptome, highlighting efficient 
enrichment for polyA+ RNA. 
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Supplemental Figure S2. Number of detected genes in each sample. A, A gene was considered to be expressed 
when it contained at least 1 raw read or B, at least 1 read after normalization with DEseq2. Differences 
between D0 and D90 samples are significant (average D0 = 17,813; average D90 = 19,054; Mann-Whitney-U-
test, p-value = 0.0001554). 
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Supplemental Figure S3. Volcano plot showing –log10 FDR in function of the log2 for the five comparisons (A-
E). Green points indicate significantly differential expressed genes at FDR < 0.05. FDR: False discovery rate. 
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Supplemental Figure S4. Validation of the expression of neural and photoreceptor markers by qRT-PCR. Values 
were normalized to the expression of the gene GUSB. 
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Supplemental Table 1. Primers used for qRT-PCR 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

OCT3/4 GTTCTTCATTCACTAAGGAAGG CAAGAGCATCATTGAACTTCAC 

PAX6 TCTAATCGAAGGGCCAAATG TGTGAGGGCTGTGTCTGTTC 

CRX ATGATGGCGTATATGAACCC TCTTGAACCAAACCTGAACC 

OPN1SW GCGCTACATTGTCATCTGTAAGCC GAAGGAATGGTGACAAGCCGTAAG 

OPN1ML/LW GTGCAGTCTTACATGATTGTCCTC AGATAACGGGGTTGTAGATAGTGG 

NRL GCCTTCAGTCTCCTGGGAAG GGAGGCACTGAGCTGTAAGG 

RHO CAACTACATCCTGCTCAACCTAGC GTGTAGTAGTCGATTCCACACGAG 

RPE65 GCCCTCCTGCACAAGTTTGACTTT AGTTGGTCTCTGTGCAAGCGTAGT 

C2ORF71/PCARE GCTGTGAAATGGAGGGGAAC GTTCTCTGTGGACTTGCTGC 

GUSB CTGTACACGACACCCACCAC TACAGATAGGCAGGGCGTTC 

NANOG TTCTTCCACCAGTCCCAAAG TTGCTCCACATTGGAAGGTT 

SOX2 GCTAGTCTCCAAGCGACGAA GCAAGAAGCCTCTCCTTGAA 

LIN28 TTGTCTTCTACCCTGCCCTCT GAACAAGGGATGGAGGGTTTT 
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6.1 Abstract 

Patients with mutations in PCARE suffer from retinitis pigmentosa subtype 54, an inherited retinal 

disease (IRD) for which no treatment is available. Retinal gene therapy using adeno-associated 

viruses (AAVs) holds a great promise for the treatment of some subtypes of IRD. By introducing the 

cDNA encoding the functional protein into the patient retina before degeneration of the retinal cells 

occurs, gene therapy aims at slowing the progression of the disease, and/or improving visual 

function. A disadvantage of AAVs is their limited cargo capacity of ~4.8 kb. As the cDNA sequence of 

PCARE is 3.8 kb in size, and a therapeutic vector also needs several regulatory elements, we have 

generated an expression cassette with minimal spacer sequences such that all elements necessary to 

drive PCARE expression would fit into a single AAV. Expression analysis in hTERT RPE-1 cells of the 

expression cassette containing PCARE cDNA in a plasmid vector, either with or without the spacer 

sequences, showed correct expression of the PCARE protein in the primary cilium, albeit at very low 

expression levels. Following the generation of AAV particles containing the minimal PCARE 

expression cassette, and subsequent transduction of the resulting AAVs in hTERT RPE-1 cells, no 

detectable expression of PCARE could be observed. Analysis by droplet digital PCR and RT-PCR 

analysis showed that the expression cassette was fully packaged into the AAV vector. 

Immunofluorescence and western blot analysis pointed to a problem of expression levels of the 

transgene in the selected cell type (hTERT RPE-1 cells). This suggests that alternative in vitro solutions 

or in vivo injections in mice are required to assess the functionality of this vector. 
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6.2 Introduction 

Inherited retinal diseases (IRDs) are a major cause of visual impairment, affecting more than 2 million 

individuals worldwide.1 In the last years, the identification of many IRD-associated genes has paved 

the way for the development of novel therapies. The eye is considered a model organ for the 

development of new therapeutic strategies, in particular for the anatomical accessibility of the 

retinal tissue and its immune-privileged nature. Gene augmentation therapy is currently the most 

advanced possibility for treating some subtypes of IRDs, supported by the successful proof-of-

principle in animal models and data from human clinical trials.2  

The first subtype of IRD targeted for gene augmentation therapy was Leber congenital amaurosis 

type 2 (LCA2) which is caused by bi-allelic mutations in the RPE65 gene. Following proof-of-concept 

in animal models and a successful outcome of clinical trials, 3-7 this treatment was recently approved 

by the FDA (U.S. Food and Drug Administration) under the name Luxturna.8,9 Luxturna consists in the 

delivery of a normal copy of the RPE65 cDNA directly to the RPE cells, using an adeno-associated 

virus (AAV) as a vector. Recombinant AAVs are attractive therapeutic vectors for a wide variety of 

medical applications, as they have no known role in disease, are unable to replicate without a helper 

virus, do not integrate into the host genome and elicit a negligible immune-response.10 The most 

significant drawback is the restricted cargo capacity of this virus, with ~4.8 kb being the maximum 

size of the therapeutic construct that can be incorporated and enveloped.11,12 Pre-clinical safety and 

efficacy studies using AAVs are ongoing for an increasing number of IRD-causing genes, some of 

which have already entered the phase of clinical testing in humans. Known examples include CHM, 

mutated in choroideremia,13 MERTK, mutated in retinitis pigmentosa type 38,14 and several others 

(https://www.clinicaltrials.gov/). The long-term effects of AAV-based gene augmentation therapy in 

humans are still unknown.15 

PCARE, previously known as C2ORF71, is mutated in patients with retinitis pigmentosa (RP) type 

54,16,17 and there is no treatment available yet. PCARE mutations are believed to result in loss-of-

function of the encoded protein, and patients with bi-allelic PCARE mutations are thought to lack 

sufficient levels of functional PCARE protein. As described in chapter 2, the PCARE protein appears to 

recruit an actin assembly module into the connecting cilium of the photoreceptors. We propose that 

this module is involved in evagination of the photoreceptor ciliary membrane to initiate the 

formation of new outer segment discs. Mutant PCARE is unable to activate this process, thereby 

impeding proper outer segment disc morphogenesis (chapter 2). Since the size of PCARE cDNA is 3.8 

kb, PCARE-associated retinal disease could be a potential candidate for AAV-driven gene 

augmentation therapy, although also when other elements required to drive the expression of a 
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therapeutic gene (e.g. promoter, poly-adenylation signal) are incorporated, the resulting length will 

be close to the maximum (4.8 kb) AAV cargo capacity. Our aim here is to develop an expression 

cassette harboring human PCARE cDNA that can be incorporated into a functional AAV vector for 

future therapeutic purposes. 

 

6.3 Results 

6.3.1 Generation of a Gateway-adapted pDEST-AAV plasmid containing PCARE cDNA 

A wild-type AAV contains a rep gene, necessary for genome replication and packaging proteins, and 

cap and aap genes, that encode capsid and assembly proteins, respectively.18-20 These genes are 

flanked by two Inverted Terminal Repeats (ITRs) which are sophisticated double hairpin-structures 

vital for in vivo genome replication and, if rep-proteins are present, the integration into the host 

genome.21 In recombinant AAVs (rAAV), the ITRs are still required, but the endogenous viral genome 

can be replaced with a (tissue-specific) promoter sequence, the transgene of interest, and a poly-

adenylation site (Figure 1A). The resulting AAV genome can be used to produce transgenic virions 

that are capable of infecting a cell and exploiting its endogenous nuclear systems. The ITR-flanked 

transgenes encoded within the rAAV can form circular concatemers that are episomal in the nucleus 

of transduced cells,22 and can result in stable transcription of the therapeutic transgene (Figure 1B), 

without integrating into the host cell.  

In order to simplify future cloning of photoreceptor-specific genes of interest into an AAV plasmid, 

we designed a gateway-compatible destination vector (pDEST) using the DNA of an AAV plasmid as a 

backbone with a rhodopsin kinase (RK) promoter and an EGFP-insert (Supplemental Figure 1A). 

Following vector linearization, a standard pDEST cassette was inserted, containing recombination 

sites (attR), a chloramphenicol-resistance gene (CamR), and a ccdB-selection gene. Transformation of 

the assembled product into E.coli yielded a cloning efficiency of 100%, and Sanger sequencing of a 

selected clone confirmed the presence of the complete insert. To assess the functionality of the 

pDEST-AAV, an LR-reaction reaction was performed, thereby transferring PCARE from an entry vector 

(pENTR) into a destination vector (pDEST). Presence of the insert was verified by restriction digest 

with BamHI (Supplemental Figure 1B), and Sanger sequencing confirmed that PCARE was successfully 

cloned into the pDEST-AAV. These results confirm the creation of a functional pDEST-AAV, and the 

cloning of PCARE into this vector, now coined pAAV-RK-PCARE. 
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Figure 1. Design and administration of therapeutic adeno-associated virus (AAV). A, The genome of a typical 
therapeutic AAV contains a tissue-specific promoter, a transgene of interest, and a poly-adenylation site to 
facilitate eukaryotic transcription. B, Following exposure of the virus to a target cell, a viral capsid binds to a 
cellular receptor, thereby initiating the internalization of the virion and the receptor. Active proton-pumps 
gradually decrease the pH of the resulting endosome, allowing the virus to dissociate from the receptor and 
escape through the permeabilized membrane. The capsid can then translocate to the nucleus and use host 
DNA polymerases to synthesize double-stranded DNA, which can subsequently be used as a transcription-
template for transgene expression. Rep: replication gene; Cap: capsid gene; polyA: polyadenylation signal. C, 
Strategy to reduce the ITRs-flanked plasmid sequence. The upper part shows a scheme of the insert between 
ITRs and the four-steps PCR strategy (marked 1 to 4) to remove all presumably non-essential sequences from 
the plasmid used for AAV generation containing PCARE cDNA. The lower part shows a scheme of the final insert 
including ITRs after removal of presumably non-essential sequences. RK: Rhodopsin Kinase promoter; SV40 
intron: simian vacuolating virus 40 intron; ITR: inverted terminal repeat; WPRE: WHP Post-transcriptional 
Response Element; bGHpA: Bovine Growth Hormone Polyadenylation Signal. 

 

6.3.2 Reduction of the size of the pAAV-RK-PCARE 

In the pAAV-RK-PCARE plasmid that was generated, the size of the region between the two ITRs 

including PCARE cDNA was 5648 bp (ITRs included). Because the maximum capacity of an AAV is ~4.8 

kb, we made an effort to reduce the insert size by several rounds of site-directed mutagenesis PCR. 

First, we removed the WPRE (WHP Post-transcriptional Response Element), a regulatory element 

(542 bp) that is known to enhance the transgene transcription.23 Since the SV40 intron is also present 

in the plasmid insert and has a similar function compared to the WPRE, this sequence was left in. 

Next, we removed 90 bp in between the 5'-ITR and the start of the RK promoter sequence, as well as 

27 bp between the RK promoter and the SV40 region. Finally, we removed the sequences between 

the SV40 intron and PCARE cDNA (84 bp), and between PCARE cDNA and the bGHpA polyadenylation 

signal (580 bp) (Figure 1C). 
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With a final size of 4867 bp, the size of the insert was at the limit to be packaged into an AAV, so we 

pursued to generate an AAV vector. Prior to AAV generation, we analyzed whether the plasmid 

allowed correct expression of PCARE after removal of the non-essential sequences. To this aim, we 

serum starved hTERT RPE-1 cells to allow for cilia growth and transfected both the regular construct 

pAAV-RK-PCARE (~5.6 kb) and the shortened version of the plasmid pAAV-RK-PCARE-S (~4.8 kb). In 

both cases, we observed typical localization of PCARE in the cilium (Figure 2), in general however, we 

detected low transfection efficiency in both regular and the short expression constructs. 

 

Figure 2. Immunofluorescence to test the expression of PCARE. hTERT RPE-1 cells were serum starved to allow 
cilium formation and subsequently transfected with A, pAAV-RK-PCARE (5648 bp) or B, pAAV-RK-PCARE-S 
(4867 bp). An antibody directed against PCARE (green) was used to detect the PCARE protein. ARL13B (red) was 
used as ciliary marker. DAPI (blue) marks the nucleus. Size bars = 5 µm. 
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6.3.3 Generation and assessment of expression of the AAV2/9.RK.PCARE.S vector 

Because the pAAV-RK-PCARE-S (4867 bp) expression construct in some cells did show proper ciliary 

PCARE expression, we next aimed to analyze whether this construct could be packaged into an AAV 

to express PCARE. To this aim, we chose an AAV2 vector, which is widely used in gene therapy for the 

retina,24 and the capsid 9, which has high tropism for all retinal layers except for bipolar and Müller 

glia cells.25 Analysis by RT-PCR and Droplet Digital PCR showed that PCARE could be fully packaged 

into the AAV2/9 vector (Figure 3). Next, we compared the expression levels of the generated virus 

with the generated plasmid (Figure 4A). As shown by immunofluorescence (Figure 4B), there was no 

detectable expression of the AAV2/9.RK.PCARE.S vector in hTERT RPE-1 cells, but the AAV2/9.GFP 

vector, under a CMV promoter, was clearly expressed. In addition, the levels of PCARE were also not 

sufficient to detect the PCARE protein on western blot under control of the RK promoter, but GFP, 

expressed under control of a CMV promoter, was detectable (Figure 4C). 

 

 

Figure 3. Analysis of the AAV2/9.RK.PCARE.S packaging. A, To verify correct packaging of the insertion 
cassette in the AAV2/9 vector, we performed RT-PCR analysis covering the region between the 5’ ITR and 3’ 
ITR. Expected sizes: 5’ ITR to PCARE cDNA, 1717 bp; within PCARE cDNA, 2165bp; PCARE cDNA to 3’ ITR, 
1793bp. B, Droplet Digital PCR shows proper packaging of the insertion cassette into the AAV2/9 vector. 
Expected band size: 4.86 kB. 



Generation and characterization of an adeno-associated virus (AAV) vector containing full-length PCARE cDNA 

 

179 
 

 

Figure 4. Evaluation of the expression of the generated AAV2/9.RK.PCARE.S vector in hTERT RPE-1 cells. A, 
comparison of the expression levels after transfection or transduction of hTERT RPE-1 cells with either the 
plasmid pAAV-RK-PCARE-S or the viral vectors AAV2/9.CMV.GFP and AAV2/9.RK.PCARE.S. Scale = 100 µm. B, 
hTERT RPE-1 cells were transduced with AAV2/9.RK.PCARE.S or the control vector AAV2/9.CMV.GFP. Cells 
express GFP under the CMV promoter but not PCARE under the RK promoter. The blob observed in the lower 
panels is due to an staining artefact. Scale = 5 µm. C, Western blot analysis of the expression of the different 
vectors. PCARE levels are detectable in HEK293T cells under the CMV promoter but not in hTERT RPE-1 cells 
under the RK promoter. 
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6.4 Discussion 

Gene therapy for inherited retinal dystrophies is coming of age. Currently, there are over 70 different 

AAV-mediated gene therapy clinical trials ongoing for autosomal recessive diseases 

(https://clinicaltrials.gov), including 18 for retinal disease. 

The gene C2ORF71/PCARE was first identified in 2010 by the group of Graeme C.M. Black17 and our 

group.16 Thereafter, different studies have reported PCARE to be mutated in ~1% of all arRP cases.26-

28 Additionally, PCARE was found mutated in one patient with cone-rod dystrophy (CRD)29 and in an 

atypical form of Usher syndrome.30 Prior to selecting the most suitable therapeutic approach, one 

first needs to understand the function of the corresponding protein. Recently, we have 

demonstrated that PCARE could play a role in the morphogenesis of outer segment discs by its 

interaction with an actin network (chapter 2). In this study, we aimed at obtaining a functionally 

active recombinant AAV vector that contains PCARE cDNA for future therapeutic purposes.  

First, we adapted an AAV plasmid into the gateway system to facilitate the insertion of therapeutic 

genes for the generation of AAV vectors. Next, we inserted PCARE cDNA into the generated gateway-

adapted AAV plasmid to use as template for the generation of a therapeutic AAV vector. A point of 

concern was the possible interference of plasmid attR sites with the ITR regions of the AAV, as both 

DNA sequences are capable of recombination. Such deleterious recombination is unlikely to occur, as 

a different group has already successfully generated virions from pDEST-AAVs.31  

After transduction of the generated AAV2/9.RK.PCARE.S, we did not detect expression of the PCARE 

protein by immunofluorescence or by western blot. This may be due to several factors. One factor is 

the limited cargo capacity of an AAV, which is a really restrictive virus when it comes to its maximum 

packaging size. Unsuccessful packaging of the AAV may also cause lack of expression of the 

transgene. Fragments of DNA from the helper plasmids or the cell genome can be packaged inside 

the vectors during production. Though these impurities are generally considered innocuous for 

research-grade vectors, they should be preferably at a very low concentration. However, we show 

here that the packaging of the AAV was successful (Figure 3), ruling out this option. Another factor 

causing lack of transgene expression is the titer of the virus. The titer of the virus depends on the 

method and cells used for titration. The cells used must be readily permissive to all steps from viral 

entry to integration of the viral DNA. Measured titers can vary with the conditions used for titration, 

like the volume of sample during vector-cell incubation, time of vector-cell incubation or the number 

of cells used. We therefore tested different virus titers, ranging from 10 vg/mL up to 100000 vg/mL, 

but none of these gave positive expression of PCARE (data not shown).  There are different types of 

recombinant AAV2 vectors that can be used. Different serotypes and capsids show different 
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efficiency in mediating gene delivery to photoreceptor cells.32-34 Since the GFP was able to be 

detected in hTERT RPE-1 cells, we can also rule out a problem of viral capsid affinity. 

To be able to fit PCARE cDNA into an AAV, we aimed to remove “non-essential” sequences between 

the different coding elements (Figure 3). These “non-essential” sequences however may as well be 

“essential”, working as spacer sequences between the coding elements to allow better 

transcriptional activity. Lack of the woodchuck hepatitis post-transcriptional regulatory element 

(WPRE) in the short 4.8 kb version of the plasmid may also explain why PCARE is not properly 

expressed, since this element has been shown to improve the expression of the transgene.35 An 

important element of the cassette is the promoter. Different promoters show variable success in 

driving expression of transgenes in photoreceptors.36-39 The rhodopsin kinase promoter allows to 

drive robust transgene expression in rod and cone cells.40 We chose this promoter first because of its 

specificity to both photoreceptor cells, and secondly because of its compact size (of only 292 bp). A 

drawback to study the effects of this promoter in vitro is the lack of established photoreceptor cell 

cultures. Therefore, we first aimed to test the expression of the AAV vector in hTERT RPE-1 cell 

cultures. As shown, the generated AAV2/9 containing the RK promoter does not drive PCARE 

transgene expression in hTERT RPE-1 cells to robust leves. To further analyze whether the AAV2/9 is 

able to drive transgene expression, we could test the vector in a different cell type, such as the 

retinoblastoma 661W cells, or retinal-differentiated iPSCs. Another plausible alternative is to test the 

vector directly in vivo in mice, which would give a more direct outcome. 

If the transgene expression problem persists, other options to engineer the vector are possible. For 

example, we could use a more potent promoter such as the CMV, or strong enhancer sequences.41 

The problem of this is the lack of specificity of these elements for a determined cell type which could 

be very relevant in our study.  

Another alternative to tackle low expression is to fragment the gene in different parts, and 

reconstitute it by homologous recombination for functional protein expression inside a cell.11 

Packaged AAV genomes never exceed 5.2 kb in length, independently of the capsid or vector, and 

overpackaging can result in genome fragmentation.12 Transduction of larger genomes can be 

enhanced by addition of proteasome inhibitors, given that proteasomes in the cytoplasm act as 

barriers to AAV infection.42 Regulatory elements required to drive gene expression also add to the 

final size and may render genes too large for AAV packaging, as is the case for PCARE. In these cases, 

dual AAV vectors are an option to consider. There are three strategies to construct a dual AAV 

vector. First, the overlapping strategy, where the two halves of the transgene expression cassette 

contain homologous overlapping sequences, which will produce the reconstitution of the transgene 
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by homologous recombination.43 Second, the trans-splicing strategy, where the 5’-half vector carries 

a splice donor (SD) signal at the 3’ end, while the 3’-half vector has a splice acceptor (SA) signal at the 

5’ end. This allows trans-splicing of a single mRNA molecule following tail-to-head concatemerization 

of the two AAV.44 Third, the hybrid approach is the combination of the trans-splicing and overlapping 

approaches. The hybrid approach adds a recombinogenic region to the trans-splicing vectors, in 

order to increase the recombination efficiency.45 Dual trans-splicing and hybrid vectors have been 

shown to efficiently transduce mouse and pig photoreceptors and significantly improve the retinal 

phenotype in models of Stargardt Disease (STGD) and Usher syndrome type 1B (USH1B).46-50 

A different choice is to use different viral vectors, like lentivirus, which have a packaging capacity of 

around 10 kb and allow for delivery of bigger transgenes. Lentiviruses can integrate in the 

chromosome of the target cell, which allows for more permanent expression of the transgene. The 

drawback however is that they do not effectively transduce non-dividing cells, and variability of 

transgene expression because of epigenetic modifications or silencing can occur.51 Nonetheless, 

successful rescue of the Abca4-/- mouse model of Stardargt macular dystrophy by an  equine 

infectious anemia virus (EIAV) vector has been reported,52 and the vector is currently being used in 

Phase I/II clinical trials (Clinical trials.gov identifier NCT01367444). 

Instead of viral vectors, genome targeted editing could be used as an alternative to treat PCARE-

associated retinal disease. The drawback is that these techniques rely on homology-directed repair 

pathway, which is active during DNA replication, to be effective. Homology-independent targeted 

integration (HITI) combines CRISPR/Cas9 system and non-homologous end-joining repair to allow for 

DNA knock-in in dividing and non-dividing cells. Recently, HITI has proven successful in a rat model of 

retinitis pigmentosa.53 Although successful, the authors draw attention to the fact that visual 

function was not fully restored, since it was applied in three weeks old rats, therefore it would not be 

useful when retinal degeneration has already happened.53 

Together, we have generated an AAV2/9 vector containing full-length PCARE cDNA and the necessary 

elements to allow transgene expression. Future in vitro and in vivo analysis of this vector will 

determine its efficacy to express PCARE in photoreceptor cells and its validity for future therapeutic 

approaches. 
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6.5 Methods 

6.5.1 Generation of pDEST-AAV 

Original AAV plasmid containing EGFP insert was linearized by a double digestion with HindIII and 

NotI (New England Biolabs, NEB) at 37°C for 2 h. Linear plasmid backbone was purified on column 

using a DNA clean-up kit. The Gateway-insert was generated by PCR with a Q5 High Fidelity DNA 

Polymerase (NEB) on a standard destination vector template p3xFLAG-CMV-9 (Sigma-Aldrich) 

containing a chloramphenicol-resistance cassette. Primers were designed to have 30 bp overhang 

with the AAV backbone (Supplemental Table 1). Cloning was performed with a Gibson Assembly 

Cloning kit (New England Biolabs), using 50 ng of linear backbone and 400 ng of insert DNA. The 

assembly mixture was incubated for 1 h at 50°C, after which 5 µl of assembled product was 

transformed into Oneshot-ccdB-survival competent E. coli cells (ThermoFisher Scientific), according 

to the manufacturer’s protocol. LR reactions were performed with a Gateway LR Clonase II kit 

(ThermoFisher Scientific) overnight at 25°C, using 150 ng of entry vector (pENTR with PCARE or EGFP) 

and destination vector (pDEST-AAV with an RK promoter or CMV promoter) as input. From the 

assembled expression vectors, 5 µl were transformed in DH5-α cells. Transformed cells were grown 

on LB-Agarose plates with corresponding antibiotics (e.g. ampicillin) overnight at 37°C. Inoculated 

colonies were grown overnight in 3 mL LB-medium (10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L NaCl) 

with 1:1000 chloramphenicol at 37°C, after which plasmid isolation was performed using a 

Nucleospin Plasmid Easypure kit (Macherey-Nagel). Clones were verified using an EcoRI-digest (NEB) 

and subsequent Sanger sequencing. 

6.5.2 Removal of sequences from pAAV-RK-PCARE 

We performed mutagenesis on the pAAV-RK-PCARE plasmid to remove non-essential sequences and 

reduce the size of the insert between the ITR’s, from 5648 bp to 4867 bp. A minimum distance of 10 

bp was left between the different elements. Mutagenesis primers of 30 to 40 bp were designed to 

remove the non-essential sequences. The first part of the primer consisted of the sequence to be 

removed, and the last part of the primer being the sequence after the first part. To remove parts 1, 2 

and 3 (Figure 3), we performed PCR using Phusion® High-Fidelity DNA Polymerase (NEB) and GC 

buffer with the following program: 94°C for 5 min, followed by 10 cycles of denaturation at 94°C for 

30 sec, annealing for 30 sec at 50°C or 55°C, final extension for 11 minutes at 72°C and final step of 

15 min at 94°C. Subsequent PCR products were run on agarose gels. To remove part 4 (Figure 3), we 

used the Q5® Site-Directed Mutagenesis Kit (NEB) kit with the following program: initial denaturation 

at 98°C for 3 min, followed by 20 cycles of 98°C for 10 sec, 50°C for 30 sec and extension at 72°C for 9 

Ch
ap

te
r 6



CHAPTER 6 

184 
 

min, and a final extension at 72°C for 10 min. Primer sequences can be found in Supplemental Table 

1. 

After DpnI treatment for 4.5 h at 37°C, the enzyme was heat-inactivated, and 5 µl of the PCR product 

were transformed in DH5a cells. Removal of the sequence was confirmed by restriction enzyme 

digestion, and Sanger sequencing was used to verify the deletion. Primers used are listed in 

Supplemental Table 1. 

6.5.3 Generation of AAV2/9.RK.PCARE.S vector 

pAAV-RK-PCARE-S plasmid DNA was purified using the Megaprep kit (Qiagen) following 

manufacturers instruction. The pAAV-RK-PCARE-S construct was packaged into an AAV by 

transfection of three plasmids (pAAV-RK-PCARE-S plasmid containing PCARE cDNA, AAV package 

plasmid encoding AAV Rep and Cap proteins from serotype 9 and adenovirus helper plasmid) in 

HEK293 cells. Three days after transfection, cells and culture medium were collected and 

enzymatically treated with Benzonase at high salt concentration (650 mM NaCl). The cell debris was 

removed by high speed centrifugation and regular filtration. The supernatant went through a 

tangential flow filter which concentrated the viral solution. Recombinant AAV vector particles were 

isolated and extracted by running the concentrated supernatant through the iodixanol density 

gradient. The purified supernatant was then further concentrated by running through an Amicon 

filter with a 100,000 molecular weight cut off. The AAV titer was determined by real-time PCR and 

the purity was verified by SDS–PAGE.  

6.5.4 Transduction 

hTERT RPE-1 cells were seeded (5.90x105 cells per well of a 6-well plate). The next day, viral particles 

were thawed and added to the cells at a multiplicity of infection (MOI) of 100,000. Cells were 

incubated for 96 h at 37°C before immunocytochemistry or western blot analysis. 

6.5.5 Immunocytochemistry 

hTERT RPE-1 cells were grown on 12-well plates until reaching 90% confluency. To induce cilia 

growth, cells were fed with serum starvation medium (DMEM/F12, 0.2% FCS + 1% Pen/Strep + 1% 

NaPy). Twenty-four hours post-starvation, cells were transfected with DNA plasmids using 

Lipofectamine® 2000 (Thermo Fisher Scientific) in a 1:2.5 ratio following manufacturer’s instructions. 

Twenty hours post-transfection, cultured cells were fixed in PFA 2% for 20 min at RT, followed by 1% 

Triton-X-100 treatment for 3 min and blocking in 2% BSA for 20 min. Subsequently, cells were 

incubated with primary antibodies (PCARE, rabbit, home-made; ARL13B, mouse, NeuroMab, cat.# 75-
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287) diluted in blocking solution for 1 h. After incubation, cells were washed three times in PBS and 

incubated with the corresponding Alexa Fluor conjugated secondary antibody. Finally, slides were 

washed three times in PBS for 5 min and mounted in ProLong(R) Gold antifade reagent (P36930, Life 

Technologies). 

6.5.6 Western blot analysis 

HEK293T or hTERT RPE-1 cell pellets were resuspended in 150 µl RIPA buffer (50 mM Tris pH 7.5, 1 

mM EDTA, 150 mM NaCl, 0.5% Na-Deoxycholate, 1% NP-40 plus protease inhibitors) rotating for 30 

min at 4°C. Cells were sonicated for 15 seconds and centrifuged for 5 min at 12,000 g, 4°C. The 

supernatant was mixed with loading buffer supplemented with 0.1 M DTT and proteins were 

separated on a 3-8% NuPAGE Tris-Acetate Gel. Proteins were transferred onto a nitrocellulose 

membrane (Amersham Protran 0.45 NC, GE Healthcare Life Sciences) overnight at 4°C. After transfer, 

membranes were briefly washed in PBS and blocked for 1 h at RT in 5% Blotting-Grade Blocker (Bio-

Rad) in PBS. Primary antibodies were incubated overnight in 2.5% blocker (Blotting Grade Blocker 

Non-Fat Dry Milk, Bio-Rad) in PBS. Subsequently, the membrane was washed three times in PBS-

Tween 0.2% at RT and incubated with secondary antibodies in 2.5% blocking milk for 45 min. After 

secondary antibody incubation, the membrane was washed three times for 10 min in PBS-Tween 

0.2% followed by a finally wash in 1xPBS. Fluorescence was analyzed on a Li-Cor Odyssey 2.1 infrared 

scanner using Image Studio 4.0 software. 

6.5.7 PCR on viral DNA 

To analyze correct packaging of AAV2/9.RK.PCARE.S, samples were treated with DNAse I for 30 min 

at 37°C. Then, we performed RT-PCR using the following program: 98°C for 30 sec, followed by 35 

cycles of denaturation at 98°C for 10 seconds, annealing for 30 seconds at 60°C and extension of 6 

min at 72°C, with a final extension for 10 min at 72°C. Primers are listed on Supplemental Table 1. 
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6.8 Supplemental data 

Supplemental Table 1. Primers used in this study.  

Primer name Sequence Forward (5’-3’) Sequence Reverse (3’-5’) 

pAAV-attR aaaagctgcggaattgtacccgcggccgccacaagtt
tgtacaaaaaagctgaacgagaa 

tgtaatccagaggttgattggatccaagctaccactttgta
caagaaagctgaacgagaa 

pAAV-RK-PCARE-mutagenesis-1 gtagttaatgattaacccggggccccagaagcctgg ccaccaggcttctggggccccgggttaatcattaactac 

pAAV-RK-PCARE-mutagenesis-2 ggccaagggccctcgatcgagtaagtttagtctttttg gacaaaaagactaaacttactcgatcgagggcccttgg 

pAAV-RK-PCARE-mutagenesis-3-F gatgttgcctttacttctagcgccgccaccatggggtg gtacaccccatggtggcggcgctagaagtaaaggcaac 

pAAV-RK-PCARE-mutagenesis-4-F ggtgtcctgacacccagcttgcctcgactgtgccttc ctagaaggcacagtcgaggcaagctgggtgtcaggac 

pAAV-RK-PCARE-mutagenesis-seq-1-F gagtggccaactccatcac aaagacaatcccctgagctg 

pAAV-RK-PCARE-mutagenesis-seq-2-F ttagcctggtgctgtgtcag aggcaacatccactgaggag 

pAAV-RK-PCARE-mutagenesis-seq-3-F ggtggtggtgcaaatcaaag ttgctttgggctttttcaag 

pAAV-RK-PCARE-mutagenesis-seq-4-F aggacaaatcccagccagag aggggcaaacaacagatgg 

AAV-5’ITR-PCARE-Seq ggttccttgtagttaatgattaacccggggccccagaa
gcc 

ctgtgctcgtggctgaac 

AAV-PCARE-Seq ttggcctttgaagaaaagagag ctgaggtcctgttttgtccag 

AAV-PCARE-3´ITR gcccttagcacctatctttcc ggttccttgtagttaatgattaacccgccatgctacttatc 

 

 

 

Supplemental Figure 1. Strategy to obtain a Gateway-adapted AAV plasmid and Gateway cloning to 
introduce PCARE cDNA. A, Cloning strategy describing the insertion of a standard attR-ccdB-Cassette into an 
AAV. The resulting pDEST-AAV was then used to clone PCARE cDNA from a pENTR, resulting in an expression 
vector with an AAV backbone and a PCARE-insert (pAAV-RK-PCARE). B, Restriction enzyme digestion with a 
correct pattern for pDEST-AAV (BamHI; 4401 bp, 816 bp, 703 bp, 315 bp) and pAAV-RK-PCARE (XhoI; 6229 bp 
and 2171 bp), each displaying a correct restriction pattern. attR/B: R/B-integration sequence, ccdB: ccdB-toxin 
encoding gene, RK: Rhodopsin Kinase promoter, WPRE: WHP Post-transcriptional Response Element, ITR: 
Inverted Terminal Repeat, AmpR: Ampicilline-resistance gene, CamR: Chloramphenicol-resistance gene, 1 kb: 1 
kb Ladder. 
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The understanding of the biology of the eye has remained an exciting quest ever since Charles 

Darwin could not help but wonder “that natural selection could produce… an organ so wonderful as 

the eye” (Darwin, Origin of Species, 1859).1  

 

7.1 Development of the ciliary photoreceptor cell outer segment 

Photoreceptor cells within the retina need particularly high amounts of membranes that allow 

accommodating a large number of proteins required for photoreception and -transduction. In the 

animal kingdom, we can distinguish two types of photoreceptor cells based on the process that 

drives the formation of the unit that contains the opsin-loaded membrane stacks: formation of a 

microvilli-based unit (rhabdomeric photoreceptors), or formation of a modified cilium (ciliary 

photoreceptors). Rhabdomeric and ciliary photoreceptors probably evolved from a single precursor, 

and are present in all metazoans.2 The rhabdomeric photoreceptor cells fold the apical cell surface, 

while the ciliary photoreceptor cells fold the ciliary membrane.3 In invertebrates, microvillar 

photoreceptors are preferred, since they support vision in dim light with large responses to single 

photons, but also in bright light with fast visual response.4 In vertebrates, ciliary rod photoreceptors 

account for high-sensitivity detection of low light, and cone photoreceptors allow low-sensitivity 

detection in bright light. Though slower than microvillar photoreceptors, ciliary photoreceptors can 

cover a broad range of intensities. 

Ciliary photoreceptor cells have been well characterized over the last two decades, since this cell 

type degenerates in inherited retinal diseases (IRDs). Genetic studies enabled the discovery of many 

genes encoding ciliary proteins that are mutated in IRD, which improved our understanding of their 

ciliary function and their role in photoreceptor cell biology and development. These proteins localize 

to the photoreceptor sensory cilium, encompassing the photoreceptor outer segment, its proximally 

adjacent connecting cilium or ciliary transition zone, and the ciliary basal body. The first major 

breakthrough in our knowledge of the biogenesis and homeostasis of the sensory cilium however 

dates back to 1967, when Richard Young reported the exciting finding that rod and cone outer 

segments are continually rebuilt.5 This new insight raised the question of how the disc membranes 

are initially formed. Until recently, two main hypotheses explained this phenomenon. The original 

work from Steinberg and colleagues in 1980 supports that new discs generate by evagination of the 

ciliary plasma membrane at the base of the outer segments.6 An alternative hypothesis supports that 

disc biogenesis occurs by fusion of intracellular vesicles transported to the outer segments.7-9 

However, it was not until 2015 that the work of different groups confirmed the validity of the 

classical evagination hypothesis. Ding et al. observed that membranes of newly formed discs were 
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exposed to the extracellular space.10 Burgoyne et al. showed by electron microscopy that rhodopsin 

traffics to the OS via the ciliary plasma membrane, and that new discs form extracellularly, making 

novel contacts with the IS.11 Both articles showed, using different fixation experiments, that what 

were interpreted as vesicles at the proximity of the outer segments, were in fact tissue fixation 

artifacts, indicating the alternative vesicular fusion hypothesis to be false.  

At early stages, before OS discs are formed, the photoreceptor cilium has a distinct transition zone 

and its distal domain is enriched in its main membrane proteins, rhodopsin12 and peripherin-2.13 

Proteins and membranes accumulate at the tip of the cilium and eventually organize to give rise to 

nascent outer segment disks. Volland et al. used electron microscope tomography to show that the 

membrane of nascent discs first bulges and invaginates, and it is continuous with the ciliary plasma 

membrane.14 This initial invagination may be important to reshape the membrane and form a 

flattened structure that can later evaginate, and it is also needed to properly anchor the incipient rim 

of the nascent disc. In the end, the disc matures once the lamellae (central portion of disc) reaches 

full diameter.14 

7.2 Role of actin in outer segment discs morphogenesis 

The involvement of actin in this evagination process has been long suggested, because of evidence 

for the presence of actin at the base of the outer segments.15-17 Actin is one of the most highly-

conserved proteins known. Six actin-encoding genes are found in mammals (ACTA1, ACTA2, ACTB, 

ACTG1, ACTG2, ACTC1), and defects in muscle actins cause different myopathies in humans.18 Since 

knockout of cytoplasmic actins causes embryonic lethality in mice, the effect of their absence in 

photoreceptor cells has not been well studied. In the photoreceptor cell, actin has been shown to 

interact with α-actinin,19 fascin220 and TULP1.21 The functions of α-actinin and fascin2 have been 

linked to actin assembly; however, the role of TULP1 is not yet clear. Filamentous (F) actin is 

assembled from monomeric (G) actin subunits that are added to the barbed ends of the filaments 

and dissociate from the pointed ends. On one hand, inhibition of actin polymerization by 

cytochalasin D causes disruption of the ciliary plasma membrane evagination, preventing initiation of 

new disc membranes and discs.22 On the other hand, the evaginations leading to disc membrane 

biogenesis have a depth of 11 nm, compared to the 100 nm depth of lamellipodia. Lammelipodia are 

flat membrane protrusions filled with actin that form at the periphery of moving cells,23 and contain 

multiple layers of actin filaments of ~10 nm in diameter, as well as a large number of cytoskeletal and 

signaling proteins.24 For this reason, some authors do not support the idea that outer segment 

biogenesis is driven by an actin-mediated mechanism, and they suggest that the outward growth of 

the lamellae may be more similar to a blebbing protrusion without actin involvement.11  
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Recent studies, however, place actin back at the center of OS disc morphogenesis. Nager et al.25 

described actin-driven ectocytosis as a mechanism of ciliary membrane release. Their work shows 

that F-actin, myosin VI and drebrin mediate ectosome scission from ciliary tips, and cytochalasin D 

treatment results in accumulation of multiple tip buds. Next to this, the work of Megaw et al. 

proposes that peripherin-2, which localizes to both open and closed discs at the rims but not at the 

disc edges,10,26 is an inhibitor of ectosomal release from the photoreceptor cilium, setting this 

mechanism as the first step in OS disc formation.27 Another recent study shows that the X-linked RP-

associated protein RPGR interacts with and activates the actin-severing protein gelsolin in the 

connecting cilium, and facilitates rhodopsin transport to the outer segments.28 More specifically, 

RPGR would facilitate OS disc budding or completion of disc formation by regulation of actin 

disassembly through gelsolin.  

The link between actin and other proteins involved in OS disc morphogenesis is not as well known. 

Rom-1, homologous to peripherin-2, is thought to function as a modulator of peripherin-2.29 Contrary 

to peripherin-2, which locates at the disc edges, rom-1 is confined to the disc rim, to help 

maintaining the curvature of the rim.29,30 The rim of a disc is the hairpin-shaped boundary of the disc, 

while disc edges refer to U-shaped boundaries between two adjacent discs. Prominin-1 is a protein 

present in microvilli and the tip of primary cilia where it is implicated in stabilization of curved 

membrane protrusions.31,32 In photoreceptors, it localizes to the base of the OS, and interacts with β-

actin.33 Knockout of prominin-1 alters disc morphogenesis and causes photoreceptor degeneration.33-

35 Neuroepithelial cells of the neurocortex present prominin-1 at the ciliary tip.36 Interestingly, 

extracellular membrane particles enriched in prominin-1 are released from the primary cilium of 

these neuroepithelial cells. These particles contain anillin, an actin-binding protein associated with 

the contractile ring.37 Protocadherin 21 is present at the linking edges of nascent discs with the IS,38 

and it is thought to work as a connector between these discs, however this is solely based on co-

localization data.11 Protocadherin 21 interacts physically with prominin-1,33 but the relevance of this 

interaction in OS disc morphogenesis also remains to be elucidated.  

The role of phototransduction cascade proteins in outer segment disc formation has also been 

described. For instance, rhodopsin is essential for OS formation and occupies disc surfaces.39,40 In 

rhodopsin mutant mice, the photoreceptor ciliary tip membrane expansion is formed, but disc 

assembly and elongation are disrupted.13,41 Also, the ATP-binding cassette protein ABCA4 is present 

within the disc membranes at the rim.42 Although knockout of guanylyl cyclases43 or Abca444 does not 

impair OS formation, the discs are abnormal and eventually degenerate. Despite these observations, 

it is unknown if there is a link to actin assembly. 
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7.3 PCARE association to actin in the photoreceptor cilium 

In chapter 2 of this thesis, we investigated the function of the uncharacterized protein 

C2ORF71/PCARE (photoreceptor cilium actin regulator), associated with inherited retinal dystrophy 

subtype RP54. This work provided novel understanding of the molecular mechanisms involved in 

modification of the photoreceptor ciliary plasma membrane, deciphering the missing molecular link 

between the mechanisms of outer segment discs biogenesis and actin-linked ciliary ectocytosis (as 

indicated above), an exciting new topic in the field of retinal ciliopathies in the recent years. In 

chapter 2, we showed that PCARE interacts with and recruits the Arp2/3 activator WASF3 to the 

primary cilium. During the first experiments with hTERT RPE-1 cells, we analyzed the interaction of 

these two proteins in primary cilia using a conventional fluorescence microscope. As we focused on 

spotting cilia with a typical antenna-like morphology, we initially excluded structures from the 

analysis that, although they were PCARE and/or WASF3 positive, were not antenna-shaped thus 

considered artifacts. After taking a closer look at these structures, we noticed that they were in fact 

cilia, as they also expressed the ciliary marker ARL13B, but they had a peculiar rounded morphology. 

Analysis by confocal microscope of these “reshaped” cilia showed that the primary cilium acquires a 

circular shape when PCARE and WASF3 are overexpressed in hTERT RPE-1 and also in mIMCD-3 cells, 

recruiting F-actin and other actin components to the cilium. This finding was striking, since 

polymerized actin has not yet been observed in the ciliary axoneme by conventional microscopy.25 

Actin has been previously observed at the ciliary pocket,45 and at the ciliary tip prior to ectocytosis25 

or decapitation.46 We named these rounded ciliary structures evaginations, because the bulged tip of 

these cilia seems to form a disc-like structure. Similar to the lamellipodium,24 outer segments discs 

are flattened,47 and our first impression was that the bulged cilia were also flattened. The 

evagination at the ciliary tip could be mistaken with a "tipping" phenomenon that has been 

described for the motor protein KIF17.48 However, the ciliary bulges formed by PCARE/WASF3 were 

significantly different from those generated by KIF17 (see chapter 2, figure 3, and reference 48). The 

bulged cilia however could still be swelling artifacts caused by accumulation of proteins in the cilium. 

To discard this possibility, and to study whether the cilium flattens upon evagination, we are 

currently performing experiments to analyze these structures under scanning and transmission 

electron microscopy. Nonetheless, we observed that these bulged cilia or evaginations were 

disrupted by latrunculin B, a stronger actin poison than cytochalasin D, suggesting implication of 

actin in this process. Also, a missense mutation in PCARE associated with RP54 strongly affected the 

evagination process, which supports our model of active regulation of actin dynamics by PCARE. 

Proteomic analysis of the photoreceptor outer segments shows that several actin-related proteins 

involved in membrane protrusion that interact directly or indirectly with PCARE are also present in 
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these outer segments.49,50 These proteins include the WASF proteins 1 and 3, several subunits of the 

Arp2/3 complex, profilin, filamin, actinins, spectrins, RAC1 (but not RAC2), and huntingtin associated 

proteins (related to IFT57 and KALRN). Some of these proteins, like WASF3, KALRN and RAC1, 

translocate to the primary cilium in hTERT RPE-1 cells only when PCARE is present, supporting the 

idea that PCARE may as well be responsible for their transport to the OS.  

The strongest interactor of PCARE appears to be the Wiskott-Aldrich syndrome protein WASF3 (also 

known as WAVE3). This protein seems to bind to the N-terminal region of PCARE (chapter 2, page 

85). PCARE and WASF3 share a proline-rich region at the C-terminus and a predicted verprolin 

homology domain (also known as WASP homology 2, WH2) with actin-binding properties.51,52 Proline-

rich domains alone can have actin polymerase activity in the presence of profilin-actin, and the 

tandem of proline-rich domains and WH2 domains cooperate to enhance polymerase activity.53 

While PCARE contains a WH2 domain, it does not contain a central/acidic (CA) domain as WASF3 

does, which binds and activates the Arp2/3 complex.52,54 

In N-WASP, the proline-rich region assists in the interaction with the SH3 domains of EFC (extended 

Fer-CIP4 homology) and F-BAR (FCH-Bin/Amphiphysin/Rvs) domain-containing proteins, which are 

thought to induce curvature of the membrane.55 In WASF2, the proline-rich region binds to the SH3 

domain of IRSp53, a RCB (Rac binding)/IMD (IRSp53-MIM homology domain) domain-containing 

protein similar to the EFC/F-BAR proteins.56 WASF2 is ubiquitously expressed, while WASF1 and 

WASF3 are brain-specific. A few studies describe the role of WASF3 in cancer,57,58 but the interaction 

of WASF3 with other proteins is not well described. WASF proteins localize to the leading edge of 

lamellipodia.23 The branched actin network forming lamellipodia is produced by the small GTPase Rac 

(Rac1). Rac1 is known to activate the WAVE regulatory complex (WRC) to drive actin polymerization 

by the Arp2/3 complex.59 The interaction of PCARE with WASF3 and their ability to bulge the primary 

cilium (as demonstrated in chapter 2), the presence of previously mentioned actin-binding proteins 

in the ciliary bulges, and the defective bulging observed in the PCARE mutant p.Ile201Phe, supports 

the hypothesis of actin-driven ciliary membrane evagination as the mechanism underlying OS disc 

formation and unveils novel potential molecules involved in this process. 

7.4 The role of retinal ciliopathy proteins in actin-driven formation of outer segment discs 

As shown in chapter 2, PCARE and WASF3 overexpression in hTERT RPE-1 not only causes 

recruitment of an actin module to the primary cilium, but retinal ciliopathy proteins also modify this 

process. The proteins encoded by CEP290 and OFD1, both found mutated in various retinal 

ciliopathies,60-64 do not translocate to the cilium by PCARE alone, but they do when WASF3 is present 

at ciliary evaginations (chapter 2). CEP290 is an interesting protein, since it has high similarity to 



 General discussion 

197 
 

myosin and it plays a role in ciliogenesis and ciliary trafficking.65 It interacts with PCM1, also a PCARE 

interactor, which is required for organizing the cytoplasmic microtubule network.66 CEP290 recruits 

the small GTPase Rab8a, important for elongation of the ciliary membrane, and knockdown of 

CEP290 causes mislocalization of Rab8.66 Vesicle trafficking through Rab8 is driven along 

microtubules and may be also actin-dependent.67,68 Inhibition of Rab8 activation causes disruption of 

rhodopsin transport and mislocalization from OS.68,69 RPGR is another putative CEP290 interactor,66,70 

and as mentioned before, RPGR interacts with the actin-regulator gelsolin.28 A truncated CEP290 

mutant associates and retains RPGR in the inner segments.71 Because of this, RPGR cannot exert its 

function at the base of the OS, which may be an indirect cause of OS disc malformation. Both MKS3 

and CC2D2A, important proteins for photoreceptor outer segment development,72 interact with 

CEP290 and are involved in retinal disease.73-76 CC2D2A has been proposed, similar to CEP290, as a 

gate-keeper at the transition zone, restricting the entry of proteins to the cilium. Interestingly, Rab8 

is also mislocalized in CC2D2A mutant zebrafish photoreceptors,77 suggesting a role in vesicle 

transport of CC2D2A to the basal body. In chapter 2, figure 2, electron microscopy analysis shows a 

high accumulation of PCARE at the daughter centriole. This finding, together with the connection of 

PCARE with CEP290, could indicate that PCARE may also play a role at the centriole, possibly 

participating in the sorting of proteins at the basal body of photoreceptors. 

OFD1 localizes to the centrosome of the primary cilium and is a component of the centriolar 

satellites. OFD1 was found as direct interactor of PCARE (chapter 2). OFD1 physically interacts with 

lebercilin, the protein encoded by LCA5.64 Lebercillin interacts with the IFT machinery and disruption 

in mice of IFT causes displacement of opsins from the OS.78 RPGR knockout mice show reduced 

abundance of OFD1 at the photoreceptor cilium, and the authors postulate that it may share 

functions with RPGR.79 In rat degeneration models, OFD1 has a neuroprotective function of the 

photoreceptor cell.80 Additionally, the phenotypes of Ofd1 and Rpgrip1l knock-out mice overlap, 

again indicating that these proteins play a similar role.81 Although the function of OFD1 has been 

mostly restricted to the ciliary basal body, we hint towards an additional putative role in the 

neogenesis of outer segments, and a link to actin should not be discarded. Interestingly, loss of 

Rpgrip1l results in defective glioma-associated oncogene (Gli) processing and Sonic hedgehog (Shh) 

signaling in mice.82 Although not described in this thesis, the evaluation of ciliary signaling cascades 

such as Shh signaling, would allow to analyze whether PCARE plays a role in these pathways.83 

The microtubule and actin crosslinking factor 1, MACF1, is a giant protein that mediates interactions 

between microtubule and actin networks for proper ciliogenesis and photoreceptor differentiation, 

indicating an interconnection between these two networks.84 SPATA7 is a microtubule-associated 

protein that interacts with RPGRIP1, and it is important to maintain its localization at the connecting 
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cilium.85 RPGRIP1 is a structural protein of the photoreceptor ciliary axoneme and it is thought to 

play a role in discs formation.86 Rpgrip1 ko mice produce overgrown disc membranes, and it is 

thought that RPGRIP1 mediates actin cytoskeletal dynamics.86 RPGRIP1 interacts with RPGR and 

NPHP4, and it is also involved in ciliary protein trafficking.87-89 Similar to RPGRIP1L, RPGRIP1 could 

also have an actin-related function in the photoreceptor, but this needs to be further studied. 

As described in chapter 1, the photoreceptor ciliary axoneme is mainly microtubule-based, with less 

microtubular content as we enter the OS base and tip.90 The protein RP1 is a connector between 

nascent discs and the photoreceptor ciliary axoneme, helping the discs to form in the correct 

orientation and stack up into outer segments.91 Mutations in RP1 cause autosomal dominant retinitis 

pigmentosa.92 Interestingly, digenic inheritance of RP1L1 and PCARE truncating mutations has been 

reported in one patient with syndromic retinitis pigmentosa.93 In the protein-protein interaction 

dataset of PCARE in chapter 2, microtubule-based kinesin motors and dynein-linked proteins are 

identified. This may indicate a possible link to the transport of PCARE across the connecting cilium 

through IFT motors. Given that IFT74 and IFT57 were found as well in the dataset, they might 

mediate the connection with PCARE for trafficking as IFT cargo along the cilium. As mentioned in 

chapter 4, the phenotypes between Pcare1- and Ift57-deficient zebrafish mutants are similar, 

indicating a possible connection between these two proteins.94  

Actin is also found at the periciliary membrane complex, a place where post-Golgi vesicles dock and 

sort their cargoes closely connected to the basal body.95,96 Usherin and other proteins from the 

periciliary membrane are linked to actin and genes encoding for these proteins are found mutated in 

Usher syndrome.95 RPGR interacts with whirlin, a protein present in hair cells and photoreceptors.97 

Whirlin interacts with the actin cross-linking protein espin to regulate the actin network at the 

periciliary membrane complex of photoreceptors, and disruption of whirlin can cause both vision and 

hearing loss.98,99  

In the PCARE interactome we also detected myosin-linked proteins. Myosins are motor proteins that 

use ATP to travel along actin filaments.100 Mutations in MYO7A cause Usher syndrome type 1B.101 

MYO7A is a motor protein that acts in actin-related opsin transport through the connecting 

cilium.102,103 Mutations in another five genes, coding for protocadherin-15, cadherin-23, harmonin, 

sans, and CIB2, cause other subtypes of Usher syndrome type 1.101,104-106 These proteins all localize to 

the calyceal processes of photoreceptor cells.107 Cadherin-23 is anchored by marshalin to the 

microtubules of the outer segments and regulates microtubule networks.108 The common affection 

of both vision and hearing in Usher syndrome may be due to a similar role of these proteins in 

stereocilia and the calyceal processes of photoreceptor cells. When calyceal processes are missing, 
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the OS discs overgrow, indicating that they are important to limit the growth of the OS beyond its 

basal region.109 MYO7A is well-described in stereocilia, and functions to keep the ciliary tip-links 

under tension at rest.110 Defects in other myosins, myosin 1a, myosin IIIa, myosin VI, and myosin XVa 

cause hearing loss in humans and/or mice,111,112 and produce abnormal hair bundles of auditory and 

vestibular hair cells. The hair bundle is composed of actin-filled stiff microvilli, called the stereocilia. 

Stereocilia are arranged in different rows of increasing height.113 In brush border microvilli, the 

composition of actin is of about 20 polarized actin filaments with the barbed end facing the plasma 

membrane at the tip of the microvillus. The content of actin in stereocilia is high, of over 3,000 

filaments.114 The number of filaments in other microvilli is not known, but this number reflects the 

physical forces that it has to support from the surrounding plasma membrane and the environment. 

In the photoreceptor cell, the outer segments do not need to support many forces, so we may expect 

a lower number of actin filaments needed to maintain its structure. The microvilli from RPE cells 

extend to and surround the entire outer segment of photoreceptor cells, reaching the inner segment 

in mouse photoreceptors, thus providing also mechanical support to the outer segment 

morphogenesis, and their role may be more critical in species lacking well-developed calyceal 

processes.109  

7.5 PCARE-associated retinal disease and disease models 

In chapter 3, we collected all reported patients with disease-causing mutations in PCARE until April 

2018. PCARE mutations are distributed along the entire PCARE coding sequence; however, there was 

no observable correlation between the position of the mutation and the age at onset of retinal 

disease. As pointed out in chapter 3, the small number of patients with mutations in PCARE makes it 

difficult to establish a clear genotype-phenotype correlation. At the protein level, we were able to 

detect differences between the PCARE wild-type protein and five different mutants (data not shown). 

The PCARE missense mutant p.Ile201Phe is able to expand the ciliary membrane, but in a lesser 

extent than wild-type PCARE (chapter 2). Truncating PCARE mutants p.Glu135*, p.Trp650*, 

p.Lys919Thrfs*2 and p.Trp1001* lose the ability to locate to the axoneme of the primary cilium in 

hTERT RPE-1 cells (chapter 3, data in preparation). Therefore, proper localization of PCARE to the 

axoneme of the cilium seems important to properly execute its function as actin regulator. If the 

truncating mutants are produced in vivo, their ability to localize to the basal bodies might indicate 

that some PCARE function is still retained, while aberrant mislocalized PCARE may additionally have 

malignant effects. Besides a different residual function of the protein depending of the position and 

type of mutation, the clinical variability observed may be due to different genetic backgrounds, 

where other genes can act as modifiers. Whole genome sequencing of patients with mutations in 
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PCARE would allow studying the presence of such modifiers and explaining the clinical variability. At 

the same time, it would also be helpful for a better selection of patients for potential therapies. 

In vivo models of PCARE-associated retinal disease will also help to better understand the function of 

PCARE. In chapter 4, we generated a pcare1 mutant fish using CRISPR/Cas9 technology. We show 

that pcare1-/- larvae and adult fish generate highly disorganized outer segments, while the larvae also 

present visual dysfunction. This phenotype resembles the phenotype observed in Pcare-/- mice, which 

also show a high disorganization of outer segments.115 To better understand the defects leading to 

dysmorphic outer segments in these models, a more detailed study by electron microscopy in early 

stages before the first discs are formed (between P4 and P15 in mice, and between 2 dpf and 5 dpf in 

zebrafish) would be of interest to analyze whether any discs form prior to the onset of degeneration 

and cell death. Additionally, superresolution microscopy of living rods stained with lipophilic dyes or 

fluorescent antibodies against PCARE in wild-type animals could give further insights of the 

evagination model of disc formation.  

Defects in photoreceptor formation due to PCARE mutations can be also assessed in cultured cells. 

Downregulation of expression of genes coding for actin cytoskeletal proteins in iPSCs derived from a 

patient with a protein-truncating PCARE mutation (chapter 5) already hints to a defect in the actin 

cytoskeleton pathway, although further studies are needed to have a better understanding of this 

process. In our study, validation of the expression of neural and photoreceptor markers by qRT-PCR 

showed an increase in the expression of these markers in the differentiated cells compared to the 

original iPS cells, suggesting that some cells were able to differentiate towards a retinal fate. 

However, the transcriptome analysis revealed an under-representation of photoreceptor cell 

population, as shown by the low number of transcripts obtained from photoreceptor-specific genes 

like RHO or PCARE. Lessons from this and previously published protocols will help us to achieve a 

more successful differentiation in the future. Some elements that may aid to this end are the 

selection of differentiation factors that allow better specification into retinal cells, the prolongation 

of the culturing time until the obtention of mature photoreceptors, or the use of non-integrative 

vectors to avoid genomic alteration in the iPSCs. Additionally, comparison of CRISPR/Cas9 engineered 

wild-type and mutant isogenic lines would help to reduce variability present between different 

individuals. Use of desired CRISPR/Cas9 technology would facilitate the insertion of the PCARE 

mutation in a population of wild-type cells, leaving the non-targeted population as isogenic control. 

The generation of the iPSCs technology by the group of Yamanaka in 2006116 marked a breakthrough 

that allowed the expansion of cells from donor individuals in vitro and the possibility to differentiate 

them into any cell type. The retinal organoid model has the advantage to better replicate the retinal 
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developmental environment in vivo than 2D culture techniques.117,118 Organoid culturing also allows 

for drug screening and, combined with gene editing, also disease modeling and repair. However, the 

retinal organoid model has certain drawbacks, such as the high heterogeneity between different 

pluripotent stem cell lines.119,120 Also, the generation of invaginated optic cups as described by the 

group of Sasai119 has been rarely observed,121-123 and the laborious manual separation of optic cups 

from 3D aggregates is an additional challenge for this method. To overcome this, some groups are 

starting to use cyst cultures that can acquire neuroepithelial identity after five days.124 Still, the long 

culturing times and the lack of techniques to isolate different retinal sub-types limits the immediate 

translation of retinal organoids into the clinic, though once these challenges are overcomed, stem-

cell-derived organoid technology may hold great promise for future treatment of retinal diseases.125 

7.6 Potential therapies for the treatment of PCARE-associated retinal disease 

Actin polymerization inhibitors are known drugs used in therapeutics for the treatment of diseases 

such as cancer.126,127 Inhibition of myosin II is used for the treatment of methamphetamine use.128 

However, in the case of PCARE-associated retinal disease, actin is already defective in the cell and 

these therapies would not be of use, since the aim is not to inhibit the actin cytoskeleton but to 

restore its function. The structure and function of the actin cytoskeleton is regulated by actin 

associated proteins, thus, restoration of the pathway working upstream PCARE and/or enhancement 

of actin polymerization at the base of photoreceptor OS could be one of the therapeutic targets. 

Gene augmentation therapy can be a safe option to treat PCARE-associated retinal disease, as many 

gene augmentation therapy studies show, both in animal models and human clinical trials.129-132 In 

addition, the US Food and Drug Administration (FDA) recently approved the first gene therapy for a 

retinal disease caused by mutations in RPE65, under the name LuxturnaTM. Together, these examples 

demonstrate the potential of gene augmentation therapy to treat some specific subtypes of IRD. 

Therefore, as described in chapter 6, we generated an AAV vector containing full length PCARE cDNA 

that can later on be used for therapeutic purposes. Many different aspects still need to be tested in 

order to assess whether this vector is valid for therapeutic intervention. For example, while we 

observe that the pAAV-PCARE plasmid is able to transfect RPE cells, AAV-PCARE did not produce 

detectable PCARE protein expression by immunofluorescence in hTERT RPE-1 cells. It is important to 

note that the expression of an AAV can vary in vitro and in vivo, and per cell type.133 Depending on 

the AAV serotype, the efficiency to transduce cultured stem cell-derived mouse and human retinal 

cells varies.134 These findings highlight the importance of selecting the appropriate AAV serotype for 

efficient cell transduction for in vitro studies. In addition, the developmental stage of the organoid 

may also affect the transduction efficiency and transcript expression levels. Therefore, the AAV-
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PCARE should be first tested in mammalian retinas to evaluate whether PCARE is properly produced 

in photoreceptor cells. If AAV-PCARE does not yield good PCARE expression because of size 

constrains, an alternative to tackle this problem is to test a reduced transgene. Given that the PCARE 

C-terminal part is not crucial for proper PCARE function (based on our functional studies), exon 2 of 

PCARE could be removed (aa 1223-1288) to be able to accommodate PCARE into an AAV. An 

alternative is to use other types of viral vectors like lentivirus,135 helper-dependent adenoviral 

vectors136 or non-viral vectors like nanoparticles that allow for expression of transgenes of bigger size 

(as reviewed in chapter 1).137,138 Dual AAVs are an attractive option for gene therapy of retinal 

diseases, thanks to the ability of the AAVs to concatemerize, and large retinal genes have been 

effectively delivered to mouse and pig photoreceptors using this method.139,140 Additionally, 

nanoparticles can deliver genes into retinal cells and have been shown to partially rescue retinitis 

pigmentosa in rds (retinal degeneration slow) mice.141  

An unpredictable variable of delivery of vectors to the subretinal space is the surgical procedure. To 

minimize trauma, nanoengineering of AAV capsids may facilitate gene therapy to target 

photoreceptors by using an intravitreal delivery instead of subretinal delivery, which has already 

been tested in dogs with some success.142 

The zebrafish is a good animal model to understand the disease, but the efficiency of AAV 

transduction in zebrafish is not extensively reported.143 Therefore, mutant Pcare-/- mice would be the 

first option to test the therapeutic vector. Alternatively, naturally occurring Pcare mutations in the 

dog are known,144 making it an additional excellent model to test therapeutic vectors. 

When the disease is diagnosed at a late stage, vision is generally absent due to loss of photoreceptor 

cells. In these cases, retinal prostheses, stem cell transplants and optogenetic therapies are plausible 

alternatives (as summarized in chapter 1). Stem cells can be obtained from different sources such as 

bone marrow,145 or ESCs. To avoid allogenic transplantation, fibroblasts can be obtained through a 

skin biopsy of the patient, reprogrammed into iPSCs, corrected via genome editing engineering, and 

transplanted into the retina of the same patient.  
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In this thesis, we aimed to shed light on the molecular role of PCARE in health as well as in retinal 

disease. We have found that PCARE is an actin-associated protein that interacts with the actin 

nucleator WASF3 to promote the evagination of the ciliary plasma membrane. We thereby 

uncovered new molecular players in the long-known process of actin-driven outer segments discs 

neogenesis in the photoreceptor connecting cilium. The deficiency in expression of extracellular 

matrix genes in PCARE-deficient patient-derived iPSCs suggests a defect in actin-related pathways, 

supporting this hypothesis. We have also generated a pcare1 mutant zebrafish that recapitulates the 

retinal phenotype observed in human and mice, and can serve as an excellent model to further 

investigate the function of pcare in a non-mammalian system. Finally, we have begun a route for 

gene augmentation therapy for PCARE-associated retinal disease with the generation of an AAV 

vector containing full length wild-type PCARE cDNA. Future research will elucidate the exact 

mechanisms and molecules responsible for the dynamic and interesting process that is actin-driven 

photoreceptor outer segment formation. 

7.7 Concluding remarks 

Major progress has been made in the last half century to understand photoreceptor cell biology and 

mechanisms that lead to disease, but many questions still remain unanswered. In this thesis, we have 

contributed to the broad field of the retinal ciliopathies by studying the function of the 

photoreceptor-specific protein PCARE. Learning about this protein has showed us that there is still a 

lot to uncover in this field, specifically from the molecular composition and regulation of outer 

segment morphogenesis and homeostasis at the photoreceptor ciliary membrane. Further studies of 

the function of PCARE and other microtubule and actin-associated ciliary proteins that play a role in 

this process may lead to a better understanding of retinal diseases associated with photoreceptor 

degeneration and fuel the development of novel therapies. In the future, retinal gene therapy will 

most likely be adapted to each patient to optimally target the specific genetic defect. Monogenic 

defects will benefit from therapies aiming at correcting or ablating the defective gene. Yet, the low 

frequency of these diseases poses challenges to generate cost-effective therapies. These challenges 

will lead towards the need of generation of therapies that target a broader range of genetic defects. 
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Summary 

The outer segment of retinal photoreceptor cells is a highly modified and specialized sensory cilium 

important for phototransduction, and thus for vision (chapter 1.3). Inherited retinal diseases (IRDs) 

in which photoreceptor cells degenerate due to a dysfunction of the photoreceptor cilium are 

named retinal ciliopathies. These diseases are phenotypically and genetically highly variable, 

challenging molecular genetic diagnostics for the patients (chapter 1.4). Mutations in the C2ORF71 

gene were identified in 2010 to be responsible for the condition Retinitis Pigmentosa (RP), a subtype 

of IRD characterized by progressive vision loss. C2ORF71 was initially suggested to play a role in the 

photoreceptor cilium, as exogenous expression in cells revealed localization of C2ORF71 to the 

primary cilium. In the last eight years, various novel C2ORF71 mutations have been found in patients 

with Retinitis Pigmentosa or cone-rod dystrophy, but there is a lack of studies that address the 

function of this gene and the protein it encodes. In this thesis, we aimed at gaining insights on the 

molecular role of C2ORF71 in photoreceptor homeostasis and retinal disease.  

Chapter 2 focuses on the elucidation of the function of C2ORF71, which is now officially renamed to 

PCARE (photoreceptor cilium actin regulator) based on our results. Protein-protein interaction 

studies, employing a combination of yeast two-hybrid systems and tandem affinity purifications, 

revealed that PCARE interacts with modules of microtubule-, centrosome-, and actin-associated 

proteins. Localization studies in mouse retinae showed that PCARE co-localizes with an actin module 

at the base of the outer segments of photoreceptors, while in Pcare-/- mice, this actin module is 

mislocalized. Old, damaged outer segment discs are shed at the photoreceptor apex and 

phagocytized by the adjacent retinal pigment epithelium. Daily, the ciliary plasma membrane 

evaginates at the base of the outer segments to initiate renewal of the phototransductive discs. 

While actin has been proposed to play a role in this process, the exact molecular mechanism behind 

it remains unknown. We show that PCARE recruits one of their actin-associated interactors, the 

Wiskott-Aldrich syndrome family protein WASF3, from the perinuclear membrane to the primary 

cilium in hTERT RPE-1 cells. The presence of both PCARE and WASF3 in the primary cilium recruits 

actin polymerization components to the primary cilium, inducing the evagination of the ciliary 

plasma membrane. The RP-associated PCARE missense mutant p.Ile201Phe generates ciliary 

membrane evaginations less frequently, and these are smaller compared to wild-type PCARE. These 

data point to disturbance of actin-dynamics driven ciliary membrane evagination as the 

pathogenetic mechanism behind PCARE-associated retinal disease. In addition, these findings unveil 

novel potential molecules involved in the process of ciliary membrane evagination. 
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The clinical and genetic information of all reported patients with PCARE-associated retinal disease is 

presented in chapter 3. PCARE-associated retinal disease is very rare, with just over 40 patients 

reported. Some patients show symptoms at an early age, while others are reported late in 

adulthood, the median age at first visit to the clinic being 31.5 years. For the majority of patients, 

night blindness is reported. Retinal thinning and loss of retinal lamination is characteristic for all 

patients, while reduced or non-recordable full-field electroretinography is also common. 

Homozygous PCARE mutations are mostly truncating, with only two homozygous missense 

mutations reported. The majority of patients present truncating or missense mutations at the N-

terminus of the PCARE protein. Analysis of the position of the mutation in the PCARE protein and 

age of onset revealed no clear correlation between the age of disease onset and the position of the 

PCARE mutation in patients with PCARE-associated retinal disease. 

Chapter 4 reports the duplication of the gene pcare in zebrafish and the generation of a novel 

mutant pcare1 zebrafish model using CRISPR/Cas9 technology, termed pcare1rmc100/rmc100. In 

zebrafish, pcare1, the true orthologue of human PCARE, is located on chromosome 17 and codes for 

a protein of 1122 amino acids, while pcare2 locates to chromosome 20 and encodes a protein of 859 

amino acids. The specific generated mutation by CRISPR/Cas9 is a 29-basepair deletion in exon 1 of 

pcare1 (c. 21_49del), predicted to result in the premature termination of translation after amino 

acid 16 of pcare1 (p.Gly8Glufs*9). Pcare1 mutant zebrafish show defects in photoreceptor outer 

segments morphology, both in the embryonic (5 days post fertilization) and adult (6 months post 

fertilization) states. Analysis of visual function using optokinetic and visual motor response 

measurements indicate visual impairment of pcare1rmc100/rmc100 mutant zebrafish. Pcare1rmc100/rmc100 

zebrafish show reduced ERG responses, indicating a defect in the transretinal current. Thus, 

pcare1rmc100/rmc100 zebrafish are an additional animal model to study PCARE-associated retinal disease. 

Moreover, these findings further support the involvement of PCARE in forming and/or maintaining 

photoreceptor outer segments.  

Fibroblast cells derived from a patient with a homozygous point mutation (c.947del; 

p.Asn316Metfs*7) in PCARE do not show ciliary defects, probably explained by the low PCARE 

expression in this cell type compared to the retina. This is also in line with the photoreceptor-specific 

function of PCARE. Therefore, to study PCARE-associated retinal disease in vitro, we took advantage 

of induced pluripotent stem cell (iPSC) technology in chapter 5. To model the disease in vitro, 

PCARE-deficient fibroblasts were reprogrammed into iPSCs and differentiated during 90 days into a 

neuroretinal fate. To study the transcriptome of these cells, RNA sequencing was performed. 

Transcriptome data analysis revealed downregulation of expression of genes coding for actin 

cytoskeletal proteins in PCARE-deficient iPSCs compared to wild-type cells. Additionally, while wild-
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type cells differentiated into a neuronal cell fate, the patient-derived iPSCs differentiated into a 

plasma cell fate. The low number of reads of photoreceptor-specific genes detected indicates that 

the culture was not significantly enriched in photoreceptor cells in either wild-type or mutant cells. 

Therefore, an improved protocol that optimizes the enrichment of photoreceptor precursor cells will 

be necessary to specifically assess the potential morphological defects due to PCARE mutations.  

Chapter 6 describes the generation of an adeno-associated virus (AAV) vector containing full-length 

PCARE cDNA, with the aim to use it for future therapeutic purposes. An AAV plasmid was adapted to 

the Gateway cloning system to facilitate the insertion of full length PCARE cDNA. Because AAV 

vectors are restrictive in size, the insertion cassette between the AAV plasmid´s ITRs was reduced 

from 5.6 kb to 4.8 kb, the limit of what an AAV can accommodate. Next, an AAV2/9 vector was 

generated containing the minimal elements to allow transgene expression: a photoreceptor-specific 

rhodopsin kinase promoter, an SV40 intron, PCARE cDNA, and a bovine Growth Hormone 

polyAdenylation signal (bGHpA). Analysis by RT-PCR and droplet digital PCR showed that the 

insertion cassette was properly packaged in the AAV vector. However, PCARE expression was not 

detected either by immunofluorescence or western blot after transduction of hTERT RPE-1 cells 

using different multiplicity of infections. These results suggested a problem of the AAV vector to 

drive transgene expression in hTERT RPE-1 cells. In vivo assessment of the efficacy of the 

AAV2/9.RK.PCARE.S vector in mice is needed to assess the validity of the vector to transduce 

photoreceptor cells.  

The main topics of this thesis are discussed in chapter 7. An introductory discussion based on 

previous knowledge about the development of the ciliary photoreceptor cell outer segment, from 

the findings of Richard Young in 1967 that outer segments are constantly rebuilt, to recent reports 

that confirm that outer segments discs form through an evagination mechanism of the ciliary plasma 

membrane (chapter 7.1). Previous literature on the involvement of actin and actin-associated 

proteins in the process of outer segment disc formation is reviewed in chapter 7.2. The role of the 

PCARE protein and its association to the Arp2/3 complex activator WASF3 protein, as well as the 

formation of ciliary membrane evaginations are discussed in chapter 7.3. The role of retinal 

ciliopathy proteins in the actin-dependent formation of outer segment discs is examined in chapter 

7.4. In chapter 7.5, we analyze PCARE-associated retinal disease and discuss the animal and cellular 

models currently available to further study the disease features. Finally, potential therapies to treat 

this disease such as AAV-based gene augmentation therapy are discussed in chapter 7.6. 
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Samenvatting 

Het buitenste segment van de fotoreceptorcellen in het netvlies is een gemodificeerd en zeer 

gespecialiseerd sensorisch cilium dat belangrijk is voor de fototransductie, en dus ook voor het zien 

(hoofdstuk 1.3). Erfelijke netvliesaandoeningen (inherited retinal diseases; IRDs) waarin de 

fotoreceptorcellen afsterven vanwege een niet-functionerend cilium, worden ook wel retinale 

ciliopathieën genoemd. Deze ziekten zijn zowel klinisch als genetisch zeer variabel, waardoor 

moleculair genetische diagnostiek voor de patiënten niet eenvoudig is (hoofdstuk 1.4). Mutaties in 

het C2ORF71-gen werden in 2010 voor het eerst geïdentificeerd als zijnde verantwoordelijk voor de 

aandoening Retinitis Pigmentosa (RP), een IRD subtype dat gekenmerkt wordt door een progressief 

verlies van het gezichtsvermogen. Gezien de localisatie van exogeen tot expressie gebracht C2orf71 

eiwit, werd verondersteld dat dit eiwit een rol speelt binnen het cilium in de fotoreceptorcellen. In 

de afgelopen acht jaar zijn er verschillende nieuwe C2ORF71-mutaties gevonden bij patiënten met 

Retinitis Pigmentosa of met kegel-staaf-dystrofie, een verwante vorm van IRD.  Studies die de exacte 

functie van dit gen en het gecodeerde eiwit hebben onderzocht bleven helaas achter. In dit 

proefschrift hebben we ons gericht op het verkrijgen van inzichten in de moleculaire rol van 

C2ORF71 in fotoreceptorhomeostase alsook in netvliesaandoeningen. 

Hoofdstuk 2 richt zich op de opheldering van de functie van C2ORF71 dat, op basis van onze 

resultaten, nu officieel is omgedoopt tot PCARE (photoreceptor cilium actin regulator). Eiwit-eiwit 

interactiestudies, waarbij gebruik werd gemaakt van een combinatie van het yeast-two-hybrid 

systeem alsook van tandem affinity purification, wezen uit dat PCARE een interactie aangaat met 

microtubule-, centrosoom- en actine-geassocieerde eiwitten. Lokalisatiestudies in het netvlies van 

muizen toonden aan dat PCARE co-lokaliseert met een actine-module aan de basis van de buitenste 

segmenten van fotoreceptoren, terwijl deze actinemodule in mutante Pcare knock-out muizen 

verkeerd was gelokaliseerd. Oude, beschadigde stukjes (discs) van het buitenste segment worden 

afgestoten aan de apicale zijde van de fotoreceptorcel, en vervolgens ‘opgegeten’ door het 

aangrenzende retinale pigmentepitheel. Dagelijks evolueert het ciliaire plasmamembraan aan de 

basis van de buitenste segmenten om de vernieuwing van de fototransductie discs te initiëren. 

Hoewel al lang geleden is gepostuleerd dat actine een rol speelt binnen dit proces, blijft het precieze 

moleculaire mechanisme hierachter onbekend. Wij hebben aangetoond dat PCARE in staat is om één 

van de actine-geassocieerde interactoren, het Wiskott-Aldrich-syndroom-familie-eiwit WASF3, van 

het perinucleaire membraan naar het primaire cilium in hTERT RPE-1-cellen te rekruteren. De 

aanwezigheid van zowel PCARE als WASF3 in het primaire cilium zorgt ervoor dat andere 

componenten die betrokken zijn bij de polymerisatie van actine, ook naar het primaire cilium 
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worden verplaatst. Daardoor wordt een soort evaginatie van het ciliaire plasmamembraan 

geïnduceerd. Verder bleek dat mutant PCARE eiwit (met de p.Ile201Phe mutatie die in RP patiënten 

is gevonden) minder vaak deze ciliary membraan-evaginaties induceert, en dat de evaginaties die 

gevormd worden ook kleiner zijn in vergelijking met wild-type PCARE. Deze data wijzen op een 

verstoring van actine-aangedreven ciliaire membraan-evaginatie als het pathogene mechanisme 

achter PCARE-geassocieerde netvliesziekte. Bovendien onthullen onze bevindingen nieuwe 

moleculen die potentieel betrokken zijn bij het proces van ciliaire membraan-evaginatie. 

De klinische en genetische informatie van alle tot dusver gepubliceerde patiënten met PCARE-

geassocieerde IRD is weergegeven in hoofdstuk 3. PCARE-geassocieerde IRD is zeer zeldzaam, met 

iets meer dan 40 patiënten die tot dusver in de literatuur zijn beschreven. Sommige patiënten 

vertonen de eerste symptomen op jonge leeftijd, terwijl bij anderen de eerste klachten pas als 

volwassene optreden. De gemiddelde leeftijd van een patiënt bij het eerste bezoek aan de kliniek 

was 31,5 jaar. Bij de meerderheid van de patiënten werd nachtblindheid als eerste gerapporteerd. 

Het dunner worden van het netvlies, en verlies van de juiste gelaagdheid van het netvlies, zijn 

kenmerkend voor alle patiënten, terwijl verminderde of niet-aanwezige full-field elektroretinografie 

ook gebruikelijk is. PCARE-mutaties zijn meestal eiwit-truncerend, terwijl slechts twee homozygote 

missense mutaties zijn gerapporteerd. De meerderheid van de patiënten vertoont truncerende of 

missense mutaties aan de N-terminus van het PCARE-eiwit. Een analyse van de positie van de 

mutatie in het PCARE-eiwit ten opzichte van de beginleeftijd van de visuele klachten bracht geen 

duidelijke correlatie naar voren tussen de leeftijd waarop de ziekte begint en de positie van de 

PCARE-mutatie bij patiënten met PCARE-geassocieerde IRD. 

In hoofdstuk 4 beschrijven we de duplicatie van het pcare gen in de zebravis, en de generatie van 

een nieuw mutant pcare1 zebravismodel, genaamd pcarermc100/rmc100, middels CRISPR/Cas9 

technologie. In de zebravis bevindt pcare1, het gen dat het meeste lijkt op het humane PCARE gen, 

zich op chromosoom 17 en codeert het voor een eiwit van 1122 aminozuren, terwijl pcare2 zich op 

chromosoom 20 bevindt en codeert voor een eiwit van 859 aminozuren. De specifiek gegenereerde 

mutatie zorgt ervoor dat 29 basenparen in exon 1 van pcare1 (c.221_49del) uit het gen zijn 

verwijderd, waarvan wordt voorspeld dat deze zal resulteren in de voortijdige beëindiging van 

pcare1 eiwitsynthese na aminozuur 16 (p.Gly8Glufs*9). Pcare1 mutante zebravissen vertonen 

afwijkingen in de morfologie van de buitenste segmenten van de fotoreceptorcellen, zowel in het 

embryonale (5 dagen na bevruchting) als het volwassen (6 maanden na bevruchting) stadium. 

Analyse van de visuele functie met behulp van optokinetische en visueel motorische 

reactiemetingen duiden op een visuele beperking van pcare1rmc100/rmc100 mutante zebravissen. De 

mutante zebravissen vertonen ook verminderde ERG-reacties, iets dat wijst op een defect in de 
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transretinale signaalprocessing. Daarmee hebben we aangetoond dat pcare1rmc100/rmc100 zebravissen 

een aanvullend diermodel zijn om PCARE-geassocieerde IRD te bestuderen. Bovendien 

ondersteunen onze bevindingen de eerder gevonden betrokkenheid van PCARE bij het vormen en/of 

behouden van de buitenste segmenten in de fotoreceptorcel. 

Fibroblast (huid) cellen, verkregen van een patiënt met een homozygote PCARE mutatie (c.947del; 

p.Asn316Metfs*7) vertonen geen ciliaire defecten, waarschijnlijk verklaard door de lage PCARE-

expressie in dit celtype in vergelijking met die in het netvlies. Dit komt ook overeen met de 

veronderstelde fotoreceptor-specifieke functie van PCARE. Om PCARE-geassocieerde IRD in vitro te 

kunnen bestuderen, hebben we daarom gebruik gemaakt van geïnduceerde pluripotente stamcel 

(iPSC)-technologie, zoals beschreven in hoofdstuk 5. Om de ziekte in vitro na te bootsen, werden 

PCARE-deficiënte fibroblasten geherprogrammeerd naar iPSCs, en vervolgens gedurende 90 dagen 

gedifferentieerd tot neuroretinale voorlopercellen. Om het transcriptoom van deze cellen te 

bestuderen, werd RNA sequencing uitgevoerd. Transcriptoom data-analyse toonde een 

downregulatie van expressie van genen die coderen voor actine cytoskeletale eiwitten aan in de 

PCARE-deficiënte iPSCs, in vergelijking met wild-type cellen. Daarnaast, terwijl cellen van het wilde 

type differentieerden tot neuronaal-achtige cellen, leken de patiënt-afgeleide iPSC’s meer tot een 

soort van plasmacel te zijn gedifferentieerd. De lage expressie van fotoreceptor-specifieke genen gaf 

aan dat de celkweek niet significant verrijkt was in fotoreceptorcellen, zowel in wild-type als in de 

PCARE-mutante cellen. Daarom zal een verbeterd protocol dat de verrijking van fotoreceptor 

precursorcellen mogelijk maakt, noodzakelijk zijn om in de toekomst specifiek de potentiële 

morfologische defecten als gevolg van PCARE-mutaties te beoordelen. 

Hoofdstuk 6 beschrijft de generatie van een adeno-geassocieerde virus (AAV) vector met het 

volledige PCARE cDNA, met als doel deze te gebruiken voor toekomstige therapeutische 

behandelingen. Een AAV-plasmide werd aangepast aan het Gateway-kloneringssysteem om de 

insertie van het volledige PCARE-cDNA te vergemakkelijken. Omdat AAV-vectoren een beperkte 

hoeveelheid DNA kunnen opnemen, werd de insertiecassette tussen de ITR's van het AAV-PCARE-

plasmide verlaagd van 5,6 kb tot 4,8 kb, de maximale hoeveelheid DNA die een AAV kan verpakken. 

Vervolgens werd een AAV2/9-vector gegenereerd die de minimale elementen bevatte om transgen-

expressie mogelijk te maken: een fotoreceptor-specifieke rhodopsine kinase promoter, een SV40-

intron, PCARE-cDNA en een runder-groei-hormoon-polyadenyleringssignaal (bGHpA). Analyse door 

RT-PCR en digital droplet PCR toonde aan dat de verkorte insertiecassette op de juiste wijze was 

verpakt in de AAV-vector. Helaas werd PCARE-expressie echter niet gedetecteerd middels 

immunofluorescentie of Western blot na transductie van hTERT-RPE-1-cellen. Deze resultaten 

suggereren dat de gemaakte AAV-vector niet goed genoeg in staat is om transgene PCARE expressie 
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in hTERT RPE-1-cellen te realiseren. In vivo beoordeling van de werkzaamheid van de 

AAV2/9.RK.PCARE.S-vector in het netvlies van muizen is dus nodig om de therapeutische potentie 

van deze vector voor de transductie van fotoreceptorcellen te beoordelen. 

De belangrijkste onderwerpen van dit proefschrift worden nog eens bediscussieerd in hoofdstuk 7. 

Een inleidende discussie is gebaseerd op eerdere kennis over de ontwikkeling van het ciliaire 

buitenste segment van de fotoreceptorcel, van de bevindingen van Richard Young in 1967 dat de 

buitenste segmenten constant worden herbouwd, tot aan recente publicaties die bevestigen dat de 

buitenste segmenten units (discs) vormen middels evaginatie van het ciliaire plasmamembraan 

(hoofdstuk 7.1). Eerdere literatuur over de betrokkenheid van actine en actine-geassocieerde 

eiwitten in dit proces wordt besproken in hoofdstuk 7.2. De rol van het PCARE-eiwit, haar associatie 

met het WASF3-eiwit dat behoort tot het Arp2/3-complex, alsook de vorming van de membraan-

evaginaties, worden besproken in hoofdstuk 7.3. De rol van retinale ciliopathie-eiwitten in de actine-

afhankelijke vorming van buitenste segment discs wordt beschreven in hoofdstuk 7.4. In hoofdstuk 

7.5 bediscussiëren we PCARE-geassocieerde IRD, alsook de cellulaire- en dier-modellen die 

momenteel beschikbaar zijn om de ziektekenmerken verder te bestuderen. Ten slotte worden 

mogelijke therapieën voor de behandeling van deze ziekte, zoals op AAV gebaseerde gentherapie 

nog eens uitvoerig besproken. 
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Resumen 

Los fotorreceptores de la retina, conos y bastones, son las células encargadas de capturar y 

transformar la luz en impulsos eléctricos, en un proceso llamado fototransducción (capítulo 1.3). El 

segmento externo de los fotorreceptores es un cilio especialmente modificado compuesto de 

cientos de discos membranosos importantes para el proceso de fototransducción, y por tanto para 

una correcta visión. Las enfermedades hereditarias de retina causadas por un mal funcionamiento 

del cilio de los fotorreceptores se denominan ciliopatías de la retina. Estas enfermedades son raras y 

muy variables desde el punto de vista genético y fenotípico, lo que complica el diagnóstico 

molecular de los pacientes (capítulo 1.4). En 2010, se identificaron por primera vez mutaciones 

causantes de la enfermedad Retinosis Pigmentaria en el gen C2ORF71, un subtipo de distrofia de 

retina caracterizada por la pérdida progresiva de la visión. Inicialmente, se asoció la función del gen 

C2ORF71 con el cilio de los fotorreceptores, ya que al expresar exógenamente el gen en células 

epiteliales se observó que la proteína C2ORF71 localizaba en el cilio primario, una especie de antena 

que permite a la célula intercambiar información con el exterior. En los últimos ocho años, se han 

encontrado nuevas mutaciones en C2ORF71 en pacientes con Retinosis Pigmentaria o Distrofia de 

conos y bastones. Sin embargo, hasta ahora no hay estudios que describan la función de este gen y 

la proteína que codifica. El objetivo de esta tesis ha sido el de estudiar la función a nivel molecular 

de C2ORF71 en la homeostasis de los fotorreceptores y su contribución a las distrofias de retina. 

El capítulo 2 se centra en el estudio de la función del gen C2ORF71, ahora oficialmente reconocido 

como PCARE (por sus siglas en inglés “photoreceptor cilium actin regulator”, y en castellano 

“regulador de actina en el cilio de fotorreceptores”) basado en nuestros resultados. Estudios de 

interacciones proteína-proteína basados en las técnicas del doble híbrido en levadura y purificación 

por afinidad en tándem, revelaron que PCARE interactúa con módulos de proteínas asociadas a 

microtúbulos, centrosoma y actina. Posteriormente, estudios de localización en retinas de ratón 

mostraron que PCARE co-localiza con un módulo de actina en la parte basal de los segmentos 

externos de los fotorreceptores, mientras que en ratones Pcare-/- (ratones carentes del gen Pcare) 

este módulo de actina está deslocalizado. La fotorrecepción provoca que los discos del segmento 

externo de fotorreceptores se dañen tras su uso. Los discos dañados se vierten en el ápice del 

fotorreceptor y son fagocitados por el epitelio pigmentado de la retina adyacente a los 

fotorreceptores. Diariamente, la membrana plasmática del cilio en la base de los segmentos 

externos se pliega hacia el exterior (evaginación) para iniciar la renovación de los discos de los 

fotorreceptores. Desde hace décadas se ha propuesto que la actina tiene un papel importante en 

este proceso, sin embargo, el mecanismo molecular exacto detrás de la formación de nuevos discos 
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de los fotorreceptores es aún desconocido. En esta tesis mostramos que PCARE interactúa con la 

proteína de la familia del síndrome Wiskott-Aldrich, WASF3. Nuestras observaciones indican que 

PCARE transporta a WASF3 desde la membrana perinuclear al cilio primario en células hTERT RPE-1. 

La presencia de PCARE y WASF3 en el cilio primario recluta a otros componentes asociados con la 

actina hacia el cilio primario, induciendo la evaginación de la membrana plasmática del cilio. Tras 

insertar la mutación de cambio de sentido p.Ile201Phe en PCARE, previamente encontrada en 

pacientes con Retinosis Pigmentaria, observamos que la evaginación de la membrana del cilio es 

menos frecuente, y cuando se encuentra, las evaginaciones son más pequeñas en comparación con 

las que produce la proteína PCARE correcta. Estos resultados indican que el mecanismo detrás de la 

distrofia de retina asociada al gen PCARE es la alteración de la evaginación de la membrana 

plasmática del cilio promovida por las dinámicas de la actina. Además, nuestros resultados revelan 

nuevas moléculas que pueden estar implicadas en el proceso de evaginación de la membrana 

plasmática del cilio. 

En el capítulo 3 se recoge la información clínica y genética de todos los pacientes descritos con 

distrofia de retina asociada a PCARE, cuya frecuencia es muy rara. Hasta la fecha sólo 40 pacientes 

han sido reportados. Algunos pacientes muestran síntomas a edad temprana, mientras otros los 

muestran en la edad adulta. La edad media de la primera visita a la clínica es de 31.5 años. La 

mayoría de los pacientes experimenta ceguera nocturna. Otras características clínicas comunes 

presentes en todos los pacientes son la presencia de una retina más fina y la pérdida de la 

laminación de ésta. Las electrorretinografías suelen ser reducidas o imposibles de medir dada la 

pérdida de los fotorreceptores. Las mutaciones homocigotas en PCARE son en su mayoría de 

terminación, es decir, no permiten la síntesis de la proteína completa, y tan solo dos mutaciones de 

cambio de sentido han sido descritas. La mayoría de los pacientes presentan las mutaciones en la 

posición N-terminal de la proteína PCARE. Sin embargo, nuestros estudios muestran que no existe 

correlación entre la posición de la mutación en la proteína PCARE y la edad de aparición de la 

enfermedad.  

El capítulo 4 describe la duplicación del gen pcare en pez cebra, y la generación de un modelo 

mutante de pcare1 en este modelo animal usando la tecnología de CRISPR/Cas9, denominado 

pcare1rmc100/rmc100. En pez cebra, pcare1, el verdadero ortólogo del gen humano PCARE, está 

localizado en el cromosoma 17 y codifica una proteína de 1122 aminoácidos, mientras pcare2 está 

situado en el cromosoma 20 y codifica una proteína de 859 aminoácidos. La mutación específica 

generada mediante CRISPR/Cas9 es una deleción de 29 pares de bases en el exón 1 de pcare1 (c. 

21_49del), que se predice que forme una terminación prematura de la traducción tras el aminoácido 

16 de pcare1 (p.Gly8Glufs*9). Los peces cebra mutantes pcare1rmc100/rmc100 muestran irregularidades 
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en la morfología del segmento externo de los fotorreceptores, tanto en el estado embrionario (5 

días después de la fertilización), como en el adulto (6 meses después de la fertilización). Los análisis 

de la función visual de los peces cebra usando mediciones de la respuesta optocinética y visomotora 

indican que la visión de los peces cebra mutantes pcare1rmc100/rmc100 está deteriorada. Estos peces 

presentan también electrorretinografías reducidas, lo que indica un fallo en la corriente eléctrica 

que atraviesa la retina. Los peces cebra mutantes pcare1rmc100/rmc100 son por lo tanto un excelente 

modelo animal que permite estudiar la distrofia de retina asociada a PCARE. Además, estos 

resultados apoyan la hipótesis que sugiere que PCARE es importante para formar y/o mantener los 

segmentos externos de los fotorreceptores. 

Debido a que no existen líneas celulares de fotorreceptores que se puedan mantener en cultivo, un 

método común para estudiar ciliopatías de retina es utilizar células derivadas del paciente para 

analizar los efectos de las mutaciones genéticas en el cilio primario. Los fibroblastos son células de 

tejido conectivo que se pueden obtener a través de una biopsia de la piel de un paciente. En el 

capítulo 5, se muestra que los fibroblastos derivados de un paciente con una mutación puntual 

homocigótica en PCARE (c.947del; p.Asn316Metfs*7) no tienen defectos en el cilio, lo que se puede 

explicar por la baja expresión de PCARE en fibroblastos en comparación con la expresión en retina. 

Esto también está en línea con la función específica de PCARE en fotorreceptores. Por ello, para 

estudiar la enfermedad de retina asociada a PCARE in vitro, se utilizó la tecnología de células madre 

pluripotentes inducidas (iPSCs) con el objetivo de obtener fotorreceptores en cultivo. Para modelar 

la enfermedad in vitro, se reprogramaron los fibroblastos con la mutación en PCARE a iPSCs, y se 

siguió un protocolo de diferenciación de 90 días para obtener neuroretinas. Para estudiar el 

transcriptoma de estas células, se utilizó la técnica de secuenciación del ARN. El análisis de los datos 

del transcriptoma reveló que había menor expresión de genes codificantes para proteínas 

citoesqueléticas relacionadas con actina en las iPSCs derivadas del paciente con la mutación en 

PCARE. Además, mientras las células derivadas de un individuo control fueron capaces de 

diferenciarse en células neuronales, las iPSCs derivadas del paciente se diferenciaron en células de 

plasma. El transcriptoma también reveló que había una baja expresión de genes específicos de 

fotorreceptores, indicando que el cultivo celular no estaba enriquecido en células fotorreceptoras 

tanto en la línea control como en la del paciente. Por ello, futuros experimentos que permitan 

enriquecer el cultivo en células fotorreceptoras son necesarios para poder determinar el potencial 

de defectos morfológicos en este tipo celular debido a mutaciones en PCARE. 

El capítulo 6 describe la generación de un virus adeno-asociado (AAV) que incluye el ADN 

complementario (ADNc) completo de PCARE, con el objetivo de ser usado como vector terapéutico. 

Primeramente, un plásmido con la secuencia del AAV se adaptó al sistema de clonaje Gateway para 
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facilitar la inserción del ADNc completo de PCARE. Debido a que los vectores AAV son restrictivos en 

cuanto a tamaño, el casete de inserción entre las repeticiones terminales invertidas (ITRs) del 

plásmido AAV se redujo de 5.6 kb a 4.8 kb, en el límite de lo que un AAV puede acomodar. 

Posteriormente, un vector AAV2/9 fue generado compuesto por los elementos mínimos que 

permiten la expresión del transgén: un promotor, en este caso el de la rodopsina quinasa, específico 

de fotorreceptores; un intrón SV40; el ADNc de PCARE, y una señal de poliadenilación de la hormona 

de crecimiento bovina. Este vector se denominó AAV2/9.RK.PCARE.S. El ánálisis por RT-PCR y PCR 

digital a gotas mostraron que el casete de inserción estaba correctamente empaquetado en el 

vector AAV. Sin embargo, la expresión de PCARE no se detectó ni por inmunofluorescencia ni 

western blot tras transducir células hTERT RPE-1 usando diferentes multiplicidades de infección. 

Estos resultados sugieren un problema del vector AAV para producir la expresión del transgén en 

células hTERT RPE-1. La evaluación in vivo de la eficacia del vector AAV2/9.RK.PCARE.S en ratones 

sería necesaria para comprobar la validez del vector para transducir células fotorreceptoras. 

Los temas principales de esta tesis son discutidos en el capítulo 7. Una discusión introductoria 

basada en el conocimiento previo sobre el desarrollo del segmento externo ciliar de la célula 

fotorreceptora, desde los descubrimientos de Richard Young en 1967 que indican que los segmentos 

externos se renuevan continuamente, hasta publicaciones actuales que confirman que los discos de 

los segmentos externos se forman mediante un mecanismo de evaginación de la membrana 

plasmática del cilio (capítulo 7.1). La literatura previa sobre la implicación de la actina y proteínas 

asociadas a la actina en el proceso de formación de los discos del segmento externo es revisada en el 

capítulo 7.2. El papel de la proteína PCARE y su asociación con la proteína WASF3, así como la 

formación de evaginaciones de la membrana del cilio son discutidas en el capítulo 7.3. El papel de 

proteínas causantes de ciliopatías en la formación dependiente de actina de los discos del segmento 

externo es examinado en el capítulo 7.4. En el capítulo 7.5, se analiza la distrofia de retina asociada 

a PCARE, y se discuten los modelos animales y celulares disponibles actualmente que permiten 

estudiar los rasgos distintivos de la enfermedad. Finalmente, en el capítulo 7.6 se discuten 

potenciales terapias que permitan tratar esta enfermedad, tales como la terapia de 

reemplazamiento mediante AAV.  
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